

7136 S Yale Ave Suite 501 Tulsa, OK 74133 o 918.664.4581 f 918.664.3066 www.iHeartMedia.com www.iHeartRadio.com #iheartradio

December 10, 2021

VIA EMAIL

Ms. Marlene H. Dortch, Secretary Federal Communications Commission 45 L Street NE Washington, DC 20554

RE: IHM LICENSES, LLC (FRN No. 0014042816) Application for New License on FCC Form 302-AM KTSM (AM), 690 kHz, El Paso, TX; Facility ID No. 69561

Dear Ms. Dortch:

On behalf of IHM LICENSES, LLC, the licensee of the above-referenced station, enclosed is copy of an application for New License submitted on FCC Form 302-AM.

Also enclosed is Form 159, Remittance Advice, with credit card payment of the \$1905.00 filing fee.

Please contact the undersigned with any communications concerning this application.

Respectfully submitted, IHM LICENSES, LLC

By:

Troy Langham VP, Technical Regulatory Affairs

cc: Public Inspection File

Online Payment Information

Total Amount Payer FRN Payer Name Remittance ID Treasury Tracking ID \$1,905.00 0014042816 iHM Licenses, LLC 3701238 26UA8QQ5

Thank you for your payment!

Approved by OMB 3060-0627 Expires 01/31/98

FOR
FCC
USE
ONLY

FCC 302-AM

APPLICATION FOR AM

BROADCAST STATION LICENSE

(Please read instructions before filling out form.

FOR COMMISSION USE ONLY

FILE NO.

SECTION I - APPLICANT FEE INFORMATION			
1. PAYOR NAME (Last, First, Middle Initial)			
IHM Licenses LLC			
MAILING ADDRESS (Line 1) (Maximum 35 characters) 7136 S YALE AVE			
MAILING ADDRESS (Line 2) (Maximum 35 characters) SUITE 501			
CITY TULSA	STATE OR COUNTRY (if fo	reign address)	ZIP CODE 74136
TELEPHONE NUMBER (include area code) 918-664-4611	CALL LETTERS KTSM	OTHER FCC IDE 69561	NTIFIER (If applicable)
2. A. Is a fee submitted with this application?	- -		✓ Yes No
B. If No, indicate reason for fee exemption (see 47 C.F.R. Section			
Governmental Entity	cational licensee	ther (Please explain):
C. If Yes, provide the following information:			
Enter in Column (A) the correct Fee Type Code for the service you a			
Fee Filing Guide." Column (B) lists the Fee Multiple applicable for thi	is application. Enter fee amou	nt due in Column (C	;).
(A) (B)			
FEE TYPE FEE MULTIPLE	FEE DUE FOR FEI TYPE CODE IN COI UMN (A)	=	FOR FCC USE ONLY
M M R 0 0 1	\$ 645.00		
To be used only when you are requesting concurrent actions which rea	sult in a requirement to list mo	e than one Fee Typ	e Code.
(A) (B)	(C)	[
M O R 0 0 0 1	\$ 1260.00		FOR FCC USE ONLY
	TOTAL AMOUNT		
ADD ALL AMOUNTS SHOWN IN COLUMN C, AND ENTER THE TOTAL HERE.	REMITTED WITH TH APPLICATION	IS	FOR FCC USE ONLY
THIS AMOUNT SHOULD EQUAL YOUR ENCLOSED REMITTANCE.	\$ 1905.00		

SECTION II - APPLICANT INFORMATION						
1. NAME OF APPLICANT IHM Licenses LLC						
MAILING ADDRESS 7136 S YALE AVE SUITE 5	01					
CITY TULSA			STATE OK		ZIP CODE 74136	
2. This application is for:	Commercial		Noncomn	nercial		
		l				
	AM Direc	cuonai		lon-Directional		
Call letters	Community of License	Construct	tion Permit File No.	Modification of Construction	Expiration Date of Last Construction Permit	
KTSM	El Paso, Texas			Permit File No(s).	Construction Permit	
2 is the station in	ow operating pursuant	to auto	matic program	tost authority in	✓ Yes No	
3. Is the station n accordance with 47 C.F		io auto	matic program	lest autionly in		
If No, explain in an Exhi	ibit				Exhibit No.	
4. Have all the term	s, conditions, and oblig	ations s	et forth in the	above described	Yes No	
construction permit bee	-				Exhibit No.	
If No, state exceptions i	n an Exhibit.				N/A	
-	ges already reported, ha lying construction permi	-			Yes 🖌 No	
-	d in the construction period					
If Yes, explain in an Ex	hibit.				Exhibit No. N/A	
					<u> </u>	
6. Has the permittee fil	led its Ownership Report	(FCC Fo	orm 323) or owne	ership	Yes No	
certification in accordan	ce with 47 C.F.R. Sectio	n 73.361	5(b)?		Does not apply	
lf Ne, evelois is as Evel					Exhibit No.	
If No, explain in an Exhi	idit.				Exhibit No.	
7. Has an adverse finding been made or an adverse final action been taken by any court or administrative body with respect to the applicant or parties to the application in a civil or criminal proceeding, brought under the provisions of any law relating to the following: any felony; mass media related antitrust or unfair competition; fraudulent statements to another governmental unit; or discrimination?						
If the answer is Yes, attach as an Exhibit a full disclosure of the persons and matters involved, including an identification of the court or administrative body and the proceeding (by dates and file numbers), and the disposition of the litigation. Where the requisite information has been earlier disclosed in connection with another application or as required by 47 U.S.C. Section 1.65(c), the applicant need only provide: (i) an identification						

of that previous submission by reference to the file number in the case of an application, the call letters of the station regarding which the application or Section 1.65 information was filed, and the date of filing; and (ii) the disposition of the previously reported matter.

FCC 302-AM (Page 2) August 1995 8. Does the applicant, or any party to the application, have a petition on file to migrate to the expanded band (1605-1705 kHz) or a permit or license either in the existing band or expanded band that is held in combination (pursuant to the 5 year holding period allowed) with the AM facility proposed to be modified herein?

If Yes, provide particulars as an Exhibit.

The APPLICANT hereby waives any claim to the use of any particular frequency or of the electromagnetic spectrum as against the regulatory power of the United States because use of the same, whether by license or otherwise, and requests and authorization in accordance with this application. (See Section 304 of the Communications Act of 1934, as amended).

The APPLICANT acknowledges that all the statements made in this application and attached exhibits are considered material representations and that all the exhibits are a material part hereof and are incorporated herein as set out in full in

CERTIFICATION

1. By checking Yes, the applicant certifies, that, in the case of an individual applicant, he or she is not subject to a denial of federal benefits that includes FCC benefits pursuant to Section 5301 of the Anti-Drug Abuse Act of 1988, 21 U.S.C. Section 862, or, in the case of a non-individual applicant (e.g., corporation, partnership or other unincorporated association), no party to the application is subject to a denial of federal benefits that includes FCC benefits pursuant to that section. For the definition of a "party" for these purposes, see 47 C.F.R. Section 1.2002(b).

2. I certify that the statements in this application are true, complete, and correct to the best of my knowledge and belief, and are made in good faith.

Name Troy G. Langham	^{Signature} Troy Langham	Digitally signed by Troy Langham DN: cn=Troy Langham, o, ou, email=Troylangham@iheartmedia.com, c=US Date: 2021.12.10 13:04:05 -06'00'
Title	Date	Telephone Number
VP, Technical Regulatory Affairs	12/10/2021	918-664-4581

WILLFUL FALSE STATEMENTS ON THIS FORM ARE PUNISHABLE BY FINE AND/OR IMPRISONMENT (U.S. CODE, TITLE 18, SECTION 1001), AND/OR REVOCATION OF ANY STATION LICENSE OR CONSTRUCTION

FCC NOTICE TO INDIVIDUALS REQUIRED BY THE PRIVACY ACT AND THE PAPERWORK REDUCTION ACT

The solicitation of personal information requested in this application is authorized by the Communications Act of 1934, as amended. The Commission will use the information provided in this form to determine whether grant of the application is in the public interest. In reaching that determination, or for law enforcement purposes, it may become necessary to refer personal information contained in this form to another government agency. In addition, all information provided in this form will be available for public inspection. If information requested on the form is not provided, the application may be returned without action having been taken upon it or its processing may be delayed while a request is made to provide the missing information. Your response is required to obtain the requested authorization.

Public reporting burden for this collection of information is estimated to average 639 hours and 53 minutes per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the burden, can be sent to the Federal Communications Commission, Records Management Branch, Paperwork Reduction Project (3060-0627), Washington, D. C. 20554. Do NOT send completed forms to this address.

THE FOREGOING NOTICE IS REQUIRED BY THE PRIVACY ACT OF 1974, P.L. 93-579, DECEMBER 31, 1974, 5 U.S.C. 552a(e)(3), AND THE PAPERWORK REDUCTION ACT OF 1980, P.L. 96-511, DECEMBER 11, 1980, 44 U.S.C. 3507.

Yes 🖌 No

Exhibit No.

