Smithwick & Belendiuk, P.C.

5028 WISCONSIN AVENUE, N.W.

SUITE 301

WASHINGTON, D.C. 20016

TELEPHONE (202) 363-4050

FACSIMILE (202) 363-4266

GARY S. SMITHWICK ARTHUR V. BELENDIUK

DIRECT DIAL NUMBER: (202) 350-9656 E-MAIL ADDRESS: <u>mdenbo@fccworld.com</u> COUNSEL

MARK B. DENBO M. SCOTT JOHNSON

March 19, 2021

FILED BY E-MAIL PURSUANT TO

Public Notice, Audio Division Announces Procedures Related to Coronavirus, DA 20-266, rel. March 13, 2020, addressed to Mr. James Bradshaw, Senior Deputy Chief (james.bradshaw@fcc.gov); and Nazifa Sawez, Esq. (nazifa.sawez@fcc.gov)

Ms. Marlene H. Dortch, Secretary Federal Communications Commission 9050 Junction Drive Annapolis Junction, MD 20701

Re: Pax Catholic Communications, Inc. Application for License to Cover Construction Permit (BP-198901019AB) WACC(AM), Hialeah, Florida (Facility ID No. 28874)

Dear Ms. Dortch:

Transmitted herewith, by the undersigned counsel to noncommercial educational licensee Pax Catholic Communications, Inc., is an application filed on FCC Form 302-AM for a license to cover construction permit File No. BP-19890109AB. Because Pax Catholic Communications, Inc. is a non-commercial educational licensee, no filing fee is required to accompany this application.

Please direct any questions regarding this matter to the undersigned.

B. Denbo

Counsel to Pax Catholic Communications, Inc.

cc: Joseph Szczesny/FCC

Approved by OMB 3060-0627 Expires 01/31/98

FOR FCC USE ONLY

FCC 302-AM APPLICATION FOR AM BROADCAST STATION LICENSE

(Please read instructions before filling out form.

FOR COMMISSION USE ONLY

FILE NO.

SECTION I - APPLICANT FEE INFORMATION			
1. PAYOR NAME (Last, First, Middle Initial)			
MAILING ADDRESS (Line 1) (Maximum 35 characters)			
MAILING ADDRESS (Line 2) (Maximum 35 characters)			
CITY	STATE OR COUNTRY (if fo	reign address)	ZIP CODE
TELEPHONE NUMBER (include area code)	CALL LETTERS	OTHER FCC IDEI	NTIFIER (If applicable)
 2. A. Is a fee submitted with this application? B. If No, indicate reason for fee exemption (see 47 C.F.R. Section Governmental Entity Noncommercial educ C. If Yes, provide the following information: Enter in Column (A) the correct Fee Type Code for the service you Fee Filing Guide." Column (B) lists the Fee Multiple applicable for th 	cational licensee C		in the "Mass Media Services
(A) (B) FEE TYPE FEE MULTIPLE CODE 0 0 1	(C) FEE DUE FOR FE TYPE CODE IN COLUMN (A)		FOR FCC USE ONLY
To be used only when you are requesting concurrent actions which re	sult in a requirement to list mo	re than one Fee Typ	e Code.
(A) (B) (B) (D) (D) (D) (D) (1)	(C)		FOR FCC USE ONLY
ADD ALL AMOUNTS SHOWN IN COLUMN C, AND ENTER THE TOTAL HERE. THIS AMOUNT SHOULD EQUAL YOUR ENCLOSED REMITTANCE.	TOTAL AMOUNT REMITTED WITH TH APPLICATION		FOR FCC USE ONLY

SECTION II - APPLICANT	INFORMATION					
1. NAME OF APPLICANT						
MAILING ADDRESS						
CITY			STATE		ZIP CODE	
2. This application is for:		,	,			
	Commercial		Noncomm	nercial		
	AM Direct	ional	L AM N	on-Directional		
Call letters	Community of License	Construct	ion Permit File No.	Modification of Construction	Expiration Date of La	ast
	,			Permit File No(s).	Construction Permit	
2 la tha station no			motio program	test sutherity in	Yes	No
	w operating pursuant t	to auto	matic program	test authority in		NO
accordance with 47 C.F.F	R. Section 73.1620?				Exhibit No	
					Exhibit No.	
If No, explain in an Exhib	lt.					
	, conditions, and obliga	ations s	et forth in the	above described	Yes	No
construction permit been	fully met?					
					Exhibit No.	
If No, state exceptions in	an Exhibit.					
5. Apart from the change	es already reported, has	s any ca	use or circumsta	ance arisen since	Yes	No
the grant of the underly	ring construction permit	which v	would result in a	any statement or		No
representation contained	in the construction perm	nit applic	ation to be now	incorrect?		
•	·	•••			Exhibit No.	
If Yes, explain in an Exhi	ibit.					
					Yes	Na
6. Has the permittee file	d its Ownership Report (FCC Fo	orm 323) or owne	ership	les	No
certification in accordance				•		
					Does not ap	vlac
						-1-1
If No, explain in an Exhib	iit .				Exhibit No.	
7. Has an adverse findir	a been made or an adv	oreo fin	al action been to	ken by any court	Yes	No
	-					
or administrative body wi						
criminal proceeding, brou						
felony; mass media rel		compe	etition; traudulei	nt statements to		
another governmental un	it; or discrimination?					
If the answer is Yes, at	tach as an Exhibit a ful	l disclo	sure of the pers	sons and matters	Exhibit No.	
involved, including an ide	entification of the court of	r admini	istrative body an	nd the proceeding		
(by dates and file numb	ers), and the disposition	n of the	litigation. Wh	nere the requisite		
information has been e	, , , , , , , , , , , , , , , , , , , ,		-	•		

required by 47 U.S.C. Section 1.65(c), the applicant need only provide: (i) an identification of that previous submission by reference to the file number in the case of an application, the call letters of the station regarding which the application or Section 1.65 information was filed, and the date of filing; and (ii) the disposition of the previously reported matter.

8. Does the applicant, or any party to the application, have a petition on file to migrate to the expanded band (1605-1705 kHz) or a permit or license either in the existing band or expanded band that is held in combination (pursuant to the 5 year holding period allowed) with the AM facility proposed to be modified herein?

If Yes, provide particulars as an Exhibit.

The APPLICANT hereby waives any claim to the use of any particular frequency or of the electromagnetic spectrum as against the regulatory power of the United States because use of the same, whether by license or otherwise, and requests and authorization in accordance with this application. (See Section 304 of the Communications Act of 1934, as amended).

The APPLICANT acknowledges that all the statements made in this application and attached exhibits are considered material representations and that all the exhibits are a material part hereof and are incorporated herein as set out in full in

CERTIFICATION

1. By checking Yes, the applicant certifies, that, in the case of an individual applicant, he or she is not subject to a denial of federal benefits that includes FCC benefits pursuant to Section 5301 of the Anti-Drug Abuse Act of 1988, 21 U.S.C. Section 862, or, in the case of a non-individual applicant (e.g., corporation, partnership or other unincorporated association), no party to the application is subject to a denial of federal benefits that includes FCC benefits pursuant to that section. For the definition of a "party" for these purposes, see 47 C.F.R. Section 1.2002(b).

2. I certify that the statements in this application are true, complete, and correct to the best of my knowledge and belief, and are made in good faith.

Name	Signature
Msgr. Roberto Garza	Man. Forte Gran
Title Director	Date Telephone Number 3 19 2021 305-638-9729

WILLFUL FALSE STATEMENTS ON THIS FORM ARE PUNISHABLE BY FINE AND/OR IMPRISONMENT (U.S. CODE, TITLE 18, SECTION 1001), AND/OR REVOCATION OF ANY STATION LICENSE OR CONSTRUCTION

FCC NOTICE TO INDIVIDUALS REQUIRED BY THE PRIVACY ACT AND THE PAPERWORK REDUCTION ACT

The solicitation of personal information requested in this application is authorized by the Communications Act of 1934, as amended. The Commission will use the information provided in this form to determine whether grant of the application is in the public interest. In reaching that determination, or for law enforcement purposes, it may become necessary to refer personal information contained in this form to another government agency. In addition, all information provided in this form will be available for public inspection. If information requested on the form is not provided, the application may be returned without action having been taken upon it or its processing may be delayed while a request is made to provide the missing information. Your response is required to obtain the requested authorization.

Public reporting burden for this collection of information is estimated to average 639 hours and 53 minutes per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the burden, can be sent to the Federal Communications Commission, Records Management Branch, Paperwork Reduction Project (3060-0627), Washington, D. C. 20554. Do NOT send completed forms to this address.

THE FOREGOING NOTICE IS REQUIRED BY THE PRIVACY ACT OF 1974, P.L. 93-579, DECEMBER 31, 1974, 5 U.S.C. 552a(e)(3), AND THE PAPERWORK REDUCTION ACT OF 1980, P.L. 96-511, DECEMBER 11, 1980, 44 U.S.C. 3507.

Yes	√	No

Exhibit No	

\checkmark	Yes		No
--------------	-----	--	----

... -

SECTION III -	LICENSE APPLICATION ENGI	NEERING DATA		
Name of Applic				
PURPOSE OF	AUTHORIZATION APPLIED FOR	: (check one)		
	Station License	Direct Mea	surement of Power	
1. Facilities aut	thorized in construction permit			
Call Sign	File No. of Construction Permit	Frequency	Hours of Operation	Power in kilowatts
Ŭ	(if applicable)	(kHz)		Night Day
2. Station locat	lion			
State			City or Town	
3. Transmitter	location			
State	County		City or Town	Street address (or other identification)
4. Main studio	location			
State	County		City or Town	Street address (or other identification)
5. Remote con	trol point location (specify only if a	uthorized direction	al antenna)	
State	County		City or Town	Street address (or other identification)
	proved stereo generating equipme			Yes No Yes No Not Applicable
Attach as an I	Exhibit a detailed description of the	e sampling system	as installed.	Exhibit No.
8. Operating co			1	
RF common po modulation for r	int or antenna current (in amperes night system) without	RF common point or ante modulation for day syster	enna current (in amperes) without m
Measured anter operating freque Night	nna or common point resistance (ii ency Day	n ohms) at	Measured antenna or cor operating frequency Night	mmon point reactance (in ohms) at Day

Antenna indications for dire Towers	Antenna	Antenna monitor Phase reading(s) in degrees				
	Night	Day	Night	Day	Night	Day
Manufacturer and type of a	ntenna monitor:					

SECTION III - Page 2

9. Description of antenna system ((f directional antenna is used, the information requested below should be given for each element of the array. Use separate sheets if necessary.)

