Kathleen A. Kirby 202.719.3360 kkirby@wiley.law

Wiley Rein LLP 1776 K Street NW Washington, DC 20006

Tel: 202.719.7000

March 22, 2021

wiley.law

VIA e-mail submission to James Bradshaw and Nazifa Sawez

Marlene H. Dortch, Secretary Federal Communications Commission 45 L Street NE Washington, DC 20554

Re: Inspiration Media, Inc. – FRN 0001635275

Station KGNW(AM), Burien-Seattle, WA (Fac. ID 28819)

Application for Station License

Dear Ms. Dortch:

On behalf of Inspiration Media, Inc., licensee of AM station KGNW, Burien-Seattle, WA, we are submitting an application on FCC Form 302-AM for license.

The fee due for this application, \$1,560.00, has been paid, using the FCC Fee Filer system. A copy of Form 159 confirming the payment is included herewith.

Should there be any questions concerning this application, please contact the undersigned.

Respectfully submitted,

Kathleen A. Kirby

Remittance ID:3544405 Authorization Number:26RK5629 Successful Authorization -- Date Paid: 3/22/21 FILE COPY ONLY!!

READ INSTRUCTIONS	FEDERAL COMMUNIC	ALIONS COMMISSION	- 1	APPROVED BY OME
CAREFULLY BEFORE	REMITTAN	CE ADVICE		3060-05
PROCEEDING			SPECIAL	USE
	FORI	M 159		
(4) 1 0 0 (7 0) ((7	PAGE N	O 1 OF 1	FCC USE	ONLY
(1) LOCKBOX #979089			1 00 002	. 01421
	SECTION	A - Payer Information	-	
() ()	credit card, enter name exactly as it appears	s on your card)		UNT PAID (dollars and cents)
Inspiration Media, Inc			\$1560.00	
(4) STREET ADDRESS LINE				
4880 Santa Rosa Roa	ad			
(5) STREET ADDRESS LINE	NO. 2			
(6) CITY		(7) \$	TATE	(8) ZIP CODE
Camarillo		CA CA	TAIL	93012
	W 175 TO (110) LID NO ADEA CODE)		0005 (5105 1111	
P /	UMBER (INCLUDING AREA CODE)		CODE (IF NOT IN U.	S.A.)
805-3844502		US		
[FCC REGISTRATION NUMBER (FRN) A		BER (TIN) REQUIRE	D
(11) PAYER (FRN)		(12) FCC USE ONLY		
0001635275				
	IF PAYER NAME AND THE APPLICANT			
(40) APPLICANT MANE	IF MORE THAN ONE APPLICANT	USE CONTINUATION SHEETS	(FORM 159-C)	
(13) APPLICANT NAME	_			
Inspiration Media, Inc				
(14) STREET ADDRESS LINE	E NO. 1			
4880 Santa Rosa Roa	ad			
(15) STREET ADDRESS LINE	E NO. 2			
(16) CITY		(17)	STATE	(18) ZIP CODE
Camarillo		CA	01711L	93012
	UINDED (INCLUDING ADEA CODE)		CODE (IE NOT IN II	
r ,	NUMBER (INCLUDING AREA CODE)	US	CODE (IF NOT IN U.	S.A.)
805-3844502		L		
	FCC REGISTRATION NUMBER (FRN) A		BER (TIN) REQUIRE	D
(21) APPLICANT (FRN)		(22) FCC USE ONLY		
0001635275				
COMPI	LETE SECTION C FOR EACH SERVICE, I	F MORE BOXES ARE NEEDED,	USE CONTINUATIO	N SHEET
(23A) FCC Call Sign/Other ID		(24A) Payment Type Code(PTC)	(25A) Quantity
	KGNW	MN	IR	1
(26A) Fee Due for (PTC)		(27A) Total Fee		FCC Use Only
l , , ,	\$725.00	\$725	5.00	
(28A) FCC CODE 1	<u> </u>	(29A) FCC CODE 2		<u>'</u>
(20. 9. 00 0022 .	28819	(257.). 00 00222	Form302-AM	
<u> </u>	200.0	I	. CITIOUE AIM	
(23B) FCC Call Sign/Other ID		(24B) Payment Type Code((PTC)	(25B) Quantity
	KGNW	(24b) Fayinelic Type Code((200) Quantity
(26B) Fee Due for (PTC)	1.01111		/ 1\	FCC Use Only
(20D) Fee Due lor (PTC)	¢025.00	(27B) Total Fee	- 00	roc use Unity
	\$835.00	\$835	5.00	
(28B) FCC CODE 1		(29B) FCC CODE 2	_	
	28819		Form302-AM	

1 of 2 3/22/2021, 3:18 PM

Federal Communications Commission Washington, D. C. 20554

Approved by OMB 3060-0627 Expires 01/31/98

FCC 302-AM
APPLICATION FOR AM
BROADCAST STATION LICENSE

(Please read instructions before filling out form.

FOR FCC USE ONLY	
USE ONLY	

FOR COMMISSION USE ONLY

(Please read instructions before miling out form.	FILE NO.		
SECTION I - APPLICANT FEE INFORMATION			
PAYOR NAME (Last, First, Middle Initial)			
Inspiration Media, Inc.			
MAILING ADDRESS (Line 1) (Maximum 35 characters) 4880 SANTA ROSA ROAD			
MAILING ADDRESS (Line 2) (Maximum 35 characters)			
CITY CAMARILLO	STATE OR COUNTRY (if fo	reign address)	ZIP CODE 93012
TELEPHONE NUMBER (include area code) (805)987-0400	CALL LETTERS KGNW(AM)	OTHER FCC IDE 28819	NTIFIER (If applicable)
2. A. Is a fee submitted with this application?			✓ Yes No
B. If No, indicate reason for fee exemption (see 47 C.F.R. Section			
Governmental Entity Noncommercial educ	eational licensee O	ther (Please explain):
C. If Yes, provide the following information:			
Enter in Column (A) the correct Fee Type Code for the service you a Fee Filing Guide." Column (B) lists the Fee Multiple applicable for this			
r ee'r iinig Guide. Goldfiir (b) iists tre r ee wdrippe applicable for tris	s application. Enter lee amou	nt due in Column (C	·)·
(A) (B)	(C)		
FEE TYPE FEE MULTIPLE	FEE DUE FOR FEE		FOR FCC USE ONLY
M M R 0 0 0 1	\$ 725.00		
To be used only when you are requesting concurrent actions which res	sult in a requirement to list more	e than one Fee Tyn	ne Code
(A) (B)	(C)	e man one ree ryp	e code.
M O R 0 0 0 1	\$ 835.00		FOR FCC USE ONLY
	TOTAL AMOUNT		
ADD ALL AMOUNTS SHOWN IN COLUMN C, AND ENTER THE TOTAL HERE.	TOTAL AMOUNT REMITTED WITH TH APPLICATION	IS	FOR FCC USE ONLY
THIS AMOUNT SHOULD EQUAL YOUR ENCLOSED REMITTANCE.	\$ 1560.00		

SECTION II - APPLICAN 1. NAME OF APPLICANT Inspiration Media, Inc.	T INFORMATION					
MAILING ADDRESS 4880 SANTA ROSA ROAD						
CITY CAMARILLO			STATE CA		ZIP CODE 93012	
2. This application is for:	Commercial AM Direc	[tional	Noncomm	nercial on-Directional		
Call letters	Community of License	Construct	ion Permit File No.	Modification of Construction	Expiration Date of La	ast
KGNW	Burien-Seattle, WA	N/A		Permit File No(s). N/A	Construction Permit N/A	
3. Is the station no accordance with 47 C.F. If No, explain in an Exhil			, -	test authority in	Yes	No
4. Have all the terms construction permit beer If No, state exceptions in			et forth in the MML application		Yes Exhibit No.	No
5. Apart from the chang the grant of the underly	ges already reported, has ying construction permit d in the construction perm	s any ca which w	use or circumsta would result in a cation to be now	ance arisen since any statement or	Yes	No
-	ed its Ownership Report ce with 47 C.F.R. Section bit.			ership	✓ Poes not ap	No oply
or administrative body w criminal proceeding, bro	ing been made or an advivith respect to the application bught under the provision elated antitrust or unfainit; or discrimination?	ant or pa s of any	rties to the appli law relating to t	cation in a civil or he following: any	Yes 🔽	No
involved, including an id (by dates and file numbinformation has been required by 47 U.S.C. S of that previous submiss the call letters of the st	attach as an Exhibit a full dentification of the court of bers), and the disposition earlier disclosed in confection 1.65(c), the application by reference to the faction regarding which the of filing; and (ii) the disposi-	or adminition of the nnection ant need file number application	istrative body are litigation. Whe with another and only provide: () ber in the case ation or Section	nd the proceeding nere the requisite application or as identification of an application, 1.65 information	Exhibit No.	

8. Does the applicant, or any party to the application, have a petition on file to migrate to the expanded band (1605-1705 kHz) or a permit or license either in the existing band or expanded band that is held in combination (pursuant to the 5 year holding period allowed) with the AM facility proposed to be modified herein?	Yes	∨ No
If Yes, provide particulars as an Exhibit.	Exhibit No).

The APPLICANT hereby waives any claim to the use of any particular frequency or of the electromagnetic spectrum as against the regulatory power of the United States because use of the same, whether by license or otherwise, and requests and authorization in accordance with this application. (See Section 304 of the Communications Act of 1934, as amended).

The APPLICANT acknowledges that all the statements made in this application and attached exhibits are considered material representations and that all the exhibits are a material part hereof and are incorporated herein as set out in full in

CERTIFICATION

1. By checking Yes, the applicant certifies, that, in the case of an individual applicant, he or she is not subject to a denial of federal benefits that includes FCC benefits pursuant to Section 5301 of the Anti-Drug Abuse Act of 1988, 21 U.S.C. Section 862, or, in the case of a non-individual applicant (e.g., corporation, partnership or other unincorporated association), no party to the application is subject to a denial of federal benefits that includes FCC benefits pursuant to that section. For the definition of a "party" for these purposes, see 47 C.F.R. Section 1.2002(b).

~	Yes	N

2. I certify that the statements in this application are true, complete, and correct to the best of my knowledge and belief, and are made in good faith.

Name	Signature		
Christopher J. Henderson	Christopher Henderson		
Title EXECUTIVE VICE PRESIDENT & SECRETARY	Date 3/19/2021	Telephone Number (805)987-0400	

WILLFUL FALSE STATEMENTS ON THIS FORM ARE PUNISHABLE BY FINE AND/OR IMPRISONMENT (U.S. CODE, TITLE 18, SECTION 1001), AND/OR REVOCATION OF ANY STATION LICENSE OR CONSTRUCTION

FCC NOTICE TO INDIVIDUALS REQUIRED BY THE PRIVACY ACT AND THE PAPERWORK REDUCTION ACT

The solicitation of personal information requested in this application is authorized by the Communications Act of 1934, as amended. The Commission will use the information provided in this form to determine whether grant of the application is in the public interest. In reaching that determination, or for law enforcement purposes, it may become necessary to refer personal information contained in this form to another government agency. In addition, all information provided in this form will be available for public inspection. If information requested on the form is not provided, the application may be returned without action having been taken upon it or its processing may be delayed while a request is made to provide the missing information. Your response is required to obtain the requested authorization.

Public reporting burden for this collection of information is estimated to average 639 hours and 53 minutes per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the burden, can be sent to the Federal Communications Commission, Records Management Branch, Paperwork Reduction Project (3060-0627), Washington, D. C. 20554. Do NOT send completed forms to this address.

THE FOREGOING NOTICE IS REQUIRED BY THE PRIVACY ACT OF 1974, P.L. 93-579, DECEMBER 31, 1974, 5 U.S.C. 552a(e)(3), AND THE PAPERWORK REDUCTION ACT OF 1980, P.L. 96-511, DECEMBER 11, 1980, 44 U.S.C. 3507.

ENGINEERING EXHIBIT IN SUPPORT OF AN APPLICATION FOR STATION LICENSE STATION KGNW(AM) – BURIEN-SEATTLE, WASHINGTON 820 kHz – 50 kW DAY, 5.0 kW NIGHT, U, DA-2 Facility ID: 28819

Applicant: Inspiration Media, Inc.

March, 2021

TABLE OF CONTENTS

FCC Form 301 - Section III

ENGINEERING STATEMENT OF CARL T. JONES, JR., P.E.

