BILLING: P/P/4969/VOH & IASPEGEDO
FEB 0 4 2021
FCC Malifoom
The commodities technology or the commodities technology or the commodities. ISH 13.00F ZZP 450 42.5U 01/2021

ANNAPOLIS JUNCT MD 20701-1150

SHIP FEDERAL COMMUNICATIONS COMMISSION TO: 9050 JUNCTION DR

2 LBS 1 OF SHP WT: 2 LBS DWT: 16,13,4 DATE: 03 FEB 2021 1 OF 1

MOSKOWITZ (301) 251-1353 10845 TUCKAHOE WAY NORTH POTOMAC MD 20878

DORTCH, MARLENE TW-B204F

Received On: 02-04-2021 10:21am

E# moo.era/liftymailers.com

E# moo.erəlismyili

Jiffylite® White Cushloned Mailer

C# moo.eralism e Cushioned Mailer

ALLAN G. MOSKOWITZ, ESQ.

February 3, 2021

Accepted / Filed

FEB 0 4 2021

Ms. Marlene H. Dortch, Secretary Federal Communications Commission 445 12th Street, SW Washington, DC 20554

Federal Communications Commission Office of the Secretary

Re: FILING OF MOMENT METHOD MODELING PROOF OF PERFORMANCE

Radio Station WPOM (AM) Facility ID No. 73892 Riviera Beach, FL Caribbean Media Group, Inc.

Dear Ms. Dortch:

On behalf of Caribbean Media Group, Inc., licensee of Radio Station WPOM(AM), Riviera Beach, Florida, we are herewith filing an original and 2 copies of an application on FCC Form 302-AM for a license following a Moment Method Modeling Proof of Performance.

Attached is the FCC's "Online Payment Information" indicating that the license has paid \$1, 560.00 as a filing fee on February 3, 2021 pursuant to the FCC's Fee schedule.

I am also enclosing a copy of this cover letter which I request be "stamped' and returned to me in the attached envelope.

Should any questions arise with respect to this matter, please contact the undersigned counsel.

Respectfully submitted,

Allan G. Moskowitz

Cc: Son Nguyen, Media Bureau

Commission Registration System (CORES)

Logged In As: 0024440851 | Logout

Online Payment Confirmation

Print

Online Payment Information

Total Amount

\$1,560.00

Payer FRN

0024440851

Payer Name

Caribbean Media Group, Inc.

Remittance ID

3519702

Treasury Tracking ID

26R61O2A

Thank you for your payment!

Customer Service

Help

Frequently Asked Questions

Privacy Statement

FCC Home Page

For assistance, please submit a help request at https://www.fcc.gov/wireless/available-support-services or call 877-480-3201 (Mon.-Fri. 8 a.m.-6 p.m. ET).

Federal Communications Commission Washington, D. C. 20554

Approved by OMB 3060-0627 Expires 01/31/98

FOR FCC USE ONLY		***************************************		

FCC 302-AM APPLICATION FOR AM BROADCAST STATION LICENSE

FOR COMMISSION USE ONLY	
FILE NO.	

(Please read instructions before filling out form.	FILE NO.					
SECTION I - APPLICANT FEE INFORMATION						
PAYOR NAME (Last, First, Middle Initial)						
Caribbean Media Group, Inc.						
MAILING ADDRESS (Line 1) (Maximum 35 characters) 1920 Palm Beach Lakes Blvd						
MAILING ADDRESS (Line 2) (Maximum 35 characters) Suite 217						
CITY West Palm Beach						
TELEPHONE NUMBER (include area code) 562-543-1239		THER FCC IDENTIFIER (If applicable) 3892				
2. A. Is a fee submitted with this application?						
B. If No, indicate reason for fee exemption (see 47 C.F.R. Section						
Governmental Entity Noncommercial edu	cational licensee Other	(Please explain):				
C. If Yes, provide the following information:						
Enter in Column (A) the correct Fee Type Code for the service you Fee Filing Guide." Column (B) lists the Fee Multiple applicable for the						
(A) (B)	(C)					
FEE TYPE FEE MULTIPLE	FEE DUE FOR FEE TYPE CODE IN COLUMN (A)	FOR FCC USE ONLY				
M M R 0 0 0 1	\$725.00					
To be used only when you are requesting concurrent actions which re	esult in a requirement to list more the	nan one Fee Type Code.				
(A) (B)	\$835.00	FOR FCC USE ONLY				
M O R 0 0 0 1	₩835.00					
ADD ALL AMOUNTS SHOWN IN COLUMN C, AND ENTER THE TOTAL HERE.	TOTAL AMOUNT REMITTED WITH THIS APPLICATION	FOR FCC USE ONLY				
THIS AMOUNT SHOULD EQUAL YOUR ENCLOSED REMITTANCE.	\$ 1,560.00					

1. NAME OF APPLICANT Caribbean Media Group,						
MAILING ADDRESS 1920 Palm Beach Lakes	Blvd, Suite 217					
CITY West Palm Beach	1		STATE FL		ZIP CODE 33409	
2. This application is for:	Commercial AM Direct	tional	☐ Noncomm	nercial on-Directional		
Call letters	Community of License	Construc	tion Permit File No.	Modification of Construction Permit File No(s).	Expiration Date of L Construction Permit	
WPOM	Riviera Beach, FL	NA - N	Moment Proof	Permit File No(s).	NA - Moment P	
Is the station in accordance with 47 C.F. If No, explain in an Exhi		to auto	matic program	test authority in	Yes V Exhibit No. NA	No
construction permit bee		ations s	set forth in the	above described	Exhibit No.	No
If No, state exceptions i	n an Exhibit.				INA	
the grant of the under	iges already reported, hat lying construction permited and in the construction permited	which	would result in	any statement or	Yes V	No
If Yes, explain in an Ex	chibit.					
	iled its Ownership Report nce with 47 C.F.R. Section	•	•	ership	Yes Does not a	No
If No, explain in an Exh	ibit.				Exhibit No.	
or administrative body criminal proceeding, br	ding been made or an ad with respect to the application ought under the provision related antitrust or unfaunit; or discrimination?	ant or pa	arties to the apply law relating to	ication in a civil or the following: any	Yes V	No
involved, including an including an including an including an information has been required by 47 U.S.C. of that previous submitted the call letters of the second including an including a	attach as an Exhibit a fidentification of the court obers), and the disposition earlier disclosed in consection 1.65(c), the application by reference to the station regarding which the of filing; and (ii) the disposition of the station regarding which the disposition is a section regarding which the disposition regarding which r	or admir on of the onnection cant need of file number the appli	nistrative body a le litigation. What with another ad only provide: anber in the case cation or Section	nd the proceeding here the requisite application or as (i) an identification of an application, in 1.65 information	Exhibit No.	

8. Does the applicant, or any party to the application, have a the expanded band (1605-1705 kHz) or a permit or license expanded band that is held in combination (pursuant to the 5 with the AM facility proposed to be modified herein?	either in the existing band	or				
If Yes, provide particulars as an Exhibit.		Exhibit No.				
The APPLICANT hereby waives any claim to the use of any	particular frequency or of	f the electromagnetic spectrum as				
against the regulatory power of the United States because use of the same, whether by license or otherwise, and requests and authorization in accordance with this application. (See Section 304 of the Communications Act of 1934, as amended).						
The APPLICANT acknowledges that all the statements made in this application and attached exhibits are considered material representations and that all the exhibits are a material part hereof and are incorporated herein as set out in full in						
CERTIFIC	CATION					
1. By checking Yes, the applicant certifies, that, in the case of an individual applicant, he or she is not subject to a denial of federal benefits that includes FCC benefits pursuant to Section 5301 of the Anti-Drug Abuse Act of 1988, 21 U.S.C. Section 862, or, in the case of a non-individual applicant (e.g., corporation, partnership or other unincorporated association), no party to the application is subject to a denial of federal benefits that includes FCC benefits pursuant to that section. For the definition of a "party" for these purposes, see 47 C.F.R. Section 1.2002(b).						
I certify that the statements in this application are true, complete, and correct to the best of my knowledge and belief, and are made in good faith.						
Name	Signature					
Carline Clerge	1 4/					
Title	Date	Telephone Number				
President	2/1/2021	561-543-1239				
WILLFUL FALSE STATEMENTS ON THIS FORM ARE PUNISHABLE BY FINE AND/OR IMPRISONMENT (U.S. CODE, TITLE 18, SECTION 1001), AND/OR REVOCATION OF ANY STATION LICENSE OR CONSTRUCTION						
FCC NOTICE TO INDIVIDUALS REQUIRED BY THE PR	FCC NOTICE TO INDIVIDUALS REQUIRED BY THE PRIVACY ACT AND THE PAPERWORK REDUCTION ACT					

The solicitation of personal information requested in this application is authorized by the Communications Act of 1934, as amended. The Commission will use the information provided in this form to determine whether grant of the application is in the public interest. In reaching that determination, or for law enforcement purposes, it may become necessary to refer personal information contained in this form to another government agency. In addition, all information provided in this form will be available for public inspection. If information requested on the form is not provided, the application may be returned without action having been taken upon it or its processing may be delayed while a request is made to provide the missing information. Your response is required to obtain the requested authorization.

Public reporting burden for this collection of information is estimated to average 639 hours and 53 minutes per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the burden, can be sent to the Federal Communications Commission, Records Management Branch, Paperwork Reduction Project (3080-0627), Washington, D. C. 20554. Do NOT send completed forms to this address.

THE FOREGOING NOTICE IS REQUIRED BY THE PRIVACY ACT OF 1974, P.L. 93-579, DECEMBER 31, 1974, 5 U.S.C. 552a(e)(3), AND THE PAPERWORK REDUCTION ACT OF 1980, P.L. 98-511, DECEMBER 11, 1980, 44 U.S.C. 3507.

.

:: :. ...

.

···

٠,

		ICATION ENGI	NEERING DATA				
Name of Applican	ռ Media Gro	un Inc					
PURPOSE OF A	UTHORIZATIO	N APPLIED FOR	: (check one)	*5			
✓ 5	Station License		Direct Mea	surement of Pov	wer		
1. Facilities authorized			I-	T		Dower in	kilowatts
Call Sign	(if applicable)	nstruction Permit	Frequency (kHz)	Hours of Oper	ration		1
WPOM	N/A		1600	Unlimited		Night 4.7	Day 5.0
2. Station location	on						
State				City or Town			
Florida				Riviera E	Beach		
3. Transmitter lo	cation						
State	County			City or Town		Street address	antiam\
FL	Palm Be	ach		West Pal	m Beach	(or other identific	
	7.701.000.000.000						
4. Main studio lo	T			City on Town		Street address	
	State County			City or Town	Daaah	(or other identific	
FL	Palm Bea	n Beach West Palm Beach 1920 Palm Beach Lakes Blvd., #2:				Lakes Blvd., #217	
Remote control point location (specify only if authorized directional antenna)							
State	County City or Town Street address (or other identification)						
FL	Palm Beach West Palm Beach 1920 Palm Beach Lakes Blvd., #						
			ents of 47 C.F.R. e sampling syster			Ext ENG.	Yes No Not Applicable hibit No.
8. Operating co	nstants:						
RF common poi modulation for n 10.1	nt or antenna cu	urrent (in ampere	s) without		point or antenna or day system	current (in amper	es) without
Measured anten	na or common	point resistance (in ohms) at			on point reactance	(in ohms) at
operating freque Night	ency	Day		operating free Night	quency	Day	
50.0		50.0		-6.4		-6.4	1
Antenna indicati	one for direction			0.1			
Automa mulcau	one for different	Antenn	a monitor		nonitor sample	Antonno	base currents
Tow	ers		g(s) in degrees		nt ratio(s)		
		Night	Day	Night	Day	Night	Day
1(S)		0.0	95.3	1.000	1.000		
2(SW) 3(N)		164.2 -55.7	-0.1	.515	.301	-	-
4(NW)		-146.2	17.9	.182	.322		
5(E)		127.2	45.2	.394	.890		
Manufacturer ar	nd type of anten	na monitor:	otomac Instrume	nts 1901-5			

SECTION III - Page 2

9. Description of antenna system ((f directional antenna is used, the information requested below should be given for each element of the array. Use separate sheets if necessary.)