Type Radiator	insulator, or above base, if	Overall height in meters above ground (without obstruction lighting)	Overall height in meters above ground (include obstruction lighting)	If antenna is either top loaded or sectionalized, describe fully in an Exhibit.	
Guyed Tower	grounded. 73.34 (#1/#2) 79.26 (#3/#4)	74.1 (#1/#2) 80.2 (#3/#4)	75.0 (#1/#2) 81.1 (#3/#4)	Exhibit No.	

Excitation

Series

Shunt

Geographic coordinates to nearest second. For directional antenna give coordinates of center of array. For single vertical radiator give tower location.

North Latitude 25	0	46	ı	22	"	West Longitude 80	0	25	,	16	"
L						La constante que constante de la constante de					

If not fully described above, attach as an Exhibit further details and dimensions including any other antenna mounted on tower and associated isolation circuits. Exhibit No. ENG. Exhibit No.

Also, if necessary for a complete description, attach as an Exhibit a sketch of the details and dimensions of ground system.

10. In what respect, if any, does the apparatus constructed differ from that described in the application for construction permit or in the permit?

	None
	I WILL HARDON AND AND THE TABLE SHOP AND ADDRESS AN
11. Gi	ve reasons for the change in antenna or common point resistance.
	New Construction

I certify that I represent the applicant in the capacity indicated below and that I have examined the foregoing statement of technical information and that it is true to the best of my knowledge and belief.

Name (Please Print or Type) Charles Keiler	Signature theck appropriate box below)
Address (include ZIP Code) 6711 NW 26 Way	Date 3 15 2021
Fort Lauderdale, FL 33309	Telephone No. (Include Area Code) 954-804-4860
Technical Director	Registered Professional Engineer
Chief Operator	Technical Consultant
Other (specify)	

ENGINEERING STATEMENT CONCERNING

APPLICATION FOR LICENSE INFORMATION EMPLOYING MOMENT METHOD MODELING

WACC, 830 KHZ, DA-2 HIALEAH, FLORIDA

FEBRUARY, 2021

ENGINEERING STATEMENT CONCERNING APPLICATION FOR LICENSE INFORMATION EMPLOYING MOMENT METHOD MODELING WACC, 830 KHZ, DA-2 HIALEAH, FLORIDA FEBRUARY. 2021

TABLE OF CONTENTS

302-AM

ENGINEERING STATEMENT

FIGURE 1:	ANTENNA SYSTEM AS ADJUSTED
FIGURE 2:	SAMPLING SYSTEM DESCRIPTION/MEASUREMENTS
FIGURE 3:	TOWER IMPEDANCE MEASUREMENTS VS. MODELED
FIGURE 4:	MOMENT MODEL PARAMETERS
FIGURE 5:	MOMENT MODEL SUMMARY FOR INDIVIDUAL TOWERS
FIGURE 6:	MOMENT MODEL ARRAY SYNTHESIS (DIRECTIONAL DAY)
FIGURE 7:	MOMENT MODEL SUMMARY FOR DIRECTIONAL DAY MODE
FIGURE 8:	MOMENT MODEL ARRAY SYNTHESIS (DIRECTIONAL – NIGHT)
FIGURE 9:	MOMENT MODEL SUMMARY FOR DIRECTIONAL NIGHT MODE
FIGURE 10:	DERIVED DIRECTIONAL PARAMETERS
FIGURE 11:	TOWER BASE CIRCUIT ANALYSIS DESCRIPTION
FIGURE 12:	CIRCUIT ANALYSIS FOR INDIVIDUAL TOWERS
FIGURE 13:	CIRCUIT ANALYSIS FOR DIRECTIONAL DAY MODE
FIGURE 14:	CIRCUIT ANALYSIS FOR DIRECTIONAL NIGHT MODE
FIGURE 15	REFERENCE FIELD INTENSITY MEASUREMENTS
FIGURE 16:	CERTIFIED ARRAY GEOMETRY SURVEY
FIGURE 17:	SPURIOUS RADIATION MEASUREMENTS

ENGINEERING STATEMENT CONCERNING APPLICATION FOR LICENSE INFORMATION EMPLOYING MOMENT METHOD MODELING WACC, 830 KHZ, DA-2 HIALEAH, FLORIDA FEBRUARY. 2021

SUMMARY

Adjustment of the Antenna System and a Proof of Performance employing Moment Method Modeling was performed on Radio Station WACC, 830 KHz, Hialeah, Florida, after modification of Antenna Phasing equipment and Sampling Lines. WACC holds Construction Permit Number: BP-19890109AB to change the Day directional pattern. This report was prepared on behalf of PAX CATHOLIC COMMUNICATIONS, INC., licensee of Radio Station WACC.

SITE MODIFICATIONS

The WACC Transmitter site is that as currently licensed for both Radio Stations WACC, 830 KHz and WSUA, 1260 kHz. Sampling Line jumpers have been installed on the WACC lines to make them equal electrical lengths, and Antenna Phasing and Branching equipment has been modified. All Towers remain unchanged. A License Application employing Moment Method Modeling as set forth in Section 73.151(C) has been done to cover the Radio Station WACC Construction Permit and license under the new rules.

REFERENCE POINTS

Reference Points were measured at pattern minima and maxima for the Directional modes of operation. These Points and their measured field intensity are shown in Figure 15.

SPURIOUS EMISSIONS

Due to the common usage of the Transmitter site by both Radio Stations WACC, 1280 KHz and WSUA, 1260 KHz, filtering is installed at all Towers to prevent interaction and spurious radiation products. No changes have been made to the existing filtering topology. Figure 17 shows measurement of any spurious radiation products. All filter circuits are located on the matching network side of the Sampling TCT's for both stations. The "reject" 830 kHz Filters (located in the WSUA equipment) measure greater than 50,000 ohms, and are not included in the circuit model.

ENGINEERING STATEMENT CONCERNING APPLICATION FOR LICENSE INFORMATION EMPLOYING MOMENT METHOD MODELING WACC, 830 KHZ, DA-2 HIALEAH, FLORIDA FEBRUARY. 2021

ADDITIONAL TOWERS CO-LOCATED ON THE SITE

Located on the WACC/WSUA transmitter site property is a tall tower utilized for TV, STL, and various other communications. This tower is centered between towers 1 and 2, and in line with them. The tower stands 164.9 M. above ground with aviation obstruction lighting. It is uniform cross section, guyed, and grounded at the base. The tower has detuning skirts and circuits to detune at both 830 kHz and 1260 kHz and is not included in the WACC model. The ASRN for the tower is: 1030081.

In addition, there are two (2) other towers located on the WACC/WSUA transmitter site property that are used only for WSUA, 1260 kHz. These towers are identical in height to towers 1 and 2, and are located to the East and West of towers 1 and 2. The ASRN's for these towers are: 1030077 and 1030080. These towers were included in the measured/modeled open circuit impedance matrix to verify any influence on the model and are numbered as tower 5 (East) and tower 6 (West) in the model. Both of these towers are detuned for 830 kHz, and are not included in the calculations for the directional modes.

METHOD OF MOMENTS DETAIL

All Moment Method Modeling was done with Expert MININEC Broadcast Professional, Version 23. One wire was used to represent each Tower. Towers were driven individually to verify the Model compared to measured impedance data. Once the Model was verified, both the Day and Night Directional Antenna Systems were computed. For Directional modes, the complex voltage values for sources located at ground level were computed. These sources produce current moment sums for each Tower that, when normalized, equate to the Theoretical Field Parameters for each respective Tower.

ENGINEERING STATEMENT CONCERNING APPLICATION FOR LICENSE INFORMATION EMPLOYING MOMENT METHOD MODELING WACC, 830 KHZ, DA-2 HIALEAH, FLORIDA FEBRUARY. 2021

MEASURING EQUIPMENT AND PERSONNEL

All Tower Resistance and Reactance measurements were made with a HP 8753ES Network analyzer with a Tunwall directional coupler and a Delta Electronics OIB-3 Operating Impedance Bridge. Before use, tests of known impedances were made to verify operation. All Field Intensity Measurements were made with a Potomac Instruments Field Intensity Meter, model PI 4100, Serial Number 249, calibrated on January 21, 2016. The meter was calibrated by Potomac Instruments, Frederick, Maryland. The meter was compared to a Potomac Instruments PI 4100, Serial Number 134, calibrated on June 19, 2019, and agreed. All measurements were taken by Phasetek Inc. personnel supervised by Kurt Gorman of Phasetek Inc.

CONCLUSION

It is believed that the WACC Antenna System has been constructed and adjusted in accordance with all applicable Commission rules and regulations. The foregoing was prepared on behalf of PAX CATHOLIC COMMUNICATIONS, INC., under the immediate supervision of Kurt Gorman, Phasetek Inc., Quakertown, Pennsylvania, whose qualifications are a matter of record with the Federal Communications Commission. The statements herein are true and correct of his knowledge, except such statements made on information and belief, and as to these statements he believes them to be true and correct.