	✓	Yes		No
--	---	-----	--	----

SECTION III - LICENSE APPLICATION ENGINEERING DATA								
	Name of Applicant							
IHM Licen	ses LLC							
PURPOSE OF A	UTHORIZATIC	N APPLIED FOR	: (check one)					
	Station License		✓ Direct Me	asurement of Power				
1. Facilities auth								
Call Sign		Instruction Permit	Frequency	Hours of Operation		er in kilowatts		
KTSM	(if applicable)		(kHz) 690	UNLIMITED	Night 10	Day 10		
2. Station location	on		1					
State				City or Town				
Texas				El Paso				
3. Transmitter lo	ocation							
State	County			City or Town	Street addres (or other ider			
TX	El Paso			El Paso	12379 O'Bri			
4. Main studio lo	ocation							
State	County			City or Town	Street addres (or other ider			
TX	El Paso			El Paso	4045 N Mesa			
5. Remote contr	ol point locatior	n (specify only if a	uthorized directio	nal antenna)				
State	County			City or Town	Street addres			
TX	El Paso			El Paso	•	(or other identification) 4045 N Mesa St		
6. Has type-app	roved stereo ge	enerating equipme	nt been installed	?		Yes 🖌 No		
7 Does the sam	nling system m	leet the requireme	nts of 47 C E P	Section 73 682	Image: A start of the start	Yes No		
	ipiling system in	leet the requireme		Section 75.00 !				
						 Not Applicable 		
Attach as an F	vhihit a detailer	description of the	sampling system	n as installed		Exhibit No.		
Attach as an Exhibit a detailed description of the sampling system as installed.					Exhibit No.			
8. Operating cor	actanta:							
		Irrent (in amperes)) without	RF common point or antenna	a current (in am	peres) without		
modulation for night systemmodulation for day system14.514.5								
Measured antenna or common point resistance (in ohms) at Measured antenna or common point reactance (in ohms) at								
operating frequency			operating frequency	-				
Night 50.0		Day 50		Night 5	Day 7			
Antenna indicatio	one for direction			U				
		Antenna	monitor	Antenna monitor sample	۸۱			
Towe	ers	Phase reading	(s) in degrees	current ratio(s)	Anten	na base currents		

Night Day Night Day Night Day -146.3 1 Tower #1 (South West) (ASR 1045484) 0 0.314 N/A N/A 1.13 N/A N/A 86.5 0 1 Tower #2 (North West (ASR 1045487) 1.06 0.52 N/A N/A 86.3 Tower #3 (North East) (ASR 1045486) 14.84 Tower #4 (South East) (ASR 1045485) -0.2 0.88 0.303 N/A N/A 98.5 Manufacturer and type of antenna monitor: Potomac AM-19

SECTION III - Page 2

9. Description of antenna system ((f directional antenna is used, the information requested below should be given for each element of the array. Use separate sheets if necessary.)

Type Radiator	Overall height in meters of radiator above base insulator, or above base, if grounded.	Overall height in meters above ground (without obstruction lighting)	Overall height in meters above ground (include obstruction lighting)	If antenna is either top loaded or sectionalized, describe fully in an Exhibit.
4 guyed uniform towers	4x 106.7	4x 108.4	4x 109.6	Exhibit No.
Excitation	✓ Series	Shunt		

Geographic coordinates to nearest second. For directional antenna give coordinates of center of array. For single vertical radiator give tower location.

North Latitude 31	° 58	' 11	"	West Longitude 106	0	21	'	15	"
-------------------	------	------	---	--------------------	---	----	---	----	---

If not fully described above, attach as an Exhibit further details and dimensions including any other antenna mounted on tower and associated isolation circuits.

Also, if necessary for a complete description, attach as an Exhibit a sketch of the details and dimensions of ground system.

Exhibit No.

Exhibit No.

10. In what respect, if any, does the apparatus constructed differ from that described in the application for construction permit or in the permit?

11. Give reasons for the change in antenna or common point resistance.

see technical narrative		

I certify that I represent the applicant in the capacity indicated below and that I have examined the foregoing statement of technical information and that it is true to the best of my knowledge and belief.

Name (Please Print or Type) Nicolas Blomstrand	Signature (check appropriate box below) Nicolas Blanstend
Address (include ZIP Code) 1780 180th St.	Date 12/9/2021
Centuria, WI 54824	Telephone No. (Include Area Code) 715-808-2132

✓	Technical Director	Registered Professional Engineer
	Chief Operator	Technical Consultant

Other (specify)

APPLICATION FOR LICENSE INFORMATION

RADIO STATION KTSM

IHM LICENSES, LLC

El Paso, Texas

FID 69561

690 KHZ 10KW DA Day, 10KW DA Night

December 9, 2021

APPLICATION FOR LICENSE INFORMATION RADIO STATION KTSM El Paso, Texas

690 KHZ 10KW DA Day, 10KW DA Night

Table of Contents

Executive Summary

ltem 1	Analysis of Tower Impedance Measurements to Verify Method of Moments Model
ltem 2	Method of Moments Model Details for Towers Driven Individually
Item 3	Derivation of Operating Parameters Daytime Directional Array
Item 4	Derivation of Operating Parameters Nighttime Directional Array
ltem 5	Sampling System Measurements
ltem 6	Direct Measurement of Power
ltem 7	Reference Field Strength Measurements
ltem 8	RFR Compliance
ltem 9	Ground System Detail

EXECUTIVE SUMMARY

This engineering exhibit has been prepared in support of an application for licensing for radio station KTSM, El Paso Texas, Facility ID #69561. Measurements included comply with the requirements of Rule Section 73.151c. Station KTSM was adjusted to operating parameters computed using the Moment Method process as described in Rule Section 73.151c. MiniNEC Broadcast Professional version 14.6 by EM Scientific Inc. was used in the analysis.

The system has been adjusted to produce directional antenna parameters within+/-5% in ratio and +/-3 degrees in phase of the modeled values as prescribed in the Rules.

All measurements contained in this report were made by Mr. Nicolas Blomstrand of the iHeart Media Corporate Engineering Staff or the undersigned.

Please refer any questions regarding this report to:

Jack up

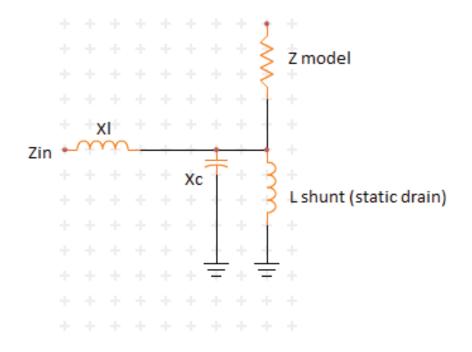
Jacob A Wyatt jakewyatt@iheartmedia.com 308-289-1872

Analysis of Tower Impedance Measurements to Verify Method of Moments Model

Impedance measurements were made of the individual towers with the other tower bases open. Measurements were made using a Keysight P5020A vector network analyzer and a Tunwall Radio directional coupler in a calibrated measurement system. Measurements were made immediately adjacent to the toroidal antenna sampling transformers, inside the antenna coupling units. An assumption is made regarding the sum of the tower base and base region stray capacitance as it pertains to each tower base calculation. Calculations were then made to relate modeled impedance of each tower to the measured impedance found at the output of each ATU.

The measured and modeled impedances were correlated using the Westberg Consulting WCAP Pro software program. WCAP is based on the SPICE nodal analysis program.

The shunt capacitive reactance of the tower base insulator is represented in the drawing below as Xc. The series inductive reactance of the tower feed conductor is represented as XI. Z model represents the modeled impedance of the tower and Zin represents the impedance measured at the sampling point.


For these towers, there is a parallel shunt 120 uH coil across the tower to ground being used as a static drain (Nodes 2-0, parallel to Xc). The measurements of these coils are added to the tabulations on the next page. In the following WCAP tabulations, the modeled impedance is represented between nodes 3-0. The measured impedance is represented between nodes 2-0. Node 0 represents ground. The calculated reference point impedances appear under the "TO NODE IMPEDANCE" columns of the WCAP calculations, following the insignificantly short

ltem1

transmission line (TL 1-3) that was included in series with the drive current sources (I 0-1) to provide calculation points for the impedances.

All tower models were calculated using the commissions currently published theoretical parameters.

The modeled and measured tower impedances are tabulated below and are shown to agree within the +/- 20hms and +/- 4% as required by the rules.

Tower	L (uH) Shunt	L (uh) input	XI (+j)	Xc (-j)	Z Modeled	Z in Modeled	Z in Measured
1	120	0.1	0.43	-3844	40 640 1 149 244	12 20 1 110 11	12 62 L 14E 12
1	120	0.1	0.45	-3644	49.649 + j48.344	42.29 + j48.41	42.63 + j45.42
2	106	2.5	10.83	-3075	44.153 + j31.084	39.25 + j43.264	39.77 + j44.08
3	101	4.5	19.51	-3075	44.475 + j31.083	39.25 + j52.032	38.69 + j51.64
4	102	1.4	6.07	-3075	49.844 + j48.307	41.36 + j53.895	41.33 + j53.11

Method of Moments Model Details for Towers Driven Individually

The antenna array was modeled using Expert MININEC Broadcast Professional Version 14.6. Tower geometry was defined based upon values gathered from the Commission's database. A single wire was used to represent each tower in the array. Each tower was then divided up into 12 segments, thus producing a wire segmentation of approximately 7.6 to 7.916 degrees/segment.

Tower parameters were modified to provide the required impedance match, that when combined with a circuit model containing base capacitance and series hookup inductance, equals the measured impedance of each tower while the other towers were open circuited.

Heights of the towers were adjusted as permitted by Rule Section 73.151(c)(1). The tower radii were modeled at their actual values. Tabulations below show the parameters that were used for each tower in the Method of Moments model.

	Actual	Model	Model
Tower	Height	Height	Percent
Tower	Degrees	Degrees	of
			Height
1	88.4	95.0	107.5
2	88.4	92.0	104.1
3	88.4	92.0	104.1
4	88.4	95.0	107.5

Following pages show the details from the method of moments models for each tower in addition to the WCAP circuit analysis for each tower.