Type Radiator Guyed Tower	Overall height in meters of radiator above base insulator, or above base, if grounded. 84.8 #1,#2,#3,#4 41.6 #5	Overall heigh above ground obstruction lig 86.2 #1,#2,#	d (without ghting)	Overall height in meters above ground (include obstruction lighting) 87.2 #1,#2,#3,#4 43.3 #5	loaded or sectionalized, describe fully in an Exhibit.
Excitation	✓ Series	Shunt		_	
Geographic coordinates tower location.	to nearest second. For direct	tional antenna	give coordinate	es of center of array. Fo	r single vertical radiator give
North Latitude 26	° 44 ' 5	5 "	West Longitu	^{de} 80 ° 07	' 58 "
If not fully described above, attach as an Exhibit further details and dimensions including any other antenna mounted on tower and associated isolation circuits. Exhibit No. ENG. Exhibit No. ENG. Exhibit No. ENG.					
 In what respect, if any, does the apparatus constructed differ from that described in the application for construction permit or in the 					
permit? N/A	any, account apparatus const	adio dilo in		Total III also approached in the	
11. Give reasons for the	e change in antenna or comm	on point resist	ance.		
New Adju	ustment		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
	t the applicant in the capacity s true to the best of my knowle			have examined the fore	going statement of technical
Name (Please Print or	Туре)		Signature (che	ck appropriate box below	w)
Kurt Gorman Address (include ZIP C	ode)		Date	<u>X</u>	
Phasetek Inc.				30, 2021	
550 California R Quakertown, PA		-	Telephone No.	(Include Area Code) 6-6648	
Technical Director	r	[Register	ed Professional Enginee	r
Chief Operator		[✓ Technica	al Consultant	
Other (specify)					

FCC 302-AM (Page 5) August 1995

ENGINEERING STATEMENT CONCERNING

APPLICATION FOR LICENSE INFORMATION EMPLOYING MOMENT METHOD MODELING

WPOM, 1600 KHZ, DA-2 RIVIERA BEACH, FLORIDA

JANUARY, 2021

ENGINEERING STATEMENT CONCERNING
APPLICATION FOR LICENSE INFORMATION
EMPLOYING MOMENT METHOD MODELING
WPOM, 1600 KHZ, DA-2
RIVIERA BEACH, FLORIDA
JANUARY, 2021

TABLE OF CONTENTS

302-AM

ENGINEERING STATEMENT

ANTENNA SYSTEM AS ADJUSTED FIGURE 1: SAMPLING SYSTEM DESCRIPTION/MEASUREMENTS FIGURE 2: FIGURE 3: TOWER IMPEDANCE MEASUREMENTS VS. MODELED MOMENT MODEL PARAMETERS FIGURE 4: MOMENT MODEL SUMMARY FOR INDIVIDUAL TOWERS FIGURE 5: MOMENT MODEL ARRAY SYNTHESIS (DIRECTIONAL DAY) FIGURE 6: FIGURE 7: MOMENT MODEL SUMMARY FOR DIRECTIONAL DAY MODE MOMENT MODEL ARRAY SYNTHESIS (DIRECTIONAL - NIGHT) FIGURE 8: **MOMENT MODEL SUMMARY FOR DIRECTIONAL NIGHT MODE** FIGURE 9: FIGURE 10: **DERIVED DIRECTIONAL PARAMETERS** TOWER BASE CIRCUIT ANALYSIS DESCRIPTION FIGURE 11: **CIRCUIT ANALYSIS FOR INDIVIDUAL TOWERS** FIGURE 12: REFERENCE FIELD INTENSITY MEASUREMENTS FIGURE 13 FIGURE 14 **CALCULATION OF SAMPLING LOOP LOCATIONS**

ENGINEERING STATEMENT CONCERNING APPLICATION FOR LICENSE INFORMATION EMPLOYING MOMENT METHOD MODELING WPOM, 1600 KHZ, DA-2 RIVIERA BEACH, FLORIDA JANUARY, 2021

SUMMARY

Adjustment of the Antenna System and a Proof of Performance employing Moment Method Modeling were performed on Radio Station WPOM, 1600 KHz, Riviera Beach, Florida, after installation of new sampling loops for all towers. This report was prepared on behalf of Caribbean Media Group, Inc., licensee of Radio Station WPOM.

SITE MODIFICATIONS

The WPOM Transmitter site is that as currently licensed. The sampling system has been changed due to replacement of the sampling loops on all towers. The new loops are located on each tower at the location of minimum current for minimum radiated field. All Towers remain unchanged and are identical in face width and geometry. There are no changes to the presently licensed standard radiation patterns, therefore, a site survey is not included. A License Application employing Moment Method Modeling as set forth in Section 73.151(C) has been done to license Radio Station WPOM under the new rules.

REFERENCE POINTS

Reference Points were measured at pattern minima and maxima for the Directional modes of operation.

These Points and their measured field intensity are shown in Figure 13.

CALCULATION OF SAMPLING LOOP LOCATIONS

All five (5) towers are identical in face width and cross section geometry. Towers 1-4 are physically 163.0° and tower 5 is 80.0°. Figure 14 shows calculation of currents for the two heights based upon minimum radiation, which is the location of the sampling loops. These locations are 1/3 the physical height of the towers, which is 93 ft. above the base for towers 1-4 and 45 ft. above the base for tower 5.

ENGINEERING STATEMENT CONCERNING APPLICATION FOR LICENSE INFORMATION EMPLOYING MOMENT METHOD MODELING WPOM, 1600 KHZ, DA-2 RIVIERA BEACH, FLORIDA JANUARY, 2021

METHOD OF MOMENTS DETAIL

All Moment Method Modeling was done with Expert MININEC Broadcast Professional, Version 23. One wire was used to represent each tower. Towers were driven individually to verify the Model compared to measured impedance data. Once the Model was verified, both the Day and Night Directional Antenna Systems were computed. For Directional modes, the complex voltage values for sources located at ground level were computed. These sources produce current moment sums for each Tower that, when normalized, equate to the Theoretical Field Parameters for each respective Tower.

MEASURING EQUIPMENT AND PERSONNEL

All Tower Resistance and Reactance measurements were made with a HP8753ES Network Analyzer and Tunwall directional coupler. Before use, tests of known impedances were made to verify operation. All Field Intensity Measurements were made with a Potomac Instruments Field Intensity Meter, model PI 4100, Serial Number 249, calibrated on January 21, 2016. The meter was calibrated by Potomac Instruments, Frederick, Maryland. The meter was compared to a Potomac Instruments PI 4100, Serial Number 134, calibrated on June 19, 2019, and agreed. All measurements were taken by Phasetek Inc. personnel supervised by Kurt Gorman of Phasetek Inc.

CONCLUSION

It is believed that the WPOM Antenna System has been constructed and adjusted in accordance with all applicable Commission rules and regulations. The foregoing was prepared on behalf of Caribbean Media Group, Inc., under the immediate supervision of Kurt Gorman, Phasetek Inc., Quakertown, Pennsylvania, whose qualifications are a matter of record with the Federal Communications Commission. The statements herein are true and correct of his knowledge, except such statements made on information and belief, and as to these statements he believes them to be true and correct.

ENGINEERING STATEMENT CONCERNING
APPLICATION FOR LICENSE INFORMATION
EMPLOYING MOMENT METHOD MODELING
WPOM, 1600 KHZ, DA-2
RIVIERA BEACH, FLORIDA
JANUARY, 2021

Kurt Gorman, President Phasetek Inc.

Quakertown, Pennsylvania

FIGURE 1

ANTENNA SYSTEM AS ADJUSTED

APPLICATION FOR LICENSE INFORMATION EMPLOYING MOMENT METHOD MODELING WPOM, 1600 KHZ, DA-2 RIVIERA BEACH, FLORIDA JANUARY, 2021

ANTENNA SYSTEM DESCRIPTION

- 1. The Antenna System consists of five (5), vertical steel transmitting Towers. All Towers are uniform cross section and guyed. Towers 1-4 stand 84.8M (163.0°) above their Base Insulators. Tower 5 stands 41.6M (80.0°) above the base insulator. The Towers are arranged with Tower 1 as a reference; Tower 2 is spaced 97,36° on a bearing of 278.39°T. Tower 3 is spaced 245.74° on a bearing of 350.48°T. Tower 4 is spaced 273.09° on a bearing of 320.35°T. Tower 5 is spaced 190.35° on a bearing of 34.33°T. Towers 1-4 have aviation obstruction lighting. The feeds for the lighting are isolated at the base with cokes. All towers have a 12" by 48" rigid, fixed mount sampling loop. The feed for these loops is isolated at the base with an isolation inductor.
- 2. The Ground System for each Tower remains as currently licensed. This consists of (120) equally spaced, buried, copper radials about the base of each tower, each 47 M in length except where terminated by property boundaries or where intersecting radials are shortened and bonded to a transverse copper strap midway between adjacent towers. In addition, (120) copper radials, 15.2 M in length, are interspersed at each tower base. Copper strap connects all Towers to the main Transmitter grounding point.
- 3. The Sampling System consists of five (5), Phasetek Inc. model P600-155-2, 12" x 48" sampling loops. All loops are mounted on the towers with an isolation inductor at each tower base. These loops are connected to a Potomac Instruments 1901-5 Antenna Monitor via five (5) equal lengths of Andrew, LDF2-50, 3/8" phase stabilized foam coaxial cable (tower) and Cablewave FCC-38-50J 3/8" phase stabilized foam coaxial cable (tower to building).

FIGURE 1 ANTENNA SYSTEM AS ADJUSTED

APPLICATION FOR LICENSE INFORMATION EMPLOYING MOMENT METHOD MODELING CONTINUED WPOM, 1600 KHZ, DA-2 RIVIERA BEACH, FLORIDA JANUARY, 2021

4. Tower registration numbers:

Tower 1: 1052241

Tower 2: 1052242

Tower 3: 1052243

Tower 4: 1052244

Tower 5: 1052245

ANTENNA SYSTEM DESCRIPTION - Continued

DIRECTIONAL OPERATION (DAY)

COMMON POINT

Impedance = 50.0 - j 6.4 Ohms

Current = 10.4 Amperes

Power = 5,400 Watts

DIRECTIONAL OPERATION (NIGHT)

COMMON POINT

Impedance = 50.0 - j 6.4 Ohms

Current = 10.1 Amperes

Power = 5,076 Watts

Directional Antenna Monitor indications are within ±5% and ±3° of the modeled TCT values.

FIGURE 2 WPOM SAMPLING SYSTEM DESCRIPTION/MEASUREMENTS

APPLICATION FOR LICENSE INFORMATION EMPLOYING MOMENT METHOD MODELING WPOM, 1600 KHZ, DA-2 RIVIERA BEACH, FLORIDA JANUARY, 2021

SAMPLING SYSTEM DESCRIPTION

The Sampling System consists of Phasetek Inc. model P600-155-2 12" x 48" loops mounted on each Tower. The sampling devices are connected to the Antenna Monitor with equal lengths of Andrew LDF2-50/Cablewave FCC-38-50J. The Antenna Monitor is a Potomac Instruments Model 1901-5, Serial Number 395.

SAMPLE LINE MEASUREMENTS

Impedance measurements were made of the Antenna Sampling Lines using an HP8753ES Network Analyzer and Tunwall directional coupler. Measurements were done with the lines open circuited and then connected to the loops.

The table below shows the frequencies above and below the carrier frequency where resonance, defined as zero reactance corresponding with low resistance, was found. Frequencies of resonance occur at odd multiples of 90 degrees electrical length, the Sample Line length at the resonant frequency above the carrier frequency, which is the closest one to the carrier frequency, was found to be 450 electrical degrees. The electrical length at carrier frequency appearing in the table below was calculated by ratioing the frequencies.