	FIGURE NUMBER
Tower Model Height and Radius	1
Measured and Modeled Impedances	2
Antenna Monitor Parameters and Common Point Data	3
Sample Line Verification Measurements	4
Sample Device Verification Measurements	5
Reference Field Strength Measurements	6

APPENDICES

Appendix A Individual Tower Models

Appendix B

Daytime Directional Pattern Model

Appendix C Nighttime Directional Pattern Model

		LICATION ENGI	NEERING DAT	Α			
Name of Applicar Inspiration		c					
			(-				
PURPOSE OF A	UTHORIZATIO	ON APPLIED FOR	: (cneck one)				
✓ (Station License)	Direct Me	asurement of Po	ower		
1. Facilities author		•	I				
Call Sign		onstruction Permit	Frequency (kHz)	Hours of Ope	eration		kilowatts
KGNW	(if applicable))	820	Unlimited		Night 5.0	Day 50.0
2. Station location	n						
State				City or Town			
Washingt	on			Burien-S	Seattle		
3. Transmitter lo	cation						
State	County			City or Town		Street address	action)
WA	King			Vashon		(or other identificed 10426 Cemetar	•
4. Main studio lo	cation						<u>, </u>
State County City or Town Street address							
WA	King			Seattle		(or other identification) 705 5th Avenue South Suite 350	
Remote control point location (specify only if authorized directional antenna)							
State	County	ir (opoony only ir ac	atriorizou directio	City or Town		Street address	
WA	King			Seattle		(or other identification) 705 5th Avenue South Suite 350	
• • • • • • • • • • • • • • • • • • • •	9			Joanne		703 Stil Aveilde	Journ Julie 330
6. Has type-appr	oved stereo g	enerating equipme	nt been installed	?		Y	′es ✓ No
7 D #				0 # 70 000			res No
7. Does the sam	pling system n	neet the requireme	nts of 47 C.F.R.	Section 73.68?		T	esN
							Not Applicable
Attach as an Ex	chibit a detaile	d description of the	sampling syster	n as installed.			ibit No. ineering Sttmt
8. Operating con	stants:			DE		1.7	
modulation for nig	t or antenna ci ght system	urrent (in amperes)) without		point or antenna or day system	current (in ampere	s) without
		point resistance (ir	ohms) at			n point reactance	(in ohms) at
operating frequer Night	ncy	Day		operating free Night	quency	Day	
50.0		50.0		+j0.0)	+j0.	0
Antenna indicatio	ns for direction	nal operation		Jose		•	
		Antenna			nonitor sample	Antenna h	pase currents
Towe	ers	Phase reading	· · · · · · · · · · · · · · · · · · ·		nt ratio(s)		
1(W)		Night	-80.0	Night 0.547	0.517	Night	Day
2(C)		0.0	0.0	1.000	1.000		
3(E)		37.1	53.2	0.516	0.527		
Manufacturer and	type of anten	na monitor:	omaa laatuur -	nto Madal 4004	-3 Serial Numb	or 442	
1	-	POI	omac insitume	ms wodel 1901	-a aenariyumi	JEI 44.3	

SECTION III - Page 2

Description of antenr the array. Use separate	na system ((f directional anter sheets if necessary.)	nna is used, the	e information r	equested below sho	ould be give	en for each elem	ent of
Type Radiator	Type Radiator Overall height in meters of radiator above base insulator, or above base, if grounded. Overall height in meters of above grounded.		l (without	Overall height in mabove ground (inconstruction lighting	clude a)	If antenna is either top loaded or sectionalized, describe fully in an Exhibit.	
Uniform Cross-Section, guyed, steel tower	88.8	89	.3	89.9		Exhibit No.	
Excitation	✓ Series	Shunt					
Geographic coordinates tower location.	to nearest second. For direc	tional antenna	give coordinat	es of center of array	. For single	e vertical radiato	r give
North Latitude 47	o 26 '	00 "	West Longitu	de 122 ^o	28	02	"
-	ove, attach as an Exhibit furti ver and associated isolation c		dimensions ir	ncluding any other		Exhibit No. See Engineering sttmt.	
Also, if necessary for a complete description, attach as an Exhibit a sketch of the details and dimensions of ground system. Exhibit No. On File, No Change							
10. In what respect, if a permit?	ny, does the apparatus const	ructed differ fro	om that describ	oed in the application	n for constr	ruction permit or	in the
	e change in antenna or comm	on point resista	ance.				
N/A							
	the applicant in the capacity true to the best of my knowle			nave examined the	foregoing s	statement of tec	hnical
Name (Please Print or T	•• /		Signature (c	M(7.7-) h.		
Address (include ZIP Co			Date March 15	5, 2021			
7901 Yarnwood (Springfield, VA 2		-	Геlephone No. (703) 56	(Include Area Code 9-7704)		
Technical Director			 Registere	ed Professional Engi	neer		
Chief Operator			Technical	Consultant			
Other (specify)							

FCC 302-AM (Page 5) August 1995

ENGINEERING STATEMENT OF CARL T. JONES, JR., P.E. IN SUPPORT OF AN APPLICATION FOR STATION LICENSE STATION KGNW(AM) – BURIEN-SEATTLE, WASHINGTON 820 kHz – 50 kW DAY, 5.0 kW NIGHT, U, DA-2 Facility ID: 28819

Applicant: Inspiration Media, Inc.

I am a Consulting Engineer and president of the Carl T. Jones Corporation, with offices located in Springfield, Virginia. My education and experience are a matter of record with the Federal Communications Commission. I am a Registered Professional Engineer in the Commonwealth of Virginia, Registration No. 013391.

1.0 GENERAL

This office has been authorized by Inspiration Media, Inc. ("IMI"), licensee of AM Radio Station KGNW, to prepare this engineering statement and the associated figures and appendices in support of an Application for License. Station KGNW is licensed to operate on 820 kHz with a daytime power of 50 kW and nighttime power of 5.0 kW, using different directional patterns for its daytime and nighttime operations (DA-2). The station uses a three-tower inline array that is also shared with collocated and diplexed station KJR.

7901 Yarnwood Court Springfield, VA 22153-2899 tel: (703) 569-7704 : email: info@ctjc.com

fax: (703) 569-6417 www.ctjc.com

Page 2 of 10

Computer modeling and sample system verification techniques as described in

Section 47 CFR 73.151(c) of the FCC's Rules and Regulations were used to verify the

performance of the KGNW daytime and nighttime directional patterns. The specific

measurement and modeling techniques used in performing the proof of performance on

the KGNW directional patterns are described in detail in this engineering statement.

Impedance measurement data, sample system verification measurement data, model

derived operating parameters, and reference point field strength measurement data for

the KGNW daytime and nighttime directional patterns are tabulated in the figures

attached to this engineering statement. All pertinent computer model input and output

files are contained in the attached Appendices A, B and C.

2.0 IMPEDANCE MEASUREMENTS, COMPUTER MODELING AND SAMPLE

SYSTEM VERIFICATION

The KGNW antenna array consists of three, equal height, triangular, uniform

cross-section, base insulated, guyed towers. The face width of each tower is 18 inches.

The sampling system employs identical toroidal current transformers located at the

output of the series pass/reject diplex filter network at the base of each tower. A

detailed description of the impedance and sample system measurements and the

computer models employed is contained below.

7901 Yarnwood Court Springfield, VA 22153-2899 tel: (703) 569-7704

fax: (703) 569-6417

email: info@ctjc.com

2.1 INDIVIDUAL TOWER IMPEDANCE MEASUREMENTS

Impedance measurements were performed at the base of each tower, by the

undersigned, at the output J-Plug immediately adjacent to the sample system toroidal

current transformer. The J-Plug and sample current transformer are located at the

output of the series pass/reject diplex filter network at the base of each tower. The

impedance measurements were performed using a Hewlett-Packard Model 4396A

network analyzer; an ENI Model 240L power amplifier; and a Tunwall Radio directional

coupler. The base impedance of each tower was measured with the other two towers

open-circuited at the corresponding J-Plug location. The measured impedances are

tabulated in Figure 2.

A set of parallel capacitors are installed in series with the tower base between

the measurement location and the tower base, so that the reactance of these capacitors

is included in the impedance measurement for each tower. The capacitive reactance of

the parallel capacitor set at the base of each tower was measured separately so that the

reactance could be taken into account in the tower and circuit models. The equivalent

measured series capacitance for each tower is included in Figure 2.

2.2 INDIVIDUAL TOWER COMPUTER MODELS

A Method of Moments ("MoM") computer model was developed to model each

element in the antenna array using Expert MiniNEC Broadcast Professional (Version

23.0). A wire model was developed for each tower that is comprised of 36 segments.

7901 Yarnwood Court Springfield, VA 22153-2899 tel: (703) 569-7704

fax: (703) 569-6417

email: info@ctjc.com

STATEMENT OF CARL T. JONES, JR., P.E.

STATION KGNW(AM) - BURIEN-SEATTLE, WASHINGTON

Page 4 of 10

To replicate the individual measured base impedances to within the tolerance specified

in the FCC's Rules, each tower's physical height and the tower #1 radius was adjusted

in the MiniNEC model and shunt capacitance and the measured series capacitance was

employed in a separate circuit model. Details of the modeled individual tower adjusted

heights and radii are contained in Figure 1.

The values of the lumped shunt capacitance and the measured series

capacitance used in the circuit model are contained in Figure 2. The measured

individual tower impedances, the modeled individual tower impedances, and the

adjusted modeled (circuit model) individual tower impedances are also contained in

Figure 2. The percentage difference between the adjusted modeled tower heights and

radii and the actual physical tower heights and radii are all within the tolerances set forth

in the FCC's Rules. Further, the magnitude of the lumped shunt capacitances used in

the circuit models are also within the tolerances set forth in the FCC's Rules.

As demonstrated by the data contained in Figure 2, the adjusted modeled

individual tower resistance and reactance for each tower is well within ±2 ohms and ±4

percent tolerance of the corresponding measured individual tower resistance and

reactance. The text files containing all pertinent input and output data associated with

the individual tower models are contained in Appendix A.

7901 Yarnwood Court Springfield, VA 22153-2899 tel: (703) 569-7704

fax: (703) 569-6417

email: info@ctjc.com

2.3 DAYTIME AND NIGHTTIME DIRECTIONAL ANTENNA COMPUTER MODELS
AND ANTENNA MONITOR PARAMETERS

The KGNW daytime and nighttime directional antenna theoretical field parameters and the licensed tower spacings and orientations were used in combination with the adjusted individual tower models to produce the daytime and nighttime directional antenna computer models. From the directional computer models, tower currents were derived for each wire segment of each antenna. Each segment current was multiplied by the segment length and numerically integrated and normalized to the appropriate reference tower to verify that the modeled current moments are essentially identical to the authorized relative daytime and nighttime directional field parameters.

The new daytime and nighttime operating parameters were determined from the modeled base currents and are tabulated in Figure 3. The text files containing all pertinent input and output data associated with the KGNW daytime and nighttime directional antenna computer models are contained in Appendices B and C, respectively.

2.4 SAMPLE SYSTEM DESCRIPTION AND VERIFICATION MEASURMENTS

The KGNW antenna sampling system is comprised of: 1) Delta Electronics, Model TCT-1HV toroidal current transformers mounted in an identical manner at the output of the series pass 820 kHz/reject 950 kHz filter network at the base of each tower; 2) approximate equal lengths of Cablewave Systems, Type FCC 38-50J, 3/8-inch, foam dielectric, coaxial cable between the antenna monitor and the KGNW ATU

7901 Yarnwood Court Springfield, VA 22153-2899 email: info@ctjc.com

tel: (703) 569-7704 fax: (703) 569-6417

buildings and equal lengths (approximate 50 feet) of Andrew, Type LDF2-50A, 3/8-inch,

foam dielectric, coaxial extension cables between the end of the Type FCC 38-50 J

cable and the toroidal current transformers mounted within the filter enclosures; and 3)

a Potomac Instruments model 1901-3 antenna monitor. Each sample line between the

filter enclosure where the sample toroidal current transformer is located and the

transmitter building, including excess lengths, is buried; therefore, each sample line is

subjected to the same environmental conditions.

The electrical lengths of the sample system coaxial cables were verified to be

equal in length by measuring the open-circuit series resonant frequency closest to the

carrier frequency. The characteristic impedances of the sample coaxial cables were

verified by measuring the impedance at frequencies corresponding to odd multiples of

1/8 wavelength (45 degrees) immediately above and below the open circuit series

resonant frequency closest to the carrier frequency, while the line was open-circuited at

the sample element end of the line. The characteristic impedance was calculated using

the following formula:

$$Z = \sqrt{\sqrt{R_1^2 + X_1^2} \times \sqrt{R_2^2 + X_2^2}}$$

where: Z = Characteristic impedance and

 R_1 + X_1 and R_2 + X_2 are the measured impedances

at 45 degree offset frequencies.

