

7136 S Yale Ave Suite 501 Tulsa, OK 74133 o 918.664.4581 f 918.664.3066

www.iHeartMedia.com www.iHeartRadio.com #iheartradio

April 2, 2021

VIA EMAIL

Ms. Marlene H. Dortch, Secretary Federal Communications Commission 445 Twelfth Street, S.W. Washington, DC 20554

RE: IHM LICENSES, LLC (FRN No. 0014042816) Application for New License on FCC Form 302-AM KJR (AM), 950 kHz, Seattle, WA; Facility ID No. 48386

Dear Ms. Dortch:

On behalf of IHM LICENSES, LLC, the licensee of the above-referenced station, enclosed is copy of an application for New License submitted on FCC Form 302-AM.

Also enclosed is Form 159, Remittance Advice, with credit card payment of the \$1560.00 filing fee.

Please contact the undersigned with any communications concerning this application.

Respectfully submitted, IHM LICENSES, LLC

By:

Troy Langham VP, Technical Regulatory Affairs

cc: Public Inspection File

Online Payment Information

Total Amount Payer FRN Payer Name Remittance ID Treasury Tracking ID \$1,560.00 0014042816 iHM Licenses, LLC 3552860 26ROH8CD

Thank you for your payment!

Approved by OMB 3060-0627 Expires 01/31/98

FOR	
FCC	
USE	
ONLY	

FCC 302-AM

APPLICATION FOR AM

BROADCAST STATION LICENSE

(Please read instructions before filling out form.

FOR COMMISSION USE ONLY

FILE NO.

SECTION I - APPLICANT FEE INFORMATION					
1. PAYOR NAME (Last, First, Middle Initial)					
IHM LICENSES, LLC					
MAILING ADDRESS (Line 1) (Maximum 35 characters)					
7136 S YALE					
MAILING ADDRESS (Line 2) (Maximum 35 characters) SUITE 501					
CITY TULSA	STATE OR COUNTRY (if fo	reign address)	ZIP CODE 74136		
TELEPHONE NUMBER (include area code) 918-664-4611	CALL LETTERS KJR	OTHER FCC IDE 48386	NTIFIER (If applicable)		
2. A. Is a fee submitted with this application?	•		✓ Yes No		
B. If No, indicate reason for fee exemption (see 47 C.F.R. Section			· · ·		
Governmental Entity	cational licensee	ther (Please explain):		
C. If Yes, provide the following information:					
Enter in Column (A) the correct Fee Type Code for the service you	are applying for. Fee Type Co	odes may be found	in the "Mass Media Services		
Fee Filing Guide." Column (B) lists the Fee Multiple applicable for thi	is application. Enter fee amou	nt due in Column (C).		
(A) (B)	(C)				
FEE TYPE FEE MULTIPLE	FEE DUE FOR FEI TYPE CODE IN COLUMN (A)		FOR FCC USE ONLY		
M M R 0 0 1	\$ 725.00				
To be used only when you are requesting concurrent actions which rea	sult in a requirement to list mo	e than one Fee Typ	e Code.		
(A) (B)	(C)	[
M O R 0 0 0 1	\$ <u>835</u>		FOR FCC USE ONLY		
ADD ALL AMOUNTS SHOWN IN COLUMN C,	TOTAL AMOUNT REMITTED WITH TH APPLICATION	IS	FOR FCC USE ONLY		
THIS AMOUNT SHOULD EQUAL YOUR ENCLOSED	\$ 1560.00				
	L				

SECTION II - APPLICANT INFORMATION						
IHM LICENSES, L.L.C.						
MAILING ADDRESS 7136 S YALE SUITE 501						
CITY			STATE OK		ZIP CODE 74136	
2. This application is for:	Commercial		Noncomm	nercial		
	AM Dire	ctional		Ion-Directional		
Call letters	Community of License	Construct	tion Permit File No.	Modification of Construction	Expiration Date of Last	
KJR	SEATTLE, WA			Permit File No(s).	Construction Permit	
3. Is the station n accordance with 47 C.F	ow operating pursuant R. Section 73.1620?	to auto	matic program	test authority in		
If Ne, evelois is as Evel	1b.14				Exhibit No.	
n no, explain in an Exh	idit.				<u></u>	
4 Have all the term	s conditions and oblic	nations s	et forth in the	above described	✓ Yes No	
construction permit bee	n fully met?	jations s		above described		
If No. state exceptions i	n an Exhibit.				Exhibit No.	
E Apart from the oben	and already reported by		upp or pircurpat	anaa ariaan ainaa		
the grant of the under	lying construction permi	t which v	would result in	ance ansen since any statement or	Yes 🗸 No	
representation containe	d in the construction per	mit applic	cation to be now	incorrect?	Exhibit No.	
If Yes, explain in an Ex	hibit.					
6. Has the permittee fi	led its Ownership Report	(FCC Fo	orm 323) or owne	ership	V Tes NO	
certification in accordan	ICE WITH 47 C.F.R. SECTIO	n 73.361	5(D)?		Does not apply	,
lf No, evolain in an Evhi	ibit				Exhibit No.	
	ion.					
7. Has an adverse find	ling been made or an ad	verse fin	al action been ta	aken by any court	Yes 🖌 No	
or administrative body w	with respect to the applic	ant or pa	rties to the appli	ication in a civil or		
criminal proceeding, brought under the provisions of any law relating to the following: any felony: mass media related antitrust or unfair competition: fraudulent statements to						
another governmental u	unit; or discrimination?	1				
If the answer is Yes, a	attach as an Exhibit a fi	ull disclo	sure of the pers	sons and matters	Exhibit No.	
involved, including an id	dentification of the court	or admin	istrative body an	nd the proceeding		
information has been	earlier disclosed in co	nnection	with another a	application or as		
required by 47 U.S.C. Section 1.65(c), the applicant need only provide: (i) an identification						

was filed, and the date of filing; and (ii) the disposition of the previously reported matter. FCC 302-AM (Page 2)

of that previous submission by reference to the file number in the case of an application, the call letters of the station regarding which the application or Section 1.65 information

FCC 302-AM (Page 2) August 1995 8. Does the applicant, or any party to the application, have a petition on file to migrate to the expanded band (1605-1705 kHz) or a permit or license either in the existing band or expanded band that is held in combination (pursuant to the 5 year holding period allowed) with the AM facility proposed to be modified herein?

If Yes, provide particulars as an Exhibit.

The APPLICANT hereby waives any claim to the use of any particular frequency or of the electromagnetic spectrum as against the regulatory power of the United States because use of the same, whether by license or otherwise, and requests and authorization in accordance with this application. (See Section 304 of the Communications Act of 1934, as amended).

The APPLICANT acknowledges that all the statements made in this application and attached exhibits are considered material representations and that all the exhibits are a material part hereof and are incorporated herein as set out in full in

CERTIFICATION

1. By checking Yes, the applicant certifies, that, in the case of an individual applicant, he or she is not subject to a denial of federal benefits that includes FCC benefits pursuant to Section 5301 of the Anti-Drug Abuse Act of 1988, 21 U.S.C. Section 862, or, in the case of a non-individual applicant (e.g., corporation, partnership or other unincorporated association), no party to the application is subject to a denial of federal benefits that includes FCC benefits pursuant to that section. For the definition of a "party" for these purposes, see 47 C.F.R. Section 1.2002(b).

2. I certify that the statements in this application are true, complete, and correct to the best of my knowledge and belief, and are made in good faith.

Name	Signature	
Troy Langham	Troy Langham	Digitally signed by Troy Langham DN: cn=Troy Langham, o, ou, email=Troylangham@iheartmedia.com, c=US Date: 2021.04.02 09:41:16-05'00'
Title VP, Technical Regulatory Affairs	Date <mark>4/2/2021</mark>	Telephone Number 918-664-4581

WILLFUL FALSE STATEMENTS ON THIS FORM ARE PUNISHABLE BY FINE AND/OR IMPRISONMENT (U.S. CODE, TITLE 18, SECTION 1001), AND/OR REVOCATION OF ANY STATION LICENSE OR CONSTRUCTION

FCC NOTICE TO INDIVIDUALS REQUIRED BY THE PRIVACY ACT AND THE PAPERWORK REDUCTION ACT

The solicitation of personal information requested in this application is authorized by the Communications Act of 1934, as amended. The Commission will use the information provided in this form to determine whether grant of the application is in the public interest. In reaching that determination, or for law enforcement purposes, it may become necessary to refer personal information contained in this form to another government agency. In addition, all information provided in this form will be available for public inspection. If information requested on the form is not provided, the application may be returned without action having been taken upon it or its processing may be delayed while a request is made to provide the missing information. Your response is required to obtain the requested authorization.

Public reporting burden for this collection of information is estimated to average 639 hours and 53 minutes per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the burden, can be sent to the Federal Communications Commission, Records Management Branch, Paperwork Reduction Project (3060-0627), Washington, D. C. 20554. Do NOT send completed forms to this address.

THE FOREGOING NOTICE IS REQUIRED BY THE PRIVACY ACT OF 1974, P.L. 93-579, DECEMBER 31, 1974, 5 U.S.C. 552a(e)(3), AND THE PAPERWORK REDUCTION ACT OF 1980, P.L. 96-511, DECEMBER 11, 1980, 44 U.S.C. 3507.

Yes 🖌 No

Exhibit No.