SAMPLE LINE MEASUREMENTS

	Resonant Frequency (KHz) below 1600 KHz	Resonant Frequency (KHz) above 1600 KHz	Calculated Electrical Length (deg) at 1600 KHz	Measured Impedance (ohms) Connected to loop @ 1600 KHz
Tower 1	1114.4	1853.6	388.4	9.7 +j 48.1
Tower 2	1113.7	1855.5	388.0	8.6 +j 47.7
Tower 3	1110.5	1852.1	388.7	9.1 +j 48.0
Tower 4	1105.1	1854.5	388.2	9.7 +j 52.8
Tower 5	1113.1	1852.9	388.6	10.4 +j 48.7

FIGURE 2 WPOM SAMPLING SYSTEM DESCRIPTION/MEASUREMENTS

APPLICATION FOR LICENSE INFORMATION EMPLOYING MOMENT METHOD MODELING CONTINUED WPOM, 1600 KHZ, DA-2 RIVIERA BEACH, FLORIDA JANUARY, 2021

SAMPLE LINE MEASUREMENTS (CONTINUED)

To determine the characteristic impedance values of the Sample Lines, open-circuited measurements were made with frequencies offset to produce ± 45 degrees of electrical length from resonance. The characteristic impedance was calculated using the following formula, where R1 +j X1 and R2 +j X2 are the measured impedances at the +45 and -45 degree offset frequencies, respectively:

$$Z_0 = ((R_1^2 + X_1^2)^{1/2} \bullet (R_2^2 + X_2^2)^{1/2})^{1/2}$$

Tower	+ 45 Degree Offset Frequency (kHz)	+ 45 Degree Measured Impedance (Ohms)	- 45 Degree Offset Frequency (kHz)	- 45 Degree Measured Impedance (Ohms)	Calculated Characteristic Impedance (Ohms)
1	2039.0	17.2 +j 47.1	1668.2	14.8 –j 48.0	50.19
2	2041.1	10.7 +j 48.6	1670.0	8.7 -j 48.7	49.62
3	2037.3	17.9 +j 46.2	1666.9	16.0 –j 46.7	49.46
4	2040.0	10.9 +j 50.6	1669.1	8.0 -j 48.6	50.49
5	2038.2	17.6 +j 47.2	1667.6	13.7 -j 48.3	50.29

FIGURE 2 WPOM SAMPLING SYSTEM DESCRIPTION/MEASUREMENTS

APPLICATION FOR LICENSE INFORMATION EMPLOYING MOMENT METHOD MODELING CONTINUED WPOM, 1600 KHZ, DA-2 RIVIERA BEACH, FLORIDA JANUARY, 2021

ANTENNA MONITOR MEASUREMENT

Measurement of the Potomac Instruments Model 1901-5 Antenna Monitor was performed to verify calibration. A single RF Voltage was applied to the Reference Input (Tower #1) and each other Input by use of a "T" divider and equal electrical length coaxial cables. This yields the following:

Tower	Ratio	Phase
1	1.000	0.0°
2	1.006	-0.1°
3	1.006	-0.1°
4	1.005	0.0°
5	1.006	0.0°

The above is within the manufacturer's rating of \pm 1.0% and \pm 1.0°.

FIGURE 3 WPOM TOWER IMPEDANCE MEASUREMENTS COMPARED TO METHOD OF MOMENTS MODEL

TOWER	Specified	Measured	Measured	Modeled	Modeled	Measured
	Cs (pf)	L _ε (μΗ)	$X_{F}(\Omega)$	$Z_{ANT}(\Omega)$	Z_{ATU} (Ω)	$Z_{ATU}(\Omega)$
1	14	2.49	+j25.0	299.8 –j 445.9	313.8 –j 423.1	309.1 –j 424.5
2	14	2.49	+j25.0	330.5 –j 477.0	347.3 –j 454.4	344.0 –j 459.0
3	14	2.49	+j25.0	317.1 <i>-</i> j 451.6	332.2 –j 428.3	337.0 –j 421.0
4	14	2.49	+j25.0	346.1 –j 501.4	364.9 –j 479.4	362.0 –j 465.4
5	14	3.68	+j37.0	30.1 –j 12.7	30.0 +j 24.2	28.8 +j 25.6
Tower	Calcul	lated X _{OC} (Ω)				
1 2 3 4 5	+j : +j : +j :	16,050.9 16,050.9 16,050.9 16,050.9 7,105.1				

FIGURE 4 WPOM MOMENT MODEL PARAMETERS

APPLICATION FOR LICENSE INFORMATION EMPLOYING MOMENT METHOD MODELING WPOM, 1600 KHZ, DA-2 RIVIERA BEACH, FLORIDA JANUARY, 2021

Tower#	Wire #	# of Segments	Base Node	Loop Node
1	1	24	1	9
2	2	24	25	33
3	3	24	49	57
4	4	24	73	81
5	5	12	97	101

Tower #	Physical Height Degrees	Modeled Height Degrees	Modeled Radius Meters	% of Equivalent Radius
1	163.0	177.0	.2911	100.0
2	163.0	179.0	.2911	100.0
3	163.0	182.0	.2911	100.0
4	163.0	182.0	.2911	100.0
5	80.0	82.5	.2911	100.0

Towers are uniform cross section, guyed with Base Insulator. All towers are three (3) sided with a 24" face width.

Base Insulators for towers 1-4 were manufactured by Utility and the base insulator for tower 5 was manufactured by Decca-Austin. All base insulators have an assumed capacity of 14pf (-j7,105.1 ohms @ 1600 kHz). All towers have a sampling line isolation inductor with resonating capacitor. These measure greater than 100,000 ohms at 1600 kHz, and are not included in the model.

Towers 1-4 have a tower lighting choke. These measure +j4,900.0 ohms @ 1600 kHz.

WPOM	TOWER	1	(OTHERS	OPEN)
-------------	-------	---	---------	-------

FO		

Wire coordinates in degrees; other dimensions in meters Environment: perfect ground

wire	caps	Distance	Angle	Z	radius	segs
1	none	0	0	0	.2911	24
		0	0	177.		
2	none	97.36	278.393	0	.2911	24
_		97.36	278.393	179.	2244	
3	none	245,741.	350.483	0	.2911	24
		245,741.	350.483	182.	2011	24
4	none	273.09	320.347	0	.2911	24
-		273.09	320.347	182.	2011	12
5	none		34.33	0 -	.2911	12
		190.352	34.33	82.5		

Number of wires current nodes = 108

	mini	mum	maximum		
Individual wires	wire	value	wire	value	
segment length	5	6.875	3	7.58333	
radius	1	.2911	1	.2911	

ELECTRICAL DESCRIPTION Frequencies (MHz)

	frequency		no. of	segment 1	ength (wavelengths)
no.	lowest	step 0	steps 1	minimum .0190972	maximum .0210648

Sources

Jour CC3				
source node	sector	magnitude	phase	type
1 1	1	1.	Ò	voltage

Lumped loads

•		resistance	reactance	inductance	capacitance	nacciva
load	node	(ohms)	(ohms)	(mH)	(uF)	circuit
1	25	0	16,050.9	0	Ó	0
2	49	0	16,050.9	0	0	0
3	73	0	16,050.9	0	0	0
4	97	0	-7.105.1	0	0	0

IMPEDANCE

	lization	= 50.					
freq	resist	react	imped	phase	VSWR	S11	S12
(MHZ)	(ohms)	(ohms)	(ohms)	(deg)		dB	dB
source =	: 1; node	1, sect	or 1	. 3,			-
1.6	299.75	-445.91	537.3	303.9	19.377	8973	-7.2894

	WPOM	TOWER	2	(OTHERS	OPEN
--	-------------	--------------	---	---------	-------------

-	_	-		-		
(4	-	0	M	F٦	R	Y

Wire coordinates in degrees; other dimensions in meters Environment: perfect ground

wire	caps	Distance	Angle	Z	radius	segs
1	none	0	0	0	.2911	24
		0	0	177.		
2	none	97.36	278.393	0	.2911	24
		97.36	278.393	179.		
3	none	245,741.	350.483	0	.2911	24
		245,741.	350.483	182.		
4	none	273.09	320.347	0	.2911	24
		273.09	320.347	182.		
5	none	190.352	34.33	0	.2911	12
		190.352	34.33	82.5		

Number of wires = 5 current nodes = 108

	mini	mum	max	imum
Individual wires	wire	value	wire	value
segment length	5	6.875	3	7.58333
radius	1	.2911	1	.2911

ELECTRICAL DESCRIPTION Frequencies (MHz)

	frequency		no. of	segment lengt	h (wavelengths)
no.	lowest	step	steps	minimum	maximum
1	1.6	0	1	.0190972	.0210648

Sources

source	node	sector	magnitude	phase	type
1	25	1	1.	0	voltage
					-

Lumped loads

load	node	resistance (ohms)	reactance (ohms)	inductance (mH)	capacitance (uF)	passive circuit
1	1	0	16,050.9	0	0	0
2	49	0	16,050.9	0	0	0
3	73	0	16,050.9	0	0	0
4	97	0	-7,105.1	0	0	0

IMPEDANCE

norma	lization :	= 50.					
freq	resist	react	imped	phase	VSWR	S11	512
(MHZ)	(ohms)		(ohms)	(deg)		dB	dB
source =	1; node	25, sect	tor 1				
1.6	330.46	-476.99	580.28	304.7	20.482	84884	-7.5071

WPOM TOWER 3 (OTHERS OPEN)		
GEOMETRY Wire coordinates in degrees; other dim Environment: perfect ground	mensions in mete	ers
1 none 0 0 0	0 .29	lius segs 21 24
2 none 97.36 278.393		24
3 none 245,741. 350.483		911 24
4 none 273.09 320.347		911 24
5 none 190.352 34.33	182. 0 .29 82.5	911 12
Number of wires = 5 current nodes = 108		
Individual wires wire value segment length 5 6.875 radius 1 .2911 ELECTRICAL DESCRIPTION Frequencies (MHZ)	wire 3 1	7.58333 .2911
frequency no. of no. lowest step steps 1 1.6 0 1	minimum .0190972	n (wavelengths) maximum .0210648
Sources source node sector magnitude 1 49 1 1.	phase 0	type voltage
Lumped loads resistance reactance load node (ohms) (ohms) 1 1 0 16,050.9 2 25 0 16,050.9 3 73 0 16,050.9 4 97 0 -7,105.1	inductance (mH) 0 0 0	capacitance passive (uF) circuit 0 0 0 0 0 0 0 0
(MHz) (ohms) (ohms) (ohms) (source = 1; node 49, sector 1	hase VSWR (deg) 05.1 19.31	S11 S12 dB dB 90041 -7.2759

WPOM TOWER 4 (OTHERS OPEN)							
GEOMETRY							
Wire coordin	nates in degree : perfect groun	es; other di nd	mensions i	n mete	rs		
wire caps of none (0	ngle	z 0	rad .29		segs 24	
2 none	0 97.36 2	78.393	177. 0	.29	11	24	
3 none :	245.741.	78.393 50.483	179. 0	.29	11	24	
4 none	273.09	50.483 20.347	182. 0	.29	11	24	
5 none	190.352 3	20.347 4.33 4.33	182. 0 82.5	.29	11	12	
Number of w		= 5	02.3				
	urrent nodes	-					
Individual segment len radius	wires wir	inimum e value 6.875 .2911		max wire 3 1	imum value 7.58333 .2911		
ELECTRICAL DESCRIPTION Frequencies (MHz) frequency no.lowest 1 1.6 0 frequency no.lowest 1 0.0190972 0210648							
Sources source node 1 73	sector ma 1 1.	gnitude	phase 0		type voltage		
Lumped load	s resistance	reactance	induct	ance	capacita	nce passive	
load node 1 1 2 25 3 49 4 97	(ohms) 0 0 0	(ohms) 16,050.9 16,050.9 16,050.9 -7,105.1	(mH) 0 0 0 0	currec	(uF) 0 0 0	circuit 0 0 0 0	
	cation = 50.	imped	nhase V	SWP	S 11	51 2	

imped (ohms)

resist react

(MHz) (ohms) (ohms) (ohms) source = 1; node 73, sector 1 1.6 346.08 -501.44 609.27

phase (deg)