7901 Yarnwood Court Springfield, VA 22153-2899 tel: (703) 569-7704

fax: (703) 569-6417

Page 7 of 10

A tabulation of the measured sample line lengths and characteristic impedances

is contained in Figure 4. All sample line verification measurements were performed by

the undersigned using a Hewlett-Packard Model 4396A network analyzer; an ENI Model

240L power amplifier; and a Tunwall Radio directional coupler. As demonstrated by the

measured values in Figure 4, the sample line lengths are well within 1 electrical degree

with respect to each other and the measured characteristic impedances are well within

2 Ohms with respect to each other, as required by Section CFR73.151(c)(2)(i) of the

FCC's Rules and Regulations.

An impedance measurement was performed at the input to each sample line, at

the antenna monitor end of the line, with the toroidal current transformer connected.

The measurement was performed at the KGNW operating frequency of 820 kHz. The

measured sample line impedances with the current transformers connected are

tabulated in Figure 4 under the heading, "Reference Impedance Sample Transformer

Connected".

The performance of the Delta Electronics Model TCT-1HV toroidal current

transformers was verified by driving a common reference current through all three

transformers and comparing the outputs as observed on the Hewlett-Packard Model

4396A network analyzer. Based on the test results, the performance of the three

current transformers is well within the manufacturer's stated accuracy. A tabulation of

the toroidal current transformer measurement data along with the serial number of each

current transformer is contained in Figure 5.

7901 Yarnwood Court Springfield, VA 22153-2899 tel: (703) 569-7704

fax: (703) 569-6417

email: info@ctjc.com

Page 8 of 10

The KGNW antenna monitor is a Potomac Instruments Model 1901-3, Serial

Number 443. The performance of the antenna monitor was verified, by the

undersigned, to be within the manufacture's stated accuracy. The verification was

performed by comparison of the measured relative daytime directional operating

parameters, as observed on the antenna monitor, with those measured using the

network analyzer when the daytime phasing and coupling system common point was

driven with the network analyzer swept source through a power amplifier.

3.0 DAYTIME AND NIGHTTIME COMMON POINT IMPEDANCE AND CURRENT

The networks associated with the daytime and nighttime directional antenna

systems were adjusted for proper impedance transformation and the daytime and

nighttime common point impedance matching networks were set for Z = 50 + j0.0

Ohms. The transmitter output power level was adjusted for a daytime common point

current of 32.45 amperes and a nighttime common point current of 10.4 amperes to

achieve a daytime input power of approximately 52,650 Watts and a nighttime input

power of approximately 5,400 Watts.

4.0 REFERENCE FIELD STRENGTH MEASUREMENTS

Reference field strength measurements were performed on five radials for both

the KGNW daytime directional pattern and the KGNW nighttime directional pattern. For

the KGNW daytime directional pattern, measurements were performed on the 8° and

252° radial bearings, corresponding to the daytime pattern main radiation lobes; and on

7901 Yarnwood Court Springfield, VA 22153-2899 tel: (703) 569-7704

fax: (703) 569-6417

email: info@ctjc.com

Page 9 of 10

the 82°, 178°, and 310° radial bearings, corresponding to the daytime directional pattern

minima. For the KGNW nighttime directional pattern, measurements were performed

on the 21° and 239° radial bearings, corresponding to the nighttime pattern main

radiation lobes; and on the 113°, 147°, and 310° radial bearings, corresponding to the

nighttime directional pattern minima. Three reference field strength measurements

were performed on each of the selected daytime and nighttime radial bearings.

The field strength measurements were performed by Mr. Monte Passmore, a

contract engineer working for the Carl T. Jones Corporation. Mr. Passmore is

experienced in performing field strength measurements on AM directional patterns.

Two field intensity meters were used to perform the measurements: Potomac

Instruments, Model PI-4100, Serial Number 0352, last calibrated by the manufacturer in

July, 2020; and Potomac Instruments, Model FIM-41, Serial Number 2185, last

calibrated by the manufacturer in January, 2021.

The measured field strength value for each established reference point location

is tabulated in Figure 6, Sheets 1 through 5. The tabulations contained in Figure 6 also

include for each reference location: GPS coordinates (NAD83), distance from the

KGNW antenna array center, and a description of the measurement location.

5.0 ANTENNAS MOUNTED ON TOWERS AND ISOLATION CIRCUITS

An STL parabolic dish antenna is side mounted near the top of Tower #2 (Center

Tower). A parallel resonant isolation circuit is used to allow the STL antenna

7901 Yarnwood Court Springfield, VA 22153-2899 tel: (703) 569-7704 fax: (703) 569-6417 email: info@ctjc.com

STATEMENT OF CARL T. JONES, JR., P.E.

STATION KGNW(AM) - BURIEN-SEATTLE, WASHINGTON

Page 10 of 10

transmission line to cross the base insulator without impacting the AM station operation.

Austin ring type transformers are used at the base of each tower to allow AC cables to

cross the base insulator to power the tower lights.

6.0 SUMMARY

It is submitted that the KGNW daytime and nighttime directional pattern

performance has been verified using computer modeling and sample system verification

procedures in accordance with Section 47 CFR 73.151(c) of the FCC's Rules and

Regulations. It is believed that the daytime and nighttime antenna systems, as

adjusted, fully comply with the terms of the station's FCC Authorization and all

applicable FCC Rules and Regulations. It is requested that a superseding license be

issued to IMI reflecting the new model derived directional operating parameters as

contained herein and on the attached FCC Form 302-AM.

This engineering statement and the attached figures and appendices were

prepared by the undersigned or under the direct supervision of the undersigned and the

information contained therein is believed to be true and correct.

Dated: March 15, 2021

tel: (703) 569-7704

fax: (703) 569-6417

email: info@ctjc.com

TOWER MODEL HEIGHT AND RADIUS

STATION KGNW - BURIEN - SEATTLE, WASHINGTON 820 kHz - 50 kW DAY, 5 kW NIGHT, U, DA-2 MARCH, 2021

Tower	Physical Height (degrees)	Modeled Height (degrees)	Percent of Physical Height	Tower Face Width (inches)	Equivalent Radius (meters)	Modeled Radius (meters)	Percent of Equivalent Radius
1	87.4	90.55	103.6	18.000	0.2183	0.3056	140.0
2	87.4	93.08	106.5	18.000	0.2183	0.2183	100.0
3	87.4	92.64	106.0	18.000	0.2183	0.2183	100.0

MEASURED AND MODELED IMPEDANCES

STATION KGNW - BURIEN - SEATTLE, WASHINGTON 820 kHz - 50 kW Day, 5 kW NIGHT, U, DA-2 MARCH, 2021

Tower	Measured Tower Base Impedance ¹	Modeled Tower Base Impedance	Shunt Capacitance (pF)	Modeled plus Shunt Reactance	Measured Series Capacitance (pF)	Lumped Series Inductance (uH)	Total Adjusted Tower Base Impedance
1	44.6 +j 6.7	42.7 +j 26.0	160.0	44.5 +j 25.0	10891.8	0.0	44.5 +j 7.2
2	46.4 +j 3.3	46.2 +j 42.9	15.0	46.5 +j 42.8	4898.8	0.0	46.5 +j 3.2
3	45.6 +j 15.7	45.5 +j 38.4	15.0	45.7 +j 38.3	8915.5	0.0	45.7 +j 16.6

¹ Measured at output of the series diplex filter (pass 820 kHz/reject 950 kHz) with other towers open-circuited

ANTENNA MONITOR PARAMETERS AND COMMON POINT DATA

STATION KGNW - BURIEN-SEATTLE, WASHINGTON 820 kHz - 50 kW DAY, 5.0 kW NIGHT, U, DA-2 MARCH, 2021

DAYTIME								
Tower	Ratio	Phase (deg)						
1	0.517	-80.0						
2	1.000	0.0						
3	0.527	53.2						

Common Point Impedance = 50 +j0.0 Ohms Common Point Current = 32.45 Amperes Antenna Input Power = 52,650 Watts

NIGHTTIME								
Tower Ratio Phase (deg)								
1	0.547	-44.4						
2	1.000	0.0						
3	0.516	37.1						

Common Point Impedance = 50 +j0.0 Ohms Common Point Current = 10.39 Amperes Antenna Input Power = 5,400 Watts

SAMPLE LINE VERIFICATION MEASUREMENTS

STATION KGNW - BURIEN-SEATTLE, WASHINGTON 820 kHz - 50 kW DAY, 5 kW NIGHT, U, DA-2 MARCH, 2021

Tower	Open Circuit Series Resonant Frequency ¹ (kHz)	Open Circuit Measured Line Length ² (degrees)	Resonant Frequency -45 degree Offset Frequency (kHz)	Resonant Frequency -45 degree Offset Impedance (Ohms)	Resonant Frequency +45 degree Offset Frequency (kHz)	Resonant Frequency +45 degree Offset Impedance (Ohms)	Calculated Characteristic Impedance (Ohms)	Reference Impedance Sample Toroid Connected ² (Ohms)
1	1064.2	208.04	886.83	5.09 -j 48.03	1241.57	7.59 +j 48.83	48.85	49.5 +j 0.3
2	1062.5	208.38	885.42	5.17 -j 48.31	1239.58	7.52 +j 48.53	48.85	49.4 +j 0.7
3	1063.1	208.26	885.90	5.11 -j 48.23	1240.26	5.14 +j 48.16	48.47	49.6 +j 0.7

¹ At this frequency, the sample line electrical length is equal to 270°.

² At carrier frequency (820 kHz)

SAMPLE DEVICE VERIFICATION MEASUREMENTS

STATION KGNW - BURIEN-SEATTLE, WASHINGTON 820 kHz - 50 kW DAY, 5.0 kW NIGHT, U, DA-2 MARCH, 2021

Reference	Measured	Measured		
Sample Toroid	Sample Toroid	Field	Phase	
Number	Number	Ratio	(degrees)	
2	1	0.998	0.10	
2	3	0.999	0.02	

Sample Toroid	T	Serial
Number	Туре	Number
1	Delta Electronics, TCT-1HV	731
2	Delta Electronics, TCT-1HV	730
3	Delta Electronics, TCT-1HV	818

STATION KGNW - BURIEN-SEATTLE, WASHINGTON 820 kHz - 50 kW-D, 5 kW-N, U, DA-2 MARCH, 2021

8 Degree Radial

		Daytime	Nighttime	Geographic	Coordinates	
Point	Distance	Field	Field	(NA	D83)	
Number	(km)	(mV/m)	(mV/m)	Latitude	Longitude	Description
1	1.63	1020		47° 26' 50.0"	122° 27' 59.2"	Location is at corner of Banks Road and 103rd Avenue SW on north side of Banks Road across from pole #317910.
2	2.45	978			122° 27' 44.1"	lot Vashon Highway
3	4.73	373		47° 28' 29.4"	122° 27' 36.0"	Location is on northeast corner of intersection of Vashon Highway and SW 145th Place at mailbox cluster.

		Daytime	Nighttime	Geographic	Coordinates	
Point	Distance	Field	Field	(NA	D83)	
Number	(km)	(mV/m)	(mV/m)	Latitude	Longitude	Description
1	1.74					Location is at northwest corner of Vashon Highway and Bank Road next to black postal box.
2	2.32					Location is at west end of sewage plant fence on south side of SW 171st Street 300 feet before road bend
3	4.33		136	47° 28' 08.9"	122° 26' 50.2"	Location is at the double green mailboxes at 8908 SW Van Olinda Road on the north side of road.

STATION KGNW - BURIEN-SEATTLE, WASHINGTON 820 kHz - 50 kW-D, 5 kW-N, U, DA-2 MARCH, 2021

82 Degree Radial

		Daytime	Nighttime	Geographic	Coordinates	
Point	Distance	Field	Field	(NA	D83)	
Number	(km)	(mV/m)	(mV/m)	Latitude	Longitude	Description
1	0.72	894		47° 26' 01.2"	122° 27' 37.0"	Location is at adress marker for 19021 Vashon Highway on west side of road, 500 feet north of Arco Road.
2	1.45	194		47° 26' 04.5"	122° 26' 59.2"	Location is at mailbox to 19009 Beall Road SW on east side of road.
3	1.73	168		47° 26' 07.4"	122° 26' 44.9"	Location is on the west side of Ridge Road 30 ft north of drive to #18911 Ridge Road across from telephone pole.