WCAP – KTSM Tower 1 Driven, others floated

+ + + +	+	+	()+	$\cdot \cdot$	`)—	+	+	$\hat{\mathbf{m}}$	$\hat{\mathbf{m}}$	÷-	+	2	+	+	+	÷	
			+	+	÷	+	3					+		Ŧ			≶	
+ + + +												-		-			≶	
+ + + +												В		-	÷	÷	+	
+ + + +												- 15					+	
+ + + +												f				÷	0	
+ + + +												Ŧ	0			÷	Ŧ	

WCAP OUTPUT AT FREQUENCY: 0.690 MHz

NODE VOLTAGES Node: 1 296.9909 ∡ 43.4603° V Node: 2 295.4847 ∡ 43.2047° V Node: 3 296.9902 ∡ 43.4602° V

 WCAP PART
 CURRENT IN
 CURRENT OUT

 TL
 1→3
 50.00000000
 4.62 ⋨
 -5.400° A
 4.62 ⋨
 -5.400° A

WCAP PARTBRANCH VOLTAGEBRANCH CURRENTR $2 \rightarrow 0$ 49.6490000295.48 \measuredangle 43.205° V4.26 \measuredangle -1.032° AC $2 \rightarrow 0$ 0.00006000295.48 \measuredangle 43.205° V0.08 \measuredangle 133.205° AL $3 \rightarrow 2$ 0.10000002.00 \measuredangle 84.600° V4.62 \measuredangle -5.400° AL $2 \rightarrow 0$ 120.0000000295.48 \measuredangle 43.205° V0.57 \measuredangle -46.795° AWCAP PARTFROM IMPEDANCETO IMPEDANCER $2 \rightarrow 0$ 49.6490000049.65 + j48.3440.00 + j0.000C $2 \rightarrow 0$ 0.000060000.00 - j3844.3220.00 + j0.000L $3 \rightarrow 2$ 0.1000000042.29 + j48.41242.29 + j47.979TL $1 \rightarrow 3$ 50.000000042.29 + j48.413**42.29 + j48.412**

 $L 2 \rightarrow 0$ 120.0000000 0.00 + j 520.248 0.00 + j 0.000

 WCAP PART
 VSWR

 TL
 1→3
 50.00000000
 2.7763

WCAP INPUT DATA: 0.6900 0.00000000 0 49.64900000 2 0 48.34400000 R С 0.00006000 2 0 L 0.10000000 3 2 0.00000000 TL 50.0000000 1 3 100.0000000 0.00100000 0.00000000 4.62000000 0 1 354.60000000 1 L 120.0000000 2 0 0.0000000

WCAP – KTSM Tower 2 Driven, others floated

$\begin{array}{c} & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ \end{array}$
NODE VOLTAGES Node: 1 58.4125 4 47.7885° V Node: 2 50.9081 4 39.5644° V Node: 3 58.4123 4 47.7884° V
WCAP PART CURRENT IN CURRENT OUT TL 1→3 50.00000000 1.00 本 0.000° A 1.00 本 -0.000° A
WCAP PARTBRANCH VOLTAGEBRANCH CURRENTR $2 \rightarrow 0$ 44.15300000 $50.91 \neq 39.564^{\circ}$ V $0.94 \neq 4.419^{\circ}$ AC $2 \rightarrow 0$ 0.00007500 $50.91 \neq 39.564^{\circ}$ V $0.02 \neq 129.564^{\circ}$ AL $3 \rightarrow 2$ 2.50000000 $10.84 \neq 90.000^{\circ}$ V $1.00 \neq -0.000^{\circ}$ AL $2 \rightarrow 0$ 106.00000000 $50.91 \neq 39.564^{\circ}$ V $0.11 \neq -50.436^{\circ}$ AWCAP PARTFROM IMPEDANCETO IMPEDANCER $2 \rightarrow 0$ 44.15300000 $44.15 + j$ 31.084 $0.00 + j$ C $2 \rightarrow 0$ 0.0007500 $0.00 - j$ 3075.458 $0.00 + j$ 0.000 L $3 \rightarrow 2$ 2.50000000 $39.25 + j$ 43.264 $39.25 + j$ 32.426 TL $1 \rightarrow 3$ 50.00000000 $39.25 + j$ 43.264 $39.25 + j$ 43.264 L $2 \rightarrow 0$ 106.0000000 $0.00 + j$ 459.552 $0.00 + j$ 0.000
WCAP PART VSWR TL 1→3 50.0000000 2.6330
WCAP INPUT DATA: 0.6900 0.00000000 0 R 44.15300000 2 0 31.08400000 C 0.00007500 2 0 L 2.50000000 3 2 0.00000000 TL 50.00000000 1 3 100.00000000 0.00100000 0.00000000 I 1.00000000 0 1 0.00000000 L 106.00000000 2 0 0.0000000

WCAP – KTSM Tower 3 Driven, others floated

1 3 1 0 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
NODE VOLTAGES Node: 1 65.1774 ≰ 52.9692° V Node: 2 50.9752 ≰ 39.6430° V Node: 3 65.1772 ≰ 52.9691° V
WCAP PART CURRENT IN CURRENT OUT TL 1→3 50.00000000 1.00 ∡ 0.001° A 1.00 ∡ -0.000° A
WCAP PARTBRANCH VOLTAGEBRANCH CURRENTR $2 \rightarrow 0$ 44.4750000 $50.98 \neq 39.643^{\circ}$ V $0.94 \neq 4.694^{\circ}$ AC $2 \rightarrow 0$ 0.00007500 $50.98 \neq 39.643^{\circ}$ V $0.02 \neq 129.643^{\circ}$ AL $3 \rightarrow 2$ 4.50000000 $19.51 \neq 90.000^{\circ}$ V $1.00 \neq -0.000^{\circ}$ AL $2 \rightarrow 0$ 101.00000000 $50.98 \neq 39.643^{\circ}$ V $0.12 \neq -50.357^{\circ}$ AWCAP PARTFROM IMPEDANCER $2 \rightarrow 0$ 44.47500000 $44.48 + j$ 31.083 $0.00 + j$ 0.000 C $2 \rightarrow 0$ 0.00007500 $0.00 - j$ 3075.458 $0.00 + j$ 0.000 L $3 \rightarrow 2$ 4.50000000 $39.25 + j$ 52.032 $39.25 + j$ 32.522 TL $1 \rightarrow 3$ 50.00000000 $39.25 + j$ L $2 \rightarrow 0$ 101.00000000 $-0.00 + j$ WCAP PARTVSWR
TL 1→3 50.0000000 3.1175
WCAP INPUT DATA: 0.6900 0.00000000 0 R 44.47500000 2 0 31.08300000 C 0.00007500 2 0 L 4.50000000 3 2 0.00000000 TL 50.00000000 1 3 100.00000000 0.00100000 0.00000000 I 1.00000000 0 1 0.00000000 L 101.00000000 2 0 0.00000000

WCAP – KTSM Tower 4 Driven, others floated

$\begin{array}{c} & & & & & & \\ \hline & & & & & \\ \hline & & & & &$
NODE VOLTAGES Node: 1 67.9365 ⋨ 52.4966° V Node: 2 63.2293 ⋨ 49.1461° V Node: 3 67.9364 ⋨ 52.4965° V
WCAP PART CURRENT IN CURRENT OUT TL 1→3 50.00000000 1.00 本 0.001° A 1.00 本 -0.000° A
WCAP PARTBRANCH VOLTAGEBRANCH CURRENTR $2 \rightarrow 0$ 49.84400000 $63.23 \neq 49.146^{\circ}$ V $0.91 \neq 5.043^{\circ}$ AC $2 \rightarrow 0$ 0.00007500 $63.23 \neq 49.146^{\circ}$ V $0.02 \neq 139.146^{\circ}$ AL $3 \rightarrow 2$ 1.40000000 $6.07 \neq 90.000^{\circ}$ V $1.00 \neq -0.000^{\circ}$ AL $2 \rightarrow 0$ 102.00000000 $63.23 \neq 49.146^{\circ}$ V $0.14 \neq -40.854^{\circ}$ A
WCAP PARTFROM IMPEDANCETO IMPEDANCER $2 \rightarrow 0$ 49.84400000 $49.84 + j$ 48.307 $0.00 + j$ 0.000 C $2 \rightarrow 0$ 0.00007500 $0.00 - j$ 3075.458 $0.00 + j$ 0.000 L $3 \rightarrow 2$ 1.40000000 $41.36 + j$ 53.895 $41.36 + j$ 47.825 TL $1 \rightarrow 3$ 50.00000000 $41.36 + j$ 53.895 $41.36 + j$ 53.895 L $2 \rightarrow 0$ 102.00000000 $0.00 + j$ 442.211 $0.00 + j$ 0.000
WCAP PART VSWR TL 1→3 50.0000000 3.1202
WCAP INPUT DATA: 0.6900 0.00000000 0 R 49.84400000 2 0 48.30700000 C 0.00007500 2 0 L 1.40000000 3 2 0.00000000 TL 50.00000000 1 3 100.0000000 0.00100000 0.00000000 I 1.00000000 0 1 0.00000000 L 102.00000000 2 0 0.0000000

Tower 1 driven, others floated

IMPEDANCE	tion = 50.					
	ist react ms) (ohms		phase (deg)	VSWR	S11 dB	S12 dB
	649 48.34 ⁴		44.2	2.5493	-7.2003	91801
GEOMETRY Wire coordina Environment:			dimensions	s in mete	ers	
	istance	Angle	Z		dius	segs
1 none 0 0		0	0 95.	. 2	91	12
2 none 1		200.	0	. 2	91	12
3 none 1	00. 90. 90.	200. 110. 110.	92. 0 92.	. 2	91	12
4 none 2		137.76 137.76	0 95.	. 2	91	12
Number of wi: cu:	res rrent nodes	= 4 = 48				
Individual w segment leng radius	th 2	minimum ire value 2 7.666 1 .291	67	ma: wire 1 1		
ELECTRICAL D Frequencies frequencies no. lowest 1 .69	(MHz)	no. step: 1		um	n (wavele maximum .021990	
Sources source node 1 1		magnitude 1.	phase 0		type voltage	
Lumped loads						
load node 1 13 2 25 3 37	resistance (ohms) 0 0 0	reactance (ohms) 540. 511. 516.	e indu (mH) 0 0 0	uctance)	capacita: (uF) 0 0 0	nce passive circuit 0 0 0

Tower 2 driven, others floated

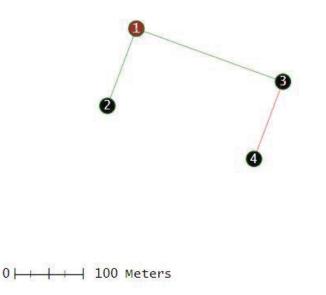
IMPEDANCE	ization = 50.					
freq (MHz)	resist reac (ohms) (ohm 1; node 13, s	s) (ohms)	phase (deg)	VSWR	S11 dB	S12 dB
	44.153 31.0		35.1	1.9369	-9.9242	46608
	dinates in de nt: perfect g		dimension	s in met	ers	
	s Distance	Angle	Z		dius	segs
1 non	e 0 0	0 0	0 95.	.2	91	12
2 non	e 100.	200.	0	.2	91	12
3 non	100. ≥ 190. 190.	200. 110. 110.	92. 0 92.	.2	91	12
4 non	e 214.7 214.7	137.76 137.76	0 95.	.2	91	12
Number of	wires current node:	= 4 s = 48				
Individua segment l radius		minimum wire value 2 7.660 1 .291				
Frequenci	lency			ium	h (wavele maximum .021990	l
Sources source no 1 1		magnitude 1.	phase 0		type voltage	
Lumped lo						
load nod 1 1 2 25 3 37	resistance e (ohms) 0 0 0	e reactand (ohms) 602. 511. 516.	ce ind (mH 0 0 0	uctance :)	capacita (uF) 0 0 0	nce passive circuit 0 0 0