304.6

S12

dB

S11

21.551 -.80667 -7.708

VSWR

freq (MHz)

WPOM	TOWER	5	(OTHERS	OPEN)
------	-------	---	---------	-------

GEOMETRY	G	E	O	V	E	Г	R	Y
----------	---	---	---	---	---	---	---	---

Wire coordinates in degrees; other dimensions in meters Environment: perfect ground

wire	caps Dista	ance Angle	Z	radius	
1	none 0	0	0	.2911	24
2	none 97.3	6 278.393	177.	.2911	24
-	97.3	278.393	179.	2011	24
3	none 245, 245,		182.	.2911	24
4	none 273.	09 320.347	0	.2911	24
5	273. none 190.		182.	.2911	12
,	190.		82.5	.2311	1.6

wires = 5 current nodes = 108 Number of wires

	mini	mum	max	imum
Individual wires	wire	value	wire	value
segment length	5	6.875	3	7.58333
radius	1	.2911	1	.2911

ELECTRICAL DESCRIPTION Frequencies (MHz)

	frequency		no. of	segment lengt	h (wavelengths)
no.	lowest	step	steps	minimum	maximum
1	1.6	0	1	.0190972	.0210648

Sources

source	node	sector	magnitude	phase	type
1	97	1	1.	Ò	type voltage

Lumped loads

		resistance	reactance	inductance	capacitance	passive
load	node	(ohms)	(ohms)	(mH)	(uF)	circuit
1	1	0	16,050.9	Ò	0	0
2	25	0	16.050.9	0	0	0
3	49	0	16.050.9	0	0	0
4	73	0	16.050.9	0	0	0

IMPEDANCE

normaliza	tion = 50 .					
freq res	ist react	imped	phase	VSWR	S11	S12
(MHz) (oh	ms) (ohms)	(ohms)	(deg)		dB	dB
source = 1;	node 97, sec	tor 1				
1.6 30	097 -12 741	32 683	337 1	1 8224	-10 711	- 38533

FIGURE 6 WPOM MOMENT MODEL ARRAY SYNTHESIS (DIRECTIONAL - DAY)

WPOM DAY

MEDIUM WAVE ARRAY SYNTHESIS FROM FIELD RATIOS

Frequency = 1.6 MHz

```
field ratio
                              phase (deg)
0
          magnitude
tower
 12345
                              0
96.5
-.1
19.1
46.4
          .834
          .31
.336
.419
```

VOLTAGES AND CURRENTS - rms

source	voltage		current		
node	magnitude	phase (deg)	magnitude	phase (deg)
1	1,969.46	71.6	3.74238	125.	
25	1,349.54	182.	1.1371	254.8	
49	562.942	73.8	1.02034	128.8	
73	552.06	107.1	.603123	190.3	
97	126.053	297.2	5.52481	45.4	
		cource currents		73.7	

Sum of square of source currents = 94.4537 Total power = 5,000. watts

TOWER ADMIT	TANCE MATRIX	
admittance	real (mhos)	imaginary (mhos)
Y(1, 1) Y(1, 2) Y(1, 3)	.00128173	.00129762
Y(1, 2)	.000613854	000214045
Y(1, 3)	-5.7338E-09	-3.7088E-07
Y(1, 4)	000360777	000224433
Y(1, 5)	.00222827	.00012224
	.000613852	000214051
Y(2, 2)	.00099238	.00132238
Y(2, 3)	3.7076E-07	-4.2206E-07
Y(2, 4)	000328783	000447235
Y(2, 5)	.000940523	00131043
Y(3, 1)	-5.738E-09	-3.7088E-07
Y(2, 1) Y(2, 2) Y(2, 3) Y(2, 4) Y(2, 5) Y(3, 1) Y(3, 2) Y(3, 3) Y(3, 4) Y(3, 5)	3.7076E-07	-4.2205E-07
Y(3, 3)	.00104142	.00148313
Y(3, 4)	-3.4632E-07	3.8749E-07
Y(3, 5)	-1.3365E-06	1.8398E-06
Y(4, 1)	000360778	000224432
Y(4, 2)	000328784	000447233
Y(4, 1) Y(4, 2) Y(4, 3) Y(4, 4)	-3.4632E-07	3.8749E-07
Y(4, 4)	.000847826	.00156842
Y(4, 5)	000148172	0021174
Y(5, 1)	.00222832	.000122274
Y(4, 5) Y(5, 1) Y(5, 2) Y(5, 3)	.000940564	00131043
Y(5, 3)	-1.3365E-06	1.8398E-06
Y(5, 4)	000148118	00211744
Y(5, 5)	.0267399	.0121996

NCE MATRIX	
real (ohms)	imaginary (ohms)
301.58	-445.063
90.1149	148.751
.106007	00126391
7.46093	-47.5102
-14.6951	41.9254
90.1135	148.752
330.195	-476.473
	real (ohms) 301.58 90.1149 .106007 7.46093 -14.6951 90.1135

Z(2, 3) Z(2, 4) Z(2, 5) Z(3, 1) Z(3, 2) Z(3, 3) Z(3, 4) Z(4, 1) Z(4, 2) Z(4, 2) Z(4, 3) Z(4, 4) Z(4, 5) Z(4, 5) Z(5, 1) Z(5, 2) Z(5, 3) Z(5, 4)	.140601 133.073 23.1338 .106006 .140601 317.097 113759 0375645 7.46053 133.074 113759 343.971 48.8948 -14.6943 23.1339 0375641 48.8943	.0347312 -108.431 19.516 00126407 .0347305 -451.591 103111 0315412 -47.5104 -108.431 103111 -501.437 16.4135 41.9246 19.5153 0315412
Z(5, 4) Z(5, 5)	48.8943 30.1812	-12.7862

FIGURE 7 WPOM MOMENT MODEL SUMMARY FOR DIRECTIONAL DAY MODE

WPOM DAY

WPOM	DAY						
GEOME Wire Envir	TRY coordinates i onment: perfe	n degrees ct ground	; other d	imensions	in mete	rs	
wire 1	caps Distand	0	1e	Z 0	rad .29	ius 11	segs 24
2	none 97.36 97.36		.393 .393	177. 0 179.	.29	11	24
3	none 245,741 245,741	L. 350	.483 .483	0 182.	.29	11	24
4	none 273.09 273.09	320	.347	0 182.	.29	11	24
5	none 190.357 190.357	34.	33	0 82.5	.29	11	12
Numbe	er of wires current	nodes =	5 108				
	vidual wires ent length us	min wire 5 1	imum value 6.875 .2911		max wire 3 1	rimum value 7.58333 .2911	
Frequ	TRICAL DESCRI Jencies (MHz) frequency lowest 1.6	step	no. o steps 1		ım	n (wavele maximum .021064	
source source 1 2 3 4 5		2,78	731	phase 71.6 182. 73.8 107.1 297.2		type voltage voltage voltage voltage voltage	
freq (MHZ	DANCE ormalization resist) (ohms) ce = 1; node 313.76	react (ohms)	1	phase (deg) 306.6	VSWR	S11 dB 97937	S12 dB -6.9489
	ce = 2; node		or 1				
	ce = 3; node		or 1	305.1		90095	
sour 1.6	ce = 4; node 107.93	73, secto -908.95		276.8	155.71	11157	-15.958