Point	Distance	•	Nighttime Field	<u> </u>	Coordinates	
Number	(km)	(mV/m)	(mV/m)	Latitude	Longitude	Description
1	1.13		11.1	47° 25' 44.9"	122° 27' 11.1"	Location is at red fire hydrant 100 feet east of entrance to McMurrey School on south side of Cemetary Road.
2	1.96		3.55	47° 25' 35.4"	122° 26' 40.5"	Location is at mailbox to 19903 87th Avenue SW across street from pole # 057152.
3	2.87		2.9	47° 25' 23.6"	122° 26′ 44.9″	Location is at the northeast corner of 78th Place SW and SW 202nd Place, 10 ft south of street sign.

STATION KGNW - BURIEN-SEATTLE, WASHINGTON 820 kHz - 50 kW-D, 5 kW-N, U, DA-2 MARCH, 2021

147 Degree Radial

		Daytime	Nighttime	Geographic	Coordinates	
Point	Distance	Field	Field	(NA	D83)	
Number	(km)	(mV/m)	(mV/m)	Latitude	Longitude	Description
1	1.87				122° 27' 16.5"	Ithe road
2	4.31					Location is at the street sign at the intersection of SW 228th Street and Kingsbury Road across street from pole # 3L5022.
3	5.68		9.5	47° 23' 25.9"	122° 25' 38.2"	Location is on the east side of Dockton Road opposite drive to #23829 Dockton Road.

		Daytime	Nighttime	Geographic	Coordinates	
Point	Distance	Field	Field	(NA	D83)	
Number	(km)	(mV/m)	(mV/m)	Latitude	Longitude	Description
1	0.97	296		47° 25' 01.9"	122° 28' 05.0"	Location is at pole #244061 on north side of SW 200th Street, 75 feet east of intersection with 105th Avenue.
2	2.41	58.7		47° 24' 01.4"	122° 28' 00.0"	Location is at mailbox to 22902 SW 228th Street at northwest corner of intersection with 104th Avenue SW.
3	4.67	44.1		47° 23' 21.3"	122° 28' 00.4"	Location is at 10320 Burton Drive at the southeast corner of the Fire Station #2 Building.

STATION KGNW - BURIEN-SEATTLE, WASHINGTON 820 kHz - 50 kW-D, 5 kW-N, U, DA-2 MARCH, 2021

239 Degree Radial

		Daytime	Nighttime	Geographic	Coordinates	
Point	Distance	Field	Field	(NA	D83)	
Number	(km)	(mV/m)	(mV/m)	Latitude	Longitude	Description
1	0.90					Location is at pole # 061710 on north side of SW Cemetary Road, 50 feet west of SW Singer Road.
2	2.99					Location is at address sign for 20708 Westside Highway, 90 feet south of SW 207th Lane.
3	3.75		72.4	47° 24' 56.5"	122° 30' 41.1"	Location is at pole # 116710 on SW Madrona Road 0.8 miles west of Westside Highway.

		Daytime	Nighttime	Geographic	Coordinates	
Point	Distance	Field	Field	(NAD83)		
Number	(km)	(mV/m)	(mV/m)	Latitude	Longitude	Description
1	1.05	2390		47° 25' 50.2"	122° 28' 55.4"	Location is at steel address marker to 19409 115th Avenue SW on west side of road.
2	1.45	934		47° 25' 45.1"	1122° 29° 21 6°	Location is at black mailbox to 12028 Cemetary Road on north side of road.
3	2.67	807		47° 25' 31.2"	11フンペスロー1フ・フェ	At electrical transformer # 315969 at SW corner of intersection of Westside Drive and Levi Langell Road.

STATION KGNW - BURIEN-SEATTLE, WASHINGTON 820 kHz - 50 kW-D, 5 kW-N, U, DA-2 MARCH, 2021

		Daytime	Nighttime	Geographic	Coordinates	
Point	Distance	Field	Field	(NAD83)		
Number	(km)	(mV/m)	(mV/m)	Latitude	Longitude	Description
1	2.09	563	127	47° 26′ 48.0″	122° 29' 23.0"	Location is in front of address sign for 17630 121st Avenue SW, 500 feet south of SW Bank Road.
2	2.41	360	78.4	47° 26' 49.0"	122° 29' 39.0"	Location is at white mailbox for 17630 SW Bank Road, across road from pole #253010.
3	3.62	187	43.5	47° 27' 13.9"	122° 30' 21.6"	Location is on the east side of Westside Highway opposite telephone pole #317002/158651.

APPENDIX A

Individual Tower Models

APPENDIX A - INDIVIDUAL TOWER MODEL KGNW(AM) - BURIEN - SEATTLE, WASHINGTON

IMPEDANCE -	- TOWER	#1
-------------	---------	----

normalization = 50.

freq resist react imped phase VSWR S11 S12 (MHz) (ohms) (ohms) (ohms) (deg) dB dB source = 1; node 1, sector 1 42.687 26.041 50.003 31.4 1.7814 -11.027 -.35709

GEOMETRY - TOWER #1

Wire coordinates in degrees; other dimensions in meters

Environment: perfect ground

wire	caps	Distance	Angle	Z	radius	segs
1	none	0	0	0	.3056	36
		0	0	90.55		
2	none	135.	130.	0	.2183	36
		135.	130.	93.08		
3	none	270.	130.	0	.2183	36
		270.	130.	92.64		

Number of wires = 3 current nodes = 108

minimum

maximum wire value 1 2.51528 2 .2183 Individual wires wire value segment length 2 2.58556 1 .3056 radius

ELECTRICAL DESCRIPTION - TOWER #1

Frequencies (MHz)

frequency no. of segment length (wavelengths) no. lowest step 1 .82 0 steps minimum maximum 1 .82 7.18E-03 6.99E-03 1

Sources

source node sector magnitude phase type 1 1 1. voltage

Lumped loads

		resistance	reactance	inductance	capacitance	passive
load	node	(ohms)	(ohms)	(mH)	(uF)	circuit
1	1	.1	0	0	0	0
2	37	.1	0	0	1.5E-05	0
3	73	.1	0	0	1.5E-05	0

APPENDIX A – INDIVIDUAL TOWER MODEL KGNW(AM) – BURIEN - SEATTLE, WASHINGTON

IMPEDANCE - TOWER #2

normalization = 50.

freq resist react imped phase VSWR S11 S12 (MHz) (ohms) (ohms) (ohms) (deg) dB dB

source = 1; node 37, sector 1

.82 46.21 42.86 63.027 42.8 2.3813 -7.7758 -.79295

GEOMETRY - TOWER #2

Wire coordinates in degrees; other dimensions in meters

Environment: perfect ground

wire	caps Distance	Angle	Z	radius	segs
1	none 0	0	0	.3056	36
	0	0	90.55		
2	none 135.	130.	0	.2183	36
	135.	130.	93.08		
3	none 270.	130.	0	.2183	36
	270.	130.	92.64		

Number of wires = 3 current nodes = 108

minimum maximum

Individual wires wire value wire value segment length 1 2.51528 2 2.58556 radius 2 .2183 1 .3056

ELECTRICAL DESCRIPTION - TOWER #2

Frequencies (MHz)

frequency no. of segment length (wavelengths) no. lowest step steps minimum maximum 1 .82 0 1 6.99E-03 7.18E-03

Sources

Lumped loads

		resistance	reactance	inductance	capacitance	passive
load	node	(ohms)	(ohms)	(mH)	(uF)	circuit
1	1	.1	0	0	1.6E-04	0
2	37	.1	0	0	0	0
3	73	.1	0	0	1.5E-05	0

PAGE A-3

APPENDIX A – INDIVIDUAL TOWER MODEL KGNW(AM) - BURIEN - SEATTLE, WASHINGTON

IMPEDANCE	-	TOWER	#3

normalization = 50.

freq resist react imped phase VSWR S11 S12 (MHz) (ohms) (ohms) (ohms) (deg) dB dB source = 1; node 73, sector 1

45.476 38.38 59.507 40.2 2.2029 -8.5064 -.66029

GEOMETRY - TOWER #3

Wire coordinates in degrees; other dimensions in meters

Environment: perfect ground

wire	caps Distance	Angle	Z	radius	segs
1	none 0	0	0	.3056	36
	0	0	90.55		
2	none 135.	130.	0	.2183	36
	135.	130.	93.08		
3	none 270.	130.	0	.2183	36
	270.	130.	92.64		

Number of wires = 3 current nodes = 108

> minimum maximum

wire value 1 2.51528 2 .2183 Individual wires wire value segment length 2 2.58556 1 .3056 radius

ELECTRICAL DESCRIPTION - TOWER #3

Frequencies (MHz)

frequency no. of segment length (wavelengths) no. lowest step 1 .82 0 steps minimum maximum 1 .82 6.99E-03 7.18E-03 1

Sources

source node sector magnitude phase type 73 1 1. voltage

Lumped loads

		resistance	reactance	inductance	capacitance	passive
load	node	(ohms)	(ohms)	(mH)	(uF)	circuit
1	1	.1	0	0	1.6E-04	0
2	37	.1	0	0	1.5E-05	0
3	73	.1	0	0	0	0

APPENDIX B

Daytime Directional Pattern Model

APPENDIX B – DAYTIME OPERATION KGNW(AM) – BURIEN - SEATTLE, WASHINGTON

		DAYTIME		ION				
		ation =			_			
freq			eact		phase	VSWR	S11	S12
				(ohms)	(deg)		dB	dB
		; node 1						
.82	94	.86 1	4.784	96.005	8.9	1.9602	-9.779	48284
		; node 3						
.82	45	.951 3	2.887	56.507	35.6	1.9703	-9.7177	49011
		; node 7						
.82	26	.947 7	.1003	27.867	14.8	1.9076	-10.113	44524
		DAYTIME						
					dimension	s in met	ers	
Envir	conment	: perfec	t groun	d				
wire	caps	Distance	. An	gle	Z	ra	dius	segs
1	none	0	0		0	.3	056	36
		0	0		90.55			
2	none			0.	0	. 2	183	36
		135.		0.	93.08			
3	none		13	0.	0	. 2	183	36
		270.	13	0.	92.64			
Numbe	er of w			3				
	C	urrent n	odes =	108				
				nimum			ximum	
	/idual		wire				value	
	ent len	gth	1	2.515		2	2.58556	5
radiu	ıs		2	.2183		1	.3056	
			'ION - D	AYTIME OP	ERATION			
Frequ		(MHz)			_	_		
	freque	_		no.		_	h (wavele	_
	lowest		tep	step			maximum	
1	.82	0		1	6.99E	-03	7.18E-0)3
Sourc								
	ce node		or mag		phase		type	
1	1	1		76.67	19.1		voltage	
2	37	1		08.9	130.1		voltage	
3	73	1	521	.455	162.6		voltage	
Lumpe	ed load							
		resist		reactand		uctance		nce passive
load	node	(ohms)		(ohms)	(mH)	(uF)	circuit
1	1	.1		0	0		0	0
2	37	.1		0	0		0	0
3	73	.1		0	0		0	0
		- DAYTI		ATION				
_	-	= .82 M						
		= 50,00		S				
	-	= 99.8						
		in degr	ees					
curre					mag	phase		imaginary
no.	X	Y		Z	(amps)	(deg)	_	(amps)
GND	0	0		0	13.0857		12.878	2.3224
2	0	0		2.51528			13.0257	1.86105
3	0	0		5.03056	13.1785	7.	13.0815	1.5956
3	U							