Kurt Gorman, President Phasetek Inc. Quakertown, Pennsylvania

FIGURE 1

ANTENNA SYSTEM AS ADJUSTED

APPLICATION FOR LICENSE INFORMATION EMPLOYING MOMENT METHOD MODELING WACC, 830 KHZ, DA-2 HIALEAH, FLORIDA FEBRUARY. 2021

ANTENNA SYSTEM DESCRIPTION

- 1. The Antenna System consists of four (4) uniform, guyed, vertical steel transmitting Towers. Towers 1 and 2 stand 73.34M (73.1°) above their Base Insulators. Towers 3 and 4 stand 79.26M (79.0°) above their Base Insulators. The Towers are arranged with Tower 1 as a reference; Tower 2 is spaced 118.7° on a bearing of 253.0°T. Tower 3 is spaced 105.0° on a bearing of 222.0°T. Tower 4 is spaced 64.0° on a bearing of 149.0°T. All Towers have a lighting choke at the base that is used as a static drain. Tower 4 supports an STL antenna. The line for the antenna is isolated at the base with a Phasetek Inc. isocoupler.
- 2. The Ground System for each Tower consists of (120) buried copper Radials, 55.0M in length for towers 1 and 2, 73.0M in length for towers 3 and 4, except where they intersect with copper transverse straps between Towers or property boundaries. In addition, a 7.3M by 7.3M copper ground screen is installed at the base of towers 1 and 2. Copper strap connects all Towers to the main Transmitter grounding point.
- The Sampling System consists of four (4), Delta Electronics Inc. TCT-3, 1.0 V/A Toroidal Current Transformers. All TCT's are at the Output of each diplexing filter. These TCT's are connected to a Gorman-Redlich CMR Antenna Monitor via four (4) equal lengths of RFS, FCC-38-50J/LCF-12-50J, 3/8"/1/2" phase stabilized foam coaxial cable.
- 4. Tower registration numbers:
 - Tower 1: 1030078 Tower 2: 1030079 Tower 3: 1030082 Tower 4: 1030083

FIGURE 1 ANTENNA SYSTEM AS ADJUSTED

APPLICATION FOR LICENSE INFORMATION EMPLOYING MOMENT METHOD MODELING CONTINUED WACC, 830 KHZ, DA-2 HIALEAH, FLORIDA FEBRUARY. 2021

ANTENNA SYSTEM DESCRIPTION – Continued

DIRECTIONAL OPERATION (DAY)

COMMON POINT

Impedance	= 50.0 – j 8.3 Ohms
Current	= 9.41 Amperes
Power	= 4,428 Watts

DIRECTIONAL OPERATION (NIGHT)

COMMON POINT

Impedance= 50.0 - j 8.3 OhmsCurrent= 4.65 AmperesPower= 1,080 Watts

Directional Antenna Monitor indications are within $\pm 5\%$ and $\pm 3^{\circ}$ of the modeled TCT values.

FIGURE 2 WACC SAMPLING SYSTEM DESCRIPTION/MEASUREMENTS

APPLICATION FOR LICENSE INFORMATION EMPLOYING MOMENT METHOD MODELING WACC, 830 KHZ, DA-2 HIALEAH, FLORIDA FEBRUARY. 2021

SAMPLING SYSTEM DESCRIPTION

The Sampling System consists of Delta Electronics Inc. TCT-3 Toroidal Sampling Transformers (1.0 volt/amp) mounted at the base of each Tower. The sampling devices are connected to the Antenna Monitor with equal lengths of RFS FCC-38-50J/LCF-12-50J. The Antenna Monitor is a Gorman-Redlich Model CMR, Serial Number 830.

SAMPLE LINE MEASUREMENTS

Impedance measurements were made of the Antenna Sampling Lines using a HP 8753ES Network Analyzer with a Tunwall directional coupler. Measurements were done with the lines open circuited and then connected to the TCT's.

The table below shows the frequencies above and below the carrier frequency where resonance, defined as zero reactance corresponding with low resistance, was found. Frequencies of resonance occur at odd multiples of 90 degrees electrical length, the Sample Line length at the resonant frequency above the carrier frequency, which is the closest one to the carrier frequency, was found to be 270 electrical degrees. The electrical length at carrier frequency appearing in the table below was calculated by ratioing the frequencies.

	Resonant Frequency (KHz) below 830 KHz	Resonant Frequency (KHz) above 830 KHz	Calculated Electrical Length (deg) at 830 KHz	Measured Impedance (ohms) Connected to TCT @ 830 KHz
Tower 1	318.54	951.87	235.4	50.3 –j 1.1
Tower 2	315.03	951.78	235.5	51.6 –j 1.4
Tower 3	318.53	951.68	235.5	51.6 –j 1.0
Tower 4	314.74	951.67	235.5	52.6 –j 1.4

SAMPLE LINE MEASUREMENTS

FIGURE 2 WACC SAMPLING SYSTEM DESCRIPTION/MEASUREMENTS

APPLICATION FOR LICENSE INFORMATION EMPLOYING MOMENT METHOD MODELING WACC, 830 KHZ, DA-2 HIALEAH, FLORIDA FEBRUARY. 2021 CONTINUED

SAMPLE LINE MEASUREMENTS (CONTINUED)

To determine the characteristic impedance values of the Sample Lines, open-circuited measurements were made with frequencies offset to produce \pm 45 degrees of electrical length from resonance. The characteristic impedance was calculated using the following formula, where R1 +j X1 and R2 +j X2 are the measured impedances at the +45 and -45 degree offset frequencies, respectively:

 $\mathsf{Z}_0 = ((\mathsf{R_1}^2 + \mathsf{X_1}^2)^{1/2} \bullet (\mathsf{R_2}^2 + \mathsf{X_2}^2)^{1/2})^{1/2}$

Tower	+ 45 Degree Offset Frequency (kHz)	+ 45 Degree Measured Impedance (Ohms)	- 45 Degree Offset Frequency (kHz)	- 45 Degree Measured Impedance (Ohms)	Calculated Characteristic Impedance (Ohms)
1	1110.5	6.8 +j 47.6	793.2	4.5 –j 48.2	48.25
2	1110.4	8.3 +j 48.0	793.1	6.1 –j 48.6	48.85
3	1110.3	7.5 +j 47.3	793.0	5.8 –j 49.0	48.61
4	1110.3	6.9 +j 50.3	793.0	4.5 –j 49.3	50.13

SAMPLING TCT MEASUREMENTS

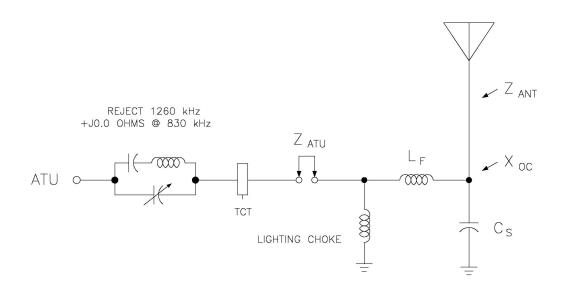
Measurements of the Delta Electronics Inc. Model TCT-3, 1.0 V/A Toroidal Current Transformers were performed by a Hewlett Packard 8752A, Network Analyzer. Measurements are normalized to Tower #1 (Day reference) and are within the manufacturer's rating of $\pm 2.0\%$ and $\pm 3.0^{\circ}$.

FIGURE 2 WACC SAMPLING SYSTEM DESCRIPTION/MEASUREMENTS

APPLICATION FOR LICENSE INFORMATION EMPLOYING MOMENT METHOD MODELING WACC, 830 KHZ, DA-2 HIALEAH, FLORIDA FEBRUARY. 2021 CONTINUED

SAMPLING TCT MEASUREMENTS CONT'D

TOWER	TCT SERIAL #	MAGNITUDE	PHASE
1	2309	1.000	0.0°
2	2304	.998	-0.3°
3	2311	.995	-0.2°
4	2305	.999	-0.3°


ANTENNA MONITOR MEASUREMENT

Measurement of the Gorman-Redlich Model CMR Antenna Monitor was performed to verify calibration. A single RF Voltage was applied to the Day Reference Input (Tower #1) and each other Input by use of a "T" divider and equal electrical length coaxial cables. This yields the following:

Tower	Ratio	Phase
1	1.000	0.0 ⁰
2	1.003	-0.3 ⁰
3	1.002	-0.4 ⁰
4	1.004	-0.1 ⁰

The above is within the manufacturer's rating of $\pm 2.0\%$ and $\pm 1.0^{\circ}$.

FIGURE 3 WACC TOWER IMPEDANCE MEASUREMENTS COMPARED TO METHOD OF MOMENTS MODEL

TOWER	Specified	Measured	Measured	Modeled	Modeled	Measured
	Cs (pf)	$L_F(\mu H)$	$X_{F}(\Omega)$	Z _{ANT} (Ω)	Z _{ATU} (Ω)	Z _{ATU} (Ω)
1	20	3.07	+j16.0	24.61 –j 47.32	24.51 –j 31.18	24.2 –j 31.2
2	20	3.07	+j16.0	24.83 –j 49.75	24.73 –j 33.61	24.3 –j 33.8
3	20	3.93	+j20.5	33.72 +j 0.27	33.59 +j 20.72	33.5 +j 21.0
4	35	2.21	+j11.5	36.32 +j 7.89	36.29 +j 19.25	36.5 +j 19.1
5*	20	2.40	+j12.5	25.40 –j 47.21	25.31 –j 34.60	25.1 –j 34.8
6*	20	0.77	+j4.0	26.11 –j 45.41	26.06 –j 41.36	26.7 –j 41.5

Tower	Calculated X_{OC} (Ω)	
1	-j 90,334.3	
2	-j 90,334.3	
3	-j 90,016.4	
4	-j 11,203.9	
5*	-j 90,583.3	* Used for 1260 kHz only
6*	-j 91,194.6	* Used for 1260 kHz only

FIGURE 4 WACC MOMENT MODEL PARAMETERS

Tower #	Wire #	# of Segments	Base Node
1	1	12	1
2	2	12	13
3	3	12	25
4	4	12	37
5*	5	12	49
6*	6	12	61

Tower #	Physical Height Degrees	Modeled Height Degrees	Modeled Radius Meters	% of Equivalent Radius
1	73.1	78.0	.2304	100.0
2	73.1	77.5	.2304	100.0
3	79.0	86.5	.2304	100.0
4	79.0	88.0	.2304	100.0
5*	73.1	78.0	.2304	100.0
6*	73.1	78.5	.2100	91.2

* Used for 1260 kHz only

All Towers are uniform cross section, guyed with Base Insulator. Each tower is three (3) sided, 19" face width.

All base insulators were manufactured by Utility Tower with an assumed capacity of 20pF.

Tower #4 Isocoupler is Phasetek Inc. Model #P600-410-HV with a maximum capacity of 15pF.

All Towers have a Phasetek Inc./KTL lighting choke. These measure +j 10,710 ohms @ 830 kHz.