Tower 3 driven, others floated

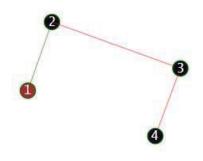
freq (MHz) sourc .69	rmaliza res (oh e = 1; 44.	tion = 50. ist reac ms) (ohm node 25, 3 475 31.0	s) (ol sector 2	nms) (1	hase deg) 4.9	VSWR 1.9301	S11 dB -9.9671	S12 dB 46124
	coordin	ates in deg perfect g		other di	mension	s in met	ers	
wire 1	caps D none 0 0		Angle 0 0		Z O 95.		dius 91	segs 12
2	none 1	00.	200.		0	.2	91	12
3	none 1		200. 110.		92. 0	.2	91	12
4	none 2	90. 14.7 14.7	110. 137.70 137.70	5	92. 0 95.	.2	91	12
Numbe	r of wi cu	res rrent node:	= 4 s = 48	8				
	idual w nt leng s		minim wire 2 1	um value 7.66667 .291		ma wire 1 1	ximum value 7.91667 .291	
Frequ no.	RICAL D encies frequen lowest .69			no. of steps 1		ium	h (wavele maximum .021990	
Sourc sourc 1	es e node 25	sector 1	magnitu 1.	ıde	phase 0		type voltage	
Lumpe	d loads				1 T			
load 1 2 3	node 1 13 37	resistance (ohms) 0 0 0		Э.	1nd (mH 0 0 0	uctance	capacita (uF) 0 0 0	nce passive circuit 0 0 0

Tower 4 driven, others floated

freq res (MHz) (oh source = 1;	node 37, se) (ohms) ector 1	(deg)	VSWR 2.5432	S11 dB -7.2196	S12 dB 91348
GEOMETRY Wire coordin Environment:		rees; other d ound	imensions	in met	ers	
wire caps D 1 none O 0		Angle 0 0	Z O 95.		dius 91	segs 12
2 none 1	.00.	200.	0	.2	91	12
3 none 1		200. 110.	92. 0	.2	91	12
4 none 2	90. 14.7 14.7	110. 137.76 137.76	92. 0 95.	. 2	91	12
Number of wi cu	res rrent nodes	= 4 = 48				
Individual w segment leng radius	th 2	minimum ire value 2 7.6666 1 .291	7	ma wire 1 1	ximum value 7.91667 .291	
ELECTRICAL D Frequencies frequen no. lowest 1 .69	(MHz)	no. o steps 1		m	h (wavele maximum .021990	
Sources source node 1 37		magnitude 1.	phase 0		type voltage	
Lumped loads	resistance	roatanco	indu	ctance	appoaito	ngo poggiro
load node 1 1 2 13 3 25	resistance (ohms) 0 0 0	reactance (ohms) 602. 540. 511.	(mH) 0 0 0	clance	Capacita (uF) 0 0 0	nce passive circuit 0 0 0


CURRI	ENT NODES					
Control	coordinates	(degrees)		connec	tions	node
wire		Y	Z		end2	no.
1	0	0	0	GND	1	1
1	0	0	7.91667	1	1	2
1	0	0	15.8333	1	1	3
1	0	0	23.75	1	1	4
1	0	0	31.6667	1	1	5
1	0	0	39.5833	1	1	б
1	0	0	47.5	1	1	7
1	0	0	55.4167	1	1	8
1	0	0	63.3333	1	1	9
1	0	0	71.25	1	1	10
1	0	0	79.1667	1	1	11
1	0	0	87.0833	1	END	12
2	-93.9693	34.202	0	GND	2	13
2	-93.9693	34.202	7.66667	2	2	14
2	-93.9693	34.202	15.3333	2	2	15
2	-93.9693	34.202	23.	2	2	16
2	-93.9693	34.202	30.6667	2	2	17
2	-93.9693	34.202	38.3333	2	2	18
2	-93.9693	34.202	46.	2	2	19
2	-93.9693	34.202	53.6667	2	2	20
2	-93.9693	34.202	61.3333	2	2	21
2	-93.9693	34.202	69.	2	2	22
2	-93.9693	34.202	76.6667	2	2	23
2	-93.9693	34.202	84.3333	2	END	24
3	-64.9838	-178.542	0	GND	3	25
3	-64.9838	-178.542	7.66667	3	3	26
3	-64.9838	-178.542	15.3333	3	3	27
3	-64.9838	-178.542	23.	3	3	28
3	-64.9838	-178.542	30.6667	3 3	3 3	29
3 3	-64.9838	-178.542	38.3333 46.	3	3	30 31
3	-64.9838 -64.9838	-178.542 -178.542	40. 53.6667	3	3	31 32
3	-64.9838	-178.542	61.3333	3	3	32 33
3	-64.9838	-178.542	69.	3	3	34
3	-64.9838	-178.542	76.6667	3	3	35
3	-64.9838	-178.542	84.3333	3	END	36
4	-158.95	-144.329	0	GND	4	37
4	-158.95	-144.329	7.91667	4	4	38
4	-158.95	-144.329	15.8333	4	4	39
4	-158.95	-144.329	23.75	4	4	40
4	-158.95	-144.329	31.6667	4	4	41
4	-158.95	-144.329	39.5833	4	4	42
4	-158.95	-144.329	47.5	4	4	43
4	-158.95	-144.329	55.4167	4	4	44
4	-158.95	-144.329	63.3333	4	4	45
4	-158.95	-144.329	71.25	4	4	46
4	-158.95	-144.329	79.1667	4	4	47
4	-158.95	-144.329	87.0833	4	END	48

Derivation of Operating Parameters, Daytime Directional Array


Following verification of the moment method model of the individual array elements, by comparison of the measured and modeled base impedances, directional antenna array base parameters were calculated. Calculations were made to determine the complex voltage sources which when applied to the base of each array element produce current moment sums which when normalized, equate to the theoretical field parameters of the authorized directional pattern. Using these voltages, the tower currents were calculated. The currents at the ATU sampling points were related to those of the moment method model by using the WCAP Pro nodal analysis program from Westberg Consulting. The assumptions that were used for the single tower calculations were used in the directional array case as well. In the following WCAP calculations node 2 represents the reference point, node 3 represents the tower feed point, and node 0 represents ground. The tower operating impedance is represented from node 3 to ground (R 3-0). The current magnitude and phases at the sample point is represented following the insignificantly short transmission line (TL 1-2). The value shown at TL 1-2 has been rounded by the program. The actual current values shown as "I" in the "WCAP INPUT DATA" represent the values before rounding and were used in the calculation of antenna monitor amplitude and phase indications to yield greater accuracy.

In so much as the sample lines are equal in length and the sample toroids responses are identical, the antenna monitor amplitudes and phases have been calculated directly from the reference point currents and phases. We would like to make note to the commission that all modeling herein follows the on site tower numbering. These differ from what the commission has on file since the night and day patterns keep a similar numbering scheme, whereas the commission has it on file that the numbering for towers 1 and 2 invert from day to night pattern. We want to make it abundantly clear that the onsite antenna monitor and schematics reflect the tower numbers varied from what the commission has on file.

The commission has on file that the following diagrams for the day and night tower numbering respectively. The reference towers are denoted by being highlighted in the diagrams. North being towards the top of the page.

*This image above denotes the currently FCC tower numbering scheme for the day pattern.

*This image above denotes the currently FCC tower numbering scheme for the night pattern.

The onsite antenna monitor, onsite schematics, and phasing documentation keep the same numbering scheme so that the night pattern numbering (lower diagram) stays as a constant. Thus, tower number 2 is the reference tower for the day pattern, and tower number 1 is the reference tower for the night pattern. We ask that the commission consider changing the theoretical pattern numbering scheme to match the current onsite antenna monitor numbers so as to reduce confusion in the future.

Tower	Model Pulse	Model Current Magnitude At Toroid, Amps	Model Current Phase at Toroid, Degrees	Modeled Antenna Monitor Ratio	Modeled Antenna Monitor Phase, Degrees
1	1	14.48	0.36	1	0
2	13	4.55	214.1	0.314	-146.3
3	25	7.525	15.188	0.520	14.84
4	37	4.389	98.835	0.303	98.5

Calculated Day Parameters

Calculated Antenna Monitor Day Parameters

Tower	Model Pulse	Model Current Magnitude At	Model Current Phase at	Modeled Antenna Monitor	Modeled Antenna Monitor
		Toroid,	Toroid,	Ratio	Phase,
		Amps	Degrees		Degrees
1	13	4.55	214.1	0.314	-146.3
2	1	14.48	0.36	1	0
3	25	7.525	15.188	0.520	14.84
4	37	4.389	98.835	0.303	98.5

**Proposed antenna parameters utilizing onsite antenna monitor numbering.

WCAP - KTSM T1 Day WCAP OUTPUT AT FREQUENCY: 0.690 MHz

NODE VOLTAGES Node: 1 742.2767 ∡ 47.4204° V Node: 2 737.6942 ∡ 47.0883° V Node: 3 742.2744 ∡ 47.4203° V

 WCAP PART
 CURRENT IN
 CURRENT OUT

 TL 1→3
 50.00000000
 14.47 ≰
 0.360° A
 14.47 ≰
 0.360° A

WCAP PARTBRANCH VOLTAGEBRANCH CURRENTR $2 \rightarrow 0$ 39.5400000 $737.69 \neq$ 47.088° V $13.60 \neq$ 3.902° AC $2 \rightarrow 0$ 0.00006000 $737.69 \neq$ 47.088° V $0.19 \neq$ 137.088° AL $3 \rightarrow 2$ 0.1000000 $6.27 \neq$ 90.360° V $14.47 \neq$ 0.360° AL $2 \rightarrow 0$ 120.0000000 $737.69 \neq$ 47.088° V $1.42 \neq$ -42.912° A

WCAP PARTFROM IMPEDANCETO IMPEDANCER $2 \rightarrow 0$ 39.540000039.54 + j37.1130.00 + j0.000C $2 \rightarrow 0$ 0.000060000.00 - j3844.3220.00 + j0.000L $3 \rightarrow 2$ 0.1000000034.95 + j37.55334.95 + j37.120TL $1 \rightarrow 3$ 50.0000000034.95 + j37.55434.95 + j37.553L $2 \rightarrow 0$ 120.0000000-0.00 + j520.2480.00 + j0.000