4	0	0	7.54583	13.1721	6.	13.101	1.3665
5	0	0	10.0611	13.1398	5.1	13.0883	1.16141
6	0	0	12.5764	13.0823	4.3	13.046	.973685
7	0	0	15.0917	12.9999	3.5	12.9753	.800069
8	0	0	17.607	12.8929	2.8	12.877	.63872
9	0	0	20.1222	12.7612	2.2	12.7519	.488487
10	0	0	22.6375	12.6053	1.6	12.6005	.348635
11	0	0	25.1528	12.4251	1.	12.4232	.218666
12	0	0	27.6681	12.221	. 5	12.2206	.0982404
13	0	0	30.1833	11.993	359.9	11.993	0128796
14	0	0	32.6986	11.7416	359.4	11.741	114863
15	0	0	35.2139	11.467	359.	11.4652	207832
16	0	0	37.7292	11.1697	358.5	11.1658	291876
17	0	0	40.2445	10.8498	358.1	10.8436	367064
18 19	0 0	0	42.7597 45.275	10.508 10.1446	357.6 357.2	10.499 10.1327	433448 491075
20	0	0	47.7903	9.76007	356.8	9.74513	539983
21	0	0	50.3056	9.35492	356.4	9.33691	580208
22	0	0	52.8208	8.9296	356.1	8.90862	611783
23	0	0	55.3361	8.48465	355.7	8.46088	634744
24	0	0	57.8514	8.02057	355.4	7.99426	649123
25	0	0	60.3667	7.53776	355.	7.50926	654952
26	0	0	62.882	7.03669	354.7	7.00639	652258
27	0	0	65.3972	6.51775	354.4	6.48614	641063
28	0	0	67.9125	5.98123	354.	5.94886	621378
29	0	0	70.4278	5.42728	353.7	5.39477	593194
30	0	0	72.9431	4.85586	353.4	4.82387	556471
31	0	0	75.4583	4.26657	353.1	4.23585	511119
32	0	0	77.9736	3.65851	352.8	3.62986	456961
33	0	0	80.4889	3.0298	352.5	3.00411	39367
34	0	0	83.0042	2.37678	352.2	2.35505	320629
35	0	0	85.5195	1.69159	352.	1.67497	23654
36	0	0	88.0347	.958938	351.7	.948823	138909
END	0	0	90.55	0	0	0	0
GND	-86.7763	-103.416	0	25.1386	94.5	-1.98534	25.0601
38	-86.7763	-103.416	2.58556	25.3937	93.7	-1.62357	25.3418
39 40	-86.7763 -86.7763	-103.416 -103.416	5.17111	25.5002 25.5374	93.1	-1.39687	25.4619 25.5092
41	-86.7763	-103.416	7.75667 10.3422	25.5374	92.7 92.3	-1.20038 -1.02314	25.4931
42	-86.7763	-103.416	12.9278	25.4327	91.9	860067	25.4181
43	-86.7763	-103.416	15.5133	25.2967	91.6	708648	25.2868
44	-86.7763	-103.416	18.0989	25.1071	91.3	567466	25.1007
45	-86.7763	-103.416	20.6844	24.865	91.	435645	24.8612
46	-86.7763	-103.416	23.27	24.5712	90.7	312631	24.5693
47	-86.7763		25.8556	24.2267		198065	
48	-86.7763	-103.416	28.4411	23.8323	90.2	0917032	
49	-86.7763	-103.416	31.0267	23.3887	90.	6.61E-03	23.3887
50	-86.7763	-103.416	33.6122	22.8969	89.8	.0969952	22.8967
51	-86.7763	-103.416	36.1978	22.3579	89.5	.179512	22.3572
52	-86.7763	-103.416	38.7833	21.7727	89.3	.254211	21.7712
53	-86.7763	-103.416	41.3689	21.1421	89.1	.321127	21.1397
54	-86.7763	-103.416	43.9544	20.4673	88.9	.38028	20.4638
55	-86.7763	-103.416	46.54	19.7494	88.7	.431689	19.7447
56	-86.7763	-103.416	49.1256	18.9896	88.6	.475367	18.9836
57	-86.7763	-103.416	51.7111	18.1889	88.4	.511329	18.1817
58	-86.7763	-103.416	54.2967	17.3486	88.2	.53959	17.3402
59	-86.7763	-103.416	56.8822	16.4698	88.1	.560165	16.4603
60	-86.7763	-103.416	59.4678	15.5539	87.9	.573073	15.5433
61 62	-86.7763	-103.416	62.0533	14.6018	87.7	.578332	14.5904
62 63	-86.7763 -86.7763	-103.416 -103.416	64.6389 67.2245	13.6148 12.5937	87.6 87.4	.575961 .565974	13.6026 12.581
64	-86.7763 -86.7763	-103.416 -103.416	69.81	12.5937	87.4	.548379	11.5264
65	-86.7763	-103.416	72.3956	10.4525	87.1	.52317	10.4394
0.5	55.7765	100.110	. 2 . 3 . 3 . 3	_0.1525	5,.1		