✓	Yes		No
---------------------	-----	--	----

SECTION III - L	ICENSE APPLICATION ENGI	NEERING DATA				
Name of Applicant						
IHM LICE	NSES, LLC					
PURPOSE OF AUTHORIZATION APPLIED FOR: (check one)						
	Station License	Direct Mea	surement of Power			
1. Facilities auth	orized in construction permit					
Call Sign	File No. of Construction Permit	Frequency	Hours of Operation	Power in	n kilowatts	
KJR	(if applicable)	(kHz) 950		Night	Day	
2. Station location	n	1				
State			City or Town			
WASHIN	GTON		SEATTLE			
3. Transmitter lo	cation					
State	County		City or Town	Street address		
WA	KING		VASHON	(or other identification)		
4. Main studio lo	cation					
State	County		City or Town	Street address		
WA	KING		SEATTLE	(or other identification)		
5 Pomoto contr	al point location (specify only if a	uthorized direction				
State				Street address		
	KING			(or other identification)		
V V / N			OLATILL	645 ELLIOTTA	VE W SUITE 400	
6. Has type-approved stereo generating equipment been installed?						
7. Does the sampling system meet the requirements of 47 C.F.R. Section 73.68? Yes No						
Not Applicable						
Attach as an Exhibit a detailed description of the sampling system as installed.						
				L	ı	
8 Operating con	stants.					

o. Operating constants.			1				
RF common point or antenna of modulation for night system 32.45	RF common modulation fo 32.45	RF common point or antenna current (in amperes) without modulation for day system 32.45					
Measured antenna or common point resistance (in ohms) at operating frequency			Measured an operating free	Measured antenna or common point reactance (in ohms) at operating frequency			
Night	Dav		Night	. ,	Dav		
50.0	50.0		12.5		12.5		
Antenna indications for direction	onal operation						
Antenna monitor Towers Phase reading(s) in degree		na monitor ng(s) in degrees	Antenna monitor sample current ratio(s)		Antenna base currents		
	Night	Day	Night	Day	Night	Day	
1	-20.6	18.3	0.534	0.518			
2	0.0	0.0	1.0	1.0			
3	37.7	-37.2	0.439	0.496			
Manufacturer and type of antenna monitor: Potomac AM 1901-3							

SECTION III - Page 2

9. Description of antenna system ((f directional antenna is used, the information requested below should be given for each element of the array. Use separate sheets if necessary.)

Type Radiator	Overall height in meters of radiator above base insulator, or above base, if grounded.	Overall height in meters above ground (without obstruction lighting)	Overall height in meters above ground (include obstruction lighting)	If antenna is either top loaded or sectionalized, describe fully in an Exhibit.
Uniform Cross Section, Guyed, Steel	88.8	89.3	89.9	Exhibit No. n/a
Excitation	Series	Shunt		

Geographic coordinates to nearest second. For directional antenna give coordinates of center of array. For single vertical radiator give tower location.

North Latitude 47	0	26	'	0.0	"	West Longitude 122	0	28		2.0	"
-------------------	---	----	---	-----	---	--------------------	---	----	--	-----	---

If not fully described above, attach as an Exhibit further details and dimensions including any other antenna mounted on tower and associated isolation circuits.

Also, if necessary for a complete description, attach as an Exhibit a sketch of the details and dimensions of ground system.

Exhibit No.

Exhibit No.

10. In what respect, if any, does the apparatus constructed differ from that described in the application for construction permit or in the permit?

none

11. Give reasons for the change in antenna or common point resistance.

see technical narrative		

I certify that I represent the applicant in the capacity indicated below and that I have examined the foregoing statement of technical information and that it is true to the best of my knowledge and belief.

Name (Please Print or Type) Jacob Wyatt	Signature (check appropriate box below)		
Address (include ZIP Code) 113 West 4th St	Date 5-08-2020		
Ogallala, NE 69153	Telephone No. (Include Area Code) 308-289-1872		

✓	Technical Director	Registered Professional Engineer
	Chief Operator	Technical Consultant

FCC 302-AM (Page 5)

Other (specify)

ENGINEERING EXHIBIT IN SUPPORT OF AN APPLICATION FOR STATION LICENSE STATION KJR(AM) – SEATTLE, WASHINGTON 950 kHz – 50 kW, U, DA-2 Facility ID: 48386

Applicant: IHM Licenses, LLC

March, 2021

TABLE OF CONTENTS

FCC Form 301 - Section III

ENGINEERING STATEMENT OF CARL T. JONES, JR., P.E.

FIGURE NUMBER

Tower Model Height and Radius	. 1
Measured and Modeled Impedances	. 2
Antenna Monitor Parameters and Common Point Data	. 3
Sample Line Verification Measurements	. 4
Sample Device Verification Measurements	. 5
Reference Field Strength Measurements	. 6

APPENDICES

Appendix A Individual Tower Models

Appendix B Daytime Directional Pattern Model

Appendix C Nighttime Directional Pattern Model

SECTION III - L	ICENSE APPLICATION ENGI	NEERING DATA				
Name of Applicant						
IHM Licenses, LLC						
PURPOSE OF A	UTHORIZATION APPLIED FOR	: (check one)				
✓	Station License	Direct Mea	surement of Power			
1. Facilities auth	orized in construction permit	1				
Call Sign	File No. of Construction Permit	Frequency	Hours of Operation	Power in	kilowatts	
KJR	(if applicable) N/A	(kHz) 950	Unlimited	Night 50.0	Day 50.0	
2. Station location	on					
State			City or Town			
Washingt	on		Seattle			
3. Transmitter lo	cation					
State	County		City or Town	Street address	ation)	
WA	King		Vashon	10426 Cemetary	/ Road	
4. Main studio lo	cation					
State	County		City or Town	Street address	ation)	
WA	King		Seattle	645 Elliott Avenue W, Suite 400		
5. Remote contr	ol point location (specify only if a	uthorized direction	al antenna)			
State	County		City or Town	Street address	otion)	
WA	King		Seattle	645 Elliott Avenu	e W, Suite 400	
6. Has type-approved stereo generating equipment been installed?						
7. Does the sampling system meet the requirements of 47 C.F.R. Section 73.68? ✓ Yes No Image: Not Applicable Image: Not Applicable Image: Not Applicable Image: Not Applicable						
Allach as an E	xilipit a detailed description of the	sampling system	as installeu.	EXII	DIL INU.	

Attach as an Exhibit a detailed description of the sampling system as installed.

RF common point or antenna current (in amperes) without modulation for night system 32.45		RF common point or antenna current (in amperes) without modulation for day system 32.45				
Measured antenna or con operating frequency Night	nmon point resistance Day	e (in ohms) at	Measured ar operating fre Night	ntenna or common p equency	point reactance (ir Day	n ohms) at
50.0	50.0		+j12	.5	+j12.	5
Antenna indications for di	rectional operation					
Towers	Antenna monitor Phase reading(s) in degrees		Antenna monitor sample current ratio(s)		Antenna base currents	
	Night	Day	Night	Day	Night	Day
1(W)	-20.6	18.3	0.534	0.518		
2(C)	0.0	0.0	1.000	1.000		
3(E)	37.7	-37.2	0.439	0.496		

See Engineering Sttmt.

SECTION III - Page 2

9. Description of antenna system ((f directional antenna is used, the information requested below should be given for each element of the array. Use separate sheets if necessary.)

Type Radiator	Overall height in meters of radiator above base insulator, or above base, if grounded.	Overall height in meters above ground (without obstruction lighting)	Overall height in meters above ground (include obstruction lighting)	If antenna is either top loaded or sectionalized, describe fully in an Exhibit.
Uniform Cross-Section, Guyed, Steel	88.8	89.3	89.9	Exhibit No. <mark>N/A</mark>
Excitation	Series	Shunt		

Geographic coordinates to nearest second. For directional antenna give coordinates of center of array. For single vertical radiator give tower location.

North Latitude	47 °	26	00 "	West Longitude	122 ⁰	28 ′	02 "

If not fully described above, attach as an Exhibit further details and dimensions including any other antenna mounted on tower and associated isolation circuits.

Also, if necessary for a complete description, attach as an Exhibit a sketch of the details and dimensions of ground system.

Exhibit No. On File, No Change

Exhibit No. e Engineering Sttmt.

10. In what respect, if any, does the apparatus constructed differ from that described in the application for construction permit or in the permit?

N/A		

11. Give reasons for the change in antenna or common point resistance.

N/A	

I certify that I represent the applicant in the capacity indicated below and that I have examined the foregoing statement of technical information and that it is true to the best of my knowledge and belief.

Name (Please Print or Type)	Signature (· / / / /)
Carl T. Jones, Jr.	(ml). In.
Address (include ZIP Code)	Date
Carl T. Jones Corporation	March 15, 2021
7901 Yarnwood Court	Telephone No. (Include Area Code)
Springfield, VA 22153	(703) 569-7704

Technical Director	Registered Professional Engineer
Chief Operator	Technical Consultant

Other (specify)

ENGINEERING STATEMENT OF CARL T. JONES, JR., P.E. IN SUPPORT OF AN APPLICATION FOR STATION LICENSE STATION KJR(AM) – SEATTLE, WASHINGTON 950 kHz – 50 kW DAY, 50 kW Night, U, DA-2 Facility ID: 48386

Applicant: IHM Licenses, LLC

I am a Consulting Engineer and president of the Carl T. Jones Corporation, with offices located in Springfield, Virginia. My education and experience are a matter of record with the Federal Communications Commission. I am a Registered Professional Engineer in the Commonwealth of Virginia, Registration No. 013391.

1.0 GENERAL

This office has been authorized by IHM Licenses, LLC ("IHM"), licensee of AM Radio Station KJR, to prepare this engineering statement and the associated figures and appendices in support of an Application for License. Station KJR is licensed to operate on 950 kHz with a daytime and nighttime power of 50 kilowatts, using different directional patterns for its daytime and nighttime operations (DA-2). The station uses a three-tower inline array that is also shared with collocated and diplexed station KGNW. KJR has been operating at reduced power under an STA granted on July 17, 2020, and extended on January 26, 2021 due to distortion of its directional patterns resulting from

tel: (703) 569-7704 fax: (703) 569-6417

STATEMENT OF CARL T. JONES, JR., P.E. STATION KJR(AM) – SEATTLE, WASHINGTON Page 2 of 10

reradiation from a communications support tower constructed in the immediate vicinity of the KJR antenna array. A significant effort was made by the communications tower owner to detune the tower however the effort was only partially successful at eliminating the pattern distortion. The purpose of the instant application is to modify the license of KJR in order to bring the station into permanent compliance.

Computer modeling and sample system verification techniques as described in Section 47 CFR 73.151(c) of the FCC's Rules and Regulations were used to verify the performance of the KJR daytime and nighttime directional patterns. The specific measurement and modeling techniques used in performing the proof of performance on the KJR directional patterns are described in detail in this engineering statement. Impedance measurement data, sample system verification measurement data, model derived operating parameters, and reference point field strength measurement data for the KJR daytime and nighttime directional patterns are tabulated in the figures attached to this engineering statement. All pertinent computer model input and output files are contained in the attached Appendices A, B and C.