 WCAP PART
 VSWR

 TL 1→3
 50.00000000
 2.5437

WCAP INPUT DATA: 0.6900 0.00000000 0 R 39.54000000 2 0 37.11300000 C 0.00006000 2 0 L 0.10000000 3 2 0.00000000 TL 50.00000000 1 3 100.0000000 0.00100000 0.00000000 I **14.47000000 0 1 0.36000000** L 120.00000000 2 0 0.00000000

à 1 В+ 0 0 ± 0 主 Ŧ WCAP – KTSM T2 Day WCAP OUTPUT AT FREQUENCY: 0.690 MHz NODE VOLTAGES Node: 1 678.3369 ∡ -69.3440° V Node: 2 630.4758 4 -70.3861° V Node: 3 678.3359 ∡ -69.3440° V CURRENT IN CURRENT OUT WCAP PART TL 1→3 50.0000000 4.55 ⋨ -145.900° A 4.55 ⋨ -145.900° A WCAP PART BRANCH VOLTAGE BRANCH CURRENT R 2→0 60.89900000 630.48 ⋨ -70.386° V **3.43 ⋨ -141.022° A** C 2→0 0.00007500 630.48 ≰ -70.386° V 0.21 ≰ 19.614° A L 3→2 2.5000000 49.32 ∡ -55.900° V 4.55 ∡ -145.900° A L 2→0 106.0000000 630.48 ≰ -70.386° V 1.37 ≰ -160.386° A FROM IMPEDANCE WCAP PART TO IMPEDANCE R 2→0 60.89900000 60.90+j 173.280 0.00+j 0.000 C 2→0 0.00007500 0.00 - j 3075.458 0.00 + j 0.000 L 3→2 2.50000000 34.66+j 144.998 34.66+j 134.159 TL 1→3 50.0000000 34.66+j 145.000 34.66+j 144.998 L 2→0 106.0000000 0.00+j 459.552 0.00 + j 0.000 WCAP PART VSWR TL 1→3 50.0000000 14.1969 WCAP INPUT DATA: 0.6900 0.0000000 0 60.89900000 2 0 173.28000000 R С 0.00007500 2 0 2.5000000 3 2 0.0000000 L TL 50.0000000 1 3 100.0000000 0.00100000 0.00000000 4.55000000 0 1 214.10000000 1 L 106.0000000 2 0 0.0000000

à 1 В+ 0 0 ± 0 主 Ŧ. WCAP - KTSM T3 Day WCAP OUTPUT AT FREQUENCY: 0.690 MHz NODE VOLTAGES Node: 1 422.5109 ∡ 71.2577° V Node: 2 311.7531 ∡ 56.0236° V Node: 3 422.5095 ∡ 71.2576° V CURRENT IN CURRENT OUT WCAP PART TL 1→3 50.0000000 7.52 ∡ 15.200° A 7.52 ∡ 15.200° A BRANCH VOLTAGE WCAP PART **BRANCH CURRENT** R 2→0 34.84000000 311.75 ∡ 56.024° V 7.14 ∡ 18.912° A C 2→0 0.00007500 311.75 ⋨ 56.024° V 0.10 ⋨ 146.024° A L 3→2 4.5000000 146.71 ∡ 105.200° V 7.52 ∡ 15.200° A L 2→0 101.0000000 311.75 ⋨ 56.024° V 0.71 ⋨ -33.976° A FROM IMPEDANCE WCAP PART TO IMPEDANCE R 2→0 34.84000000 34.84 + j 26.360 0.00 + j 0.000 C 2→0 0.00007500 0.00 - j 3075.458 0.00 + j 0.000 L 3→2 4.5000000 31.37 + j 46.611 31.37 + j 27.101 TL 1→3 50.0000000 31.37+j 46.611 31.37+j 46.611 L 2→0 101.0000000 0.00+j 437.875 0.00+j 0.000 WCAP PART VSWR TL 1→3 50.0000000 3.3036 WCAP INPUT DATA: 0.6900 0.0000000 0 34.84000000 2 0 26.36000000 R С 0.00007500 2 0 4.5000000 3 2 0.0000000 L TL 50.0000000 1 3 100.0000000 0.00100000 0.00000000 7.52000000 0 1 15.20000000 1 L 101.0000000 2 0 0.0000000

à 1 В+ 0 0 ± 0 主 Ŧ WCAP - KTSM T4 Day WCAP OUTPUT AT FREQUENCY: 0.690 MHz NODE VOLTAGES Node: 1 282.3377 ∡ -179.5068° V Node: 2 256.0143 ∡ 179.6283° V Node: 3 282.3367 4 -179.5069° V CURRENT IN CURRENT OUT WCAP PART TL 1→3 50.0000000 4.39 ≰ 98.835° A 4.39 ≰ 98.835° A WCAP PART BRANCH VOLTAGE BRANCH CURRENT R 2→0 11.82000000 256.01 ∡ 179.628° V 3.90 ∡ 100.000° A C 2→0 0.00007500 256.01 ∡ 179.628° V 0.08 ∡ -90.372° A L 3→2 1.4000000 26.63 ≰ -171.165° V 4.39 ≰ 98.835° A L 2→0 102.0000000 256.01 ∡ 179.628° V 0.58 ∡ 89.628° A FROM IMPEDANCE WCAP PART TO IMPEDANCE R 2→0 11.82000000 11.82 + j 64.580 0.00 + j 0.000 C 2→0 0.00007500 0.00 - j 3075.458 0.00 + j 0.000 L 3→2 1.40000000 9.33+j 63.662 9.33+j 57.592 TL 1→3 50.0000000 9.33+j 63.662 9.33+j 63.662 L 2→0 102.0000000 0.00 + j 442.211 0.00 + j 0.000 WCAP PART VSWR TL 1→3 50.0000000 14.1557 WCAP INPUT DATA: 0.6900 0.0000000 0 11.82000000 2 0 64.58000000 R С 0.00007500 2 0 1.4000000 3 2 0.0000000 L TL 50.0000000 1 3 100.0000000 0.00100000 0.00000000 4.38800000 0 1 98.83500000 L L 102.0000000 2 0 0.0000000

Frequency = .69 MHzfield ratio tower magnitude phase (deg) 1 1. 0 2 .3 -145.8 3 .5 15.5 4 .3 98.7 VOLTAGES AND CURRENTS - rms current source voltage node magnitude phase (deg) magnitude phase (deg) 1 737.567 47.1 13.6066 3.9 289.5 13 630.892 3.43239 219. 25 311.95 56. 7.1412 18.9 37 256.324 179.6 3.89972 100. Sum of square of source currents = 526.252 Total power = 10,000. watts TOWER ADMITTANCE MATRIX admittance real (mhos) imaginary (mhos) Y(1, 1).00976602 -.00682763 Y(1, 2).00656408 .00588552 Y(1, 3).00506912 .00137237 .00267754 Y(1, 4).0013712 .00656433 Y(2, 1).00588525 Y(2, 2).0141781 -.0064903 Y(2, 3).00418596 .00242186 Y(2, 4).00506947 .00137333 Y(3, 1).00506902 .00137251 Y(3, 2) .00418596 .00242186 Y(3, 3) .0141782 -.00649093 .00588528 .00656442 Y(3, 4) Y(4, 1).0013712 .00267754 Y(4, 2) .00506957 .00137319 .00656416 Y(4, 3) .00588555 Y(4, 4) .00976621 -.00682713 TOWER IMPEDANCE MATRIX impedance real (ohms) imaginary (ohms) Z(1, 1)49.1989 48.2835 Z(1, 2)19.7786 -23.7388 Z(1, 3)-12.4063 -13.3846 Z(1, 4)-17.3907 -6.35582 Z(2, 1)19.7774 -23.7396 Z(2, 2)43.7889 31.0752 Z(2, 3) -15.3739 -5.81966 Z(2, 4)-12.4046 -13.3873 Z(3, 1)-12.4066 -13.3844 Z(3, 2) -15.3739 -5.81965

MEDIUM WAVE ARRAY SYNTHESIS FROM FIELD RATIOS

Z(3,	3)	43.7887	31.0749
Z(3,	4)	19.777	-23.7395
Z(4,	1)	-17.3907	-6.35582
Z(4,	2)	-12.4044	-13.3875
Z(4,	3)	19.7782	-23.7388
Z(4,	4)	49.1988	48.283

IMPEDANCE						
normalizatio	n = 50.					
<pre>freq resist (MHz) (ohms) source = 1; no</pre>	(ohms)	(ohms)	-		S11 dB	S12 dB
	37.082		43.2	2.3199	-8.0118	74719
source = 2; no .69 61.513			70.4	11.712	-1.4869	-5.3773
source = 3; no .69 34.813	de 25, sect 26.387		37.2	2.0431	-9.3	54281
source = 4; no .69 11.827			79.6	11.446	-1.5216	-5.2934

CURRENT rms Frequency = .69 MHz Input power = 10,000. watts Efficiency = 100. % coordinates in degrees							
curre	nt			mag	phase	real	imaginary
no.	Х	Y	Z	(amps)	(deg)	(amps)	(amps)
GND	0	0	0	13.6066	3.9	13.5752	.923099
2	0	0	7.91667	13.8438	2.4	13.8319	.574433
3	0	0	15.8333	13.7391	1.4	13.735	.33718
4	0	0	23.75	13.3618	.6	13.361	.145248
5	0	0	31.6667	12.7278	360.	12.7278	-9.35E-03
6	0	0	39.5833	11.8511	359.4	11.8504	128951
7	0	0	47.5	10.747	358.9	10.7449	214246
8	0	0	55.4167	9.433	358.4	9.42926	265499
9	0	0	63.3333	7.92733	358.	7.92228	282942