WACC TOWER 1 (OTHERS OPEN)

GEOMETRY Wire coordinates in degrees; other dimensions in meters Environment: perfect ground

wire		Distance	Angle	Z	radius	segs
1	none	0	0	0	.2304	12
2	none	118.7	253.	78. 0	.2304	12
3	none	118.7 105.	253. 222.	77.5 0	.2304	12
		105.	222.	86.5		10
4	none	64. 64.	149. 149.	0 88.	.2304	12
5	none	59.3	73.	0	.2304	12
6	none	59.3 177.9 177.9	73. 253. 253.	78. 0 78.5	.21	12

Number	of	wires		=	6
		current	nodes	=	72

	mini	mum	maximum		
Individual wires	wire	value	wire	value	
segment length	2	6.45833	4	7.33333	
radius	6	.21	1	.2304	

	DESCRIPTION
Frequencies	; (MHz)

frequency no. lowest 1 .83	step 0	no. of steps 1	segment lengt minimum .0179398	h (wavelengths) maximum .0203704
Sources source node 1 1	sector 1	magnitude 1.	phase 0	type voltage

Lumpe	d loads	5				
load	node 13	resistance (ohms) 0	reactance (ohms) -90,334.3	inductance (mH) 0	capacitance (uF) 0	passive circuit 0
2	25	Ö	-90,016.4	Ő	Ő	Õ
3 4	37 49	0	-11,203.9 -90,583.3	0	0	0 0
5	61	Õ	-91,194.6	Õ	Õ	Õ

IMPEDANC norma	E lization	= 50.					
(MHZ)	resist (ohms)	(ohms)		phase (deg)	VSWR	S11 dB	S12 dB
source = .83	1; node 24.613		53.336	297.5	4.0992	-4.3251	-2.0024

WACC TOWER 2 (OTHERS OPEN	1)				
GEOMETRY Wire coordinates in degre Environment: perfect grou		dimension	s in met	ers	
1 none 0 (Angle)	Z 0 78.		dius 304	segs 12
2 none 118.7 2) 253.	0	. 2	304	12
3 none 105. 2	253.	77.5 0	. 2	304	12
4 none 64.	222. L49.	86.5 0	.2	304	12
5 none 59.3 7	L49. 73.	88. 0	.2	304	12
6 none 177.9 2	73. 253. 253.	78. 0 78.5	.2	1	12
Number of wires current nodes	= 6 = 72				
Individual wires win segment length 2 radius 6	ninimum re value 6.458 .21		ma wire 4 1	ximum value 7.33333 .2304	
ELECTRICAL DESCRIPTION Frequencies (MHz) frequency no. lowest step 1 .83 0	no. step 1		um	h (wavele maximum .020370	1
Sources source node sector ma 1 13 1 1.	agnitude	phase 0		type voltage	
Lumped loads	waa at an a	a duad			
resistance load node (ohms) 1 1 0 2 25 0 3 37 0 4 49 0 5 61 0	reactanc (ohms) -90,334. -90,016. -11,203. -90,583. -91,194.	(mH 3 0 4 0 9 0 3 0	uctance)	Capacita (uF) 0 0 0 0 0 0	nce passive circuit 0 0 0 0 0 0
IMPEDANCE normalization = 50.					
freq resist react (MHz) (ohms) (ohms)	imped (ohms)	phase (deg)	VSWR	S11 dB	S12 dB
source = 1; node 13, sec .83 24.831 -49.747	tor 1 7 55.599	296.5	4.2693	-4.1459	-2.1109

WACC TOWER 3 (OTHERS OF	PEN)				
GEOMETRY Wire coordinates in deg Environment: perfect gr	grees; other d ound	imension	s in met	ers	
wire caps Distance 1 none 0 0	Angle 0 0	Z 0 78.		dius 304	segs 12
2 none 118.7	253.	0	.2	304	12
118.7 3 none 105.	253. 222.	77.5 0	.2	304	12
105. 4 none 64.	222. 149.	86.5 0	.2	304	12
64. 5 none 59.3	149. 73.	88. 0	.2	304	12
59.3 6 none 177.9 177.9	73. 253. 253.	78. 0 78.5	.2	1	12
Number of wires current nodes	= 6 = 72				
Individual wires w segment length radius	minimum vire value 2 6.4583 6 .21	3	ma wire 4 1	ximum value 7.33333 .2304	1
ELECTRICAL DESCRIPTION Frequencies (MHz) frequency no. lowest step 1 .83 0	no. o steps 1		um	h (wavele maximum .020370	1
Sources source node sector 1 25 1	magnitude 1.	phase 0		type voltage	
Lumped loads		ام مر ا			
resistance load node (ohms) 1 1 0 2 13 0 3 37 0 4 49 0 5 61 0	e reactance (ohms) -90,334.3 -90,334.3 -11,203.9 -90,583.3 -91,194.6	(mH 0 0 0 0	uctance)	Capacita (uF) 0 0 0 0 0 0	ince passive circuit 0 0 0 0 0 0
IMPEDANCE normalization = 50. freq resist react (MHz) (ohms) (ohms source = 1; node 25, s	s) (ohms) Sector 1	phase (deg)	VSWR	S11 dB	S12 dB
.83 33.723 .2704	1 33.724	.5	1.4828	-14.224	16738

WACC TOWER 4 (OTHERS OPEN)

5

61

0

GEOMETRY Wire coordinates in degrees; other dimensions in meters Environment: perfect ground Angle Ζ radius segs 12 wire caps Distance 0 1 none 0 0 .2304 0 78. 0 none 118.7 2 253. .2304 12 0 253. 77.5 118.7 3 none 105. 222. 0 .2304 12 105. 222. 86.5 4 none 64. 149. 0 .2304 12 88. 64. 149. 5 .2304 none 59.3 73. 0 12 59.3 78. 73. none 177.9 6 253. 0 .21 12 177.9 253. 78.5 Number of wires 6 = 72 current nodes = minimum maximum Individual wires wire value wire value segment length 7.33333 6.45833 4 2 .21 radius 6 1 .2304 ELECTRICAL DESCRIPTION Frequencies (MHz) segment length (wavelengths) frequency no. of no. lowest steps minimum maximum step .0179398 .0203704 1 .83 0 1 Sources phase source node sector magnitude type 37 1 1. Ò voltage 1 Lumped loads reactance resistance inductance capacitance passive load (ohms) node (ohms) (mH)(uF)circuit -90,334.3 1 1 0 0 0 0 2 13 0 -90,334.3 Ó 0 0 3 25 0 -90,016.4 0 0 0 -90,583.3 -91,194.6 4 49 0 0 0 0

IMPEDANC norma	E lization	= 50.					
	resist	react	imped	phase	VSWR	S11	S12 dB
(MHz) (ohms) (ohms) (deg) dB dB source = 1; node 37, sector 1						ив	
.83	36.316	7.8867	37.162	12.3	1.4457	-14.788	14666

0

0

0

WACC TOWER 5 (OTHERS OPEN)

GEOMETRY Wire coordinates in degrees; other dimensions in meters Environment: perfect ground Ζ wire caps Distance Angle radius segs 0 1Ž 1 none 0 0 .2304 0 78. 0 2 253. none 118.7 0 .2304 12 253. 77.5 118.7 3 none 105. 222. 0 .2304 12 105. 222. 86.5 4 149. 0 .2304 12 none 64. 88. 64. 149. 5 none 59.3 73. 0 .2304 12 59.3 78. 73. 6 none 177.9 253. 0 .21 12 177.9 253. 78.5 Number of wires 6 = 72 current nodes = minimum maximum Individual wires wire value wire value 7.33333 segment length 6.45833 4 2 radius 6 .21 1 .2304 ELECTRICAL DESCRIPTION Frequencies (MHz) segment length (wavelengths) frequency no. of no. lowest step minimum maximum steps 1 .83 0 1 .0179398 .0203704 Sources source node sector magnitude phase type 49 1 voltage 1 1. Lumped loads resistance reactance inductance capacitance passive load node (ohms) (ohms) (mH)(uF)circuit -90,334.3 1 1 0 0 0 0 2 13 -90,334.3 Ó 0 0 0 3 25 0 -90,016.4 0 0 0 -11,203.9 -91,194.6 4 37 0 0 0 0 5 61 0 0 0 0 IMPEDANCE normalization = 50. S11 s12 freq resist react imped phase VSWR (MHZ) (ohms) (ohms) (ohms) dв dв (deg) 1; node 49, sector 1 25.4 -47.21 53.0 source = 53.609 298.3 3.9802 -4.46 -1.9253.83 25.4

WACC TOWER 6 (OTHERS OPEN)

GEOMETRY Wire coordinates in degrees; other dimensions in meters Environment: perfect ground Ζ wire caps Distance Angle radius segs 0 1Ž 1 none 0 0 .2304 0 78. 0 2 253. none 118.7 0 .2304 12 253. 77.5 118.7 3 none 105. 222. 0 .2304 12 105. 222. 86.5 4 149. 0 .2304 12 none 64. 88. 64. 149. 5 none 59.3 73. 0 .2304 12 59.3 78. 73. 6 none 177.9 253. 0 .21 12 177.9 253. 78.5 Number of wires 6 = 72 current nodes = minimum maximum Individual wires wire value wire value 7.33333 segment length 6.45833 4 2 radius 6 .21 1 .2304 ELECTRICAL DESCRIPTION Frequencies (MHz) segment length (wavelengths) frequency no. of no. lowest step minimum maximum steps 1 .83 0 1 .0179398 .0203704 Sources phase source node sector magnitude type 61 1 voltage 1 1. Lumped loads resistance reactance inductance capacitance passive load node (ohms) (ohms) (mH)(uF)circuit -90,334.3 1 1 0 0 0 0 2 13 -90,334.3 Ó 0 0 0 3 25 0 -90,016.4 0 0 0 -11,203.9 -90,583.3 4 37 0 0 0 0 5 49 0 0 0 0 IMPEDANCE normalization = 50. S11 s12 freq resist react imped phase VSWR (MHZ) (ohms) (ohms) (ohms) dв dв (deg) 1; nóde 61, séctor 1 26.112 -45.406 52.379 source = 26,112 299.9 3.7494 -4.748 -1.7726.83

FIGURE 6 WACC MOMENT MODEL ARRAY SYNTHESIS (DIRECTIONAL DAY)