2.0 IMPEDANCE MEASUREMENTS, COMPUTER MODELING AND SAMPLE SYSTEM VERIFICATION

The KJR antenna array consists of three, equal height, triangular, uniform crosssection, base insulated, guyed towers. The face width of each tower is 18 inches. The sampling system employs toroidal current transformers located at the output of the series pass/reject diplex filter network at the base of each tower. A detailed description

7901	Yarnwa	bod	Co	ourt		
Spring	gfield,	VA	221	53-28	399	

tel: (703) 569-7704 fax: (703) 569-6417 -----

of the impedance and sample system measurements and the computer models employed is contained below.

2.1 INDIVIDUAL TOWER IMPEDANCE MEASUREMENTS

Impedance measurements were performed at the base of each tower, by the undersigned, at the output J-Plug immediately adjacent to the sample system toroidal current transformer. The J-Plug and sample current transformer are located at the output of the series pass/reject diplex filter network at the base of each tower. The impedance measurements were performed using a Hewlett-Packard Model 4396A network analyzer; an ENI Model 240L power amplifier; and a Tunwall Radio directional coupler. The base impedance of each tower was measured with the other two towers short-circuited to ground at the corresponding J-Plug location. The measured impedances are tabulated in Figure 2.

A set of parallel capacitors are installed in series with the tower base between the measurement location and the tower base, so that the reactance of these capacitors is included in the impedance measurement for each tower. The capacitive reactance of the parallel capacitor set at the base of each tower was measured separately so that the reactance could be taken into account in the tower and circuit models. The equivalent measured series capacitance for each tower is included in Figure 2.

.....

2.2 INDIVIDUAL TOWER COMPUTER MODELS

A Method of Moments ("MoM") computer model was developed to model each element in the antenna array using Expert MiniNEC Broadcast Professional (Version 23.0). A wire model was developed for each tower that is comprised of 42 segments. To replicate the individual measured base impedances to within the tolerance specified in the FCC's Rules, each tower's physical height and radius was adjusted in the MiniNEC model and shunt capacitance, series inductance and measured series capacitance was employed in a separate circuit model. Details of the modeled individual tower adjusted heights and radii are contained in Figure 1.

The values of the lumped shunt capacitance, series inductance and measured series capacitance used in the circuit model are contained in Figure 2. The measured individual tower impedances, the modeled individual tower impedances, and the adjusted modeled (circuit model) individual tower impedances are also contained in Figure 2. The percentage difference between the adjusted modeled tower heights and radii and the actual physical tower heights and radii are all within the tolerances set forth in the FCC's Rules. The magnitude of the lumped shunt capacitances and series inductances that were used in the circuit models are also within the tolerances set forth in the FCC's Rules.

As demonstrated by the data contained in Figure 2, the adjusted modeled individual tower resistance and reactance for each tower is well within ± 2 ohms and ± 4 percent tolerance of the corresponding measured individual tower resistance and

tel: (703) 569-7704 fax: (703) 569-6417

1

STATEMENT OF CARL T. JONES, JR., P.E. STATION KJR(AM) – SEATTLE, WASHINGTON Page 5 of 10

reactance. The text files containing all pertinent input and output data associated with the individual tower models are contained in Appendix A.

2.3 DAYTIME AND NIGHTTIME DIRECTIONAL ANTENNA COMPUTER MODELS AND ANTENNA MONITOR PARAMETERS

The KJR daytime and nighttime directional antenna theoretical field parameters and the licensed tower spacings and orientations were used in combination with the adjusted individual tower models to produce the daytime and nighttime directional antenna computer models. From the directional computer models, tower currents were derived for each wire segment of each antenna. Each segment current was multiplied by the segment length and numerically integrated and normalized to the appropriate reference tower to verify that the modeled current moments are essentially identical to the authorized relative daytime and nighttime directional field parameters.

The new daytime and nighttime operating parameters were determined from the modeled base currents and are tabulated in Figure 3. The text files containing all pertinent input and output data associated with the KJR daytime and nighttime directional antenna computer models are contained in Appendices B and C, respectively.

2.4 SAMPLE SYSTEM DESCRIPTION AND VERIFICATION MEASURMENTS

The KJR antenna sampling system is comprised of: 1) Delta Electronics, Model TCT-1 (Tower #1 and #3) and TCT-1HV (Tower #2) toroidal current transformers

7901 Yarnwood Court	:	tel: (703) 569-7704	:	en
Springfield, VA 22153-2899		fax: (703) 569-6417	1	WV

STATEMENT OF CARL T. JONES, JR., P.E. STATION KJR(AM) – SEATTLE, WASHINGTON Page 6 of 10

mounted in an identical manner at the output of the series pass 950 kHz/reject 820 kHz filter network; 2) approximate equal lengths of Andrew, Type LDF4-50A, 1/2-inch, foam dielectric, coaxial cable between the toroidal current transformer and the antenna monitor equipment rack in the transmitter building and short jumper cables of flexible RG214U connecting the ends of the LDF4-50A coaxial cable to the antenna monitor; and 3) a Potomac Instruments model 1901-3 antenna monitor. Each sample line between the ATU filter enclosure and the transmitter building, including excess lengths, is buried; therefore, each sample line is subjected to the same environmental conditions.

The electrical lengths of the sample system coaxial cables were verified to be equal in length by measuring the open-circuit series resonant frequency closest to the carrier frequency. The characteristic impedances of the sample coaxial cables were verified by measuring the impedance at frequencies corresponding to odd multiples of 1/8 wavelength (45 degrees) immediately above and below the open circuit series resonant frequency closest to the carrier frequency, while the line was open-circuited at the sample element end of the line. The characteristic impedance was calculated using the following formula:

$$Z = \sqrt{\sqrt{R_1^2 + X_1^2}} \times \sqrt{R_2^2 + X_2^2}$$

where: Z = Characteristic impedance and $R_1 + X_1$ and $R_2 + X_2$ are the measured impedances at 45 degree offset frequencies.

7901 Yarnwood Court Springfield, VA 22153-2899 tel: (703) 569-7704 fax: (703) 569-6417

÷

email: info@ctjc.com www.ctjc.com

STATEMENT OF CARL T. JONES, JR., P.E. STATION KJR(AM) – SEATTLE, WASHINGTON Page 7 of 10

A tabulation of the measured sample line lengths and characteristic impedances is contained in Figure 4. All sample line verification measurements were performed by the undersigned using a Hewlett-Packard Model 4396A network analyzer; an ENI Model 240L power amplifier; and a Tunwall Radio directional coupler. As demonstrated by the measured values in Figure 4, the sample line lengths are well within 1 electrical degree with respect to each other and the measured characteristic impedances are well within 2 Ohms with respect to each other, as required by Section CFR73.151(c)(2)(i) of the FCC's Rules and Regulations.

An impedance measurement was performed at the input to each sample line, at the antenna monitor end of the line, with the toroidal current transformer connected. The measurement was performed at the KJR operating frequency of 950 kHz. The measured sample line impedances with the current transformers connected are tabulated in Figure 4 under the heading, "Reference Impedance Sample Transformer Connected".

The performance of the Delta Electronics Model TCT-1 and TCT-1HV toroidal current transformers was verified by driving a common reference current through all three transformers and comparing the outputs as observed on the Hewlett-Packard Model 4396A network analyzer. Based on the test results, the performance of the three current transformers is well within the manufacturer's stated accuracy. A tabulation of the toroidal current transformer measurement data along with the serial number of each current transformer is contained in Figure 5.

:

STATEMENT OF CARL T. JONES, JR., P.E. STATION KJR(AM) – SEATTLE, WASHINGTON Page 8 of 10

The KJR antenna monitor is a Potomac instruments Model 1901-3, Serial Number 548. The performance of the antenna monitor was verified, by the undersigned, to be within the manufacture's stated accuracy. The verification was performed by comparison of the measured relative nighttime directional operating parameters, as observed on the antenna monitor, with those measured using the network analyzer when the nighttime phasing and coupling system common point was driven with the network analyzer swept source through a power amplifier.

3.0 DAYTIME AND NIGHTTIME COMMON POINT IMPEDANCE AND CURRENT

The networks associated with the daytime and nighttime directional antenna systems were adjusted for proper impedance transformation and the daytime and nighttime common point impedance matching networks were set for Z = 50 + j12.5 Ohms. The transmitter output power level was adjusted for a daytime and nighttime common point current of 32.45 amperes to achieve an input power of approximately 52,650 Watts.

4.0 REFERENCE FIELD STRENGTH MEASUREMENTS

Reference field strength measurements were performed on five radials for both the KJR daytime directional pattern and the KJR nighttime directional pattern. For the KJR daytime directional pattern, measurements were performed on the 53° and 207° radial bearings, corresponding to the daytime pattern main radiation lobes; and on the 130°, 288°, and 332° radial bearings, corresponding to the daytime directional pattern

tel: (703) 569-7704 fax: (703) 569-6417

STATEMENT OF CARL T. JONES, JR., P.E. STATION KJR(AM) – SEATTLE, WASHINGTON Page 9 of 10

minima. For the KJR nighttime directional pattern, measurements were performed on the 29° and 231° radial bearings, corresponding to the nighttime pattern main radiation lobes; and on the 107°, 153°, and 310° radial bearings, corresponding to the nighttime directional pattern minima. Three reference field strength measurements were performed on each of the selected daytime and nighttime radial bearings.

The field strength measurements were performed by Mr. Monte Passmore, a contract engineer working for the Carl T. Jones Corporation. Mr. Passmore is experienced in performing field strength measurements on AM directional patterns. Two field intensity meters were used to perform the measurements: Potomac Instruments, Model PI-4100, Serial Number 0352, last calibrated by the manufacturer in July, 2020; and Potomac Instruments, Model FIM-41, Serial Number 2185, last calibrated by the manufacturer in January, 2021.

The measured field strength value for each established reference point location is tabulated in Figure 6, Sheets 1 through 5. The tabulations contained in Figure 6 also include for each reference location: GPS coordinates (NAD83), distance from the KJR antenna array center, and a description of the measurement location.