10	0	0	71.25	6.24779	357.6	6.24209	266856
11	0	0	79.1667	4.40644	357.2	4.40108	217338
12	0	0	87.0833	2.39482	356.8	2.39111	133294
END	0	0	95.	0	0	0	0
GND	-93.9693	34.202	0	3.4324	219.	-2.66735	-2.16022
14	-93.9693	34.202	7.66667	3.80172	216.9	-3.04053	-2.28216
15	-93.9693	34.202	15.3333	3.97007	215.7	-3.22354	-2.31738
16	-93.9693	34.202	23.	4.01546	214.8	-3.29548	-2.29428
17	-93.9693	34.202	30.6667	3.94974	214.2	-3.26827	-2.21786
18	-93.9693	34.202	38.3333	3.77937	213.6	-3.14802	-2.09131
19	-93.9693	34.202	46.	3.5098	213.1	-2.93963	-1.91762
20	-93.9693	34.202	53.6667	3.14665	212.7	-2.64792	-1.69998
21	-93.9693	34.202	61.3333	2.69582	212.3	-2.27792	-1.44171
22	-93.9693	34.202	69.	2.16286	212.	-1.83433	-1.14595
23	-93.9693	34.202	76.6667	1.55133	211.7	-1.32012	814806
24	-93.9693	34.202	84.3333	.857171	211.4	731721	44646
END	-93.9693	34.202	92.	0	0	0	0
GND	-64.9838	-178.542	0	7.1412	18.9	6.75783	2.30834
26	-64.9838	-178.542	7.66667	7.21132	17.5	6.87569	2.17441
27	-64.9838	-178.542	15.3333	7.12327	16.7	6.82268	2.04746
28	-64.9838	-178.542	23.	6.90329	16.	6.63513	1.90538
29	-64.9838	-178.542	30.6667	6.55816	15.4	6.32134	1.74645
30	-64.9838	-178.542	38.3333	6.09428	14.9	5.88824	1.57125
31	-64.9838	-178.542	46.	5.51885	14.5	5.34319	1.38128
32	-64.9838	-178.542	53.6667	4.83991	14.1	4.69425	1.17845
33	-64.9838	-178.542	61.3333	4.066	13.7	3.94988	.96479
34	-64.9838	-178.542	69.	3.20509	13.4	3.11798	.742165
35	-64.9838	-178.542	76.6667	2.26214	13.1	2.2035	.51174
36	-64.9838	-178.542	84.3333	1.23132	12.8	1.20084	.272309
END	-64.9838	-178.542	92.	0	0	0	0
GND	-158.95	-144.329	0	3.89971	100.	676517	3.84058
38	-158.95	-144.329	7.91667	4.03967	99.5	669456	3.98382
39	-158.95	-144.329	15.8333	4.05416	99.2	651114	4.00154
40	-158.95	-144.329	23.75	3.97791	99.	621656	3.92904
41	-158.95	-144.329	31.6667	3.81756	98.8	58169	3.77299
42	-158.95	-144.329	39.5833	3.57789	98.6	532067	3.53811
43	-158.95	-144.329	47.5	3.26366	98.3	473834	3.22908
44	-158.95	-144.329	55.4167	2.88006	98.1	408189	2.85098
45	-158.95	-144.329	63.3333	2.43254	97.9	336415	2.40916
46	-158.95	-144.329	71.25	1.92632	97.8	259774	1.90872
47	-158.95	-144.329	79.1667	1.36486	97.5	179302	1.35303
48	-158.95	-144.329	87.0833	.745142	97.3	0952267	.739032
END	-158.95	-144.329	95.	0	0	0	0

Derivation of Operating Parameters, Nighttime Directional Array

Following verification of the moment method model of the individual array elements, by comparison of the measured and modeled base impedances, directional antenna array base parameters were calculated. Calculations were made to determine the complex voltage sources which when applied to the base of each array element produce current moment sums which when normalized, equate to the theoretical field parameters of the authorized directional pattern. Using these voltages, the tower currents were calculated. The currents at the ATU sampling points were related to those of the moment method model by using the WCAP Pro nodal analysis program from Westberg Consulting. The assumptions that were used for the single tower calculations were used in the directional array case as well. In the following WCAP calculations node 2 represents the reference point, node 3 represents the tower feed point, and node 0 represents ground. The tower operating impedance is represented from node 3 to ground (R 3-0). The current magnitude and phases at the sample point is represented following the insignificantly short transmission line (TL 1-2). The value shown at TL 1-2 has been rounded by the program. The actual current values shown as "I" in the "WCAP INPUT DATA" represent the values before rounding and were used in the calculation of antenna monitor amplitude and phase indications to yield greater accuracy.

In so much as the sample lines are equal in length and the sample toroids responses are identical, the antenna monitor amplitudes and phases have been calculated directly from the reference point currents and phases.

Calculated Night Parameters

		Model			
Tauran		Current	Model	Modeled	Modeled
Tower	Model	Magnitude	Current	Antenna	Antenna
	Pulse	At	Phase at	Monitor	Monitor
		Toroid,	Toroid,	Ratio	Phase,
		Amps	Degrees		Degrees
1	1	9.823	0.175	1.13	86.5
2	13	8.66	273.7	1	0
3	25	9.167	-0.017	1.06	86.3
4	37	7.592	273.49	0.88	-0.2

Calculated Antenna Monitor Night Parameters

		Model			
Tower		Current	Model	Modeled	Modeled
	Model	Magnitude	Current	Antenna	Antenna
	Pulse	At	Phase at	Monitor	Monitor
		Toroid,	Toroid,	Ratio	Phase,
		Amps	Degrees		Degrees
1	13	8.66	273.7	1	0
2	1	9.823	0.175	1.13	86.5
3	25	9.167	-0.017	1.06	86.3
4	37	7.592	273.49	0.88	-0.2

**Proposed antenna parameters utilizing onsite antenna monitor numbering.

à 1 В+ 0 0 0 Ŧ 主 Ŧ WCAP - KTSM T1 Night WCAP OUTPUT AT FREQUENCY: 0.690 MHz NODE VOLTAGES Node: 1 621.0179 ∡ -54.9855° V Node: 2 577.8247 ∡ -62.9627° V Node: 3 621.0169 ∡ -54.9857° V WCAP PART CURRENT IN CURRENT OUT TL 1→3 50.0000000 8.66 ≰ -86.300° A 8.66 ≰ -86.300° A WCAP PART BRANCH VOLTAGE BRANCH CURRENT R 2→0 66.78000000 577.82 4 -62.963° V 8.29 4 -79.501° A C 2→0 0.00007500 577.82 ∡ -62.963° V 0.19 ∡ 27.037° A L 3→2 2.50000000 93.86 ≠ 3.700° V 8.66 ≠ -86.300° A L 2→0 106.0000000 577.82 ≰ -62.963° V 1.26 ≰ -152.963° A FROM IMPEDANCE WCAP PART TO IMPEDANCE R 2→0 66.78000000 66.78+j 19.830 0.00+j 0.000 C 2→0 0.00007500 0.00 - j 3075.458 0.00 + j 0.000 L 3→2 2.5000000 61.26+j 37.271 61.26+j 26.432 TL 1→3 50.0000000 61.26+j 37.271 61.26+j 37.271 L 2→0 106.0000000 0.00+j 459.552 0.00+j 0.000 WCAP PART VSWR TL 1→3 50.0000000 1.9932 WCAP INPUT DATA: 0.6900 0.0000000 0 66.78000000 2 0 19.83000000 R С 0.00007500 2 0 2.5000000 3 2 0.0000000 L TL 50.0000000 1 3 100.0000000 0.00100000 0.00000000 8.66000000 0 1 273.70000000 1 L 106.0000000 2 0 0.0000000

à 1 В+ 0 0 0 主 Ŧ Ŧ WCAP - KTSM T2 Night WCAP OUTPUT AT FREQUENCY: 0.690 MHz NODE VOLTAGES Node: 1 284.9033 ∡ 67.2345° V Node: 2 280.9826 ∡ 66.8957° V Node: 3 284.9013 ∡ 67.2343° V WCAP PART CURRENT IN CURRENT OUT TL 1→3 50.0000000 9.83 ∡ 0.175° A 9.83 ∡ 0.175° A WCAP PART BRANCH VOLTAGE **BRANCH CURRENT** R 2→0 12.35000000 280.98 ∡ 66.896° V 9.40 ∡ 1.300° A C 2→0 0.00006000 280.98 ⋨ 66.896° V 0.07 ⋨ 156.896° A L 3→2 0.10000000 4.26 ≰ 90.175° V 9.83 ≰ 0.175° A L 2→0 120.0000000 280.98 ⋨ 66.896° V 0.54 ⋨ -23.104° A FROM IMPEDANCE WCAP PART TO IMPEDANCE R 2→0 12.35000000 12.35 + j 27.220 0.00 + j 0.000 C 2→0 0.00006000 0.00-j 3844.322 0.00+j 0.000 L 3→2 0.10000000 11.30 + j 26.697 11.30 + j 26.264 TL 1→3 50.0000000 11.30 + j 26.698 11.30 + j 26.697 L 2→0 120.0000000 0.00+j 520.248 0.00+j 0.000 WCAP PART VSWR TL 1→3 50.0000000 5.7381 WCAP INPUT DATA: 0.6900 0.0000000 0 12.3500000 2 0 27.2200000 R С 0.00006000 2 0 0.1000000 3 2 0.0000000 L TL 50.0000000 1 3 100.0000000 0.00100000 0.00000000 9.82750000 0 1 0.17500000 1 L 120.0000000 2 0 0.0000000

à 1 В+ 0 0 ± 0 主 <u>+</u>+ WCAP - KTSM T3 Night WCAP OUTPUT AT FREQUENCY: 0.690 MHz NODE VOLTAGES Node: 1 287.4082 ∡ 76.8499° V Node: 2 120.3118 ∡ 57.1099° V Node: 3 287.4062 ∡ 76.8498° V CURRENT IN CURRENT OUT WCAP PART TL 1→3 50.0000000 9.17 ≰ -0.017° A 9.17 ≰ -0.017° A WCAP PART BRANCH VOLTAGE **BRANCH CURRENT** R 2→0 7.44000000 120.31 ∡ 57.110° V 8.97 ∡ 0.800° A C 2→0 0.00007500 120.31 ∡ 57.110° V 0.04 ∡ 147.110° A L 3→2 4.5000000 178.84 ∡ 89.983° V 9.17 ∡ -0.017° A L 2→0 101.0000000 120.31 ≰ 57.110° V 0.27 ≰ -32.890° A FROM IMPEDANCE TO IMPEDANCE WCAP PART R 2→0 7.44000000 7.44 + j 11.160 0.00 + j 0.000 C 2→0 0.00007500 0.00 - j 3075.458 0.00 + j 0.000 L 3→2 4.5000000 7.12 + j 30.532 7.12 + j 11.023 TL 1→3 50.0000000 7.12 + j 30.532 7.12 + j 30.532 L 2→0 101.0000000 -0.00+j 437.875 0.00+j 0.000 WCAP PART VSWR TL 1→3 50.0000000 9.6752 WCAP INPUT DATA: 0.6900 0.0000000 0 7.44000000 2 0 11.16000000 R С 0.00007500 2 0 4.5000000 3 2 0.0000000 L TL 50.0000000 1 3 100.0000000 0.00100000 0.00000000 9.16700000 0 1 -0.01700000 1 L 101.0000000 2 0 0.0000000