WACC DAY

MEDIUM W	AVE ARRAY S	YNTHESIS F	ROM FIELD F	RATIOS		
Frequenc	y = .83 MHz	Z				
tower m 1 1 2 3	ield ratio agnitude 42 85 37	phase (de 0 120. 107. 327.	g)			
source v node m 1 4 13 2 25 1 37 3 Sum of s	agnitude	phase (de 324.2 50.3 80. 9.4 Jrce curre	7.82576 3.42697 5.80418 2.0452	ude 5 7 3	phase 4. 122. 108.6 340.4	(deg)
	MITTANCE MA ce real (r .010108 .002228 0053! 01067 .00227 .00614! 01103 .000650 0053! 01103 .034969 .000444 01067 .000650 .000444 .026950	nhos) 89 832 5451 757 778 514 312 0707 5498 335 98 4094 776 0188 4888	imaginary .0259481 0030043 00226259 0122121 00300458 .0233526 0133003 .00445164 00226268 0132974 .002468708 .0125291 0122086 .00445036 .0125287 00467296	9 3 3		
	PEDANCE MATE e real (c 5.59904 10.2974 22.504 5.59893 24.9236 22.3949 -1.2443 10.2997 22.3979 34.1703 12.1422 22.5074 -1.2426 12.1426 36.7393	ohms) 5 4 8 3 1 5 3 8 7 5 3 8 7 5 3 8 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	imaginary -46.7979 -13.8498 -15.8971 -8.53256 -13.85 -49.2563 -7.46874 -16.378 -15.896 -7.46345 173867 -18.9231 -8.52701 -16.378 -18.9227 8.45376	(ohms)		

FIGURE 7 WACC MOMENT MODEL SUMMARY FOR DIRECTIONAL DAY MODE

WACC DAY

GEOMETRY Wire coordinates in deg Environment: perfect g	grees; other round	dimension	s in met	ers	
wire caps Distance 1 none O	Angle O	Z 0		dius 304	segs 12
0 2 none 118.7 118.7	0 253. 253.	78. 0 77.5	.2	304	12
3 none 105.	222.	0	.2	304	12
105. 4 none 64. 64.	222. 149. 149.	86.5 0 88.	.2	304	12
Number of wires current nodes	= 4 5 = 48				
	minimum vire value 2 6.458 1 .2304	333	ma wire 4 1		
ELECTRICAL DESCRIPTION Frequencies (MHz) frequency no. lowest step 1 .83 0	no. step 1		um	h (wavele maximum .020370	
Sources sector 1 1 1 2 13 1 3 25 1 4 37 1	magnitude 618.898 299.53 148.825 556.835	phase 324.2 50.3 80. 9.4		type voltage voltage voltage voltage	
Lumped loads resistance load node (ohms) 1 0 26.25 2 0 70.745	e reactanc (ohms) -658.01 -657.8	ce ind (mH O O	uctance)	capacita (uF) O O	nce passive circuit 0 0
IMPEDANCE normalization = 50. freq resist react (MHz) (ohms) (ohms) source = 1; node 1, so .83 42.954 -35.8	s) (ohms)	phase (deg) 320.2	VSWR 2.1564	S11 dB -8.7217	S12 dB 62595
source = 2; node 13, s .83 19.476 -58.0	sector 1 555 61.804	288.4	6.3316	-2.7668	-3.2683
source = 3; node 25, s .83 15.922 -8.62	sector 1 722 18.131	331.4	3.245	-5.5332	-1.4248
source = 4; node 37, s .83 168.37 93.34	sector 1 47 192.52	29.	4.4761	-3.9476	-2.2398

Effici	ncy = .8 power = 4,	0. %					
curren no. GND 2 3 4 5 6 7 8 9 10 11 12 2 200	X 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Y 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Z 0 6.5 13. 19.5 26. 32.5 39. 45.5 52. 58.5 65. 71.5	mag (amps) 7.82573 7.60635 7.33479 6.97729 6.53165 5.99955 5.38448 4.6909 3.92338 3.08558 2.17774 1.18914	phase (deg) 4. 2.5 1.5 .7 359.9 359.3 358.7 358.1 357.6 357.2 356.7 356.3	real (amps) 7.80696 7.59914 7.33227 6.97682 6.53165 5.99908 5.38308 4.68844 3.92004 3.08178 2.17413 1.18661	<pre>imaginary (amps) .54171 .331072 .191895 .0810161 -7.24E-0307493571229851518581618361530441253120775654</pre>
12 END GND 14 15 16 17 18 19 20 21 22 34 END 6 27 8 9 0 31 23 34 56 END 38 9 0 14 27 8 9 0 31 23 34 56 END 38 9 0 41 42 3 42 43	0 -34.7045 -34.7045 -34.7045 -34.7045 -34.7045 -34.7045 -34.7045 -34.7045 -34.7045 -34.7045 -34.7045 -34.7045 -34.7045 -34.7045 -34.7045 -34.7045 -34.7045 -78.0302	0 0 113.513 10.2587 70.2587	71.5 78.0 6.45833 12.9167 19.375 25.8333 32.2917 38.75 45.2083 51.6667 58.125 64.5833 71.0417 77.5 0 7.20833 14.4167 21.625 28.8333 36.0417 43.25 50.4583 57.6667 64.875 72.0833 79.2917 86.5 0 7.33333 14.6667 22. 29.3333 36.6667 44.	1.18914 0 3.42698 3.28534 3.13838 2.96223 2.75465 2.51582 2.24684 1.94922 1.62451 1.27382 .896864 .488802 0 5.80421 5.72822 5.57526 5.340538 4.63431 4.17035 3.63882 3.04485 2.39304 1.68557 .916519 0 2.04521 2.16187 2.20928 2.20593 2.15303 2.05119 1.90124	356.3 0 122. 121.3 120.8 120.4 120. 119.7 119.3 119. 118.7 118.4 117.7 0 108.6 107.6 107.3 106.7 106.5 106.3 105.4 0 340.4 334.7 328.7 325.1 323.7	1.18661 0 -1.81467 -1.70653 -1.60776 -1.49893 -1.245 -1.245 -1.1003 -9448299 779515 605126 421774 227519 0 -1.85101 -1.77168 -1.68798 -1.58751 -1.46947 -1.33449 -1.33449 -1.33449 -1.1838 -1.01889 454088 243812 0 1.92725 1.95399 1.93711 1.88505 1.79945 1.68149 1.53232	0775654 0 2.90709 2.80735 2.69528 2.555 2.38518 2.18617 1.95899 1.70492 1.42527 1.12091 .7915 .432622 0 5.50115 5.44735 5.31359 5.09912 4.80616 4.43801 3.9988 3.49326 2.92628 2.30226 1.62326 .883495 0 684534 924995 -1.06234 -1.14573 -1.18216 -1.17473 -1.1255
44 45 46 47 48 END	-54.8587 -54.8587 -54.8587 -54.8587 -54.8587 -54.8587 -54.8587	-32.9624 -32.9624 -32.9624 -32.9624 -32.9624 -32.9624 -32.9624	51.3333 58.6667 66. 73.3333 80.6667 88.	1.70442 1.46222 1.17611 .846482 .469685 0	322.6 321.6 320.7 320. 319.3 0	1.35322 1.14551 .910344 .648056 .355925 0	-1.03627 908795 744647 544569 306465 0

FIGURE 8 WACC MOMENT MODEL ARRAY SYNTHESIS (DIRECTIONAL – NIGHT)

WACC NIGHT					
MEDIUM WAVE ARRAY SYNTHESIS FROM FIELD RATIOS					
Frequency = $.83$ MHz					
field ratio tower magnitude phase (1 1. 0 2 3.381 159.5 3 2.643 47. 4 .804 -85.8	deg)				
VOLTAGES AND CURRENTS - rms source voltage node magnitude phase (1 105.134 353.3 13 349.521 85.7 25 146.621 100.3 37 169.631 12.2 Sum of square of source cur Total power = 1,000. watts	current (deg) magnitude phase (deg) 1.6253 5.6 5.94938 161. 3.65371 49. .867778 271.2				
TOWER ADMITTANCE MATRIX admittancereal (mhos)Y(1, 1).0101089Y(1, 2).00222832Y(1, 3)00535451Y(1, 4)0106757Y(2, 1).00222778Y(2, 2).00614514Y(2, 3)0110312Y(2, 4).000650707Y(3, 1)00535498Y(3, 2)0110335Y(3, 4).000444094Y(4, 1)0106776Y(4, 3).000444888Y(4, 4).0269566	<pre>imaginary (mhos) .0259481 0030043 00226259 0122121 00300458 .0233526 0133003 .00445164 002262688 0132974 .000468708 .0125291 0122086 .00445036 .0125287 00467296</pre>				
TOWER IMPEDANCE MATRIXimpedancereal (ohms)Z(1, 1)24.7676Z(1, 2)5.59904Z(1, 3)10.2978Z(1, 4)22.5043Z(2, 1)5.59891Z(2, 2)24.9236Z(2, 3)22.3949Z(2, 4)-1.24438Z(3, 1)10.2997Z(3, 2)22.3975Z(3, 4)12.1422Z(4, 1)22.5074Z(4, 2)-1.24286Z(4, 3)12.1426Z(4, 4)36.7393	<pre>imaginary (ohms) -46.7979 -13.8498 -15.8971 -8.53256 -13.85 -49.2563 -7.46874 -16.378 -15.896 -7.46345 173867 -18.9231 -8.52701 -16.378 -18.9227 8.45376</pre>				

FIGURE 9 WACC MOMENT MODEL SUMMARY FOR DIRECTIONAL NIGHT MODE

WACC NIGHT

WACC NIGHT							
GEOMETRY Wire coordinates in degrees; other dimensions in meters Environment: perfect ground							
wire caps Distar 1 none 0	0	Z 0		dius 304	segs 12		
0 2 none 118.7	0 253.	78. 0	.2	304	12		
118.7 3 none 105.	253. 222.	77.5 0	.2	304	12		
105. 4 none 64. 64.	222. 149. 149.	86.5 0 88.	.2	304	12		
Number of wires current	= 4 nodes = 48						
Individual wires segment length radius	minimum wire value 2 6.458 1 .2304	833	ma wire 4 1	ximum value 7.33333 .2304			
	no.lowest step steps minimum maximum						
Sources source node sec 1 1 1 2 13 1 3 25 1 4 37 1	494.298 207.354	phase 353.3 85.7 100.3 12.2		type voltage voltage voltage voltage			
Lumped loads		aa daa					
load node (ohn 1 0 0 2 0 0	stance reactand is) (ohms) 653.16 695.31	ce 1nd (mH 0 0	uctance)	Capacita (uF) 0 0	nce passive circuit 0 0		
IMPEDANCE normalization freq resist (MHz) (ohms) source = 1; node	react imped (ohms) (ohms)	phase (deg)	VSWR	S11 dB	S12 dB		
.83 63.18	-13.876 64.686	347.6	1.4034	-15.502	1241		
source = 2; node .83 14.86	e 13, sector 1 -56.839 58.749	284.7	7.8829	-2.2157	-3.9837		
source = 3; node .83 25.114	e 25, sector 1 31.299 40.129	51.3	2.9323	-6.1713	-1.2003		
source = 4; node .83 -37.373	e 37, sector 1 191.87 195.48	101.	****	****	****		