source = 5; node 97, sector 1 1.6 -7.1251 -21.675 22.816 251.8 **** ****

CURRENT rms = 1.6 MHzFrequency Input power = 5,000. watts Efficiency = 100. % coordinates in degrees phase real imaginary mag current (deg) (amps) (amps) Z (amps) no. 3.74239 125. 99.7 -2.14645 3.06566 0 0 GND 0 2 -.424696 0 0 7.375 2.52026 2.48422 2.08487 3 0 0 14.75 2.19884 71.5 .698725 22.125 2.40295 45.5 4 0 0 1.71532 1.6828 2.90672 3.51696 28. 0 0 29.5 2.56728 3.36421 1.36312 567 36.875 0 16.9 0 1.02523 4.13494 .702483 0 0 44.25 9.8 4.07483 4.71313 .397212 4.8 4.69636 8 0 0 51.625 9 Ö 5.22582 0 59. 5.22462 .112389 66.375 73.75 -.148825 10 0 5.65713 358.5 0 5.65517 356.3 354.6 353.1 5.99632 6.23594 5.98406 6.20812 11 0 0 -.383342 81.125 0 12 0 -.58831 13 88.5 6.37098 6.32534 -.76123 0 0 6.33485 6.23715 -.900042 14 95.875 0 0 6.39847 351.9 0 6.31731 6.12809 15 0 350.9 103.25 -1.00317 16 17 349.9 0 0 110.625 6.03403 -1.06955 118. 5.83297 5.43554 5.72856 5.32502 0 0 349.1 -1.0986818 0 0 125.375 348.4 -1.09053347.8 347.2 -1.04559 19 0 0 132.75 4.94055 4.82864 20 0 0 4.35364 4.2454 140.125 -.96475 21 0 0 147.5 3.68068 346.7 3.5814 -.849109 346.2 345.7 154.875 162.25 2.92675 2.09329 22 0 0 2.84187 -.699725 23 0 0 2.02848 -.516829 345.3 24 0 169.625 0 1.17139 1.13287 -.297957 END 177. 0 14.2109 14.2109 14.2109 254.8 96.3173 GND 1.1371 -.298858 -1.0971326 27 96.3173 .375068 7.45833 155.8 -.342005 .153976 96.3173 -.37106 .972966 14.9167 1.04132 110.9 28 14.2109 96.3173 22.375 1.7371 103.2 -.397146 1.69109 14.2109 2.37441 29 96.3173 29.8333 100.2 -.420919 2.33681 14.2109 14.2109 14.2109 14.2109 14.2109 14.2109 14.2109 14.2109 14.2109 30 96.3173 37.2917 2.91837 2.95169 98.6 -.442256 96.3173 31 97.6 44.75 3.46691 -.460706 3.43616 96.3173 96.3173 96.3173 97. 96.5 32 52.2083 3.91667 -.475693 3.88768 33 4.297 59.6667 -.486618 4.26936 34 67.125 96.1 95.9 4.57756 4.60402 -.492916 35 96.3173 74.5833 4.83429 -.494101 4.80898 36 4.98513 96.3173 82.0417 95.6 -.489798 4.96101 96.3173 96.3173 96.3173 95.4 95.3 37 5.03189 89.5 5.05471 -.479767 38 96.9583 5.04225 -.463913 5.02086 4.94798 39 104.417 95.1 -.442297 4.92817 14.2109 111.875 95. -.415132 40 4.77322 4.75514 96.3173 14.2109 14.2109 14.2109 14.2109 14.2109 96.3173 119.333 126.792 41 4.52033 94.9 -.382781 4.50409 96.3173 96.3173 96.3173 4.19259 3.79413 3.32961 42 94.7 4.17831 -.345738 43 134.25 141.708 94.6 -.304613 3.78188 44 3.31944 2.7958 94.5 -.260091 94.4 45 96.3173 149.167 2.80389 -.2129 14.2109 14.2109 14.2109 14.2109 46 96.3173 156.625 2.22109 94.2 -.163728 2.21505 96.3173 96.3173 96.3173 164.083 47 1.58264 94.1 -.113083 1.57859 48 171.542 .882132 94. -.0609526 .880024 END 179. 0 0 0 242,359. 242,359. 242,359. 128.8 **GND** 40,630.9 1.02035 -.638686 .79573 50 40,630.9 7.58333 .660016 -.1317 101.5 .646743 51 52 53 .580077 69.6 40,630.9 15.1667 .202628 .543535 242,359. 242,359. 242,359. 242,359. 242,359. 242,359. 40,630.9 42. 22.75 .66904 .497158 .447715 30.3333 37.9167 40,630.9 .84228 25. .763288 .356128 54 1.03938 1.23376 40,630.9 14.9 1.00422 .268054 55 45.5 40,630.9 8.6 1.22 .18374 56 40,630.9 53.0833 1.41332 4.2 1.40951 .103818 57 40,630.9 60.6667 1.57148 1.57122 1.1 .029078 242,359. 58 40,630.9 68.25 1.70405 358.7 1.70359 -.0396375 59 242,359. 40,630.9 75.8333 1.80806 356.8 1.80521 -.101504 242,359. 40,630.9 83.4167 1.88146 355.3 1.875 -.155753

```
242,359.
242,359.
                                                                354.
                                                                          1.9122
                                                                                        -.201701
 61 .
                       40,630.9
                                                   1.92281
                                                                                        -.238773
                                                                352.9
                       40,630.9
                                     98.5833
                                                   1.93126
                                                                          1.91645
 62
                                                                352.
 63
         242,359.
                       40,630.9
                                     106.167
                                                   1.90657
                                                                          1.88785
                                                                                        -.266511
                                                                                        -.284592
                                                    1.84895
 64
         242,359.
                       40,630.9
                                     113.75
                                                                351.1
                                                                          1.82691
         242,359.
242,359.
242,359.
242,359.
242,359.
242,359.
242,359.
                                                   1.75913
                                                                350.4
                                                                          1.73459
                                                                                        -.292825
 65
                       40,630.9
                                     121.333
                       40,630.9
40,630.9
40,630.9
 66
                                     128.917
                                                    1.63827
                                                                349.8
                                                                          1.61219
                                                                                        -.291152
                                                    1.48793
                                                                349.2
                                                                          1.46142
                                                                                        -.279643
                                     136.5
 67
                                                                                        -.25847
                                     144.083
                                                    1.3099
                                                                          1.28415
 68
                                                                348.6
                                                                                        -.227875
 69
                                                                          1.08241
                       40,630.9
                                     151.667
                                                    1.10613
                                                                348.1
                                     159.25
                                                                347.6
                                                                          .857927
 70
                       40,630.9
                                                    .878302
                                                                                        -.188086
         242,359.
242,359.
242,359.
210.258
                                                                          .611433
                                                                                        -.139116
                       40,630.9
                                     166.833
                                                    .627059
                                                                347.2
 71
                       40,630.9
40,630.9
174.269
 72
                                     174.417
                                                    .349974
                                                                346.7
                                                                          .340647
                                                                                        -.0802596
                                                    0
                                     182.
END
                                                                190.3
GND
                                                    .603126
                                                                          -.593386
                                                                                        -.107956
                       174.269
174.269
174.269
174.269
174.269
         210.258
                                                                155.8
                                                                          -.098102
                                                    .107544
                                                                                        .0440641
 74
                                      7.58333
         210.258
210.258
210.258
210.258
210.258
                                                                                        .144225
 75
                                     15.1667
                                                                          .229657
                                                    .271189
                                                                32.1
                                                                24.1
                                                                          .519505
                                                                                        .232366
 76
77
                                                    .569104
                                      22.75
                                      30.3333
37.9167
                                                    .84236
                                                                           .782493
                                                                                        .311891
 78
                                                    1.09133
                                                                20.6
                                                                          1.02164
                                                                                         .38374
                                                                          1.23684
                                                                                        .4479
 79
                        174.269
                                      45.5
                                                    1.31544
                                                                19.9
         210.258
210.258
210.258
210.258
210.258
210.258
210.258
                       174.269
174.269
174.269
174.269
174.269
                                                    1.51325
                                                                19.5
                                                                                        .504005
                                      53.0833
                                                                          1.42685
 80
                                                                19.1
 81
                                      60.6667
                                                    1.68297
                                                                          1.59002
                                                                                         .551566
                                                                18.9
18.7
                                                                                         .590077
                                     68.25
                                                    1.82278
 82
                                                                          1.72462
                                                    1.93102
2.00634
2.04772
                                      75.8333
                                                                          1.82909
 83
                                                                                         .619081
 84
                                                                18.5
                                                                          1.90213
                                      83.4167
                                                                                         .638198
                                                                                         .647161
 85
                        174.269
                                                                18.4
                                                                          1.94277
                                      91.
         210.258
210.258
210.258
210.258
210.258
                       174.269
174.269
174.269
174.269
                                      98.5833
                                                    2.05458
                                                                          1.95044
                                                                                         .645816
 86
                                                                18.3
                                      106.167
113.75
                                                    2.02677
1.96459
 87
                                                                18.2
                                                                          1.92501
                                                                                         .634146
                                                                                         .612261
 88
                                                                18.2
                                                                          1.86675
 89
                                      121.333
128.917
                                                    1.86878
1.7405
                                                                 18.1
                                                                           1.77637
                                                                                         .580403
 90
                                                                           1.65496
                        174.269
                                                                 18.
                                                                                         .538933
 91
          210.258
                                                    1.58127
                                                                                         .488317
                        174.269
                                      136.5
                                                                18.
                                                                          1.50398
         210.258
210.258
210.258
210.258
                        174.269
 92
                                      144.083
                                                                17.9
                                                                           1.32509
                                                    1.39284
                                                                                         .429098
                       174.269
174.269
174.269
 93
                                                                           1.12008
                                      151.667
                                                    1.17708
                                                                17.9
                                                                                         .361841
 94
                                      159.25
                                                    .935571
                                                                17.9
                                                                           .890454
                                                                                         .287027
 95
                                      166.833
                                                    .668772
                                                                 17.8
                                                                           .636644
                                                                                         .204793
 96
          210.258
                        174.269
                                      174.417
                                                                 17.8
                                                                           .355923
                                                                                         .114265
                                                    .373815
                        174.269
END
          210.258
                                      182.
                       -107.351
-107.351
-107.351
-107.351
-107.351
          157.193
157.193
157.193
157.193
                                                                 45.4
GND
                                                    5.52482
                                                                           3.87767
                                                                                         3.9354
                                      0
                                                    5.38162
 98
                                      6.875
                                                                 45.8
                                                                           3.75308
                                                                                         3.85697
                                                                                         3.74232
                                                    5.20216
4.95827
                                                                 46.
 99
                                      13.75
                                                                           3.61351
 100
                                                                 46.2
                                      20.625
                                                                                         3.57819
                                                                           3.43234
          157.193
 101
                                      27.5
                                                    4.64939
                                                                           3.20858
                                                                                         3.36479
                                                                 46.4
                                                                                         3.10365
 102
          157.193
                        -107.351
                                      34.375
                                                                           2.94331
                                                    4.27734
                                                                 46.5
          157.193
157.193
157.193
 103
                        -107.351
                                      41.25
                                                    3.84519
                                                                                         2.79697
                                                                 46.7
                                                                           2.63864
                        -107.351
-107.351
                                                    3.35659
 104
                                      48.125
                                                                 46.8
                                                                           2.29717
                                                                                         2.44739
 105
                                                                 47.
47.1
                                      55.
                                                    2.81522
                                                                           1.92157
                                                                                         2.05744
                                      61.875
                                                                                         1.62908
 106
          157.193
                        -107.351
                                                    2.22395
                                                                           1.51396
          157.193
157.193
157.193
                                                    1.58267
 107
                        -107.351
                                                                 47.2
                                                                           1.0745
                                      68.75
                                                                                         1.16202
 108
                        -107.351
                                      75.625
                                                     .883497
                                                                 47.4
                                                                           .598133
                                                                                         .650235
END
                        -107.351
                                      82.5
                                                                 0
                                                                                         0
```

FIGURE 8 WPOM MOMENT MODEL ARRAY SYNTHESIS (DIRECTIONAL - NIGHT)

WPOM NIGHT

MEDIUM WAVE ARRAY SYNTHESIS FROM FIELD RATIOS

Frequency = 1.6 MHz

```
field ratio
tower
         magni tude
                          phase (deg)
         1.
         .526
 2
                          165.1
 3
                          -56.
         .182
                          -146.1
 5
         .185
                          128.2
VOLTAGES AND CURRENTS - rms
source voltage
                                           current
                                                            phase (deg)
         magnitude 2,028.22
                          phase (deg)
node
                                           magnitude
                                           3.48235
                                                             132.8
                                           1.67638
 25
         1,056.33
                          258.5
                                                             354.4
                          18.
         998.728
 49
                                           1.80971
                                                             72.9
 73
                          282.2
         261.451
                                            .485109
                                                             293.8
                          239.2
 97
         62.4267
                                           2.29297
                                                             127.
Sum of square of source currents = 47.4102
Total power = 4,700. watts
TOWER ADMITTANCE MATRIX
                                       imaginary (mhos)
.00129762
admittance
                 real (mhos)
Y(1, 1)

Y(1, 2)

Y(1, 3)

Y(1, 4)

Y(1, 5)

Y(2, 1)

Y(2, 2)

Y(2, 3)

Y(2, 5)

Y(3, 2)

Y(3, 3)

Y(3, 3)

Y(3, 4)

Y(4, 5)

Y(4, 5)

Y(4, 5)

Y(4, 5)

Y(5, 2)

Y(5, 3)

Y(5, 4)
                 .00128173
                                        -.000214045
                 .000613854
                 -5.7338E-09
                                        -3.7088E-07
                 -.000360777
                                        -.000224433
                 .00222827
                                        .00012224
                 .000613852
                                        -.000214051
                 .00099238
                                        .00132238
                                        -4.2206E-07
                 3.7076E-07
                 -.000328783
                                        -.000447235
                                        -.00131043
                 .000940523
                 -5.738E-09
                                        -3.7088E-07
                 3.7076E-07
                                        -4.2205E-07
                  .00104142
                                        .00148313
                 -3.4632E-07
                                        3.8749E-07
                 -1.3365E-06
                                        1.8398E-06
                 -.000360778
                                        -.000224432
                 -.000328784
                                        -.000447233
                 -3.4632E-07
                                        3.8749E-07
                 .000847826
                                        .00156842
Y(4,
Y(5,
Y(5,
Y(5,
Y(5,
Y(5,
                 -.000148172
                                        -.0021174
                  .00222832
                                        .000122274
                 .000940564
                                        -.00131043
                 -1.3365E-06
                                        1.8398E-06
                                        -.00211744
                 -.000148118
       5)
                  .0267399
                                        .0121996
 TOWER IMPEDANCE MATRIX
                 real (ohms)
301.58
 impedance
                                        imaginary (ohms) -445.063
Z(1, 1)
Z(1, 2)
Z(1, 3)
Z(1, 4)
                 90.1149
                                        148.751
                  .106007
                                        -.00126391
z(1,
z(1,
                  7.46093
                                        -47.5102
```