5.0 ANTENNAS MOUNTED ON TOWERS AND ISOLATION CIRCUITS

An STL parabolic dish antenna is side mounted near the top of Tower #2 (Center Tower). A parallel resonant isolation circuit is used to allow the STL antenna transmission line to cross the base insulator without impacting the AM station operation.

7901 Yarnwood Court	tel: (703) 569-7704
Springfield, VA 22153-2899	fax: (703) 569-6417

Austin ring type transformers are used at the base of each tower to allow AC cables to cross the base insulator to power the tower lights.

6.0 SUMMARY

It is submitted that the KJR daytime and nighttime directional pattern performance has been verified using computer modeling and sample system verification procedures in accordance with Section 47 CFR 73.151(c) of the FCC's Rules and Regulations. It is believed that the daytime and nighttime antenna systems, as adjusted, fully comply with the terms of the station's FCC Authorization and all applicable FCC Rules and Regulations. It is requested that a superseding license be issued to IHM reflecting the new model derived directional operating parameters as contained herein and on FCC Form 302-AM attached.

This engineering statement and the attached figures and appendices were prepared by the undersigned or under the direct supervision of the undersigned and the information contained therein is believed to be true and correct.

Dated: March 15, 2021

TOWER MODEL HEIGHT AND RADIUS

STATION KJR - SEATTLE, WASHINGTON 950 kHz - 50 kW DAY, 50 kW NIGHT, U, DA-2 MARCH, 2021

Tower	Physical Height (degrees)	Modeled Height (degrees)	Percent of Physical Height	Tower Face Width (inches)	Equivalent Radius (meters)	Modeled Radius (meters)	Percent of Equivalent Radius
1	100.8	109.47	108.6	18.000	0.2183	0.2911	133.4
2	100.8	110.98	110.1	18.000	0.2183	0.2911	133.4
3	100.8	108.76	107.9	18.000	0.2183	0.2911	133.4

MEASURED AND MODELED IMPEDANCES

STATION KJR - SEATTLE, WASHINGTON 950 kHz - 50 kW DAY, 50 kW NIGHT, U, DA-2 MARCH, 2021

Tower	Measured Tower Base Impedance ¹	Modeled Tower Base Impedance	Shunt Capacitance (pF)	Modeled plus Shunt Reactance	Measured Series Capacitance (pF)	Lumped Series Inductance (uH)	Total Adjusted Tower Base Impedance
1	100.8 +j 114.4	96.6 +j 128.6	15.0	98.8 +j 129.2	13359.8	0.0	98.8 +j 116.7
2	101.9 +j 107.7	99.5 +j 129.6	15.0	101.9 +j 130.2	4933.2	1.9	101.9 +j 107.5
3	135.9 +j 106.7	93.7 +j 124.1	245.0	136.0 +j 128.9	9139.7	0.0	136.0 +j 110.5

¹ Measured at output of series diplex filter (pass 950 kHz/reject 820 kHz) with other towers short-circuited to ground.

ANTENNA MONITOR PARAMETERS AND COMMON POINT DATA

STATION KJR - SEATTLE, WASHINGTON 950 kHz - 50 kW DAY, 50 kW NIGHT, U, DA-2 MARCH, 2021

DAYTIME									
Tower	Ratio	Phase (deg)							
1	0.518	18.3							
2	1.000	0.0							
3	0.496	-37.2							
	Common Point Impedance =	50 +j12.5 Ohms							
	Common Point Current = 32.45 Amperes								
	Antenna Input Power = 52	2,650 Watts							

	NIGHTTIME									
Tower	Ratio	Phase (deg)								
		(~~9)								
1 0.534 -20.6										
2	1.000	0.0								
3	0.439	37.7								
	Common Point Impedance =	50 +j12.5 Ohms								
	Common Point Current = 32	2.45 Amperes								
	Antenna Input Power = 5	2,650 Watts								

SAMPLE LINE VERIFICATION MEASUREMENTS

STATION KJR - SEATTLE, WASHINGTON 950 kHz - 50 kW DAY, 50 kW NIGHT, U, DA-2 MARCH, 2021

	Open Circuit Series Resonant Frequency ¹	Open Circuit Measured Line Length ²	Resonant Frequency -45 degree Offset Frequency	Resonant Frequency -45 degree Offset Impedance	Resonant Frequency +45 degree Offset Frequency	Resonant Frequency +45 degree Offset Impedance	Calculated Characteristic Impedance	Reference Impedance Sample Toroid Connected ²
Tower	(kHz)	(degrees)	(kHz)	(Ohms)	(kHz)	(Ohms)	(Ohms)	(Ohms)
1	1063.2	241.25	886.00	3.48 -j 47.62	1240.40	5.25 +j 47.54	47.79	47.1 -j 1.2
2	1063.8	241.12	886.50	3.48 -j 47.73	1241.10	5.36 +j 47.81	47.98	46.8 -j 1.1
3	1063.3	241.23	886.08	3.49 -j 47.72	1240.52	5.27 +j 47.81	47.97	47.3 -j 1.3

¹ At this frequency, the sample line electrical length is equal to 270°.

² At carrier frequency (950 kHz)

SAMPLE DEVICE VERIFICATION MEASUREMENTS

STATION KJR - SEATTLE, WASHINGTON 950 kHz - 50 kW DAY, 50 kW NIGHT, U, DA-2 MARCH, 2021

Reference	Measured	Measured		
Sample Toroid	Sample Toroid	Field	Phase	
Number	Number	Ratio	(degrees)	
2	1	0.998	-0.15	
2	3	1.006	-0.52	

Sample Toroid	_	Serial
Number	гуре	Number
1	Delta Electronics, TCT-1	17538
2	Delta Electronics, TCT-1HV	1823
3	Delta Electronics, TCT-1	17593

STATION KJR - SEATTLE, WASHINGTON 950 kHz - 50 kW DAY, 50 kW NIGHT, U, DA-2 MARCH, 2021

29 Degree Radial

Point	Distance	Daytime Field	Nighttime Field	Geographic (NA	Coordinates D83)	
Number	(km)	(mV/m)	(mV/m)	Latitude	Longitude	Description
1	2.09		1460	47° 26' 50.0"	122° 27' 22.0"	Location is at the NE corner of the intersection og 95th Place SW and SW Bank Road in front of mailbox cluster.
2	3.54		592	47° 27' 29.0"	122° 26' 49.0"	Location is at green mailbox to 8832 SW Dilworth Road across styreet from steel farm gate.
3	4.75		126	47° 28' 05.0"	122° 26' 17.0"	Location is at the end of road at 8732 Hawthorne Lane across from Pole #240142.

		Daytime	Nighttime	Geographic	Coordinates	
Point	Distance	Field	Field	(NA	D83)	
Number	(km)	(mV/m)	(mV/m)	Latitude	Longitude	Description
1	0.98	6920		47° 26' 10.0"	122° 27' 49.0"	Location is at black mailbox to 10221 SW 188th Street across form pole # 316359.
2	1.29	1920		47° 26' 26.0"	122° 27' 12.0"	Location is next to steel gate to 9402 SW 183rd Place.
3	1.84	1020		47° 26' 37.0"	122° 26' 58.0"	Location is at intersection of SW 180th Street and Beall Road next to mailbox to 9425 Beall Road.

STATION KJR - SEATTLE, WASHINGTON 950 kHz - 50 kW DAY, 50 kW NIGHT, U, DA-2 MARCH, 2021

107 Degree Radial

Point	Distance	Daytime Field	Nighttime Field	Geographic (NA	Coordinates	
Number	(km)	(mV/m)	(mV/m)	Latitude	Longitude	Description
1	1.21		93.2	47° 25' 44.0"	122° 26' 59.0"	Location is at the southest corner of intersection of cemetary Road and 91st Avenue SW next to red fire hydrant.
2	1.84		77.4	47° 25' 40.0"	122° 26' 40.0"	Location is at white mailbox to 19710 87th Avenue SW on west side of road.
3	2.32		31.5	47° 25' 38.8"	122° 26' 21.1"	Location is on the east side of Ridge Road at mailbox #19728.

		Daytime	Nighttime	Geographic	Coordinates	
Point	Distance	Field	Field	(NA	D83)	
Number	(km)	(mV/m)	(mV/m)	Latitude	Longitude	Description
1	0.81	1260		47° 25' 42.0"	122° 27' 37.0"	Location is across street from pole #316058 on west side of Vashon Highway.
2	2.82	172		47° 25' 02.7"	122° 26' 25.0"	Location is on the east side of George Edwards Road at waters edge on cement platform 100 feet south of Ellisport Road.
3	7.65	146		47° 23' 21.0"	122° 23' 25.0"	Location is at the mailbox to 4715 Point Robinson Road

STATION KJR - SEATTLE, WASHINGTON 950 kHz - 50 kW DAY, 50 kW NIGHT, U, DA-2 MARCH, 2021

153 Degree Radial

		Daytime	Nighttime	Geographic	Coordinates	
Point	Distance	Field	Field	(NA	D83)	
Number	(km)	(mV/m)	(mV/m)	Latitude	Longitude	Description
1	1 27		272	17° 25' 10 0"	100° 07' 24 0"	Location is on south side of 204th Street across from red fire hydant,
1	1.57		275	47 23 19.0	122 27 34.0	300 feet east of Vashon Highway SW.
2	3 54		71 5	47° 24' 16 0"	122° 26' 51 0"	Location is at 8907 Quartermaster Drive across street from mailbox
2	5.54		71.5	47 24 10.0	122 20 51.0	cluster and pole # 036011.
2	5.00		56 5	47° 22' 07 6"	100° 05' 54 6"	Location is on the east side of Dockton Road SW opposite gate in
3	5.99		50.5	41 23 01.0	122 25 54.6	fence 100 ft south of driveway to #24349 Dockton Road.

		Daytime	Nighttime	Geographic	Coordinates	
Point	Distance	Field	Field	(NAD83)		
Number	(km)	(mV/m)	(mV/m)	Latitude	Longitude	Description
1	0.97	1690		47° 25' 20.0"	122° 28' 39.0"	Location is at blue address sign to 11132 SW 204th Street next to phone pedestal #061251.
2	4.10	128.5		47° 23' 46.0"	122° 29' 49.0"	Location is at base of phone pedestal #133550 on north side of 232nd Street 600 feet east of airstrip.
3	6.92	55.2		47° 22' 30.0"	122° 30' 38.0"	Location is at black maibox to 13530 Bates Road SW, north side of road.