PAGE B-3

667 -86,7763 -103,416 77,5667 8,18115 86,8 .449752 8,16877 68 -86,7763 -103,416 80,1522 6,99496 86,7 .401338 6,98344 69 -86,7763 -103,416 82,7378 5,77162 86,6 .344815 5,76131 70 -86,7763 -103,416 87,9089 3,18146 86,3 .204919 3,17465 72 -86,7763 -103,416 87,9089 3,18146 86,3 .204919 3,17485 6ND -86,7763 -103,416 90,4945 1,7709 86,2 .118233 1,76695 6ND -173,553 -206,832 2,57333 13,2316 147,8 -11,1097 7,01307 76 -173,553 -206,832 1,72 13,1951 146,7 -11,0979 7,2137 76 -173,553 -206,832 12,884 146,5 -10,9435 7,253 78 -173,553 -206,832 12,884 12,9229 146,5 <th>66</th> <th>-86.7763</th> <th>-103.416</th> <th>74.9811</th> <th>9.33325</th> <th>87.</th> <th>.490317</th> <th>9.32037</th>	66	-86.7763	-103.416	74.9811	9.33325	87.	.490317	9.32037
669 -86.7763 -103.416 82.7378 5.77162 86.6 .344815 5.76131 70 -86.7763 -103.416 87.9089 3.18146 86.3 .204919 3.17485 72 -86.7763 -103.416 90.4945 1.7709 86.2 .118233 1.76695 END -86.7763 -103.416 90.4945 1.7709 86.2 .118233 1.76695 GND -173.553 -206.832 2.57333 13.2316 147.8 -11.1963 7.05104 74 -173.553 -206.832 2.57333 13.2361 147.8 -11.1963 7.05104 75 -173.553 -206.832 1.72 13.1951 146.7 -11.0979 7.21376 76 -173.553 -206.832 12.28667 13.038 146.7 -11.0294 7.24324 77 -173.553 -206.832 15.44 12.9229 146.7 -10.4324 7.21955 80 -173.553 -206.832 25.333 12.8	67	-86.7763	-103.416	77.5667	8.18115	86.8	.449752	8.16877
70 -86.7763 -103.416 85.3233 4.50495 86.4 .279687 4.49626 71 -86.7763 -103.416 87.9089 3.18146 86.3 .204919 3.17485 END -86.7763 -103.416 93.08 0 0 0 GND -173.553 -206.832 0 13.2316 147.8 -11.1963 7.05104 74 -173.553 -206.832 2.57333 13.2515 147.3 -111.15 7.16101 75 -173.553 -206.832 7.72 13.1951 146.7 -11.0979 7.21376 76 -173.553 -206.832 10.2933 13.1288 146.5 -10.9455 7.224324 77 -173.553 -206.832 15.44 12.9229 146.5 -10.9435 7.235 78 -173.553 -206.832 15.44 12.9229 146.5 -10.9435 7.235 78 -173.553 -206.832 18.0133 12.784 145.8 -10.578	68	-86.7763	-103.416	80.1522	6.99496	86.7	.401338	6.98344
71 -86.7763 -103.416 87.9089 3.18146 86.3 .204919 3.17485 END -86.7763 -103.416 93.08 0 0 0 0 GND -173.553 -206.832 2.57333 13.2316 147.8 -11.1963 7.05104 74 -173.553 -206.832 2.57333 13.2515 147.3 -11.15 7.16101 75 -173.553 -206.832 5.14667 13.2316 147. -11.0979 7.21376 76 -173.553 -206.832 10.2933 13.1288 146.5 -10.9435 7.253 78 -173.553 -206.832 15.44 12.9229 146. -10.7182 7.253 80 -173.553 -206.832 15.44 12.9229 146. -10.7182 7.27784 81 -173.553 -206.832 23.16 12.4358 145.8 -10.5787 7.17784 81 -173.553 -206.832 23.16 12.4358 145.3 <td>69</td> <td>-86.7763</td> <td>-103.416</td> <td>82.7378</td> <td>5.77162</td> <td>86.6</td> <td>.344815</td> <td>5.76131</td>	69	-86.7763	-103.416	82.7378	5.77162	86.6	.344815	5.76131
71 -86.7763 -103.416 87.9089 3.18146 86.3 .204919 3.17485 END -86.7763 -103.416 93.08 0 0 0 0 GND -173.553 -206.832 2.57333 13.2316 147.8 -11.1963 7.05104 74 -173.553 -206.832 2.57333 13.2515 147.3 -11.15 7.16101 75 -173.553 -206.832 5.14667 13.2316 147. -11.0979 7.21376 76 -173.553 -206.832 10.2933 13.1288 146.5 -10.9435 7.253 78 -173.553 -206.832 15.44 12.9229 146. -10.7182 7.253 80 -173.553 -206.832 15.44 12.9229 146. -10.7182 7.27784 81 -173.553 -206.832 23.16 12.4358 145.8 -10.5787 7.17784 81 -173.553 -206.832 23.16 12.4358 145.3 <td>70</td> <td>-86.7763</td> <td>-103.416</td> <td>85.3233</td> <td>4.50495</td> <td>86.4</td> <td>.279687</td> <td>4.49626</td>	70	-86.7763	-103.416	85.3233	4.50495	86.4	.279687	4.49626
END	71	-86.7763	-103.416	87.9089	3.18146	86.3	.204919	
GND -173.553 -206.832 0 13.2316 147.8 -11.1963 7.05104 74 -173.553 -206.832 2.57333 13.2515 147.3 -11.15 7.16101 75 -173.553 -206.832 5.14667 13.2364 147. -11.0979 7.21376 76 -173.553 -206.832 10.2933 13.1288 146.7 -11.0294 7.24324 77 -173.553 -206.832 12.8667 13.038 146.5 -10.9435 7.253 78 -173.553 -206.832 15.44 12.9229 146. -10.7182 7.21955 80 -173.553 -206.832 20.5867 12.6215 145.7 -10.4214 7.12014 81 -173.553 -206.832 23.16 12.4358 145.5 -10.2466 7.04665 83 -173.553 -206.832 23.16 12.4358 145.5 -10.0544 6.95779 84 -173.553 -206.832 33.4533 11.247 <td>72</td> <td>-86.7763</td> <td>-103.416</td> <td>90.4945</td> <td>1.7709</td> <td>86.2</td> <td>.118233</td> <td>1.76695</td>	72	-86.7763	-103.416	90.4945	1.7709	86.2	.118233	1.76695
74 -173.553 -206.832 2.57333 13.2515 147.3 -11.15 7.16101 75 -173.553 -206.832 5.14667 13.2364 147. -11.0979 7.21376 76 -173.553 -206.832 10.2933 13.1288 146.7 -11.0294 7.24324 77 -173.553 -206.832 12.8667 13.038 146.5 -10.9435 7.253 78 -173.553 -206.832 15.44 12.9229 146. -10.7182 7.21955 80 -173.553 -206.832 18.0133 12.784 145.8 -10.5787 7.17784 81 -173.553 -206.832 20.5867 12.6215 145.7 -10.4214 7.12014 82 -173.553 -206.832 23.16 12.4358 145.5 -10.2466 7.04665 83 -173.553 -206.832 28.3067 11.996 145.2 -9.84525 6.8538 85 -173.553 -206.832 36.0267 11.17	END	-86.7763	-103.416	93.08	0	0	0	0
75 -173.553 -206.832 5.14667 13.2364 147. -11.0294 7.24324 76 -173.553 -206.832 7.72 13.1951 146.7 -11.0294 7.24324 77 -173.553 -206.832 10.2933 13.1288 146.5 -10.9435 7.2448 79 -173.553 -206.832 15.44 12.9229 146. -10.7182 7.21955 80 -173.553 -206.832 18.0133 12.784 145.8 -10.7182 7.21955 81 -173.553 -206.832 20.5867 12.6215 145.7 -10.4214 7.12014 82 -173.553 -206.832 25.7333 12.2271 145.3 -10.0544 6.95779 84 -173.553 -206.832 28.3067 11.996 145.2 -9.84525 6.8538 85 -173.553 -206.832 33.4533 11.4677 144.9 -9.37694 6.60156 87 -173.553 -206.832 36.0267 11	GND	-173.553	-206.832	0	13.2316	147.8	-11.1963	7.05104
76 -173.553 -206.832 7.72 13.1951 146.7 -11.0294 7.24324 77 -173.553 -206.832 10.2933 13.1288 146.5 -10.9435 7.253 78 -173.553 -206.832 12.8667 13.038 146.2 -10.8398 7.2448 79 -173.553 -206.832 18.0133 12.784 145.8 -10.5787 7.17784 81 -173.553 -206.832 20.5867 12.6215 145.7 -10.4214 7.12014 82 -173.553 -206.832 23.16 12.4358 145.5 -10.4214 7.12014 83 -173.553 -206.832 28.3067 11.996 145.2 -9.84525 6.8538 85 -173.553 -206.832 28.3067 11.996 145.2 -9.84525 6.8538 85 -173.553 -206.832 33.4533 11.4677 144.9 -9.37694 6.60156 87 -173.553 -206.832 346.0267 11.1	74	-173.553	-206.832	2.57333	13.2515	147.3	-11.15	7.16101
77 -173.553 -206.832 10.2933 13.1288 146.5 -10.9435 7.253 78 -173.553 -206.832 12.8667 13.038 146.2 -10.8398 7.2448 79 -173.553 -206.832 15.44 12.9229 146. -10.7182 7.21955 80 -173.553 -206.832 20.5867 12.6215 145.7 -10.4214 7.12014 81 -173.553 -206.832 23.16 12.4358 145.5 -10.2466 7.04665 83 -173.553 -206.832 28.3067 11.996 145.2 -9.84525 6.8538 85 -173.553 -206.832 33.4533 11.4677 144.9 -9.37694 6.60156 87 -173.553 -206.832 38.6 10.8543 144.7 -9.11849 6.45386 88 -173.553 -206.832 38.6 10.8543 144.9 -9.37694 6.60156 87 -173.553 -206.832 41.1733 10.517 </td <td>75</td> <td>-173.553</td> <td>-206.832</td> <td>5.14667</td> <td>13.2364</td> <td>147.</td> <td>-11.0979</td> <td>7.21376</td>	75	-173.553	-206.832	5.14667	13.2364	147.	-11.0979	7.21376
78 -173.553 -206.832 12.8667 13.038 146.2 -10.8398 7.2448 79 -173.553 -206.832 15.44 12.9229 146. -10.7182 7.21955 80 -173.553 -206.832 18.0133 12.784 145.8 -10.5787 7.17784 81 -173.553 -206.832 20.5867 12.6215 145.7 -10.4214 7.12014 82 -173.553 -206.832 25.7333 12.2271 145.3 -10.0544 6.95779 84 -173.553 -206.832 28.3067 11.996 145.2 -9.84525 6.8538 85 -173.553 -206.832 30.88 11.7427 145. -9.61926 6.73497 86 -173.553 -206.832 36.0267 11.1714 144.7 -9.11849 6.45386 87 -173.553 -206.832 36.0267 11.1714 144.7 -9.11849 6.45386 88 -173.553 -206.832 41.733 10.	76	-173.553	-206.832	7.72	13.1951	146.7	-11.0294	7.24324
79 -173.553 -206.832 15.44 12.9229 146. -10.7182 7.21955 80 -173.553 -206.832 18.0133 12.784 145.8 -10.5787 7.17784 81 -173.553 -206.832 20.5867 12.6215 145.7 -10.4214 7.12014 82 -173.553 -206.832 25.7333 12.2271 145.3 -10.0544 6.95779 84 -173.553 -206.832 28.3067 11.996 145.2 -9.84525 6.8538 85 -173.553 -206.832 33.4533 11.4677 144.9 -9.37694 6.0156 87 -173.553 -206.832 36.0267 11.714 144.9 -9.37694 6.45386 88 -173.553 -206.832 38.6 10.8543 144.6 -8.84448 6.29215 89 -173.553 -206.832 41.1733 10.517 144.4 -8.55528 6.11673 90 -173.553 -206.832 43.7467 10.	77	-173.553	-206.832	10.2933	13.1288	146.5	-10.9435	7.253
80 -173.553 -206.832 18.0133 12.784 145.8 -10.5787 7.17784 81 -173.553 -206.832 20.5867 12.6215 145.7 -10.4214 7.12014 82 -173.553 -206.832 23.16 12.4358 145.5 -10.2466 7.04665 83 -173.553 -206.832 28.3067 11.996 145.2 -9.84525 6.8538 85 -173.553 -206.832 30.88 11.7427 145. -9.61926 6.73497 86 -173.553 -206.832 36.0267 11.1714 144.9 -9.37694 6.60156 87 -173.553 -206.832 38.6 10.8543 144.47 -9.11849 6.45386 88 -173.553 -206.832 43.7467 10.1599 144.3 -8.25122 5.92792 91 -173.553 -206.832 43.7467 10.1599 144.3 -8.25122 5.92792 91 -173.553 -206.832 48.8933 9	78	-173.553	-206.832	12.8667	13.038	146.2	-10.8398	7.2448
81 -173.553 -206.832 20.5867 12.6215 145.7 -10.4214 7.12014 82 -173.553 -206.832 23.16 12.4358 145.5 -10.2466 7.04665 83 -173.553 -206.832 25.7333 12.2271 145.3 -10.0544 6.95779 84 -173.553 -206.832 28.3067 11.996 145.2 -9.84525 6.8538 85 -173.553 -206.832 30.88 11.7427 145.5 -9.61926 6.73497 86 -173.553 -206.832 36.0267 11.1714 144.9 -9.37694 6.60156 87 -173.553 -206.832 36.0267 11.1714 144.7 -9.11849 6.45386 88 -173.553 -206.832 41.1733 10.517 144.4 -8.55528 6.11673 89 -173.553 -206.832 46.32 9.78355 144.2 -7.3288 5.72602 91 -173.553 -206.832 48.8933 9.38865 144.1 -7.60076 5.51137 93 -173.553	79	-173.553	-206.832	15.44	12.9229	146.	-10.7182	7.21955
82 -173.553 -206.832 23.16 12.4358 145.5 -10.2466 7.04665 83 -173.553 -206.832 25.7333 12.2271 145.3 -10.0544 6.95779 84 -173.553 -206.832 28.3067 11.996 145.2 -9.84525 6.8538 85 -173.553 -206.832 30.88 11.7427 145. -9.61926 6.73497 86 -173.553 -206.832 33.4533 11.4677 144.9 -9.37694 6.60156 87 -173.553 -206.832 36.0267 11.1714 144.7 -9.11849 6.45386 88 -173.553 -206.832 38.6 10.8543 144.6 -8.84448 6.29215 89 -173.553 -206.832 41.1733 10.517 144.4 -8.55528 6.11673 90 -173.553 -206.832 46.32 9.78355 144.2 -7.93288 5.72602 92 -173.553 -206.832 48.8933 9.38865 144.1 -7.60076 5.51137 93 -173.553	80	-173.553	-206.832	18.0133	12.784	145.8	-10.5787	7.17784
83 -173.553 -206.832 25.7333 12.2271 145.3 -10.0544 6.95779 84 -173.553 -206.832 28.3067 11.996 145.2 -9.84525 6.8538 85 -173.553 -206.832 30.88 11.7427 145.5 -9.61926 6.73497 86 -173.553 -206.832 33.4533 11.4677 144.9 -9.37694 6.60156 87 -173.553 -206.832 36.0267 11.1714 144.7 -9.11849 6.45386 88 -173.553 -206.832 41.1733 10.517 144.4 -8.55528 6.11673 90 -173.553 -206.832 43.7467 10.1599 144.3 -8.25122 5.92792 91 -173.553 -206.832 48.8933 9.38865 144.1 -7.60076 5.51137 92 -173.553 -206.832 51.4667 8.97567 143.9 -7.25526 5.2843 94 -173.553 -206.832 59.1867 <	81	-173.553	-206.832	20.5867	12.6215	145.7	-10.4214	7.12014
84 -173.553 -206.832 28.3067 11.996 145.2 -9.84525 6.8538 85 -173.553 -206.832 30.88 11.7427 145. -9.61926 6.73497 86 -173.553 -206.832 33.4533 11.4677 144.9 -9.37694 6.60156 87 -173.553 -206.832 36.0267 11.1714 144.7 -9.11849 6.45386 88 -173.553 -206.832 41.1733 10.517 144.4 -8.55528 6.11673 90 -173.553 -206.832 43.7467 10.1599 144.3 -8.25122 5.92792 91 -173.553 -206.832 46.32 9.78355 144.2 -7.93288 5.72602 92 -173.553 -206.832 48.8933 9.38865 144.1 -7.60076 5.51137 93 -173.553 -206.832 51.4667 8.97567 143.9 -7.25526 5.2843 94 -173.553 -206.832 59.1867	82	-173.553	-206.832	23.16	12.4358		-10.2466	7.04665
85 -173.553 -206.832 30.88 11.7427 145. -9.61926 6.73497 86 -173.553 -206.832 33.4533 11.4677 144.9 -9.37694 6.60156 87 -173.553 -206.832 36.0267 11.1714 144.7 -9.11849 6.45386 88 -173.553 -206.832 41.1733 10.517 144.4 -8.55528 6.11673 90 -173.553 -206.832 43.7467 10.1599 144.3 -8.25122 5.92792 91 -173.553 -206.832 48.8933 9.38865 144.1 -7.60076 5.51137 93 -173.553 -206.832 48.8933 9.38865 144.1 -7.60076 5.51137 93 -173.553 -206.832 51.4667 8.97567 143.9 -7.25526 5.2843 94 -173.553 -206.832 56.6133 8.09781 143.7 -6.52609 4.79424 96 -173.553 -206.832 59.1867	83	-173.553	-206.832	25.7333	12.2271	145.3	-10.0544	6.95779