Effici coordi	ncy = .8 power = 1, ency = 10 nates in d	3 MHz 000. watts 0. % egrees				_	
curren no. GND 2 3 4 5 6 7 8 9 10 11 12	x 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Y 0 0 0 0 0 0 0 0 0 0 0 0 0	Z 0 6.5 13. 19.5 26. 32.5 39. 45.5 52. 58.5 65. 71.5	<pre>mag (amps) 1.62529 1.60104 1.55825 1.49401 1.40828 1.30158 1.17471 1.02866 .864426 .682844 .483942 .265304</pre>	phase (deg) 5.6 3.5 2.1 .9 359.9 359. 358.2 357.5 356.8 356.2 355.6 355.	real (amps) 1.61742 1.59805 1.55722 1.49382 1.40828 1.30139 1.17415 1.02768 .8631 .681337 .48251 .264298	imaginary (amps) .159757 .0977524 .0567632 .024083 -1.96E-03 0219697 0362138 0448214 0478604 0453472 0372033 0230758
45 46 47 48 END	-54.8587 -54.8587 -54.8587 -54.8587 -54.8587 -54.8587	-32.9624 -32.9624 -32.9624 -32.9624 -32.9624 -32.9624	58.6667 66. 73.3333 80.6667 88.	.697653 .561557 .40425 .224272 0	275.5 275.8 276. 276.3 0	.0666656 .0564052 .0424643 .0245339 0	69446 558717 402013 222926 0

FIGURE 10 DERIVED DIRECTIONAL PARAMETERS

APPLICATION FOR LICENSE INFORMATION EMPLOYING MOMENT METHOD MODELING WACC, 830 KHZ, DA-2 HIALEAH, FLORIDA FEBRUARY. 2021

DAY:

	Theoretical		Base Network Input Theoretical Current		Normalized TCT	
Tower	Field	Phase	Amplitude	Phase	Amplitude	Phase
1 (NE)	1.000	0.0°	7.84	4.05°	1.000	0.0°
2 (NW)	.420	120.0 [°]	3.43	121.94 [°]	.438	117.9°
3 (SW)	.850	107.0°	5.82	108.58°	.742	104.5°
4 (SE)	.370	327.0°	2.03	-18.74 [°]	.259	-22.8°

<u>NIGHT:</u>

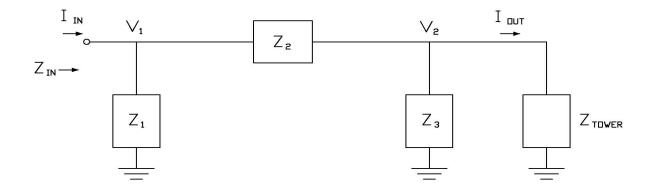

	Theoretical		Base Network Input Theoretical Current		Normalized TCT	
Tower	Field	Phase	Amplitude	Phase	Amplitude	Phase
1 (NE)	1.000	0.0°	1.63	5.73°	.274	-155.3°
2 (NW)	3.381	159.5°	5.96	161.06°	1.000	0.0°
3 (SW)	2.643	47.0°	3.66	49.05°	.614	-112.0°
4 (SE)	.804	-85.8°	0.85	-89.02°	.143	109.9°

FIGURE 11 WACC TOWER BASE CIRCUIT ANALYSIS DESCRIPTION

APPLICATION FOR LICENSE INFORMATION EMPLOYING MOMENT METHOD MODELING WACC, 830 KHZ, DA-2 HIALEAH, FLORIDA FEBRUARY. 2021

CIRCUIT ANALYSIS

Circuit Analysis was performed on each Tower of the WACC model. "Phasetek" nodal Circuit Analysis program was used to compute base model Input/Output voltages and currents. For the Directional modes, the calculated Mininec Tower Base Drive Voltage was used to determine the Base Network Input Current. This point is the location of the Sampling TCT. "Z₁" represents the ATU Shunt impedance, "Z₂" represents the Tower Feed impedance, and "Z₃" represents the Tower Base Shunt impedance.

FIGURE 12 WACC CIRCUIT ANALYSIS FOR INDIVIDUAL TOWERS

CUSTOMER : WACC NETWORK ID : TOWER 1 (OTHERS OPEN)

FREQUENCY : 830.00 kHz ATU SHUNT IMPEDANCE (R,X) : 0.00, 10710.00 OHMS TOWER FEED IMPEDANCE (R,X) : 0.00, 16.00 OHMS TOWER SHUNT IMPEDANCE (R,X) : 0.00, -9587.60 OHMS TOWER IMPEDANCE (R,X) : 24.61, -47.32 OHMS

NODE	то	NODE	IMPEDANCE R	(OHMS) X
1		GROUND	0.00	10710.00
2		GROUND	24.37	-47.15
1		2	0.00	16.00

	VOLTA	GE
NODE	MAGNITUDE	PHASE
1	100.00	0.00
2	134.20	-10.70

	REAL	IMAGINARY	MAGNITUDE	PHASE
INPUT IMPEDANCE (OHMS) :	24.51	-31.18	39.66	-51.83
INPUT CURRENT (AMPS) :	1.56	1.98	2.52	51.83
OUTPUT CURRENT (AMPS) :	1.56	1.98	2.52	51.82

INPUT/OUTPUT	CURRENT	RATIO =	1.0020
INPUT/OUTPUT	PHASE =	0.02	DEGREES

CUSTOMER : WACC NETWORK ID : TOWER 2 (OTHERS OPEN)

FREQUENCY : 830.00 kHzATU SHUNT IMPEDANCE (R,X) : 0.00, 10710.00 OHMS TOWER FEED IMPEDANCE (R,X) : 0.00, 16.00 OHMS TOWER SHUNT IMPEDANCE (R,X) : 0.00, -9587.60 OHMS TOWER IMPEDANCE (R,X) : 24.83, -49.75 OHMS

			IMPEDANCE	(OHMS)
NODE	т0	NODE	R	Х
1		GROUND	0.00	10710.00
2		GROUND	24.57	-49.56
1		2	0.00	16.00

	VOLTA	GE
NODE	MAGNITUDE	PHASE
1 2	100.00 132.99	0.00 -9.84

	REAL	IMAGINARY	MAGNITUDE	PHASE
INPUT IMPEDANCE (OHMS) :	24.73	-33.61	41.72	-53.65
INPUT CURRENT (AMPS) :	1.42	1.93	2.40	53.65
OUTPUT CURRENT (AMPS) :	1.42	1.93	2.39	53.64

INPUT/OUTPUT CURRENT RATIO = 1.0020 INPUT/OUTPUT PHASE = 0.02 DEGREES CUSTOMER : WACC NETWORK ID : TOWER 3 (OTHERS OPEN)

FREQUENCY : 830.00 kHzATU SHUNT IMPEDANCE (R,X) : 0.00, 10710.00 OHMS TOWER FEED IMPEDANCE (R,X) : 0.00, 20.50 OHMS TOWER SHUNT IMPEDANCE (R,X) : 0.00, -9587.60 OHMS TOWER IMPEDANCE (R,X) : 33.72, 0.27 OHMS

			IMPEDANCE	(OHMS)
NODE	т0	NODE	R	Х
1		GROUND	0.00	10710.00
2		GROUND	33.72	0.15
1		2	0.00	20.50

	VOLTA	GE	
NODE	MAGNITUDE	PHASE	
1	100.00	0.00	
2	85.28	-31.23	

	REAL	IMAGINARY	MAGNITUDE	PHASE
INPUT IMPEDANCE (OHMS) :	33.59	20.72	39.47	31.66
INPUT CURRENT (AMPS) :	2.16	-1.33	2.53	-31.66
OUTPUT CURRENT (AMPS) :	2.15	-1.33	2.53	-31.69

INPUT/OUTPUT CURRENT RATIO = 1.0019 INPUT/OUTPUT PHASE = 0.02 DEGREES CUSTOMER : WACC NETWORK ID : TOWER 4 (OTHERS OPEN)

FREQUENCY : 830.00 kHzATU SHUNT IMPEDANCE (R,X) : 0.00, 10710.00 OHMS TOWER FEED IMPEDANCE (R,X) : 0.00, 11.50 OHMS TOWER SHUNT IMPEDANCE (R,X) : 0.00, -5478.70 OHMS TOWER IMPEDANCE (R,X) : 36.32, 7.89 OHMS

			IMPEDANCE	(OHMS)
NODE	т0	NODE	R	Х
1		GROUND	0.00	10710.00
2		GROUND	36.42	7.66
1		2	0.00	11.50

	VOLTA	GE	
NODE	MAGNITUDE	PHASE	
1 2	100.00 90.44	0.00 -15.87	

	REAL	IMAGINARY	MAGNITUDE	PHASE
INPUT IMPEDANCE (OHMS) :	36.29	19.25	41.08	27.94
INPUT CURRENT (AMPS) :	2.15	-1.14	2.43	-27.94
OUTPUT CURRENT (AMPS) :	2.15	-1.15	2.43	-28.13

INPUT/OUTPUT CURRENT RATIO = 1.0004
INPUT/OUTPUT PHASE = 0.19 DEGREES

CUSTOMER : WACC NETWORK ID : TOWER 5 (OTHERS OPEN)

FREQUENCY : 830.00 kHz ATU SHUNT IMPEDANCE (R,X) : 0.00, 10710.00 OHMS TOWER FEED IMPEDANCE (R,X) : 0.00, 12.50 OHMS TOWER SHUNT IMPEDANCE (R,X) : 0.00, -9587.60 OHMS TOWER IMPEDANCE (R,X) : 25.40, -47.21 OHMS

			IMPEDANCE	(OHMS)
NODE	то	NODE	R	Х
1		GROUND	0.00	10710.00
2		GROUND	25.15	-47.04
1		2	0.00	12.50

VOLTA	GE	
MAGNITUDE	PHASE	
	0.00	
124.84	-7.93	
	VOLTA MAGNITUDE 100.00 124.84	

	REAL	IMAGINARY	MAGNITUDE	PHASE
INPUT IMPEDANCE (OHMS) :	25.31	-34.60	42.87	-53.81
INPUT CURRENT (AMPS) :	1.38	1.88	2.33	53.81
OUTPUT CURRENT (AMPS) :	1.38	1.88	2.33	53.79