STATION KJR - SEATTLE, WASHINGTON 950 kHz - 50 kW DAY, 50 kW NIGHT, U, DA-2 MARCH, 2021

231 Degree Radial

		Daytime	Nighttime	Geographic Coordinates		
Point	Distance	Field	Field	(NAD83)		
Number	(km)	(mV/m)	(mV/m)	Latitude	Longitude	Description
1	2.00		1085	17° 25' 15 0"	122° 20' 33 0"	Location is at 20506 Old Mill Road SW next to phone pedestal
1	2.09		1005	47 23 13.0	122 29 33.0	#015150 and transformer # 315800.
2	2.00		524	47° 24' 59 0"	1220 201 01 0"	Location is on Westside Highway SW across street from pole #
2	2.90		554	47 24 36.0	122 30 01.0	315636 and 360 feet northwest of horse crossing sign
2	1 12		107.5	47° 24' 26 0"	100° 20' 57 0"	Location is at the intersection of 141st Avenue SW and SW 220th
3	3 4.43		C.121	47 24 20.0	122 30 37.0	Street, 30 feet west of the mailbox cluster.

		Daytime	Nighttime	Geographic	Coordinates	
Point	Distance	Field	Field	(NAD83)		
Number	(km)	(mV/m)	(mV/m)	Latitude	Longitude	Description
1	2.33	137.1		47° 26' 23.0"	122° 29' 51.0"	Location is at the address sign for 12620 and 12628 184th Avenue S,
						near base of phone riser.
2	2.50	1111		17° 26' 30 0"	100° 30' 11 0"	Location is at the address sign for 18132 and 18130 Thorsen Road
2	2.00	114.4		47 20 30.0	122 30 11.0	across street from pole #316569.
~	2.40			470 001 00 01	400° 201 20 0"	Location is on the west side of Westside Highway opposite drive to
3	3.19	50.50		47 20 33.9	122 30 30.9	#18103.

APPENDIX A

Individual Tower Models

APPENDIX A – INDIVIDUAL TOWER MODEL KJR(AM) – SEATTLE, WASHINGTON

IMPEDANCE - 7	FOWER #1					
freq rest (MHz) (ohr	lst react ns) (ohms	imped) (ohms)	phase (deg)	VSWR	S11 dB	S12 dB
.95 96.5	558 128.6	1 160.82	53.1	5.6993	-3.0799	-2.9418
GEOMETRY - TO Wire coordina Environment:	OWER #1 ates in deg: perfect gro	rees; other d ound	limensions	s in mete	ers	
wire caps Di 1 none 0	istance	Angle 0	Z 0 109 47	ra(dius 911	segs 36
2 none 15	56.4	130. 130	109.47 0	. 2	911	36
3 none 31 31	L2.8 L2.8	130. 130.	0 108.76	.2	911	36
Number of win Cun	res rrent nodes	= 3 = 108				
Individual wi segment lengt radius	ires w	minimum ire value 3 3.0211 1 .2911	1	ma: wire 2 1	ximum value 3.08278 .2911	
ELECTRICAL DE Frequencies frequenc no. lowest 1 .95	ESCRIPTION (MHz) CY step 0	- TOWER #1 no. c steps 1	of segmer minimu 8.39E-	nt lengtl um -03	h (wavele maximum 8.56E-0	ngths) 3
Sources source node 1 1	sector 1	magnitude 1.	phase 0		type voltage	
Lumped loads					• .	
load node 1 1 2 37 3 73	<pre>resistance (ohms) .1 .1 .1</pre>	reactance (ohms) 0 -22.55 -17.85	e indu (mH) 0 0 0	lctance	capacita (uF) 0 0 0	nce passive circuit 0 0 0

APPENDIX A – INDIVIDUAL TOWER MODEL KJR(AM) – SEATTLE, WASHINGTON

IMPED	ANCE - '	TOWER #2						
freq (MHz)	rmaiiza res (ohu	ist reac ms) (ohm	t impo s) (ohu	ed pl ms) (d	hase deg)	VSWR	S11 dB	S12 dB
.95	99.	523 129.	56 163	.37 52	2.5	5.6904	-3.0849	-2.937
GEOME Wire Envir	TRY - To coordina onment:	OWER #2 ates in de perfect g	grees; o round	ther di	mensions	s in mete	ers	
wire 1	caps D none 0	istance	Angle 0	:	Z 0	rac .29	lius 911	segs 36
2	0 none 1 1	56.4 56.4	0 130. 130.	(109.47 0 110.98	.29	911	36
3	none 3 3	12.8 12.8	130. 130.	(0 108.76	.29	911	36
Numbe	r of wi: cu:	res rrent node	= 3 s = 10	8				
			minimu	m		maz	cimum	
Indiv segme radiu	idual w nt leng s	ires th	wire 3 1	value 3.02111 .2911		wire 2 1	value 3.08278 .2911	
ELECT Frequ no. 1	RICAL D encies frequen lowest .95	ESCRIPTION (MHz) cy step 0	- TOWER	#2 no. of steps 1	segmer minimu 8.39E-	nt length 1m •03	n (waveler maximum 8.56E-03	ngths) B
Sourc sourc 1	es e node 37	sector 1	magnituo 1.	de	phase 0		type voltage	
Lumpe	d loads							
load 1 2	node 1 37	resistance (ohms) .1 .1	e rea (ohi -12 0	ctance ms) .53	indu (mH) 0 0	lctance	capacitar (uF) 0 0	nce passive circuit 0 0
3	13	• –	- 1 /	.00	U		U	U

APPENDIX A – INDIVIDUAL TOWER MODEL KJR(AM) – SEATTLE, WASHINGTON

IMPEDANCE - 7	OWER #3					
normalizat freq resi (MHz) (ohm	10n = 50. st react ns) (ohms	imped) (ohms)	phase (deg)	VSWR	S11 dB	S12 dB
.95 93.6	579 124.1	155.49	53.	5.5142	-3.1856	-2.8418
GEOMETRY - TO Wire coordina Environment:	OWER #3 ates in deg perfect gr	rees; other ound	dimension	s in mete	ers	
wire caps Di 1 none 0 0	stance	Angle 0 0	Z 0 109.47	rac .29	lius 911	segs 36
2 none 15	6.4 6 4	130.	0	.29	911	36
3 none 31 31	.2.8	130. 130.	0 108.76	.29	911	36
Number of wir cur	res rrent nodes	= 3 = 108				
		minimum		maz	cimum -	
Individual wi segment lengt radius	res w	ire value 3 3.021 1 .2911	11	wire 2 1	value 3.08278 .2911	
ELECTRICAL DE Frequencies (frequenc no. lowest	ESCRIPTION (MHz) ZY step 0	- TOWER #3 no. step 1	of segmen s minimu 8.395	nt length um -03	1 (waveler maximum 8.56E-02	ngths)
÷	Ŭ	±	0.001	00	0.001 0.	
sources source node 1 73	sector 1	magnitude 1.	phase 0		type voltage	
Lumped loads						
load node 1 1 2 37 3 73	resistance (ohms) .1 .1 .1	reactanc (ohms) -12.53 -22.55 0	e indu (mH) 0 0 0	uctance)	capacitar (uF) 0 0 0	nce passive circuit 0 0 0

APPENDIX B

Daytime Directional Pattern Model

PAGE B-1

APPENDIX B – DAYTIME OPERATION KJR(AM) – SEATTLE, WASHINGTON

IMPE n	DANCE - ormaliza	DAYTIM ation =	E OPERATI	ION				
freq (MHz	re:) (ol Ce = 1	sist hms) • node	react (ohms)	imped (ohms)	phase (deg)	VSWR	S11 dB	S12 dB
.95	60	. 525	85.993	105.16	54.9	4.2445	-4.1711	-2.0952
sour .95	ce = 2 79	; node .661	37, secto 120.41	or 1 144.38	56.5	5.6853	-3.0877	-2.9343
sour .95	ce = 3 104	; node 4.75	73, secto 65.043	or 1 123.31	31.8	3.0525	-5.9088	-1.2873
GEOM Wire Envi:	ETRY - 1 coordin ronment	DAYTIME nates i : perfe	OPERATION n degrees ect ground	DN 5; other d d	imensions	s in mete	ers	
wire	caps 1	Distanc	e Ang	gle	Z	rad	dius	segs
T	none	0	0		0 109.47	. 25	911	36
2	none i	156.4 156.4	13(13().).	0 110.98	.29	911	36
3	none :	312.8 312.8	130 130).).	0 108.76	.29	911	36
Numb	er of wi ci	ires urrent	= nodes =	3 108				
Indi segm radi	vidual v ent leng us	wires gth	mir wire 3 1	nimum value 3.0211 .2911	1	maz wire 2 1	ximum value 3.08278 .2911	
ELEC' Frequ	TRICAL I	DESCRIF (MHz)	PTION - DA	AYTIME OPE	RATION		<i>(</i> 7	
no. 1	lreque lowest .95	ncy	step 0	no. o steps 1	i segmer minimu 8.39E-	it lengti im -03	n (waveler maximum 8.56E-03	igths)
Sour	ces							
sour 1	ce node 1	sec 1	tor magn 1.53	nitude 31.24	phase 81.6		type voltage	
2 3	37 73	1 1	4,0 ⁻ 1,85	71.56 59.16	64.9 353.8		voltage voltage	
Lump	ed load:	5						
-		resis	tance	reactance	indu	uctance	capacitar	nce passive
load	node 1	(ohms .1	5)	(onms) 0	(mH) 0		(uF) 0	Circuit 0
2 3	37 73	.1 .1		0 0	0 0		0 0	0 0
RMS Frequ Inpu Effic	CURRENT uency t power ciency dinates	- DAYT = .95 = 50,0 = 99.8 in deg	TIME OPERA MHz 000. watts 88 % grees	ATION 5				
curr	ent		-	7	mag	phase	real	imaginary
GND	л 0	Y C)	0	(amps) 10.2965	(deg) 26.8	(amps) 9.19204	(amps) 4.63932
2 3	0 0	C)	3.04083 6.08167	10.6857 10.8914	25.3 24.5	9.66148 9.91314	4.56505 4.51128