41.9254

-14.6951

· Z(2, 1) Z(2, 2) Z(2, 3) Z(2, 4) Z(2, 5) Z(3, 1) Z(3, 2) Z(3, 3) Z(3, 4) Z(3, 5) Z(4, 1) Z(4, 2) Z(4, 3) Z(4, 4)	90.1135 330.195 .140601 133.073 23.1338 .106006 .140601 317.097 113759 0375645 7.46053 133.074 113759 343.971	00126407 .0347305 -451.591 103111 0315412 -47.5104
	113759	103111
z(5, 1) z(5, 2) z(5, 3)	-14.6943 23.1339 0375641	
z(5, 4) z(5, 5)	48.8943 30.1812	16.4119 -12.7862

```
CURRENT rms
               = 1.6 MHz
Frequency
Input power = 4,700. watts
Efficiency = 100. %
coordinates in degrees
current
                                               mag
                                                          phase
                                                                   real
                                                                                imaginary
                                                                   (amps)
-2.36436
-.55803
                                                           (deg)
no.
                                               (amps)
                                                                                 (amps)
                                               3.48236
GND
        0
                     0
                                  0
                                                           132.8
                                                                                2.55668
                                                          105.1
70.2
                                  7.375
 2
         0
                     0
                                               2.14158
                                                                                 2.0676
 3
                                  14.75
                                               1.84142
                                                                    .622814
                                                                                1.7329
                     0
         0
                                                                                1.42425
 4
         0
                     0
                                  22.125
                                               2.18675
                                                           40.6
                                                                    1.65933
 5
                                                           23.6
                     0
                                  29.5
                                               2.82891
                                                                    2.59298
                                                                                1.13101
                                  36.875
                     0
                                               3.53984
                                                           13.9
                                                                                .850432
         0
                                                                    3.43616
 78
                                               4.23023
                                                           7.9
         0
                     0
                                  44.25
                                                                   4.18987
                                                                                 .582983
                     0
                                  51.625
                                               4.86212
                                                           3.9
                                                                    4.85088
                                                                                 .330392
 9
         0
                     0
                                  59.
                                               5.41528
                                                                    5.41445
                                                                                 .0949229
                                                                                -.120987
                     0
                                  66.375
                                               5.87686
                                                           358.8
                                                                    5.87561
 10
         0
 11
                     0
                                  73.75
                                                           357.1
355.7
                                                                    6.22992
                                               6.23787
                                                                                -.314932
                                  81.125
 12
                                               6.49191
                                                                                -.48467
         0
                                                                    6.47379
 13
         0
                      0
                                  88.5
                                               6.63467
                                                           354.6
                                                                    6.60486
                                                                                -.628212
                                                           353.6
352.7
 14
         0
                      0
                                  95.875
                                               6.66373
                                                                    6.62208
                                                                                -.743885
                      0
                                               6.57843
 15
                                  103.25
                                                                    6.52582
                                                                                 -.830364
         0
                      0
                                               6.37982
                                                           352.
                                                                    6.3179
 16
         0
                                  110.625
                                                                                -.886735
                      0
                                  118.
                                                           351.4
 17
         0
                                               6.0705
                                                                    6.00154
                                                                                 -.912459
                                  125.375
 18
                                               5.65452
                                                           350.8
                                                                    5.58124
                                                                                 -.907403
 19
                      0
                                   132.75
                                               5.13714
                                                           350.2
                                                                                -.871786
         0
                                                                    5.06263
                                               4.52448
                                                                                -.806139
 20
                      0
                                                           349.7
         0
                                   140.125
                                                                    4.45209
                      0
 21
         0
                                   147.5
                                               3.82294
                                                           349.3
                                                                    3.75621
                                                                                -.71116
 22
                      0
                                   154.875
                                               3.03801
2.17144
                                                           348.8
                                                                    2.98066
                                                                                 -.5875
         0
                                                           348.4
                                                                                -.435073
 23
         0
                      0
                                   162.25
                                                                    2.12741
                                                           348.
 24
                      0
                                   169.625
                                               1.21428
                                                                    1.18795
                                                                                 -.251524
                                                                                0
END
                      0
                                   177.
                                               0
                                                                    0
         14.2109
14.2109
14.2109
14.2109
                      96.3173
                                                           354.4
GND
                                               1.67639
                                                                    1.66829
                                                                                 -.164527
                      96.3173
96.3173
96.3173
 26
27
                                   7.45833
                                                .704948
                                                                    .704243
                                                                                 .0315307
                                                           2.6
                                                           68.3
                                                .173675
                                                                                 .161391
                                   14.9167
                                                                    .0641546
                                                           151.3
 28
                                   22.375
                                                .576612
                                                                    -.505884
                                                                                 .276701
 29
         14.2109
                      96.3173
                                   29.8333
                                               1.09589
                                                           159.6
                                                                    -1.02724
                                                                                 .381769
         14.2109
14.2109
14.2109
14.2109
14.2109
                      96.3173
96.3173
                                               1.57956
                                                           162.4
163.8
                                                                    -1.50559
                                                                                 .477701
 30
                                   37.2917
  31
                                                2.02088
                                                                    -1.94048
                                                                                 .564337
                                   44.75
                                               2.41571
2.7599
3.04941
                      96.3173
                                   52.2083
                                                                                 .64104
  32
                                                           164.6
                                                                    -2.3291
                                                                                 .706997
                      96.3173
96.3173
                                                           165.2
165.5
                                   59.6667
  33
                                                                    -2.66781
                                                                    -2.95283
                                                                                 .761371
                                   67.125
  34
                                                           165.8
 35
                                                                                 .803381
         14.2109
                      96.3173
                                   74.5833
                                                3.28057
                                                                    -3.18068
                      96.3173
96.3173
 36
                                                           166.
                                                                    -3.34843
         14.2109
                                   82.0417
                                                3.45034
                                                                                 .832372
         14.2109
14.2109
                                                3.55639
                                                           166.2
                                                                    -3.45386
                                                                                 .847837
  37
                                   89.5
                                                                    -3.49553
                                                                                 .849449
                      96.3173
                                                3.59726
  38
                                   96.9583
                                                           166.3
         14.2109
14.2109
                      96.3173
96.3173
                                                                    -3.47295
-3.38646
  39
                                   104.417
                                                3.5724
                                                           166.4
                                                                                 .837074
                                                3.48216
                                                           166.5
                                                                                 .81077
  40
                                   111.875
                                                                                 .770797
         14.2109
                      96.3173
                                                3.32784
                                                                    -3.23734
  41
                                   119.333
                                                           166.6
         14.2109
                      96.3173
                                   126.792
                                                3.11153
                                                                    -3.02766
                                                                                 .71758
  42
                                                           166.7
                      96.3173
                                                2.83613
  43
         14.2109
                                   134.25
                                                           166.7
                                                                    -2.76024
                                                                                 .651723
                      96.3173
                                   141.708
                                                2.50505
                                                                                 .573934
  44
         14.2109
                                                           166.8
                                                                    -2.43842
         14.2109
14.2109
14.2109
14.2109
                                                2.1219
 45
                      96.3173
                                   149.167
                                                           166.8
                                                                    -2.06574
                                                                                 .484962
                      96.3173
96.3173
                                   156.625
                                                1.68987
                                                           166.8
                                                                    -1.64533
                                                                                 .385451
  46
                                                                    -1.17828
                                                                                 .27557
  47
                                   164.083
                                                1.21008
                                                           166.8
                      96.3173
                                   171.542
                                                .677633
                                                           166.9
                                                                    -.659873
                                                                                 .154122
  48
                      96.3173
                                                                    0
         14.2109
                                   179.
 END
                                                           0
         242,359.
242,359.
242,359.
242,359.
242,359.
242,359.
                                                           72.9
                      40,630.9
                                                                    .530625
                                                1.80971
                                                                                 1.73017
 GND
                                                                                 .837661
  50
                                                           45.7
                                                                    .817523
                      40,630.9
                                   7.58333
                                                1.17048
                      40,630.9
                                   15.1667
22.75
                                                1.02883
                                                           13.7
                                                                     999441
                                                                                 .244159
  51
                                                           346.2
                                                                    1.15252
  52
                      40,630.9
                                                1.1869
                                                                                 -.283569
                                                           329.2
                                                                    1.2835
                                                                                 -.765402
  53
                                                1.49439
                      40,630.9
                                   30.3333
                      40,630.9
                                   37.9167
                                                1.84415
                                                           319.1
                                                                    1.3945
                                                                                 -1.20675
  54
  55
         242,359.
                      40,630.9
                                   45.5
                                                2.18904
                                                           312.8
                                                                    1.48595
                                                                                 -1.60743
         242,359.
                      40,630.9
                                   53.0833
                                                2.50762
                                                                    1.55764
                                                                                 -1.96518
  56
                                                           308.4
         242,359.
242,359.
242,359.
                                                           305.3
                                                                    1.60922
                      40,630.9
                                                2.78823
                                                                                 -2.27697
  57
                                   60.6667
                      40,630.9
                                   68.25
                                                3.0234
                                                           302.9
                                                                    1.64039
                                                                                 -2.5397
  58
  59
                      40,630.9
                                   75.8333
                                                3.20794
                                                           301.
                                                                    1.65096
                                                                                 -2.75049
```

```
242,359.
242,359.
242,359.
                                                         299.4
60 .
                                                                               -2.90696
                     40,630.9
                                 83,4167
                                              3.33813
                                                                  1.64095
                                                         298.2
                                                                  1.61063
                                                                               -3.00732
                     40,630.9
                                 91.
                                              3.41147
 61
                                                         297.1
                                                                               -3.0505
 62
                     40,630.9
                                 98.5833
                                              3.42647
                                                                  1.56049
                     40,630.9
 63
        242,359.
                                 106.167
                                              3.38263
                                                          296.2
                                                                  1.49128
                                                                               -3.03616
                                                                  1.40401
                                                         295.3
                                                                               -2.96474
 64
        242,359.
                     40,630.9
                                  113.75
                                              3.28038
        242,359.
242,359.
242,359.
242,359.
242,359.
                     40,630.9
                                              3.12101
                                                         294.6
                                                                  1.29987
                                                                               -2.83743
 65
                                 121.333
                     40,630.9
                                 128.917
                                              2.90658
                                                         294.
                                                                               -2.65615
 66
                                                                  1.1803
                     40,630.9
 67
                                  136.5
                                              2.63983
                                                          293.4
                                                                  1.04685
                                                                               -2.42339
                     40,630.9
                                  144.083
                                              2.32398
                                                          292.8
                                                                  .901174
                                                                               -2.14214
 68
                     40,630.9
                                                         292.3
                                                                  .74491
 69
                                 151.667
                                              1.96245
                                                                               -1.81558
        242,359.
                                                         291.8
                                                                  .579466
 70
                     40,630.9
                                 159.25
                                              1.55823
                                                                               -1.44648
        242,359.
242,359.
242,359.
210.258
                                              1.11249
                                                         291.4
                                                                   .405542
                                                                               -1.03594
 71
                     40,630.9
                                  166.833
                     40,630.9
40,630.9
174.269
                                              .620901
 72
                                 174.417
                                                         290.9
                                                                   .2219
                                                                               -.579895
                                 182.
                                                                               0
END
                                                          293.8
                                              .48511
                                                                  .195639
                                                                               -.443911
GND
 74
        210.258
                     174.269
                                  7.58333
                                              .495832
                                                          265.
                                                                  -.0432832 -.493939
                                  15.1667
                                              .559417
                                                                  -.199269
 75
        210.258
                     174.269
                                                          249.1
                                                                               -.522723
                     174.269
 76
        210.258
                                  22.75
                                              .63889
                                                          238.4
                                                                  -.335151
                                                                               -.543924
        210.258
210.258
210.258
                     174.269
174.269
174.269
174.269
                                                                  -.456388
 77
                                  30.3333
                                              .721522
                                                          230.8
                                                                               -.558842
                                  37.9167
                                                                               -.56798
 78
                                              .800851
                                                          225.2
                                                                  -.56459
                                                                  -.659899
 79
                                  45.5
                                              .873018
                                                          220.9
                                                                               -.571571
        210.258
 80
                                  53.0833
                                                                  -.741933
                                              .935468
                                                          217.5
                                                                               -.569768
        210.258
 81
                     174.269
                                  60.6667
                                               .986393
                                                          214.8
                                                                  -.810134
                                                                               -.562721
                                                          212.5
                                                                               -.550611
 82
        210.258
                     174.269
                                  68.25
                                                                  -.863959
                                              1.0245
        210.258
210.258
210.258
210.258
                     174.269
 83
                                  75.8333
                                              1.04884
                                                          210.6
                                                                  -.902927
                                                                               -.533662
                     174.269
174.269
174.269
 84
                                  83.4167
                                              1.05883
                                                                  -.926729
                                                          208.9
                                                                               -.512147
                                 91.
 85
                                              1.05414
                                                                  -.935214
                                                          207.5
                                                                               -.486392
                                  98.5833
 86
                                              1.03471
                                                          206.2
                                                                  -.928426
                                                                               -.456771
        210.258
 87
                     174.269
                                  106.167
                                              1.00073
                                                                  -.906611
                                                          205.
                                                                               -.423703
                                                                               -.387645
 88
        210.258
                     174.269
                                  113.75
                                              .952652
                                                          204.
                                                                  -.870217
        210.258
                                                          203.1
                                                                  -.81987
 89
                     174.269
                                  121.333
                                              .891094
                                                                               -.349087
                     174.269
        210.258
 90
                                  128.917
                                                          202.2
                                                                  -.756401
                                              .816907
                                                                               -.308536
        210.258
210.258
210.258
                     174.269
174.269
174.269
174.269
 91
                                  136.5
                                                                  -.680753
                                              .731063
                                                          201.4
                                                                               -.266511
                                                                               -.223522
                                                                  -.59399
 92
                                  144.083
                                              .634654
                                                          200.6
                                 151.667
159.25
 93
                                              .528795
                                                          199.9
                                                                  -,497199
                                                                               -.180045
        210.258
 94
                                                          199.2
                                                                  -.391353
                                              .41447
                                                                               -.136483
                                                          198.6
 95
        210.258
                     174.269
                                  166.833
                                                                  -.276954
                                              .292171
                                                                               -.0930597
 96
        210.258
                                                          197.9
                                                                  -.153175
                     174.269
                                  174.417
                                              .160996
                                                                               -.0495684
        210.258
157.193
157.193
157.193
END
                     174.269
                                                                               0
                                  182.
                                              0
                                                          0
                     -107.351
-107.351
-107.351
-107.351
                                                         127.
127.5
GND
                                              2.29297
                                  0
                                                                  -1.37999
                                                                               1.83121
 98
                                  6.875
                                              2.32522
                                                                  -1.4154
                                                                               1.8448
 99
                                                          127.8
                                                                  -1.4099
-1.37704
                                  13.75
                                              2.3014
                                                                               1.81896
 100
                                  20.625
                                              2.23629
                                                          128.
                                                                               1.76204
 101
        157.193
                     -107.351
                                              2.13212
                                                                  -1.31857
                                  27.5
                                                          128.2
                                                                               1.6755
        157.193
                     -107.351
                                  34.375
                                              1.99067
                                                          128.4
                                                                               1.56065
 102
                                                                  -1.23577
                     -107.351
-107.351
-107.351
-107.351
 103
        157.193
                                                                  -1.12973
                                  41.25
                                              1.81366
                                                          128.5
                                                                               1.41883
        157.193
157.193
                                              1.60287
                                                                               1.25144
 104
                                  48.125
                                                          128.7
                                                                  -1.00154
 105
                                                          128.8
                                  55.
                                              1.35996
                                                                  -.852228
                                                                               1.05981
 106
        157.193
                                  61.875
                                              1.08614
                                                          128.9
                                                                  -.682506
                                                                               .844916
                                              .781102
                                                          129.1
 107
        157.193
                     -107.351
                                  68.75
                                                                  -.49212
                                                                               .60658
        157.193
                     -107.351
                                                                               .341547
 108
                                  75.625
                                               .440568
                                                          129.2
                                                                   -.278292
                                                                               0
END
        157.193
                     -107.351
                                  82.5
                                                          0
```