INPUT/OUTPUT CURRENT RATIO = 1.0017 INPUT/OUTPUT PHASE = 0.02 DEGREES CUSTOMER : WACC NETWORK ID : TOWER 6 (OTHERS OPEN)

FREQUENCY : 830.00 kHz ATU SHUNT IMPEDANCE (R,X) : 0.00, 10710.00 OHMS TOWER FEED IMPEDANCE (R,X) : 0.00, 4.00 OHMS TOWER SHUNT IMPEDANCE (R,X) : 0.00, -9587.60 OHMS TOWER IMPEDANCE (R,X) : 26.11, -45.41 OHMS

			IMPEDANCE (OHMS)			
NODE	Т0	NODE	R	Х		
1		GROUND	0.00	10710.00		
2		GROUND	25.86	-45.27		
1		2	0.00	4.00		

	VOLTAG	E
NODE	MAGNITUDE	PHASE
1 2	100.00 107.05	0.00 -2.34

	REAL	IMAGINARY	MAGNITUDE	PHASE
INPUT IMPEDANCE (OHMS) :	26.06	-41.36	48.89	-57.78
INPUT CURRENT (AMPS) :	1.09	1.73	2.05	57.78
OUTPUT CURRENT (AMPS) :	1.09	1.73	2.04	57.77

INPUT/OUTPUT CURRENT RATIO = 1.0009 INPUT/OUTPUT PHASE = 0.02 DEGREES

FIGURE 13 WACC CIRCUIT ANALYSIS FOR DIRECTIONAL DAY MODE

CUSTOMER : WACC NETWORK ID : TOWER 1 DAY

FREQUENCY : 830.00 kHzATU SHUNT IMPEDANCE (R,X) : 0.00, 10710.00 OHMS TOWER FEED IMPEDANCE (R,X) : 0.00, 16.00 OHMS TOWER SHUNT IMPEDANCE (R,X) : 0.00, -9587.60 OHMS TOWER IMPEDANCE (R,X) : 42.95, -35.81 OHMS

NODE	то	NODE	IMPEDANCE R	(OHMS) X
1		GROUND	0.00	10710.00
2		GROUND	42.63	-35.87
1		2	0.00	16.00

VOLTAG	GE	
MAGNITUDE	PHASE	
369.45	-20.71	
437.63	324.20	
	369.45	

	REAL	IMAGINARY	MAGNITUDE	PHASE
INPUT IMPEDANCE (OHMS) :	42.79	-19.73	47.12	-24.76
INPUT CURRENT (AMPS) :	7.82	0.55	7.84	4.05
OUTPUT CURRENT (AMPS) :	7.81	0.55	7.83	4.02

INPUT/OUTPUT CURRENT RATIO = 1.0019 INPUT/OUTPUT PHASE = 0.03 DEGREES CUSTOMER : WACC NETWORK ID : TOWER 2 DAY

FREQUENCY : 830.00 kHzATU SHUNT IMPEDANCE (R,X) : 0.00, 10710.00 OHMSTOWER FEED IMPEDANCE (R,X) : 0.00, 16.00 OHMSTOWER SHUNT IMPEDANCE (R,X) : 0.00, -9587.60 OHMSTOWER IMPEDANCE (R,X) : 19.48, -58.66 OHMS

NODE	то	NODE	IMPEDANCE R	(OHMS) X
1		GROUND	0.00	10710.00
2		GROUND	19.24	-58.34
1		2	0.00	16.00

	VOLTA	GE	
NODE	MAGNITUDE	PHASE	
1 2	160.35 211.80	56.49 50.30	

	REAL	IMAGINARY	MAGNITUDE	PHASE
INPUT IMPEDANCE (OHMS) :	19.40	-42.48	46.69	-65.46
INPUT CURRENT (AMPS) :	-1.82	2.91	3.43	121.94
OUTPUT CURRENT (AMPS) :	-1.81	2.91	3.43	121.93

INPUT/OUTPUT CURRENT RATIO = 1.0021 INPUT/OUTPUT PHASE = 0.01 DEGREES CUSTOMER : WACC NETWORK ID : TOWER 3 DAY

FREQUENCY : 830.00 kHzATU SHUNT IMPEDANCE (R,X) : 0.00, 10710.00 OHMSTOWER FEED IMPEDANCE (R,X) : 0.00, 20.50 OHMSTOWER SHUNT IMPEDANCE (R,X) : 0.00, -9587.60 OHMSTOWER IMPEDANCE (R,X) : 15.92, -8.67 OHMS

NODE	то	NODE	IMPEDANCE R	(OHMS) X
1		GROUND GROUND	0.00 15.89	$10710.00 \\ -8.69$
1		2	0.00	20.50

	VOLTA	GE
NODE	MAGNITUDE	PHASE
1	115.05	145.29
2	105.24	80.00

	REAL	IMAGINARY	MAGNITUDE	PHASE
INPUT IMPEDANCE (OHMS) :	15.86	11.82	19.78	36.71
INPUT CURRENT (AMPS) :	-1.85	5.51	5.82	108.58
OUTPUT CURRENT (AMPS) :	-1.85	5.50	5.81	108.57

INPUT/OUTPUT CURRENT RATIO = 1.0020 INPUT/OUTPUT PHASE = 0.01 DEGREES CUSTOMER : WACC NETWORK ID : TOWER 4 DAY

FREQUENCY : 830.00 kHzATU SHUNT IMPEDANCE (R,X) : 0.00, 10710.00 OHMSTOWER FEED IMPEDANCE (R,X) : 0.00, 11.50 OHMSTOWER SHUNT IMPEDANCE (R,X) : 0.00, -5478.70 OHMSTOWER IMPEDANCE (R,X) : 168.37, 93.35 OHMS

NODE	то	NODE	IMPEDANCE R	(OHMS) X
1		GROUND	0.00	10710.00
2		GROUND	174.09	89.53
1		2	0.00	11.50

MAGNITUDE	PHASE
404.84 393.74	12.31 9.40
	404.84

	REAL	IMAGINARY	MAGNITUDE	PHASE
INPUT IMPEDANCE (OHMS) :	170.80	102.83	199.37	31.05
INPUT CURRENT (AMPS) :	1.92	-0.65	2.03	-18.74
OUTPUT CURRENT (AMPS) :	1.93	-0.69	2.05	-19.61

INPUT/OUTPUT CURRENT RATIO = 0.9928 INPUT/OUTPUT PHASE = 0.87 DEGREES

FIGURE 14 WACC CIRCUIT ANALYSIS FOR DIRECTIONAL NIGHT MODE

CUSTOMER : WACC NETWORK ID : TOWER 1 NIGHT

FREQUENCY : 830.00 kHzATU SHUNT IMPEDANCE (R,X) : 0.00, 10710.00 OHMSTOWER FEED IMPEDANCE (R,X) : 0.00, 16.00 OHMSTOWER SHUNT IMPEDANCE (R,X) : 0.00, -9587.60 OHMSTOWER IMPEDANCE (R,X) : 63.18, -13.88 OHMS

NODE	то	NODE	IMPEDANCE R	(OHMS) X
1		GROUND	0.00	10710.00
2		GROUND	62.99	-14.27
1		2	0.00	16.00

	VOLTA	GE
NODE	MAGNITUDE	PHASE
1 2	102.57 105.13	7.64 353.30

	REAL	IMAGINARY	MAGNITUDE	PHASE
INPUT IMPEDANCE (OHMS) :	62.97	2.10	63.01	1.91
INPUT CURRENT (AMPS) :	1.62	0.16	1.63	5.73
OUTPUT CURRENT (AMPS) :	1.62	0.16	1.63	5.69

INPUT/OUTPUT CURRENT RATIO = 1.0016 INPUT/OUTPUT PHASE = 0.04 DEGREES CUSTOMER : WACC NETWORK ID : TOWER 2 NIGHT

FREQUENCY : 830.00 kHz ATU SHUNT IMPEDANCE (R,X) : 0.00, 10710.00 OHMS TOWER FEED IMPEDANCE (R,X) : 0.00, 16.00 OHMS TOWER SHUNT IMPEDANCE (R,X) : 0.00, -9587.60 OHMS TOWER IMPEDANCE (R,X) : 14.86, -56.84 OHMS

NODE	то	NODE	IMPEDANCE R	(OHMS) X
1 2		GROUND GROUND	0.00 14.69	$10710.00 \\ -56.53$
ī		2	0.00	16.00

	VOLTA	GE
NODE	MAGNITUDE	PHASE
1 2	257.97 349.52	91.06 85.70

	REAL	IMAGINARY	MAGNITUDE	PHASE
INPUT IMPEDANCE (OHMS) :	14.80	-40.66	43.27	-70.00
INPUT CURRENT (AMPS) :	-5.64	1.94	5.96	161.06
OUTPUT CURRENT (AMPS) :	-5.63	1.93	5.95	161.05

INPUT/OUTPUT CURRENT RATIO = 1.0021 INPUT/OUTPUT PHASE = 0.01 DEGREES

CUSTOMER : WACC NETWORK ID : TOWER 3 NIGHT

FREQUENCY : 830.00 kHzATU SHUNT IMPEDANCE (R,X) : 0.00, 10710.00 OHMS TOWER FEED IMPEDANCE (R,X) : 0.00, 20.50 OHMS TOWER SHUNT IMPEDANCE (R,X) : 0.00, -9587.60 OHMS TOWER IMPEDANCE (R,X) : 25.11, 31.30 OHMS

			IMPEDANCE	(OHMS)
NODE	то	NODE	R	Х
1 2 1		GROUND GROUND 2	0.00 25.27 0.00	10710.00 31.34 20.50

	VOLTAGE	
ASE	DE MAGNITUDE	NODE
3.20	210.03	1
0.30	146.62	2
3.20	210.03	1 2

INPUT IMPEDANCE (OHMS) :	REAL 25.03	IMAGINARY 51.65	MAGNITUDE 57.39	PHASE 64.14
INPUT CURRENT (AMPS) : OUTPUT CURRENT (AMPS) :	2.40	2.76	3.66	49.05 49.04
OUTFUT CURRENT (AMPS) .	2.40	2.70	5.05	49.04