APPENDIX B – DAYTIME OPERATION KJR(AM) – SEATTLE, WASHINGTON

4 0 0 9.1225 11.0435 23.8 10.1051 4.45493 5 12.1633 11.153 23.2 10.2509 4.39411 0 0 6 0 0 15.2042 11.2252 22.7 10.3574 4.32791 7 0 0 18.245 11.2629 22.2 10.4279 4.25594 11.2677 21.8 21.2858 10.4645 8 0 0 4.17803 10.4687 11.2408 21.4 9 0 0 24.3267 4.09416 27.3675 11.1828 21. 10 0 10.4413 4.00437 0 30.4083 33.4492 11.0946 10.3832 11 0 0 20.6 3.90875 10.9766 20.3 12 10.2951 0 0 3.80742 13 0 0 36.49 10.8296 20. 10.1777 3.70056 3.58835 0 39.5308 10.6539 19.7 14 0 10.0314 15 0 0 42.5717 10.4503 19.4 9.85707 3.471 10.2194 19.1 16 0 0 45.6125 9.65519 3.34871 17 0 0 48.6533 9.96173 18.9 9.42637 3.22174 18 0 0 51.6942 9.67804 18.6 9.17139 3.09033 54.735 0 0 9.36907 18.4 8.89095 19 2.95474 18.2 20 0 0 57.7758 9.03546 8.58569 2.81523 8.67801 17.9 21 0 0 60.8167 8.25639 2.67207 7.9039 2.52553 0 63.8575 8.29759 17.7 2.2 0 7.89491 17.5 2.3759 0 0 66.8983 7.52892 23 24 0 0 69.9392 7.47091 17.3 7.13237 2.22344 7.02627 17.1 25 72.98 6.71491 0 0 2.06842 76.0208 16.9 26 0 0 6.5619 6.27743 1.9111 1.75173 27 0 0 79.0617 6.07855 16.7 5.82067 28 0 0 82.1025 5.57692 16.6 5.3453 1.59053 85.1433 16.4 1.42768 29 0 0 5.05762 4.85193 4.52107 16.2 30 0 0 88.1842 4.34097 1.26334 31 0 0 91.225 3.96741 16.1 3.81257 1.09754 94.2658 0 0 3.3963 15.9 3.26642 .930241 32 2.80661 15.7 33 0 0 97.3067 2.70142 .761158 2.19556 15.6 0 100.348 2.11491 34 0 589602 35 0 103.388 1.55665 15.4 1.50061 .413922 0 .845268 106.429 .876168 15.3 .230632 36 0 0 109.47 END 0 0 0 0 0 0 -100.532 -119.809 0 19.9407 8.4 GND 19.7257 2.92068 38 -100.532 -119.809 3.08278 21.0133 6.5 20.8792 2.37043 -100.532 -119.809 6.16556 21.6028 5.4 21.506 2.04289 39 40 -100.532 -119.809 9.24833 22.0618 4.6 21.9916 1.75824 -100.532 -119.809 12.3311 22.4191 3.8 1.50123 22.3688 41 42 -100.532 -119.809 15.4139 22.6895 3.2 22.6542 1.26424 22.8565 43 -100.532 -119.809 18.4967 22.8803 2.6 1.0436 22.9956 2.1 23.0382 1.6 .837285 44 -100.532 -119.809 21.5794 22.9803 -100.532 -119.809 24.6622 45 23.0292 .64414 -100.532 -119.809 27.745 23.01 1.2 23.0053 46 .463444 .294772 -100.532 -119.809 30.8278 22.9125 .7 22.9106 47 -100.532 -119.809 33.9106 -100.532 -119.809 36.9933 22.7471 .3 22.7467 .13787 48 360. 49 22.515 22.515 -7.4E-03 -100.532 -119.809 40.0761 22.2174 359.6 22.2169 - .141124 50 -100.532 -119.809 43.1589 21.8555 359.3 21.8539 51 -.263319 -100.532 -119.809 359. 21.4274 52 46.2417 21.4307 -.373992 -100.532 -119.809 20.9441 358.7 20.9388 53 49.3245 -.473134 20.3974 358.4 20.3896 -100.532 -119.809 52.4072 -.560732 54 55 -100.532 -119.809 55.49 19.7918 358.2 19.7816 -.636772 19.1291 357.9 19.1163 -100.532 -119.809 58.5728 56 -.701252 -100.532 -119.809 61.6556 -100.532 -119.809 64.7383 18.4109357.718.395517.6388357.417.6209 57 -.754179 58 -.795559 -100.532 -119.809 67.8211 16.8147 357.2 16.7944 -.825441 59 60 -100.532 -119.809 70.9039 15.9404 357. 15.918 -.843861 15.0175 356.8 14.9934 14.0481 356.5 14.0226 -119.809 -100.532 73.9867 -.850869 61 -100.532 -119.809 77.0695 62 -.846534 13.0337 356.3 13.0072 -100.532 -119.809 80.1522 -.830928 63 -100.532 -119.809 83.235 11.9759 356.2 11.9489 -.804122 64 10.8762 356. -100.532 -119.809 86.3178 10.8491 -.766171 65

PAGE B-3

APPENDIX B – DAYTIME OPERATION KJR(AM) – SEATTLE, WASHINGTON

66	-100.532	-119.809	89.4006	9.73545	355.8	9.709	71712
67	-100.532	-119.809	92.4833	8.5541	355.6	8.52884	656957
68	-100.532	-119.809	95.5661	7.33158	355.4	7.30816	585571
69	-100.532	-119.809	98.6489	6.06538	355.2	6.04451	502692
70	-100.532	-119.809	101.732	4.74967	355.1	4.73214	4077
71	-100.532	-119.809	104.814	3.37046	354.9	3.35715	29917
72	-100.532	-119.809	107.897	1.8979	354.7	1.8899	174078
END	-100.532	-119.809	110.98	0	0	0	0
GND	-201.064	-239.619	0	10.6616	322.	8.39951	-6.56641
74	-201.064	-239.619	3.02111	10.9714	319.4	8.32887	-7.14157
75	-201.064	-239.619	6.04222	11.1365	317.9	8.26877	-7.45976
76	-201.064	-239.619	9.06333	11.257	316.7	8.19834	-7.71404
77	-201.064	-239.619	12.0844	11.3404	315.7	8.11603	-7.92059
78	-201.064	-239.619	15.1056	11.3908	314.8	8.02107	-8.08775
79	-201.064	-239.619	18.1267	11.4096	313.9	7.91316	-8.21955
80	-201.064	-239.619	21.1478	11.3981	313.1	7.79225	-8.31855
81	-201.064	-239.619	24.1689	11.3569	312.4	7.65846	-8.38607
82	-201.064	-239.619	27.19	11.2864	311.7	7.51195	-8.42341
83	-201.064	-239.619	30.2111	11.1872	311.1	7.35292	-8.43133
84	-201.064	-239.619	33.2322	11.0595	310.5	7.18166	-8.41047
85	-201.064	-239.619	36.2533	10.9038	309.9	6.99847	-8.36147
86	-201.064	-239.619	39.2744	10.7205	309.4	6.80373	-8.28482
87	-201.064	-239.619	42.2956	10.5101	308.9	6.59782	-8.18115
88	-201.064	-239.619	45.3167	10.2731	308.4	6.38115	-8.05098
89	-201.064	-239.619	48.3378	10.0101	307.9	6.15416	-7.89478
90	-201.064	-239.619	51.3589	9.72157	307.5	5.91731	-7.71326
91	-201.064	-239.619	54.38	9.40824	307.1	5.67107	-7.50693
92	-201.064	-239.619	57.4011	9.07076	306.7	5.41595	-7.27641
93	-201.064	-239.619	60.4222	8.70989	306.3	5.15244	-7.02243
94	-201.064	-239.619	63.4433	8.32632	305.9	4.88105	-6.74559
95	-201.064	-239.619	66.4645	7.92082	305.5	4.6023	-6.44657
96	-201.064	-239.619	69.4856	7.49421	305.2	4.3167	-6.12611
97	-201.064	-239.619	72.5067	7.04725	304.8	4.02476	-5.7849
98	-201.064	-239.619	75.5278	6.58074	304.5	3.72696	-5.42364
99	-201.064	-239.619	78.5489	6.0954	304.2	3.42378	-5.04298
100	-201.064	-239.619	81.57	5.59193	303.9	3.11562	-4.64356
101	-201.064	-239.619	84.5911	5.0709	303.6	2.80284	-4.22588
102	-201.064	-239.619	87.6122	4.53271	303.3	2.48571	-3.79035
103	-201.064	-239.619	90.6333	3.97749	303.	2.16432	-3.33708
104	-201.064	-239.619	93.6545	3.40488	302.7	1.83853	-2.86584
105	-201.064	-239.619	96.6756	2.81371	302.4	1.50776	-2.37563
106	-201.064	-239.619	99.6967	2.2012	302.1	1.17062	-1.86411
107	-201.064	-239.619	102.718	1.56079	301.9	.823772	-1.3257
108	-201.064	-239.619	105.739	.878763	301.6	.460219	748614
END	-201.064	-239.619	108.76	0	0	0	0