FIGURE 10 DERIVED DIRECTIONAL PARAMETERS

APPLICATION FOR LICENSE INFORMATION EMPLOYING MOMENT METHOD MODELING WPOM, 1600 KHZ, DA-2 RIVIERA BEACH, FLORIDA JANUARY, 2021

DAY:

	Theoretical		Loop Node Current		Normalized Antenna Monitor	
Tower	Field	Phase	Amplitude	Phase	Amplitude	Phase
1 (S)	1.000	0.000°	5.22582	1.2°	1.000	0.0°
2 (SW)	.834	96.468°	4.297	96.5°	.822	95.3°
3 (N)	.310	-0.141°	1.57148	1.1°	.301	-0.1°
4 (NW)	.336	19.062°	1.68297	19.1°	.322	17.9°
5 (E)	.419	46.375°	4.64939	46.4°	.890	45.2°

NIGHT:

	Theo	retical	Loop Curr		Normalized Antenna Monitor	
Tower	Field	Phase	Amplitude	Phase	Amplitude	Phase
1 (S)	1.000	0.000°	5.41528	1.0°	1.000	0.0°
2 (SW)	.526	165.140°	2.7599	165.2°	.510	164.2°
3 (N)	.530	-55.950°	2.78823	305.3°	.515	-55.7°
4 (NW)	.182	-146.050°	.986393	214.8°	.182	-146.2°
5 (E)	.185	128.200°	2.13212	128.2°	.394	127.2°

FIGURE 11 WPOM TOWER BASE CIRCUIT ANALYSIS DESCRIPTION

APPLICATION FOR LICENSE INFORMATION EMPLOYING MOMENT METHOD MODELING WPOM, 1600 KHZ, DA-2 RIVIERA BEACH, FLORIDA JANUARY, 2021

CIRCUIT ANALYSIS

Circuit Analysis was performed on each Tower of the WPOM model. "Phasetek" nodal Circuit Analysis program was used to compute base model Input/Output voltages, currents, and impedances. "Z₁" represents the ATU Shunt impedance, "Z₂" represents the Tower Feed impedance, and "Z₃" represents the Tower Base Shunt impedance.

CUSTOMER : WPOM

NETWORK ID : TOWER 1 (OTHERS OPEN)

FREQUENCY: 1600.00 kHzATU SHUNT IMPEDANCE (R,X): 0.00, 4900.00 OHMSTOWER FEED IMPEDANCE (R,X): 0.00, 25.00 OHMSTOWER SHUNT IMPEDANCE (R,X): 0.00, -7105.10 OHMSTOWER IMPEDANCE (R,X): 299.75, -445.91 OHMS

NODE	то	NODE	IMPEDANCE R	(OHMS) X
1		GROUND	0.00	4900.00
2		GROUND	264.98	-430.10
1		2	0.00	25.00

	VOLTA	GE
NODE	MAGNITUDE	PHASE
1	100.00	0.00
2	104.36	-1.55

	REAL	IMAGINARY	MAGNITUDE	PHASE
INPUT IMPEDANCE (OHMS) :	313.80	-423.11	526.77	-53.44
INPUT CURRENT (AMPS) :	0.11	0.15	0.19	53.44
OUTPUT CURRENT (AMPS) :	0.11	0.16	0.19	54.54

INPUT/OUTPUT CURRENT RATIO = 0.9774 INPUT/OUTPUT PHASE = -1.10 DEGREES

CUSTOMER: WPOM

NETWORK ID : TOWER 2 (OTHERS OPEN)

FREQUENCY: 1600.00 kHz

ATU SHUNT IMPEDANCE (R,X): 0.00, 4900.00 OHMS
TOWER FEED IMPEDANCE (R,X): 0.00, 25.00 OHMS
TOWER SHUNT IMPEDANCE (R,X): 0.00, -7105.10 OHMS
TOWER IMPEDANCE (R,X): 330.46, -476.99 OHMS

NODE	то	NODE	IMPEDANCE R	(OHMS) X
1 2		GROUND GROUND	0.00 289.64	4900.00 -459.61
ī		2	0.00	25.00

	VOLTA	GE
NODE	MAGNITUDE	PHASE
1	100.00	0.00
2	104.02	-1.46

INPUT IMPEDANCE (OHMS) :	REAL 347.30	IMAGINARY -454.38	MAGNITUDE 571.91	PHASE -52.61
INPUT CURRENT (AMPS) : OUTPUT CURRENT (AMPS) :	0.11	0.14 0.14	0.17 0.18	52.61 53.82

INPUT/OUTPUT CURRENT RATIO = 0.9755 INPUT/OUTPUT PHASE = -1.22 DEGREES

CUSTOMER: WPOM

NETWORK ID : TOWER 3 (OTHERS OPEN)

FREQUENCY: 1600.00 kHzATU SHUNT IMPEDANCE (R,X): 0.00, 4900.00 ohmsTOWER FEED IMPEDANCE (R,X): 0.00, 25.00 ohmsTOWER SHUNT IMPEDANCE (R,X): 0.00, -7105.10 ohmsTOWER IMPEDANCE (R,X): 317.10, -451.59 ohms

NODE	то	NODE	IMPEDANCE R	(OHMS) X
1		GROUND	0.00	4900.00
2		GROUND	279.84	-436.35
1		2	0.00	25.00

	VOLTA	GE
NODE	MAGNITUDE	PHASE
1	100.00	0.00
2	104.19	-1.55

INPUT IMPEDANCE (OHMS) :	REAL	IMAGINARY	MAGNITUDE	PHASE
	332.19	-428.33	542.05	-52.21
INPUT CURRENT (AMPS) : OUTPUT CURRENT (AMPS) :	$0.11 \\ 0.11$	0.15 0.15	0.18 0.19	52.21 53.37

INPUT/OUTPUT CURRENT RATIO = 0.9770 INPUT/OUTPUT PHASE = -1.16 DEGREES

CUSTOMER: WPOM

NETWORK ID : TOWER 4 (OTHERS OPEN)

FREQUENCY: 1600.00 kHz

ATU SHUNT IMPEDANCE (R,X): 0.00, 4900.00 OHMS
TOWER FEED IMPEDANCE (R,X): 0.00, 25.00 OHMS
TOWER SHUNT IMPEDANCE (R,X): 0.00, -7105.10 OHMS
TOWER IMPEDANCE (R,X): 346.08, -501.44 OHMS

TOWER IMPEDANCE (NIX) 1 340100, SOLITA OTHIS

NODE	то	NODE	IMPEDANCE R	(OHMS) X
1		GROUND	0.00	4900.00
2		GROUND	301.33	-482.09
1		2	0.00	25.00

	VOLTA	GE
NODE	MAGNITUDE	PHASE
1	100.00	0.00
2	103.84	-1.39

INPUT IMPEDANCE (OHMS) :	REAL 364.85	IMAGINARY -479.38	MAGNITUDE 602.42	PHASE -52.73
INPUT CURRENT (AMPS) : OUTPUT CURRENT (AMPS) :	0.10	0.13 0.14	0.17 0.17	52.73 54.00

INPUT/OUTPUT CURRENT RATIO = 0.9739
INPUT/OUTPUT PHASE = -1.28 DEGREES

CUSTOMER : WPOM

NETWORK ID : TOWER 5 (OTHERS OPEN)

FREQUENCY: 1600.00 kHzATU SHUNT IMPEDANCE (R,X): 0.00,100000.00 ohmsTOWER FEED IMPEDANCE (R,X): 0.00, 37.00 ohmsTOWER SHUNT IMPEDANCE (R,X): 0.00, -7105.10 ohmsTOWER IMPEDANCE (R,X): 30.10, -12.74 ohms

NODE	то	NODE	IMPEDANCE R	(OHMS) X
1		GROUND	0.00	100000.00
2		GROUND	29.99	-12.84
1		2	0.00	37.00

	VOLTA	GE
NODE	MAGNITUDE	PHASE
1	100.00	0.00
2	84.72	-62.03

	REAL	IMAGINARY	MAGNITUDE	PHASE
INPUT IMPEDANCE (OHMS) :	29.98	24.16	38.50	38.87
INPUT CURRENT (AMPS) :	2.02	-1.63	2.60	-38.87
OUTPUT CURRENT (AMPS) :	2.01	-1.63	2.59	-39.09

INPUT/OUTPUT CURRENT RATIO = 1.0020
INPUT/OUTPUT PHASE = 0.23 DEGREES

FIGURE 13 WPOM REFERENCE FIELD INTENSITY MEASUREMENTS JANUARY, 2021

WPOM DAY REFERENCE POINT MEASUREMENTS – AUGUST 1, 2020

		Diet				CO-C	RD N	AD27	
Radial		<u>Dist</u> <u>km</u>	mV/m	Time		Deg	Min	Sec	Description
63°	1	2.59	191	1305	N W	26 80	45 06	33.1 34.4	North parking lot, Bank of America
	2	2.96	182	1324	N W	26 80	45 06	38.7 22.2	West driveway, Sams Club
	3	3.37	230	1331	N W	26 80	45 06	44.2 08.7	NE corner parking lot, Walmart
99.5°	1	1.42	166	1252	N W	26 80	44 07	47.7 07.1	Back of apartment parking lot
	2	1.91	140	1315	N W	26 80	44 06	44.7 49.8	Appaloosa St. at curve section
	3	2.30	93.9	1311	N W	26 80	44 06	42.9 35.7	Military Trail/Appaloosa St.
139.5°	1	1.30	505	1226	N W	26 80	44 07	22.9 27.4	South side of Ernest St.
	2	2.07	219	1237	N W	26 80	44 07	04.1 08.9	Parking lot Palm Gate Plaza
	3	2.44	201	1242	N W	26 80	43 06	55.1 59.9	Lakeside Green Blvd. West of Balmoral