86 -173.553 -206.832 33.4533 11.4677 144.9 -9.37694 6.60156 87 -173.553 -206.832 36.0267 11.1714 144.7 -9.11849 6.45386 88 -173.553 -206.832 38.6 10.8543 144.6 -8.84448 6.29215 89 -173.553 -206.832 41.1733 10.517 144.4 -8.55528 6.11673 90 -173.553 -206.832 43.7467 10.1599 144.3 -8.25122 5.92792 91 -173.553 -206.832 46.32 9.78355 144.2 -7.93288 5.72602 92 -173.553 -206.832 48.8933 9.38865 144.1 -7.60076 5.51137 93 -173.553 -206.832 54.04 8.54518 143.9 -7.25526 5.2843 94 -173.553 -206.832 54.04 8.54518 143.9 -7.25526 5.2843 94 -173.553 -206.832 59.1867 7.63414 143.7 -6.52609 4.79424 96 -173.553	84	-173.553	-206.832	28.3067	11.996	145.2	-9.84525	6.8538
87 -173.553 -206.832 36.0267 11.1714 144.7 -9.11849 6.45386 88 -173.553 -206.832 38.6 10.8543 144.6 -8.84448 6.29215 89 -173.553 -206.832 41.1733 10.517 144.4 -8.55528 6.11673 90 -173.553 -206.832 43.7467 10.1599 144.3 -8.25122 5.92792 91 -173.553 -206.832 46.32 9.78355 144.2 -7.93288 5.72602 92 -173.553 -206.832 48.8933 9.38865 144.1 -7.60076 5.51137 93 -173.553 -206.832 54.04 8.97567 143.9 -7.25526 5.2843 94 -173.553 -206.832 54.04 8.54518 143.8 -6.89685 5.04515 95 -173.553 -206.832 56.6133 8.09781 143.7 -6.52609 4.79424 96 -173.553 -206.832 59.1867 7.63414 143.5 -5.74935 4.25851 98 -173.553	85	-173.553	-206.832	30.88	11.7427	145.	-9.61926	6.73497
88 -173.553 -206.832 38.6 10.8543 144.6 -8.84448 6.29215 89 -173.553 -206.832 41.1733 10.517 144.4 -8.55528 6.11673 90 -173.553 -206.832 43.7467 10.1599 144.3 -8.25122 5.92792 91 -173.553 -206.832 46.32 9.78355 144.2 -7.93288 5.72602 92 -173.553 -206.832 48.8933 9.38865 144.1 -7.60076 5.51137 93 -173.553 -206.832 51.4667 8.97567 143.9 -7.25526 5.2843 94 -173.553 -206.832 56.6133 8.09781 143.7 -6.52609 4.79424 96 -173.553 -206.832 59.1867 7.63414 143.6 -6.14343 4.53192 97 -173.553 -206.832 61.76 7.15472 143.5 -5.74935 4.25851 98 -173.553 -206.832 66.9067 6.1507 143.3 -4.92864 3.67963 100 -173.553	86	-173.553	-206.832	33.4533	11.4677	144.9	-9.37694	
89 -173.553 -206.832 41.1733 10.517 144.4 -8.55528 6.11673 90 -173.553 -206.832 43.7467 10.1599 144.3 -8.25122 5.92792 91 -173.553 -206.832 46.32 9.78355 144.2 -7.93288 5.72602 92 -173.553 -206.832 48.8933 9.38865 144.1 -7.60076 5.51137 93 -173.553 -206.832 51.4667 8.97567 143.9 -7.25526 5.2843 94 -173.553 -206.832 54.04 8.54518 143.8 -6.89685 5.04515 95 -173.553 -206.832 59.1867 7.63414 143.7 -6.52609 4.79424 96 -173.553 -206.832 61.76 7.15472 143.5 -5.74935 4.25851 98 -173.553 -206.832 64.33333 6.66008 143.4 -5.34429 3.97433 99 -173.553 -206.832 69.48 5.62699 143.1 -4.50274 3.37466 101 -173.553	87	-173.553	-206.832	36.0267	11.1714	144.7	-9.11849	6.45386
90 -173.553 -206.832 43.7467 10.1599 144.3 -8.25122 5.92792 91 -173.553 -206.832 46.32 9.78355 144.2 -7.93288 5.72602 92 -173.553 -206.832 48.8933 9.38865 144.1 -7.60076 5.51137 93 -173.553 -206.832 51.4667 8.97567 143.9 -7.25526 5.2843 94 -173.553 -206.832 54.04 8.54518 143.8 -6.89685 5.04515 95 -173.553 -206.832 56.6133 8.09781 143.7 -6.52609 4.79424 96 -173.553 -206.832 59.1867 7.63414 143.6 -6.14343 4.53192 97 -173.553 -206.832 64.3333 6.66008 143.4 -5.34429 3.97433 99 -173.553 -206.832 69.48 5.62699 143.1 -4.50274 3.37466 101 -173.553 -206.832 72.0533 5.08921 143. -4.06684 3.05956 102 -173.553	88	-173.553	-206.832	38.6	10.8543	144.6	-8.84448	6.29215
91 -173.553 -206.832 46.32 9.78355 144.2 -7.93288 5.72602 92 -173.553 -206.832 48.8933 9.38865 144.1 -7.60076 5.51137 93 -173.553 -206.832 51.4667 8.97567 143.9 -7.25526 5.2843 94 -173.553 -206.832 54.04 8.54518 143.8 -6.89685 5.04515 95 -173.553 -206.832 56.6133 8.09781 143.7 -6.52609 4.79424 96 -173.553 -206.832 59.1867 7.63414 143.6 -6.14343 4.53192 97 -173.553 -206.832 61.76 7.15472 143.5 -5.74935 4.25851 98 -173.553 -206.832 66.9067 6.1507 143.3 -4.92864 3.67963 100 -173.553 -206.832 72.0533 5.08921 143.1 -4.50274 3.37466 101 -173.553 -206.832 74.6267 4.53747 142.9 -3.62103 2.73438 103 -173.553 <td></td> <td>-173.553</td> <td></td> <td></td> <td></td> <td></td> <td>-8.55528</td> <td>6.11673</td>		-173.553					-8.55528	6.11673
92 -173.553 -206.832 48.8933 9.38865 144.1 -7.60076 5.51137 93 -173.553 -206.832 51.4667 8.97567 143.9 -7.25526 5.2843 94 -173.553 -206.832 54.04 8.54518 143.8 -6.89685 5.04515 95 -173.553 -206.832 56.6133 8.09781 143.7 -6.52609 4.79424 96 -173.553 -206.832 59.1867 7.63414 143.6 -6.14343 4.53192 97 -173.553 -206.832 61.76 7.15472 143.5 -5.74935 4.25851 98 -173.553 -206.832 64.3333 6.66008 143.4 -5.34429 3.97433 99 -173.553 -206.832 69.48 5.62699 143.1 -4.50274 3.37466 101 -173.553 -206.832 72.0533 5.08921 143. -4.06684 3.05956 102 -173.553 -206.832 77.2 3.9716 142.8 -3.16518 2.399 104 -173.553		-173.553	-206.832	43.7467	10.1599	144.3	-8.25122	5.92792
93 -173.553 -206.832 51.4667 8.97567 143.9 -7.25526 5.2843 94 -173.553 -206.832 54.04 8.54518 143.8 -6.89685 5.04515 95 -173.553 -206.832 56.6133 8.09781 143.7 -6.52609 4.79424 96 -173.553 -206.832 59.1867 7.63414 143.6 -6.14343 4.53192 97 -173.553 -206.832 61.76 7.15472 143.5 -5.74935 4.25851 98 -173.553 -206.832 64.3333 6.66008 143.4 -5.34429 3.97433 99 -173.553 -206.832 69.48 5.62699 143.1 -4.50274 3.37466 101 -173.553 -206.832 72.0533 5.08921 143. -4.06684 3.05956 102 -173.553 -206.832 77.2 3.9716 142.8 -3.16518 2.399 104 -173.553 -206.832 79.7733 3.39094 142.7 -2.69882 2.05301 105 -173.553		-173.553	-206.832	46.32	9.78355	144.2	-7.93288	5.72602
94 -173.553 -206.832 54.04 8.54518 143.8 -6.89685 5.04515 95 -173.553 -206.832 56.6133 8.09781 143.7 -6.52609 4.79424 96 -173.553 -206.832 59.1867 7.63414 143.6 -6.14343 4.53192 97 -173.553 -206.832 61.76 7.15472 143.5 -5.74935 4.25851 98 -173.553 -206.832 64.3333 6.66008 143.4 -5.34429 3.97433 99 -173.553 -206.832 69.48 5.62699 143.1 -4.50274 3.37466 101 -173.553 -206.832 72.0533 5.08921 143. -4.06684 3.05956 102 -173.553 -206.832 74.6267 4.53747 142.9 -3.62103 2.73438 103 -173.553 -206.832 79.7733 3.39094 142.8 -3.16518 2.399 104 -173.553 -206.832 82.3467		-173.553		48.8933	9.38865		-7.60076	
95 -173.553 -206.832 56.6133 8.09781 143.7 -6.52609 4.79424 96 -173.553 -206.832 59.1867 7.63414 143.6 -6.14343 4.53192 97 -173.553 -206.832 61.76 7.15472 143.5 -5.74935 4.25851 98 -173.553 -206.832 64.3333 6.66008 143.4 -5.34429 3.97433 99 -173.553 -206.832 66.9067 6.1507 143.3 -4.92864 3.67963 100 -173.553 -206.832 72.0533 5.08921 143.1 -4.50274 3.37466 101 -173.553 -206.832 74.6267 4.53747 142.9 -3.62103 2.73438 103 -173.553 -206.832 79.7733 3.39094 142.8 -3.16518 2.399 104 -173.553 -206.832 82.3467 2.79403 142.6 -2.22079 1.69549 106 -173.553 -206.832 87.4933		-173.553			8.97567		-7.25526	5.2843
96 -173.553 -206.832 59.1867 7.63414 143.6 -6.14343 4.53192 97 -173.553 -206.832 61.76 7.15472 143.5 -5.74935 4.25851 98 -173.553 -206.832 64.3333 6.66008 143.4 -5.34429 3.97433 99 -173.553 -206.832 66.9067 6.1507 143.3 -4.92864 3.67963 100 -173.553 -206.832 69.48 5.62699 143.1 -4.50274 3.37466 101 -173.553 -206.832 72.0533 5.08921 143. -4.06684 3.05956 102 -173.553 -206.832 74.6267 4.53747 142.9 -3.62103 2.73438 103 -173.553 -206.832 79.7733 3.39094 142.8 -3.16518 2.399 104 -173.553 -206.832 82.3467 2.79403 142.6 -2.22079 1.69549 106 -173.553 -206.832 87.4933 1.53607 142.4 -1.21769 .936343 108 -173.553								
97 -173.553 -206.832 61.76 7.15472 143.5 -5.74935 4.25851 98 -173.553 -206.832 64.3333 6.66008 143.4 -5.34429 3.97433 99 -173.553 -206.832 66.9067 6.1507 143.3 -4.92864 3.67963 100 -173.553 -206.832 69.48 5.62699 143.1 -4.50274 3.37466 101 -173.553 -206.832 72.0533 5.08921 143. -4.06684 3.05956 102 -173.553 -206.832 74.6267 4.53747 142.9 -3.62103 2.73438 103 -173.553 -206.832 79.7733 3.9716 142.8 -3.16518 2.399 104 -173.553 -206.832 79.7733 3.39094 142.7 -2.69882 2.05301 105 -173.553 -206.832 84.92 2.1779 142.5 -1.72879 1.32459 107 -173.553 -206.832 87.4933 1.53607 142.4 -1.21769 .936343 108 -173.553 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-6.52609</td> <td></td>							-6.52609	
98 -173.553 -206.832 64.3333 6.66008 143.4 -5.34429 3.97433 99 -173.553 -206.832 66.9067 6.1507 143.3 -4.92864 3.67963 100 -173.553 -206.832 69.48 5.62699 143.1 -4.50274 3.37466 101 -173.553 -206.832 72.0533 5.08921 143. -4.06684 3.05956 102 -173.553 -206.832 74.6267 4.53747 142.9 -3.62103 2.73438 103 -173.553 -206.832 79.7733 3.39716 142.8 -3.16518 2.399 104 -173.553 -206.832 79.7733 3.39094 142.7 -2.69882 2.05301 105 -173.553 -206.832 82.3467 2.79403 142.6 -2.22079 1.69549 106 -173.553 -206.832 87.4933 1.53607 142.4 -1.21769 .936343 108 -173.553 -206.832 90.0667 .854008 142.3 676086 .521763		-173.553	-206.832		7.63414		-6.14343	4.53192
99 -173.553 -206.832 66.9067 6.1507 143.3 -4.92864 3.67963 100 -173.553 -206.832 69.48 5.62699 143.1 -4.50274 3.37466 101 -173.553 -206.832 72.0533 5.08921 143. -4.06684 3.05956 102 -173.553 -206.832 74.6267 4.53747 142.9 -3.62103 2.73438 103 -173.553 -206.832 77.2 3.9716 142.8 -3.16518 2.399 104 -173.553 -206.832 79.7733 3.39094 142.7 -2.69882 2.05301 105 -173.553 -206.832 82.3467 2.79403 142.6 -2.22079 1.69549 106 -173.553 -206.832 84.92 2.1779 142.5 -1.72879 1.32459 107 -173.553 -206.832 87.4933 1.53607 142.4 -1.21769 .936343 108 -173.553 -206.832 90.0667 .854008 142.3 676086 .521763								
100 -173.553 -206.832 69.48 5.62699 143.1 -4.50274 3.37466 101 -173.553 -206.832 72.0533 5.08921 143. -4.06684 3.05956 102 -173.553 -206.832 74.6267 4.53747 142.9 -3.62103 2.73438 103 -173.553 -206.832 77.2 3.9716 142.8 -3.16518 2.399 104 -173.553 -206.832 79.7733 3.39094 142.7 -2.69882 2.05301 105 -173.553 -206.832 82.3467 2.79403 142.6 -2.22079 1.69549 106 -173.553 -206.832 84.92 2.1779 142.5 -1.72879 1.32459 107 -173.553 -206.832 87.4933 1.53607 142.4 -1.21769 .936343 108 -173.553 -206.832 90.0667 .854008 142.3 676086 .521763								
101 -173.553 -206.832 72.0533 5.08921 143. -4.06684 3.05956 102 -173.553 -206.832 74.6267 4.53747 142.9 -3.62103 2.73438 103 -173.553 -206.832 77.2 3.9716 142.8 -3.16518 2.399 104 -173.553 -206.832 79.7733 3.39094 142.7 -2.69882 2.05301 105 -173.553 -206.832 82.3467 2.79403 142.6 -2.22079 1.69549 106 -173.553 -206.832 84.92 2.1779 142.5 -1.72879 1.32459 107 -173.553 -206.832 87.4933 1.53607 142.4 -1.21769 .936343 108 -173.553 -206.832 90.0667 .854008 142.3 676086 .521763								
102 -173.553 -206.832 74.6267 4.53747 142.9 -3.62103 2.73438 103 -173.553 -206.832 77.2 3.9716 142.8 -3.16518 2.399 104 -173.553 -206.832 79.7733 3.39094 142.7 -2.69882 2.05301 105 -173.553 -206.832 82.3467 2.79403 142.6 -2.22079 1.69549 106 -173.553 -206.832 84.92 2.1779 142.5 -1.72879 1.32459 107 -173.553 -206.832 87.4933 1.53607 142.4 -1.21769 .936343 108 -173.553 -206.832 90.0667 .854008 142.3 676086 .521763								
103 -173.553 -206.832 77.2 3.9716 142.8 -3.16518 2.399 104 -173.553 -206.832 79.7733 3.39094 142.7 -2.69882 2.05301 105 -173.553 -206.832 82.3467 2.79403 142.6 -2.22079 1.69549 106 -173.553 -206.832 84.92 2.1779 142.5 -1.72879 1.32459 107 -173.553 -206.832 87.4933 1.53607 142.4 -1.21769 .936343 108 -173.553 -206.832 90.0667 .854008 142.3 676086 .521763								
104 -173.553 -206.832 79.7733 3.39094 142.7 -2.69882 2.05301 105 -173.553 -206.832 82.3467 2.79403 142.6 -2.22079 1.69549 106 -173.553 -206.832 84.92 2.1779 142.5 -1.72879 1.32459 107 -173.553 -206.832 87.4933 1.53607 142.4 -1.21769 .936343 108 -173.553 -206.832 90.0667 .854008 142.3 676086 .521763								
105 -173.553 -206.832 82.3467 2.79403 142.6 -2.22079 1.69549 106 -173.553 -206.832 84.92 2.1779 142.5 -1.72879 1.32459 107 -173.553 -206.832 87.4933 1.53607 142.4 -1.21769 .936343 108 -173.553 -206.832 90.0667 .854008 142.3 676086 .521763								
106 -173.553 -206.832 84.92 2.1779 142.5 -1.72879 1.32459 107 -173.553 -206.832 87.4933 1.53607 142.4 -1.21769 .936343 108 -173.553 -206.832 90.0667 .854008 142.3 676086 .521763								
107 -173.553 -206.832 87.4933 1.53607 142.4 -1.21769 .936343 108 -173.553 -206.832 90.0667 .854008 142.3 676086 .521763								
108 -173.553 -206.832 90.0667 .854008 142.3676086 .521763								
END -173.553 -206.832 92.64 0 0 0								
	END	-173.553	-206.832	92.64	0	U	U	U