APPENDIX C

Nighttime Directional Pattern Model

APPENDIX C – NIGHTTIME OPERATION KJR(AM) – SEATTLE, WASHINGTON

nor	maliza	ation =	= 50.						
freq	re	sist	react	: im	ped	phase	VSWR	S11	S12
(MHz)	(ol	ıms)	(ohms	s) (o	hms)	(deg)		dB	dB
source	e = 1,	; node	1, se	ector 1					
.95	69	.069	64.01	.3 94	.171	42.8	2.9532	-6.124	-1.2155
source	: = 2	; node	37, s	sector	1				
.95	93	.356	111.8	38 14	5.71	50.2	4.8791	-3.6116	-2.4822
source	: = 3	; node	73, s	sector	1				
.95	37	.228	105.5	5 11	1.88	70.6	7.9415	-2.1992	-4.0086
GEOMET	'RY – 1	VIGHTT	IME OF	PERATIO	N				
Wire c	oordi	nates :	in deg	grees;	other d	imensions	s in mete	ers	
Enviro	nment	: perfe	ect gi	round					
wire	caps I	Distand	ce	Anqle		Z	rad	lius	seqs
1	none ()		0		0	.29	911	36
	()		0		109.47			
2	none '	156.4		130.		0	.20	911	36
-		156.4		130.		110.98	•=-		5.0
З	none '	212 8		130		0	20	911	36
5		212.0		130		108 76	• 4 -	/	50
		12.0		100.		100.70			
Numbor	of w	rog		_ ²					
nuiiber	OL W.	irront	nodor	1	00				
	Cl	litelli	noues	» = т	08				
				minim	um		. maz	<imum< td=""><td></td></imum<>	
Indivi	dual t	vires	V	vire	value	_	wire	value	
segmen	it leng	gth		3	3.0211	T	2	3.08278	
radıus				1	.2911		1	.2911	
ELECTR	ICAL I	DESCRII	PTION	- NIGH	TTIME O	PERATION			
Freque	ncies	(MHz)							
f	reque	лсу			no. o	f segmen	ıt lengtl	n (wavele	ngths)
no. l	owest		step		steps	minim	ım	maximum	
1.	95		0		1	8.39E·	-03	8.56E-0	2
									5
Source	s								5
source	node								5
1		sec	ctor	magnit	ude	phase		type	5
2	1	sec 1	ctor	magnit 1,430.	ude 46	phase 32.3		type voltage	5
2	1 37	sec 1 1	ctor	magnit 1,430. 4,160.	ude 46 13	phase 32.3 60.2		type voltage voltage	5
2 3	1 37 73	sec 1 1 1	ctor	<pre>magnit 1,430. 4,160. 1,636.</pre>	ude 46 13 42	phase 32.3 60.2 115.1		type voltage voltage voltage	5
2 3	1 37 73	sec 1 1 1	ctor	<pre>magnit 1,430. 4,160. 1,636.</pre>	ude 46 13 42	phase 32.3 60.2 115.1		type voltage voltage voltage	
2 3 Lumped	1 37 73 1 loads	sec 1 1 1	ctor	magnit 1,430. 4,160. 1,636.	ude 46 13 42	phase 32.3 60.2 115.1		type voltage voltage voltage	
2 3 Lumped	1 37 73 l loads	sec 1 1 1 s resi:	ctor	magnit 1,430. 4,160. 1,636.	ude 46 13 42 actance	phase 32.3 60.2 115.1 indu	ictance	type voltage voltage voltage capacita	nce passive
2 3 Lumped load	1 37 73 1 loads node	sec 1 1 1 resis (ohms	ctor stance	magnit 1,430. 4,160. 1,636. e re (o	ude 46 13 42 actance hms)	phase 32.3 60.2 115.1 indu (mH)	uctance	type voltage voltage capacita: (uF)	nce passive circuit
2 3 Lumped load 1	1 37 73 1 load: node 1	sec 1 1 1 resis (ohms .1	ctor stance s)	magnit 1,430. 4,160. 1,636. e re (o 0	ude 46 13 42 actance hms)	phase 32.3 60.2 115.1 indu (mH) 0	uctance	type voltage voltage capacita: (uF) 0	nce passive circuit 0
2 3 Lumped load 1 2	1 37 73 l loads node 1 37	sec 1 1 1 resis (ohms .1	ctor stance s)	<pre>magnit 1,430. 4,160. 1,636. e re (0 0 0 0</pre>	ude 46 13 42 actance hms)	phase 32.3 60.2 115.1 indu (mH) 0	uctance	type voltage voltage capacita: (uF) 0 0	nce passive circuit 0
2 3 Lumped load 1 2 3	1 37 73 l loads node 1 37 73	sec 1 1 1 5 resis (ohms .1 .1 1	ctor stance s)	<pre>magnit 1,430. 4,160. 1,636. e re (o 0 0 0 0 0</pre>	ude 46 13 42 actance hms)	phase 32.3 60.2 115.1 indu (mH) 0 0	uctance	type voltage voltage capacita (uF) 0 0	nce passive circuit 0 0
2 3 Lumped load 1 2 3	1 37 73 l loads node 1 37 73	sec 1 1 1 5 resis (ohms .1 .1 .1	ctor stance s)	<pre>magnit 1,430. 4,160. 1,636. e re (o 0 0 0 0 0</pre>	ude 46 13 42 actance hms)	phase 32.3 60.2 115.1 indu (mH) 0 0 0	uctance	type voltage voltage capacita (uF) 0 0 0	nce passive circuit 0 0 0
2 3 Lumped load 1 2 3	1 37 73 1 loads node 1 37 73	sec 1 1 1 1 s resis (ohms .1 .1 .1	stance s)	<pre>magnit 1,430. 4,160. 1,636. e re (o 0</pre>	ude 46 13 42 actance hms)	phase 32.3 60.2 115.1 indu (mH) 0 0 0	uctance	type voltage voltage capacita (uF) 0 0 0	nce passive circuit 0 0 0
2 3 Lumped load 1 2 3 RMS CU	1 37 73 1 loads 1 37 73 TRRENT	sec 1 1 1 resis (ohms .1 .1 .1 - NIGH	stance s) HTTIME	<pre>magnit 1,430. 4,160. 1,636. e re (o 0 0 0 E OPERA</pre>	ude 46 13 42 actance hms) TION	phase 32.3 60.2 115.1 indu (mH) 0 0 0	uctance	type voltage voltage capacita: (uF) 0 0 0	nce passive circuit 0 0 0
2 3 Lumped load 1 2 3 RMS CU Freque	1 37 73 l loads node 1 37 73 RRENT ncy	sec 1 1 1 resis (ohms .1 .1 .1 - NIGH = .95 .5	stance s) HTTIME MHz	<pre>magnit 1,430. 4,160. 1,636. re</pre>	ude 46 13 42 actance hms) TION	phase 32.3 60.2 115.1 indu (mH) 0 0 0	uctance	type voltage voltage capacita (uF) 0 0 0	nce passive circuit 0 0 0
2 3 Lumped load 1 2 3 RMS CU Freque Input	1 37 73 l loads 1 37 73 RRENT mcy power	sec 1 1 1 resis (ohms .1 .1 - NIGH = .95, = 50, (stance s) HTTIME MHz 000. v	<pre>magnit 1,430. 4,160. 1,636. e re (o 0 0 0 c OPERA vatts</pre>	ude 46 13 42 actance hms) TION	phase 32.3 60.2 115.1 indu (mH) 0 0 0	uctance	type voltage voltage capacita (uF) 0 0	nce passive circuit 0 0 0
2 3 Lumped load 1 2 3 RMS CU Freque Input Effici	1 37 73 l loads node 1 37 73 RRENT ncy power ency	sec 1 1 1 resis (ohms .1 .1 - NIGH = .95 = 50,(= 99.8	stance s) HTTIME MHz 000. v 37 %	<pre>magnit 1,430. 4,160. 1,636. e re (o 0 0 0 c OPERA vatts</pre>	ude 46 13 42 actance hms) TION	phase 32.3 60.2 115.1 indu (mH) 0 0 0	ictance	type voltage voltage capacita: (uF) 0 0	nce passive circuit 0 0 0
2 3 Lumped load 1 2 3 RMS CU Freque Input Effici coordi	1 37 73 loads node 1 37 73 RRENT ncy power ency nates	sec 1 1 1 resis (ohms .1 .1 - NIGH = .95 = 50,(= 99.8 in deg	stance s) HTTIME MHz 000. v 37 % grees	<pre>magnit 1,430. 4,160. 1,636. e re (0 0 0 E OPERA vatts</pre>	ude 46 13 42 actance hms) TION	phase 32.3 60.2 115.1 indu (mH) 0 0 0	ictance	type voltage voltage capacita: (uF) 0 0	nce passive circuit 0 0 0
2 3 Lumped 1 2 3 RMS CU Freque Input Effici coordi curren	1 37 73 loads node 1 37 73 RRENT ncy power ency nates t	sec 1 1 1 resis (ohms .1 .1 - NIGH = .95 = 50,(= 99.8 in deg	stance s) HTTIME MHz 2000. v 37 % grees	magnit 1,430. 4,160. 1,636. e re (o 0 0 0 E OPERA vatts	ude 46 13 42 actance hms) TION	phase 32.3 60.2 115.1 indu (mH) 0 0 0	phase	type voltage voltage capacita: (uF) 0 0 0	nce passive circuit 0 0 0
2 3 Lumped load 1 2 3 RMS CU Freque Input Effici coordi curren no.	1 37 73 loads node 1 37 73 RRENT ncy power ency nates t X	sec 1 1 1 resis (ohms .1 .1 .1 - NIGH = .95 = 50,(= 99.8 in deg	stance s) HTTIME MHz D00. v 37 % grees	magnit 1,430. 4,160. 1,636. e re (o 0 0 0 E OPERA vatts Z	ude 46 13 42 actance hms) TION	phase 32.3 60.2 115.1 indu (mH) 0 0 0 0	phase (deg)	type voltage voltage capacita: (uF) 0 0 0 voltage	nce passive circuit 0 0 0 imaginary (amps)
2 3 Lumped load 1 2 3 RMS CU Freque Input Effici coordi curren no. GND	1 37 73 load: 1 37 73 RRENT mcy power ency nates t X 0	sec 1 1 1 1 resis (ohms .1 .1 .1 .1 - NIGH = .95 = 50,(= 99.{ in deg	stance s) HTTIME MHz 000. v 37 % grees Y 0	magnit 1,430. 4,160. 1,636. e re (o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ude 46 13 42 actance hms) TION	phase 32.3 60.2 115.1 indu (mH) 0 0 0 0 0	phase (deg) 349.5	type voltage voltage capacita: (uF) 0 0 0 voltage real (amps) 10.5597	nce passive circuit 0 0 0 imaginary (amps) -1.96458
2 3 Lumped load 1 2 3 RMS CU Freque Input Effici coordi curren no. GND 2	1 37 73 loads node 1 37 73 RRENT nocy power ency nates t X 0	sec 1 1 1 resis (ohms .1 .1 .1 .1 .1 .1 .1 .1 .1 .1	stance s) HTTIME MHz DOO. v 37 % grees y D D	<pre>magnit 1,430. 4,160. 1,636. e re (o 0 0 0 c OPERA vatts Z 0 3.</pre>	ude 46 13 42 actance hms) TION 04083	phase 32.3 60.2 115.1 indu (mH) 0 0 0 0 0 0 0 0 0 0 0 0 0 0	phase (deg) 349.5 347.7	type voltage voltage capacita: (uF) 0 0 0 0 real (amps) 10.5597 10.7911	imaginary (amps) -1.96458 -2.34402