à 1 В+ 0 0 0 主 Ŧ Ŧ WCAP - KTSM T4 Night WCAP OUTPUT AT FREQUENCY: 0.690 MHz NODE VOLTAGES Node: 1 579.6728 ∡ -53.8680° V Node: 2 556.1777 ∡ -57.8677° V Node: 3 579.6719 ∡ -53.8682° V CURRENT IN CURRENT OUT WCAP PART TL 1→3 50.0000000 7.59 ≰ -86.510° A 7.59 ≰ -86.510° A WCAP PART BRANCH VOLTAGE BRANCH CURRENT R 2→0 72.74000000 556.18 ≰ -57.868° V 7.14 ≰ -78.900° A C 2→0 0.00007500 556.18 ≰ -57.868° V 0.18 ≰ 32.132° A L 3→2 1.40000000 46.07 ∡ 3.490° V 7.59 ∡ -86.510° A L 2→0 102.0000000 556.18 ≰ -57.868° V 1.26 ≰ -147.868° A FROM IMPEDANCE WCAP PART TO IMPEDANCE R 2→0 72.74000000 72.74 + j 27.970 0.00 + j 0.000 C 2→0 0.00007500 0.00 - j 3075.458 0.00 + j 0.000 L 3→2 1.40000000 64.31+j 41.195 64.31+j 35.125 TL 1→3 50.0000000 64.31+j 41.195 64.31+j 41.195 L 2→0 102.0000000 0.00 + j 442.211 0.00 + j 0.000 WCAP PART VSWR TL 1→3 50.0000000 2.1197 WCAP INPUT DATA: 0.6900 0.0000000 0 72.74000000 2 0 27.97000000 R С 0.00007500 2 0 1.4000000 3 2 0.0000000 L TL 50.0000000 1 3 100.0000000 0.00100000 0.00000000 7.59000000 0 1 273.49000000 1 L 102.0000000 2 0 0.0000000

Frequency = .69 MHz field ratio tower magnitude phase (deg) 1 1. 0 2 .85 -86. 3 .9 0 4 .765 -86. VOLTAGES AND CURRENTS - rms source voltage current node magnitude phase (deg) magnitude phase (deq) 1 281.169 66.9 9.40499 1.3 13 578.263 297. 8.30084 280.5 25 120.343 57.1 8.96997 .8 37 556.364 302.2 7.13902 281.1 Sum of square of source currents = 577.568 Total power = 10,000. watts TOWER ADMITTANCE MATRIX admittance real (mhos) imaginary (mhos) Y(1, 1) .00976602 -.00682763 Y(1, 2) .00588552 .00656408 Y(1, 3) .00506912 .00137237 Y(1, 4) .00267754 .0013712 Y(2, 1).00588525 .00656433 Y(2, 2).0141781 -.0064903 Y(2, 3).00418596 .00242186 Y(2, 4).00506947 .00137333 Y(3, 1) .00506902 .00137251 .00242186 Y(3, 2) .00418596 .0141782 -.00649093 Y(3, 3) Y(3, 4) .00588528 .00656442 Y(4, 1).00267754 .0013712 Y(4, 2) .00506957 .00137319 Y(4, 3) .00656416 .00588555 Y(4, 4) .00976621 -.00682713 TOWER IMPEDANCE MATRIX imaginary (ohms) impedance real (ohms) Z(1, 1)49.1989 48.2835 Z(1, 2)19.7786 -23.7388 Z(1, 3)-12.4063 -13.3846 Z(1, 4)-17.3907 -6.35582 Z(2, 1)19.7774 -23.7396 Z(2, 2)31.0752 43.7889 Z(2, 3)-15.3739 -5.81966 Z(2, 4) -12.4046 -13.3873Z(3, 1)-13.3844 -12.4066 Z(3, 2) -15.3739 -5.81965 Z(3, 3) 43.7887 31.0749 -23.7395 Z(3, 4) 19.777 Z(4, 1) -17.3907 -6.35582

MEDIUM WAVE ARRAY SYNTHESIS FROM FIELD RATIOS

Z(4,	2)	-12.4044	-13.3875
Z(4,	3)	19.7782	-23.7388
Z(4,	4)	49.1988	48.283

IMPEDANCE						
normalizatio	n = 50.					
freq resist	react	imped	phase	VSWR	S11	S12
(MHz) (ohms)	(ohms)	(ohms)	(deg)		dB	dB
source = 1; no	de 1, secto	or 1				
.69 12.353	3 27.224	29.896	65.6	5.3063	-3.3134	-2.727
source = 2; no	de 13, sect	tor 1				
.69 66.781	19.829	69.663	16.5	1.5618	-13.179	21406
source = 3; no	de 25, sect	tor 1				
.69 7.4381	11.166	13.416	56.3	7.0646	-2.4756	-3.6202
source = $4;$ no	ode 37, sect	tor 1				
.69 72.743	3 27.965	77.933	21.	1.8024	-10.863	37149

Effici	ency = .6 power = 10	9 MHz),000. watt 00. % legrees	S				
currer	nt			mag	phase	real	imaginary
no.	Х	Y	Z	(amps)	(deg)	(amps)	(amps)
GND	0	0	0	9.40497	1.3	9.40261	.210896
2	0	0	7.91667	9.50339	.8	9.50245	.133925
3	0	0	15.8333	9.38747	.5	9.38712	.0807325
4	0	0	23.75	9.09431	.2	9.09424	.0368944
5	0	0	31.6667	8.63405	0.0	8.63405	8.11E-04
6	0	0	39.5833	8.01602	359.8	8.01597	0278231
7	0	0	47.5	7.25069	359.6	7.25053	048914
8	0	0	55.4167	6.34965	359.4	6.34934	062246
9	0	0	63.3333	5.3253	359.3	5.32487	0675867
10	0	0	71.25	4.18938	359.1	4.18888	0647195
11	0	0	79.1667	2.94984	359.	2.94936	0534024
12	0	0	87.0833	1.60079	358.8	1.60045	0331296
END	0	0	95.	0	0	0	0
GND	-93.9693	34.202	0	8.30086	280.5	1.51049	-8.16227
14	-93.9693	34.202	7.66667	8.35197	278.	1.15698	-8.27145

15 16 17 18	-93.9693 -93.9693 -93.9693 -93.9693	34.202 34.202 34.202 34.202	15.3333 23. 30.6667 38.3333	8.23629 7.97414 7.57094 7.03282	276.3 275. 273.9 272.9	.907889 .696044 .513302 .357311	-8.1861 -7.94371 -7.55352 -7.02374
19	-93.9693	34.202	46.	6.36727	272.)	.227458	-6.3632
20	-93.9693	34.202	53.6667	5.58308	271.3	.123648	-5.58171
21	-93.9693	34.202	61.3333	4.68977	270.6	.0458709	-4.68954
22	-93.9693	34.202	69.	3.69638	269.9	-5.94E-03	-3.69638
23	-93.9693	34.202	76.6667	2.60857	269.3	0318745	-2.60837
24	-93.9693	34.202	84.3333	1.41968	268.7	0316341	-1.41933
END	-93.9693	34.202	92.	0	0	0	0
GND	-64.9838	-178.542	0	8.96998	.8	8.96915	.122187
26	-64.9838	-178.542	7.66667	8.96531	.5	8.96498	.077636
27	-64.9838	-178.542	15.3333	8.79441	.3	8.79428	.0469388
28	-64.9838	-178.542	23.	8.47357	.1	8.47354	.0216237
29	-64.9838	-178.542	30.6667	8.00947	0.0	8.00947	7.45E-04
30	-64.9838	-178.542	38.3333	7.40972	359.9	7.4097	0158815
31	-64.9838	-178.542	46.	6.68297	359.8	6.68291	0281976
32	-64.9838	-178.542	53.6667	5.8392	359.6	5.83909	0360619
33	-64.9838	-178.542	61.3333	4.88878	359.5	4.88862	0393131
34	-64.9838	-178.542	69.	3.84142	359.4	3.84124	0377889
35	-64.9838	-178.542	76.6667	2.70316	359.3	2.70298	0313025
36	-64.9838	-178.542	84.3333	1.46718	359.2	1.46705	0195034
END	-64.9838	-178.542	92.	0	0	0	0
GND	-158.95	-144.329	0	7.13902	281.1	1.37727	-7.00491
38	-158.95	-144.329	7.91667	7.22537	278.3	1.04687	-7.14913
39	-158.95	-144.329	15.8333	7.15279	276.5	.813759	-7.10635
40	-158.95	-144.329	23.75	6.94582	275.1	.616014	-6.91845
41	-158.95	-144.329	31.6667	6.60999	273.9	.446205	-6.59491
42	-158.95	-144.329	39.5833	6.15108	272.8	.302213	-6.14365
43	-158.95	-144.329	47.5	5.57612	271.9	.183485	-5.5731
44	-158.95	-144.329	55.4167	4.89339	271.1	.0898923	-4.89257
45	-158.95	-144.329	63.3333	4.112	270.3	.0213403	-4.11194
46	-158.95	-144.329	71.25	3.24075	269.6		-3.24068
47	-158.95	-144.329	79.1667	2.2857	269.	0414137	
48	-158.95	-144.329	87.0833	1.2423	268.4	0356803	
END	-158.95	-144.329	95.	0	0	0	0