INPUT/OUTPUT CURRENT RATIO = 1.0016
INPUT/OUTPUT PHASE = 0.02 DEGREES

CUSTOMER : WACC NETWORK ID : TOWER 4 NIGHT

FREQUENCY : 830.00 kHzATU SHUNT IMPEDANCE (R,X) : 0.00, 10710.00 OHMSTOWER FEED IMPEDANCE (R,X) : 0.00, 11.50 OHMSTOWER SHUNT IMPEDANCE (R,X) : 0.00, -5478.70 OHMSTOWER IMPEDANCE (R,X) : -37.37, 191.87 OHMS

NODE	то	NODE	IMPEDANCE R	(OHMS) X
1		GROUND	0.00	10710.00
2		GROUND	-40.13	198.55
1		2	0.00	11.50

VOLTA	GE
MAGNITUDE	PHASE
179.08	11.59
169.63	12.20
	179.08

	REAL	IMAGINARY	MAGNITUDE	PHASE
INPUT IMPEDANCE (OHMS) :	-38.60	206.15	209.73	100.61
INPUT CURRENT (AMPS) :	0.01	-0.85	0.85	-89.02
OUTPUT CURRENT (AMPS) :	0.02	-0.87	0.87	-88.82

INPUT/OUTPUT CURRENT RATIO = 0.9839INPUT/OUTPUT PHASE = -0.19 DEGREES

FIGURE 15 WACC REFERENCE FIELD INTENSITY MEASUREMENTS FEBRUARY, 2021

WACC DAY REFERENCE POINT MEASUREMENTS – FEBRUARY 8, 2021

			CO-ORD NAD27						
<u>Radial</u>		<u>Dist</u> <u>km</u>	<u>mV/m</u>	<u>Time</u>		<u>Deg</u>	<u>Min</u>	<u>Sec</u>	Description
70°	1	0.42	1420	1728	N W	25 80	46 25	26.6 01.6	#807 NW 137 th Ave.
	2	1.40	503	1735	N W	25 80	46 24	37.7 28.6	NW 132 nd Ave./NW 8 th Lane
	3	1.67	488	1738	N W	25 80	46 24	39.8 19.3	#909 129 th Ave.
187°	1	1.54	65.5	1711	N W	25 80	45 25	30.1 23.1	#13981 SW 8 th Terrace
	2	1.61	49.1	1713	N W	25 80	45 25	30.1 23.0	SW 140 th Ave./SW 9 th St.
	3	1.71	48.9	1716	N W	25 80	45 25	26.9 24.0	#14011 SW 10 th St.
238.5°	1	2.71	73.5	1704	N W	25 80	45 26	36.1 38.8	School Exit, SW 153 rd Place
	2	3.09	66.1	1658	N W	25 80	45 26	29.9 50.9	#927 SW 155 th Court
	3	3.15	59.1	1656	N W	25 80	45 26	28.9 52.7	#15564 SW 9 th Terrace

FIGURE 15 CONTINUED WACC REFERENCE FIELD INTENSITY MEASUREMENTS FEBRUARY, 2021

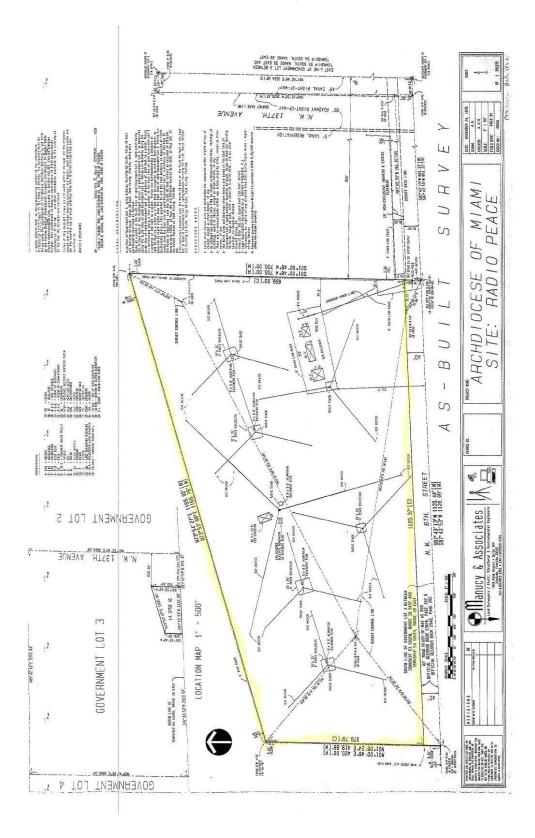
WACC DAY REFERENCE POINT MEASUREMENTS – FEBRUARY 8, 2021

		Diat				CO-0	ORD N	AD27	
<u>Radial</u>		<u>Dist</u> <u>km</u>	<u>mV/m</u>	<u>Time</u>		<u>Deg</u>	<u>Min</u>	<u>Sec</u>	Description
295°	1	6.82	5.9	1600	N W	25 80	47 28	55.4 58.3	Krome Ave., East side
	2	6.83	6.0	1602	N W	25 80	47 28	55.3 58.6	Krome Ave., Center divider
	3	6.86	5.8	1615	N W	25 80	47 28	55.9 59.4	Krome Ave., West side

FIGURE 15 CONTINUED WACC REFERENCE FIELD INTENSITY MEASUREMENTS FEBRUARY, 2021

WACC NIGHT REFERENCE POINT MEASUREMENTS – FEBRUARY 10, 2021

		Dist				CO-C	RD N	AD27			
<u>Radial</u>		<u>Dist</u> <u>km</u>	<u>mV/m</u>	<u>Time</u>		<u>Deg</u>	<u>Min</u>	<u>Sec</u>	Description		
104°	1	0.89	344	1305	N W	25 80	46 24	15.1 44.9	NW 133 rd Place/NW 4 th Terrace		
	2	1.43	241	1254	N W	25 80	46 24	10.3 25.9	NW 130 th Ave.		
	3	1.81	125	1258	N W	25 80	46 24	07.9 13.1	NW 2 nd St., North side.		
190.5°	1	3.50	63.3	1212	N W	25 80	44 25	30.4 38.4	#14382 SW 27 th St.		
	2	3.80	57.0	1217	N W	25 80	44 25	21.0 40.0	End of SW 30 th St.		
	3	4.77	55.2	1224	N W	25 80	43 25	50.1 47.3	SW 38 th Lane/SW 145 th Ave.		
214.5°	1	3.53	51.8	1158	N W	25 80	44 26	47.3 26.9	SW 152 nd Ave./SW 21 st Lane		
	2	3.74	66.1	1202	N W	25 80	44 26	42.1 32.2	SW 23 rd St./SW 153 rd Ave.		
	3	4.04	60.2	1205	N W	25 80	44 26	34.4 39.0	SW 25 th Terrace/SW 153 rd Pass		


FIGURE 15 CONTINUED WACC REFERENCE FIELD INTENSITY MEASUREMENTS FEBRUARY, 2021

WACC NIGHT REFERENCE POINT MEASUREMENTS – FEBRUARY 10, 2021

		D:-4		CO-ORD NAD27				AD27	
<u>Radial</u>		<u>Dist</u> <u>km</u>	<u>mV/m</u>	<u>Time</u>		<u>Deg</u>	<u>Min</u>	<u>Sec</u>	Description
337.5°	1	15.05	3.17	1133	N W	25 80	53 28	52.4 43.8	Krome Ave., East side, North MM32
	2	15.06	3.30	1135	N W	25 80	53 28	52.5 44.2	Krome Ave., Center divider
	3	15.07	3.14	1140	N W	25 80	53 28	52.9 44.5	Krome Ave., West side

FIGURE 16

WACC CERTIFIED ARRAY GEOMETRY SURVEY FEBRUARY, 2021

FIGURE 17 WACC SPURIOUS RADIATION MEASUREMENTS FEBRUARY, 2021

WACC (830 kHz) DAY MODE WSUA (1260 kHz) DAY MODE

	Attenuation (dB) relative to				
Field Intensity (mV/M)	WACC	WSUA			
686					
3330					
.0208	90.4	104.1			
.0174	91.9	105.6			
.037	85.4	99.1			
.010	96.7	110.4			
.011	95.9	109.6			
.0108	96.1	109.8			
.031	86.9	100.6			
.0281	87.8	101.5			
.0093	97.4	111.1			
.0095	97.2	110.9			
.031	86.9	100.6			
.0165	92.4	106.1			
.049	82.9	96.6			
.020	90.7	104.4			
.023	89.5	103.2			
.0117	95.4	109.1			
.0098	96.9	110.6			
	686 3330 .0208 .0174 .037 .010 .011 .0108 .031 .0281 .0093 .0095 .031 .0165 .049 .020 .023 .0117	Field Intensity (mV/M) WACC 686 3330 .0208 90.4 .0174 91.9 .037 85.4 .010 96.7 .011 95.9 .0108 96.1 .031 86.9 .0281 87.8 .0093 97.4 .0095 97.2 .031 86.9 .0165 92.4 .049 82.9 .020 90.7 .023 89.5 .0117 95.4			

Above taken with Potomac Instruments, PI 4100, 0.89 km from the array on a bearing of 104° T. Point Coordinates (NAD27): N 25° 46' 15.1", W 80° 24' 44.9".

Above readings meet required attenuation of: 79.1 dB (WACC Day) and 80.0 dB (WSUA Day)

FIGURE 17 CONTINUED WACC SPURIOUS RADIATION MEASUREMENTS FEBRUARY, 2021

WACC (830 kHz) NIGHT MODE WSUA (1260 kHz) NIGHT MODE

		Attenuation (dB) relative to				
Frequency (kHz)	Field Intensity (mV/M)	WACC	WSUA			
830	344					
1260	1920					
400	.013	88.5	103.4			
430	.0175	85.9	100.8			
860	.027	82.1	97.0			
1230	.010	90.7	105.7			
1290	.011	89.9	104.8			
1660	.0109	90.0	104.9			
1690	.016	86.6	101.6			
2090	.0124	88.9	103.8			
2120	.0095	91.2	106.1			
2490	.0148	87.3	102.3			
2520	.022	83.9	98.8			
2920	.010	90.7	105.7			
3350	.0214	84.1	99.1			
3750	.019	85.2	100.1			
3780	.018	85.6	100.6			
4180	.0113	89.7	104.6			
4610	.0098	90.9	105.8			

Above taken with Potomac Instruments, PI 4100, 0.89 km from the array on a bearing of 104° T. Point Coordinates (NAD27): N 25° 46' 15.1", W 80° 24' 44.9".

Above readings meet required attenuation of: 73.0 dB (WACC Night) and 80.0 dB (WSUA Night)