PAGE C-2

APPENDIX C – NIGHTTIME OPERATION KJR(AM) – SEATTLE, WASHINGTON

4	0	0	9 1225	11 3066	346	10 9702	-2 7377
-	0	0	10 1000	11 2775	245 2	11 0047	2.7577
5	0	0	12.1033	11.3775	343.3	11.0047	-2.00070
6	0	0	15.2042	11.4146	344.7	11.0083	-3.01823
./	0	0	18.245	11.4199	344.1	10.9829	-3.12878
8	0	0	21.2858	11.3947	343.6	10.9297	-3.22191
9	0	0	24.3267	11.3398	343.1	10.8494	-3.29859
10	0	0	27.3675	11.2559	342.6	10.7429	-3.35946
11	0	0	30,4083	11.1436	342.2	10.6106	-3,40497
12	0	0	33 4492	11 0033	341 8	10 4532	-3 43551
12	0	0	36 19	10 9356	311.0	10 2712	-3 45134
14	0	0	30.49	10.0350	341.4 241 1	10.2713	-3.45134
14	0	0	39.5308	10.6411	341.1	10.0654	-3.45277
15	0	0	42.5717	10.4203	340.7	9.83606	-3.44001
16	0	0	45.6125	10.1737	340.4	9.58405	-3.41332
17	0	0	48.6533	9.90208	340.1	9.30991	-3.37295
18	0	0	51.6942	9.60605	339.8	9.01441	-3.31914
19	0	0	54.735	9.28628	339.5	8.69819	-3.25216
20	0	0	57.7758	8.94348	339.2	8.36196	-3.17229
21	0	0	60.8167	8.57848	339.	8.00657	-3.07981
22	0	0	63 8575	8 19202	338 7	7 63272	-2 97503
22	0	0	66 0000	7 7040	330.7	7.03272	2.97903
23	0	0	66.6963	7.7049	330.5	7.24119	-2.03027
24	0	0	69.9392	7.358	338.2	6.83287	-2.72986
25	0	0	72.98	6.91208	338.	6.40844	-2.59011
26	0	0	76.0208	6.44795	337.8	5.96871	-2.43936
27	0	0	79.0617	5.96638	337.6	5.51441	-2.27792
28	0	0	82.1025	5.46808	337.3	5.04621	-2.1061
29	0	0	85.1433	4.95364	337.1	4.56467	-1.92415
30	0	0	88.1842	4,42349	336.9	4.0702	-1.73228
31	0	0	91 225	3 87778	336 8	3 56295	-1 53055
32	0	0	94 2659	2 21621	336 6	3 04267	_1 21000
22	0	0	94.2050	3.31021	226.0	3.04207	-1.31000
33	0	0	97.3067	2.73766	336.4	2.50834	-1.09683
34	0	0	100.348	2.13948	336.2	1.95756	86332
35	0	0	103.388	1.51538	336.	1.38463	615772
36	0	0	106.429	.852065	335.8	.777464	348662
END	0	0	109.47	0	0	0	0
GND	-100.532	-119.809	0	20.1884	10.	19.8819	3.50438
38	-100.532	-119.809	3.08278	21.2014	7.7	21.0098	2.84373
39	-100 532	-119 809	6 16556	21 7598	6 5	21 6213	2 45049
40	-100 532	-119 809	9 24833	22 1938	5 5	22 0934	2 10878
11	-100.532	_110 000	12 2211	22.1990	1 6	22.0004	1 90020
41	-100.552	-119.009	15 4120	22.5502	4.0	22.4002	1.60029
42	-100.532	-119.809	15.4139	22.7827	3.8	22.1322	1.51585
43	-100.532	-119.809	18.4967	22.9577	3.1	22.9236	1.25106
44	-100.532	-119.809	21.5794	23.0591	2.5	23.0373	1.0035
45	-100.532	-119.809	24.6622	23.0893	1.9	23.0764	.771757
46	-100.532	-119.809	27.745	23.0499	1.4	23.0432	.554981
47	-100.532	-119.809	30.8278	22.9425	.9	22.9397	.352659
48	-100.532	-119.809	33.9106	22.7681	.4	22.7675	.164483
49	-100.532	-119.809	36,9933	22.528	360.	22.528	-9.72E-03
50	-100 532	-119 809	40 0761	22 2232	359 6	22 2226	- 170049
50 E 1	100.552	110 000	12 1500	22.2252 01 0EE	250.0	22.2220	216521
5 T	-100.532	-119.009	45.1509	21.000	359.2	21.0527	310551
52	-100.532	-119.809	46.2417	21.4245	358.8	21.4198	4491/8
53	-100.532	-119.809	49.3245	20.933	358.4	20.9253	567981
54	-100.532	-119.809	52.4072	20.382	358.1	20.3709	672925
55	-100.532	-119.809	55.49	19.7728	357.8	19.758	764
56	-100.532	-119.809	58.5728	19.107	357.5	19.0885	841209
57	-100.532	-119.809	61.6556	18.3862	357.2	18.364	904552
58	-100.532	-119.809	64.7383	17.6122	356.9	17.5863	954056
59	-100.532	-119.809	67.8211	16.7866	356.6	16.7574	989765
60	-100 532	-119 809	70 9039	15 9112	356 4	15 879	-1 01174
61	-100 533	_119 000	73 0067	1/ 0070	356 1	1/ 0521	_1 02002
6 C	100.552	110 000	77 0007	14 0100	22C 0	12 0010	1 01/02
62	-100.532	-110 000	11.0095	12 0042	300.0 255.0	10.0000	-1.014/3
63	-100.532	-119.809	80.1522	13.0043	355.6	12.966I	995931
64	-100.532	-119.809	83.235	11.9473	355.4	11.9084	963723
65	-100.532	-119.809	86.3178	10.8488	355.1	10.8099	918164

PAGE C-3

APPENDIX C – NIGHTTIME OPERATION KJR(AM) – SEATTLE, WASHINGTON

66	-100.532	-119.809	89.4006	9.70969	354.9	9.67159	859318
67	-100.532	-119.809	92.4833	8.53044	354.7	8.49405	787165
68	-100.532	-119.809	95.5661	7.31044	354.5	7.27669	701581
69	-100.532	-119.809	98.6489	6.04714	354.3	6.01708	602242
70	-100.532	-119.809	101.732	4.73483	354.1	4.70957	488407
71	-100.532	-119.809	104.814	3.35952	353.9	3.34035	358372
72	-100.532	-119.809	107.897	1.89151	353.7	1.87998	208514
END	-100.532	-119.809	110.98	0	0	0	0
GND	-201.064	-239.619	0	10.3428	44.5	7.37399	7.25244
74	-201.064	-239.619	3.02111	10.8202	43.6	7.83326	7.46436
75	-201.064	-239.619	6.04222	11.0745	43.1	8.08272	7.57064
76	-201.064	-239.619	9.06333	11.267	42.7	8.27725	7.64403
77	-201.064	-239.619	12.0844	11.4108	42.4	8.42984	7.69056
.78	-201.064	-239.619	15.1056	11.5131	42.1	8.54708	7.71354
.79	-201.064	-239.619	18.1267	11.5773	41.8	8.63243	7.71453
80	-201.064	-239.619	21.1478	11.6053	41.5	8.68772	7.69452
81	-201.064	-239.619	24.1689	11.5985	41.3	8.71424	7.65429
82	-201.064	-239.619	27.19	11.5582	41.1	8./1304	7.59432
83	-201.064	-239.619	30.2111	11.4848	40.9	8.68468	7.51513
84	-201.064	-239.619	33.2322	11.3/93	40.7	8.62988	7.41/12
85	-201.064	-239.619	36.2533	11.2422	40.5	8.54906	7.30073
86	-201.064	-239.619	39.2744	11.0743	40.3	8.44292	7.16631
87	-201.064	-239.619	42.2956	10.876	40.2	8.31182	7.01437
88	-201.064	-239.619	45.3167	10.6481	40.	8.15626	6.8453
89	-201.064	-239.619	40.33/0 E1 3E00	10.3914	39.9	7.9/68/	6 45764
90	-201.064	-239.619	51.3309	10.1004 0 70202	29.1	7.77421	6.45764
92	-201.004	-239.019	57 4011	9.79392	39.0	7 30109	6 00722
93	-201.064	-239 619	60 4222	9 08966	30 3	7.03186	5 75976
94	-201.004	-239 619	63 4433	8 69949	39.5	6 74174	5 49818
95	-201 064	-239 619	66 4645	8 28509	39 1	6 43136	5 22305
96	-201 064	-239 619	69 4856	7 84728	39	6 10136	4 9349
97	-201.064	-239.619	72.5067	7.38695	38.9	5.75242	4.63431
98	-201.064	-239.619	75.5278	6.9049	38.7	5.38515	4.32178
99	-201.064	-239.619	78.5489	6.40194	38.6	5.00021	3.99785
100	-201.064	-239.619	81.57	5.87879	38.5	4.59812	3.66297
101	-201.064	-239.619	84.5911	5.33604	38.4	4.17938	3.31754
102	-201.064	-239.619	87.6122	4.77412	38.3	3.7443	2.96184
103	-201.064	-239.619	90.6333	4.19315	38.2	3.29297	2.59594
104	-201.064	-239.619	93.6545	3.59274	38.2	2.82507	2.21963
105	-201.064	-239.619	96.6756	2.97163	38.1	2.33961	1.83216
106	-201.064	-239.619	99.6967	2.32682	38.	1.83421	1.43171
107	-201.064	-239.619	102.718	1.65137	37.9	1.30334	1.01406
108	-201.064	-239.619	105.739	.930623	37.8	.735398	.570307
END	-201.064	-239.619	108.76	0	0	0	0