APPENDIX C

Nighttime Directional Pattern Model

APPENDIX C – NIGHTTIME OPERATION KGNW(AM) – BURIEN - SEATTLE, WASHINGTON

	ANCE -		TIME OPER = 50.	ATION				
freq (MHz)	(0	hms)	react (ohms) 1, secto	imped (ohms) r 1	phase (deg)	VSWR	S11 dB	S12 dB
.82			-10.674		351.7	1.5157	-13.766	18642
source.82		; node .778	37, sect 22.921	or 1 52.992	25.6	1.595	-12.792	23456
source.82		; node .145	73, sect 9.3174		17.7	1.8036	-10.854	37229
Wire	coordi	nates :	IME OPERA in degree ect groun	s; other o	dimension	s in met	ers	
wire 1	caps :	Distan	ce An 0	gle	Z 0		dius 056	segs 36
		0	0		90.55			
2	none	135. 135.		0. 0.	0 93.08	. 2	183	36
3	none	270. 270.		0. 0.	0 92.64	. 2	183	36
Numbe	er of w		nodes =	3 108				
				nimum -			ximum	
	ridual ent len		wire 1	value 2.5152	28	wire 2	value 2.58556	
radiu		5 -	2	.2183		1	.3056	
			PTION - N	IGHTTIME (PERATION			
Frequ	lencies freque			no. o	of segme	nt lengt	h (wavele	ngths)
	lowest.82		step O	steps 1	minim 6.99E		maximum 7.18E-0	
Sourc								
sourc	e node 1	se	ctor mag 454	nitude .564	phase 359.9		type voltage	
2	37	1	604	.593	81.4		voltage	
3	73	1	179	.851	110.7		voltage	
Lumpe	ed load							
load	node	(ohm	stance s)	reactance (ohms)	(mH	uctance)	(uF)	nce passive circuit
1 2	1 37	.1 .1		0	0		0	0 0
3	73	.1		0	0		0	0
Frequ Input Effic	lency	= .82 = 5,0 = 99.	00. watts 8 %					
curre			v	7	mag	phase		imaginary
no. GND	X 0		Y 0	Z 0	(amps) 4.36081	_	(amps) 4.31568	(amps) .625721
2	0		0	2.51528	4.34071	6.6	4.31171	.500869
3	0		0	5.03056	4.32165	5.7	4.3003	.429061

APPENDIX C – NIGHTTIME OPERATION KGNW(AM) – BURIEN - SEATTLE, WASHINGTON

4	0	0	7 54502	4 20700	4 0	4 20120	267110
4	0	0	7.54583	4.29709	4.9	4.28138	.367119
5	0	0	10.0611	4.26638	4.2	4.25498	.3117
6	0	0	12.5764	4.22921	3.5	4.22115	.261004
7	0	0	15.0917	4.18542	2.9	4.17994	.214154
8	0	0	17.607	4.13492	2.4	4.1314	.170643
9	0	0	20.1222	4.0777	1.8	4.07562	.130163
10	0	0	22.6375	4.01376	1.3	4.01269	.0925114
11	0	0	25.1528	3.94312	. 8	3.9427	.0575531
12	0	0	27.6681	3.86586	. 4	3.86578	.0251934
13	0	0	30.1833	3.78203	359.9	3.78203	-4.63E-03
14	0	0	32.6986	3.69172	359.5	3.69158	0319773
15	0	0	35.2139	3.59503	359.1	3.59458	0568718
16	0	0	37.7292	3.49208	358.7	3.49118	0793444
17	0	0	40.2445	3.38298	358.3	3.38152	099417
18	0	0	42.7597	3.26788	357.9	3.26578	117107
19	0	0	45.275	3.1469	357.6	3.14411	132428
20	0	0	47.7903	3.02019	357.2	3.01669	145396
21	0	0	50.3056	2.88792	356.9	2.88371	156023
22	0	0	52.8208	2.75023	356.6	2.74532	164323
23	0	0	55.3361	2.60729	356.3	2.60172	170308
24	0	0	57.8514	2.45924	355.9	2.45308	173991
25	0	0	60.3667	2.30623	355.6	2.29955	175384
26	0	0	62.882	2.14841	355.3	2.14131	1745
27	0	0	65.3972	1.98588	355.1	1.97847	17135
28	0	0	67.9125	1.81874	354.8	1.81115	165939
29	0	0	70.4278	1.64705	354.5	1.63943	158271
30	0	0	72.9431	1.47078	354.2	1.46328	148341
31	0	0	75.4583	1.28984	353.9	1.28263	13613
32	0	0	77.9736	1.10394	353.7	1.09722	121596
33	0	0	80.4889	.912539	353.4	.906517	10466
34	0	0	83.0042	.714554	353.2	.709461	0851632
35	0	0	85.5195	.507632	352.9	.503737	0627689
36	0	0	88.0347	.287237	352.6	.284866	0368248
END	0	0	90.55	0	0	0	0
GND	-86.7763	-103.416	0	8.06751	55.8	4.53664	6.6711
38	-86.7763	-103.416	2.58556	8.12277	54.9	4.67281	6.64412
39	-86.7763	-103.416	5.17111	8.14068	54.3	4.74694	6.61341
40	-86.7763	-103.416	7.75667	8.13889	53.9	4.79989	6.57286
41	-86.7763	-103.416	10.3422	8.11923	53.4	4.83598	6.52189
42	-86.7763	-103.416	12.9278	8.08257	53.1	4.85725	6.46027
43	-86.7763		15.5133		52.7	4.86473	6.38793
		-103.416		8.0294			
44	-86.7763	-103.416	18.0989	7.96006	52.4	4.85907	6.30491
45	-86.7763	-103.416	20.6844	7.87481	52.1	4.84072	6.21128
46	-86.7763	-103.416	23.27	7.7739	51.8	4.81001	6.10716
47	-86.7763	-103.416	25.8556	7.65756	51.5	4.76721	5.99266
48	-86.7763	-103.416	28.4411	7.52605	51.2	4.71257	5.86798
49	-86.7763	-103.416	31.0267	7.37962	51.	4.6463	5.7333
50	-86.7763	-103.416	33.6122	7.21853	50.7	4.56862	5.58882
51	-86.7763	-103.416	36.1978	7.04307	50.5		
						4.47975	5.43476
52	-86.7763	-103.416	38.7833	6.85353	50.3	4.3799	5.27137
53	-86.7763	-103.416	41.3689	6.65024	50.1	4.2693	5.0989
54	-86.7763	-103.416	43.9544	6.43352	49.9	4.14817	4.91761
55	-86.7763	-103.416	46.54	6.20372	49.6	4.01674	4.72778
56	-86.7763	-103.416	49.1256	5.96118	49.5	3.87525	4.52969
57	-86.7763	-103.416	51.7111	5.70628	49.3	3.72395	4.32364
58	-86.7763	-103.416	54.2967	5.43938	49.1	3.56307	4.10991
59	-86.7763	-103.416	56.8822	5.16086	48.9	3.39288	3.88881
60	-86.7763	-103.416	59.4678	4.87109	48.7	3.21361	3.66063
61	-86.7763	-103.416	62.0533	4.57041	48.5	3.02551	3.42563
62	-86.7763	-103.416	64.6389	4.25918	48.4	2.8288	3.1841
63	-86.7763	-103.416	67.2245	3.9377	48.2	2.62369	2.93628
64	-86.7763	-103.416	69.81	3.60622	48.1	2.41034	2.68237
65	-86.7763	-103.416	72.3956	3.26493	47.9	2.18889	2.42251

PAGE C-3

66	-86.7763	-103.416	74.9811	2.9139	47.7	1.95936	2.15678
67	-86.7763	-103.416	77.5667	2.55299	47.6	1.72168	1.8851
68	-86.7763	-103.416	80.1522	2.18181	47.4	1.47556	1.60718
69	-86.7763	-103.416	82.7378	1.79941	47.3	1.22035	1.32236
70	-86.7763	-103.416	85.3233	1.40386	47.2	.954706	1.02925
71	-86.7763	-103.416	87.9089	.990982	47.	.67576	.72484
72	-86.7763	-103.416	90.4945	.551363	46.9	.377009	.402325
END	-86.7763	-103.416	93.08	0	0	0	0
GND	-173.553	-206.832	0	4.15621	93.	217888	4.15049
74 75	-173.553	-206.832	2.57333	4.16556	92.5	178418	4.16174
	-173.553	-206.832	5.14667	4.16274	92.1	153692	4.15991
76 77	-173.553	-206.832	7.72	4.15147	91.8	132246	4.14936
7 <i>7</i> 78	-173.553 -173.553	-206.832 -206.832	10.2933 12.8667	4.13214 4.10497	91.6 91.3	112884 0950542	4.1306
76 79							
79 80	-173.553 -173.553	-206.832 -206.832	15.44 18.0133	4.07008 4.0276	91.1 90.9	078481 0630107	4.06933
81	-173.553 -173.553	-206.832	20.5867	3.97762	90.9	0485489	
82	-173.553 -173.553	-206.832	23.16	3.97762	90.7	0350359	
83	-173.553	-206.832	25.7333	3.85558	90.3	0224333	
84	-173.553	-206.832	28.3067	3.78375	90.3	0224333	3.78373
85	-173.553	-206.832	30.88	3.70487	90.2	1.32E-04	3.70487
86	-173.553	-206.832	33.4533	3.61908	89.8	.0101222	3.61906
87	-173.553	-206.832	36.0267	3.5265	89.7	.0101222	3.52645
88	-173.553	-206.832	38.6	3.42731	89.5	.0275481	3.4272
89	-173.553	-206.832	41.1733	3.32165	89.4	.0349897	3.32147
90	-173.553	-206.832	43.7467	3.20969	89.3	.041585	3.20942
91	-173.553	-206.832	46.32	3.0916	89.1	.0473338	3.09123
92	-173.553	-206.832	48.8933	2.96754	89.	.0522358	2.96708
93	-173.553	-206.832	51.4667	2.83772	88.9	.0562905	2.83716
94	-173.553	-206.832	54.04	2.7023	88.7	.0594973	2.70164
95	-173.553	-206.832	56.6133	2.56146	88.6	.0618562	2.56071
96	-173.553	-206.832	59.1867	2.41539	88.5	.0633667	2.41456
97	-173.553	-206.832	61.76	2.26427	88.4	.0640288	2.26336
98	-173.553	-206.832	64.3333	2.10825	88.3	.0638425	2.10728
99	-173.553	-206.832	66.9067	1.94749	88.2	.0628071	1.94648
100	-173.553	-206.832	69.48	1.78212	88.	.0609214	1.78107
101	-173.553	-206.832	72.0533	1.6122	87.9	.0581826	1.61115
102	-173.553	-206.832	74.6267	1.43778	87.8	.0545853	1.43674
103	-173.553	-206.832	77.2	1.25879	87.7	.0501198	1.25779
104	-173.553	-206.832	79.7733	1.07503	87.6	.0447687	1.07409
105	-173.553	-206.832	82.3467	.886014	87.5	.0385009	.885177
106	-173.553	-206.832	84.92	.690816	87.4	.031259	.690108
107	-173.553	-206.832	87.4933	.487361	87.3	.0229251	.486821
108	-173.553	-206.832	90.0667	.271031	87.2	.0132417	.270708
END	-173.553	-206.832	92.64	0	0	0	0