Sampling System Measurements

The following calculations confirm that the sample system as installed complies with Rule Section 73.151(c)(2)(1) in all respects. The sample toroids are Delta model TCT1 and their outputs are in agreement within the manufacturer's specification of +/-2% and +/-2°. The antenna monitor is a Potomac Instruments model AM19(204). The antenna monitor was calibrated by the manufacturer on March 29, 2019 and is still within its calibration cycle. The sample lines are equal in length and constructed of 3/8" Phelps Dodge FX38-50 coaxial cable that has a solid outer conductor and foam dielectric. The cables are equal in length within 1° as required. The cables are all buried so as to be exposed to the same environmental conditions. The length of the cables was confirmed by measuring the impedance, looking into the line with the far end opened. The lines were found to be 1/4 wavelength long at the frequencies listed. These frequencies were used to calculate the electrical lengths of the lines at the operating frequency of 690 kHz. Frequencies were calculated at which the lines were +/- 45° the length of the resonate frequency. The impedance was then calculated using the following formula:

Zo = ((R1²+X1²)½ * (R2²+X2²)½)

Sample Line Length Calculation

	Resonate Frequency	Electrical Length at
Tower	At 90º, kHz	690 kHz, Degrees
1 (Southwest)	431.00	144.08
2 (Northwest)	430.30	144.32
3 (Northeast)	430.40	144.28
4 (Southeast)	430.50	144.25

Sample Line Impedance Calculation

Tower	90º Resonant Frequency kHz	45º Above Resonant Frequency kHz	Resistance Ohms	Reactance Ohms	45º Below Resonant Frequency kHz	Resistance Ohms	Reactance Ohms	Characteristic Impedance Ohms
1 (SW)	431.00	646.50	4.54	49.38	215.50	1.36	-49.09	49.35
2 (NW)	430.30	645.45	4.57	50.74	215.15	1.38	-50.22	50.59
3 (NE)	430.40	645.60	4.59	50.89	215.20	1.41	-50.25	50.68
4 (SE)	430.50	645.75	4.59	49.44	215.25	1.34	-48.71	49.19

The sample toroid calibration was confirmed by passing a common conductor through the toroids. The common conductor was driven by a Keysight P5020A vector network analyzer that was properly calibrated for response measurement. The output from the tower #1 toroid was fed to the reference receiver of the analyzer and the remaining toroids outputs were alternately fed to the B input, and the results noted in the chart below.

Tower	Serial Number	Indicated Ratio	Indicated Phase
1 (SW)	911	1.0	0
2(NW)	5955A	1.003	0.135
3(NE)	5956	1.006	0.095
4 (SE)	15093	0.997	0.110

Sample Toroid Calibration Verification

Sample Lines Terminated By Toroids

Tower	Serial Number	Impedance at Input to Sample Line with Toroid Connected
1 (SW)	911	47.91 – j0.31
2(NW)	5955A	48.47 – j1.2
3(NE)	5956	48.56 – j1.56
4 (SE)	15093	47.69 + j0.459

Direct Measurement of Power

The common point network in the nighttime phasor was adjusted to provide the proper operating resistance of 50 ohms and a reactance of 0 (zero) ohms to the transmitter output. The antenna operating powers were calculated to the nominal operating power of 10kW. The common point current was then calculated as indicated below.

Daytime directional mode power measurements are made at the common point via a toroidal current meter. Daytime operating impedance is 50 + j7, and nighttime operating impedance is 50 + j5.

Pattern	Nominal Power	Operating Power	Operating Common
	Watts	Watts	Point Current, Amps
Night	Night 10000		14.5
Day	10000	10500	14.5

Reference Field Strength Measurements

Reference field strength measurements were made on radials having existing monitor point limits on the current license as well as on radials in the main lobes as follows:

KTSM DA-U Day Pattern

Reference Field Strength Measurements

Point #	Distance	Field Strength	Location Description	GPS Coordinates
	/km	mv/m		NAD83
20-1	3.78	332	North side of State Line Dr. just past Argelia Dr.	32° 00' 06.2" N 106° 20' 27.4" W
20-2	4.87	197	In front of 213 Rebecca Dr.	32° 00' 39.4" N 106° 20' 13.5" W
20-3	7.13	7.13	North side of Luna Dr.	32° 01' 48.3" N 106° 19' 44.1" W
80-1	6.27	39.4	Fort Bliss - McGregor Range (restricted) West side of Route Green	31° 58' 46.6" N 106° 17' 21.1" W
80-2	10.4	21.3	Fort Bliss - McGregor Range (restricted) West side of Unnamed Road	31° 59' 09.8" N 106° 14' 45.1" W
80-3	14.4	13.8	Fort Bliss - McGregor Range (restricted) West side of Unnamed Road	31° 59' 32.4" N 106° 12' 15.7" W
128-1	4.66	140	Fort Bliss - McGregor Range (restricted) West side of Route Green	31° 56' 38.2" N 106° 18' 57.1" W
128-2	7.26	90.1	Fort Bliss - McGregor Range (restricted) North side of Unnamed Road	31° 55' 46.6" N 106° 17' 38.6" W
128-3	10.8	61.5	Fort Bliss - McGregor Range (restricted) West side of Unnamed Road	31° 54' 37.7" N 106° 15' 53.3" W
200-1	2.73	352	Parking area near end of Ashley Road	31° 56' 48.5" N 106° 21' 52.6" W
200-2	4.97	193	South edge of Andora Lopp Road	31° 55' 40.4" N 106° 22' 21.8" W

200-3	5.42	53	Corner of Oates Dr. and Railroad Rd. at fire hydrant	31° 55' 27.1" N 106° 22' 28.9" W
310-1	2.97	86.1	North side of Stan Roberts Sr. Ave.	31° 59' 13.0" N 106° 22' 43.2" W
310-2	6.96	37.8	East edge of Chaparral Drive	32° 00' 35.9" N 106° 24' 40.0" W
310-3	14.8	20	East side of Highway 213	32° 03' 19.5" N 106° 28' 28.8" W

KTSM DAN-U Night Pattern

Reference Field Strength Measurements

	Kelefence Field Strength Measurements					
Point #	Distance	Field Strength	Location Description	GPS Coordinates		
	/km	mv/m	1	NAD83		
20-1	3.78	47	North side of State Line Dr. just past Argelia Dr.	32° 00' 06.2" N 106° 20' 27.4" W		
20-2	4.87	27.8	In front of 213 Rebecca Dr.	32° 00' 39.4" N 106° 20' 13.5" W		
20-3	7.13	25	North side of Luna Dr.	32° 01' 48.3" N 106° 19' 44.1" W		
45-1	5.01	22.3	Fort Bliss - McGregor Range (restricted) South side of State Line Rd.	32° 00' 05.9" N 106° 19' 01.7" W		
45-2	6.1	14	Fort Bliss - McGregor Range (restricted) North side of Myer Range Road	32° 00' 30.8" N 106° 18' 32.6" W		
45-3	9.75	13.7	Fort Bliss - McGregor Range (restricted) West side of Route Green Tank Trail	32° 01' 54.0" N 106° 16' 53.5" W		
65-1	7.95	19.2	Fort Bliss - McGregor Range (restricted) West side of Route Green	31° 59' 59.5" N 106° 16' 41.9" W		
65-2	8.4	18	Fort Bliss - McGregor Range (restricted) South side of State Line Rd.	32° 00' 06.5" N 106° 16' 26.6" W		
65-3	15.4	9.4	Fort Bliss - McGregor Range (restricted) South side of Route White South	32° 01' 41.6" N 106° 12' 24.9" W		
90-1	5.49	6.82	Fort Bliss - McGregor Range (restricted) West side of Route Green	31° 58' 12.0" N 106° 17' 47.4" W		

90-2	10.1	4.08	Fort Bliss - McGregor Range (restricted) West side of Unnamed Rd. at gas line marker	31° 58' 11.0" N 106° 14' 53.0" W
90-3	14.3	1.33	Fort Bliss - McGregor Range (restricted) West side of Unnamed Road	31° 58' 11.0" N 106° 12' 13.0" W
200-1	2.73	665	Parking area near end of Ashley Road	31° 56' 48.5" N 106° 21' 52.6" W
200-2	4.97	362	South edge of Andora Lopp Road	31° 55' 40.4" N 106° 22' 21.8" W
200-3	5.42	193	Corner of Oates Dr. and Railroad Rd. at fire hydrant	31° 55' 27.1" N 106° 22' 28.9" W
272-1	5.11	20.3	West side of McCombs St.	31° 58' 17.4" N 106° 24' 31.3" W
				31° 58' 20.2" N
272-2	8.33	9.65	West side of Hwy 213 at Texas Farm 3255 sign	106° 26' 34.1" W
272-3	20.8	0.76	Southeast Corner of Camper Park off I-10	31° 58' 36.1" N 106° 34' 27.4" W
288-1	6.21	10.8	North side of Stan Roberts Sr. Ave.	31° 59' 12.6" N 106° 25' 02.2" W
288-2	8.83	10.3	West side of Hwy 213 at Caution Sign	31° 59' 40.0" N 106° 26' 36.5" W
288-3	15.8	3.53	South side of Hwy 404 at Caution Marker	32° 00' 48.2" N 106° 30' 48.1" W
310-1	2.97	9.78	North side of Stan Roberts Sr. Ave.	31° 59' 13.0" N 106° 22' 43.2" W
310-2	6.96	2.62	East edge of Chaparral Drive	32° 00' 35.9" N 106° 24' 40.0" W
310-3	14.8	3.01	East side of Highway 213	32° 03' 19.5" N 106° 28' 28.8" W

All measurements were taken October 19-20, 2021 with Potomac Instruments FIM-4100 field strength meter with serial number 133. The meter was calibrated by its manufacturer on June 2, 2021.

RFR Compliance

Operation of KTSM at 10 kW daytime and nighttime will not result in exposure of workers or the general public to RF radiation in excess of levels specified in 47CFR 1.1310. Fences have been installed around all tower bases to comply with the minimum distance which exceeds the distances specified in OET Bulletin 65 for this frequency, calculated power levels in the towers and tower height to prevent electric and magnetic exposure greater than permissible levels. These fences limit access by the general public. If it becomes necessary for workers to enter the tower base areas for maintenance, the station will either reduce power or cease operation to provide RFR safety for the workers.

Item 9

Ground System Description

No changes were made to the ground system at KTSM and remains as previously licensed: Ground System consists of 240 radials 15.24 meters long about each tower, terminated at a circular buss, plus 120 equally spaced radials alternated and extending to 110 meters or point of overlap with radials bonded to transverse buss midway between adjacent towers. All buried.