FIGURE 13
WPOM REFERENCE FIELD INTENSITY MEASUREMENTS
CONTINUED

WPOM DAY REFERENCE POINT MEASUREMENTS - AUGUST 1, 2020

						CO-C	ORD N	AD27	
Radial		<u>Dist</u> <u>km</u>	mV/m	Time		Deg	Min	Sec	Description
217.5°	1	5.70	18.0	1432	N W	26 80	42 10	28.6 03.9	South side of Okeechobee Blvd.
	2	6.10	15.2	1424	N W	26 80	42 10	18.3 13.4	Benoist Farms Rd. in front of Elementary School
	3	6.34	17.4	1427	N W	26 80	42 10	12.2 18.0	Windora Way at gate
317°	1	9.41	1.70	1507	N W	26 80	48 11	37.7 51.0	East side of N. State Road 7
	2	9.48	0.82	1504	N W	26 80	48 11	39.5 53.0	#10100 Northlake Blvd. at Dental Care
	3	9.50	2.31	1520	N W	26 80	48 11	41.0 51.9	Northlake Blvd., North side
359°	1	1.25	98.2	1406	N W	26 80	45 07	35.6 58.6	South side of Bridge, 45 th St.
	2	1.28	94.1	1341	N W	26 80	45 07	36.5 58.7	North side of Bridge, 45 th St.
	3	5.34	16.0	1351	N W	26 80	47 08	47.9 01.4	Beeline Hwy. South side, at 55MPH

FIGURE 13
WPOM REFERENCE FIELD INTENSITY MEASUREMENTS
CONTINUED

WPOM NIGHT REFERENCE POINT MEASUREMENTS - AUGUST 1, 2020

		D:-4				CO-C	RD N	AD27	
Radial		Dist km	mV/m	Time		Deg	Min	Sec	Description
0.5°	1	1.26	77.6	1646	N W	26 80	45 07	36.0 57.5	South side of bridge, 45 th St.
	2	1.28	90.1	1650	N W	26 80	45 07	36.7 57.5	North side of bridge, 45 th St.
	3	5.22	12.8	1635	N W	26 80	47 07	44.2 56.3	Beeline Exp. South side at pull off
69°	1	3.20	128	1700	N W	26 80	45 06	32.0 09.6	Parking lot, #3200 45 th St.
	2	3.61	126	1704	N W	26 80	45 05	37.0 55.5	#200 Northpoint Parkway
	3	4.05	172	1713	N W	26 80	45 05	41.9 41.1	Center parking lot, #701 Northpoint Parkway
106.5°	1	2.08	94.8	1747	N W	26 80	44 06	35.7 45.6	#4521 Discovery Lane
	2	2.14	84.6	1749	N W	26 80	44 06	35.2 43.9	Amherst Drive
	3	2.62	68.8	1725	N W	26 80	44 06	30.7 27.0	#4400 Portofino Way.

FIGURE 13

WPOM REFERENCE FIELD INTENSITY MEASUREMENTS CONTINUED

WPOM NIGHT REFERENCE POINT MEASUREMENTS - AUGUST 1, 2020

		Diet				CO-C	RD N	AD27	
Radial		<u>Dist</u> <u>km</u>	mV/m	Time		Deg	Min	Sec	Description
150.5°	1	1.12	639	1740	N W	26 80	44 07	23.3 37.9	South side, Ernest St.
	2	2.80	116	1754	N W	26 80	43 07	36.0 08.3	North entrance to St. Paul church
	3	3.60	64.7	1804	N W	26 80	43 06	13.8 53.1	Back of Crosstown plaza at fire Hydrant
218°	1	5.74	21.4	1830	N W	26 80	42 10	28.6 06.6	South side of Okeechobee Blvd.
	2	6.04	17.1	1817	N W	26 80	42 10	21.2 12.9	Benoist Farms Rd. at school entrance
	3	6.37	15.3	1821	N W	26 80	42 10	12.6 20.5	#1740 Windorah Way
265°	1	8.27	49.2	1859	N W	26 80	44 12	31.2 57.0	110 th Ave. North at 30MPH sign
	2	9.07	31.0	1846	N W	26 80	44 13	29.3 25.9	Mellow Court/Mango Blvd.
	3	9.48	22.8	1850	N W	26 80	44 13	28.5 40.7	#4361 Royal Palm Beach Blvd.

FIGURE 13

WPOM REFERENCE FIELD INTENSITY MEASUREMENTS CONTINUED

WPOM NIGHT REFERENCE POINT MEASUREMENTS - AUGUST 1, 2020

		Diet				CO-C	RD N	AD27	
Radial		<u>Dist</u> <u>km</u>	mV/m	Time		Deg	Min	Sec	Description
317°	1	9.41	1.49	1620	N W	26 80	48 11	37.7 51.0	East side of N. State Road 7
	2	9.48	0.74	1614	N W	26 80	48 11	39.5 53.0	#10100 Northlake Blvd. at Dental Care
	3	9.50	2.54	1623	N W	26 80	48 11	41.0 51.9	Northlake Blvd., North side

FIGURE 14 CALCULATION OF SAMPLING LOOP LOCATIONS WPOM, 1600 KHZ, DA-2 RIVIERA BEACH, FLORIDA JANUARY, 2021

All five (5) towers are identical in face width and cross section geometry. Towers 1-4 are physically 163.0° and tower 5 is 80.0°. A model was generated with tower #1 excited with 1000 watts and towers 2 and 5 to determine the location of minimum current for minimum radiation, which is the location of the sampling loops. Towers 1-4 are identical in height, therefore, the location is the same for them. These locations are 1/3 the physical height of the towers, which is 93 ft. above the base for towers 1-4 and 45 ft. above the base for tower 5.

WPOM SAMPLING LOOP LOCATION CALCULATION

MEDIUM WAVE ARRAY SYNTHESIS FROM FIELD RATIOS

Frequency = 1.6 MHz

tower	field ratio magnitude	phase	(deg)
1	1.	Ò	
2	0	0	
3	0	0	

VOLTAGES AND CURRENTS - rms

source	voltage		current	
node	magnitude	phase (deg)	magnitude	phase (deg)
1 25	959.983	73.3	1.55856	122.1
25	164.674	324.1	.830639	48.
49	73.624	233.	.15547	322.6
Sum of	square of so	urce currents	= 6.2865	
Total	power = 1,000	. watts		

TOWER	ADMIT	TANCE	MATRIX
- dun't ++		7	(

admittance	real (mhos)	imaginary (mhos)
Y(1, 1)	.00132955	.00127151
Y(1, 2)	.000685057	000225363
Y(1, 3)	.00248386	.000247104
Y(2, 1)	.000685056	000225369
Y(2, 2)	.00108622	.00134006
Y(2, 3)	.0012028	00104142
Y(3, 1)	.0024839	.000247146
Y(3, 2)	.00120284	00104142
Y(3, 3)	.0269814	.0136619

TOWER IMPEDANCE MATRIX

I de a de marie de la company			
impedance	real (ohms)	imaginary	(ohms)
Z(1, 1)	304.079	-440.421	
Z(1, 2)	85.9338	167.03	
Z(1, 3)	-20.1188	43.8174	
Z(2, 1)	85.9321	167.031	
Z(2, 2)	276.183	-437.356	
Z(2, 3)	4.1972	11.8684	
Z(3, 1)	-20.1178	43.8169	
z(3, 2)	4.19721	11.8682	
z(3.3)	29.08	-18.9411	

■ WPOM SAMPLING LOOP LOCATION CALCULATION

GEOMETRY

Wire coordinates in degrees; other dimensions in meters Environment: perfect ground

wire	caps Distance	Angle	Z	radius	segs
1	none 0	0	0	.2911	24
	0	0	177.		
2	none 97.36	278.393	0	.2911	24
	97.36	278.393	179.		
3	none 190.352	34.33	0	.2911	12
	190.352	34.33	82.5		

Number of wires current nodes = 60

	mา กา	mum	max	ı mum
Individual wires	wire	value	wire	value
segment length	3	6.875	2	7.45833
radius	1	.2911	1	.2911

ELECTRICAL DESCRIPTION Frequencies (MHz)

	frequency		no. of	segment length	(wavelengths)
no.	lowest	step	steps	minimum	maximum
1	1.6	0	1	.0190972	.0207176

Sources

source	node	sector	magnitude	phase	type
1	1	1	1,357.62	73.3	voltage
2	25	1	232.884	324.1	voltage
3	49	1	104.12	233.	voltage

IMPEDANCE

normalization = 50.								
	(MHz)		(ohms)		phase (deg)	VSWR	S11 dB	S12 dB
	source = 1.6		-463.5		311.2	18.775	92613	-7.166
	source = 1.6		25, secto -197.12		276.1	39.536	43949	-10.166
	source =				270.3	1.741.6	-1.F-02	-26.394

CURRENT rms
Frequency = 1.6 MHz
Input power = 1,000. watts
Efficiency = 100. %
coordinates in degrees

COOL	maces	in acgrees					
curre	nt			mag	phase	real	imaginary
no.	X	Y	Z	(amps)	(deg)	(amps)	(amps)
GND	0	0	0	1.55856	122.1	828777	1.31994
2	0	0	7.375	1.06301	89.	.0177457	1.06286
3	0	0	14.75	1.05415	57.4	.568418	.887771
4	0	0	22.125	1.27644	34.7	1.04912	.727088
5	0	0	29.5	1.5873	21.2	1.47945	.575116
6	0	0	36.875	1.91438	13.	1.86539	.43034
7	0	0	44.25	2.22696	7.6	2.20761	.292893
8	0	0	51.625	2.51018	3.7	2.50484	.163567
9	0	0	59.	2.75545	.9	2.75511	.0434278
10	0	0	66.375	2.95711	358.7	2.95637	0663705
11	0	0	73.75	3.11113	357.	3.10677	164688

```
3.20491
 12
                                  81.125
                                              3.21468
                                                          355.5
                                                                               -.250465
                                                                               -.322766
                                              3.26593
                                                          354.3
130
        0
                     0
                                 88.5
                                                                  3.24994
                                                          353.3
                                  95.875
 14
                                              3.2639
                                                                  3.2416
                                                                               -.380809
 15
        0
                     0
                                  103.25
                                                                  3.18029
                                              3.20843
                                                          352.4
                                                                               -.423987
        0
                                                          351.6
                                                                               -.45188
 16
                     0
                                  110.625
                                              3.10017
                                                                  3.06706
                                              2.94045
2.7313
                                  118.
 17
                                                          350.9
                                                                  2.90357
                                                                               -.464263
                                  125.375
 18
        0
                     0
                                                          350.3
                                                                  2.6921
                                                                               -.4611
                                                                               -.44253
 19
                     0
                                  132.75
                                              2.47526
                                                          349.7
                                                                  2.43538
                     0
                                  140.125
                                                          349.2
                                                                               -.408838
 20
                                              2.17528
                                                                  2.13652
                                                          348.7
 21
22
        0
                     0
                                  147.5
                                              1.83439
                                                                  1.79864
                                                                               -.360393
                                                         348.2
347.8
347.3
                                                                  1.42444
                                                                               -.297525
                     0
                                  154.875
                                              1.45518
 23
                                  162.25
        0
                     0
                                              1.03844
                                                                  1.01482
                                                                               -.2202
 24
                                  169.625
                                               .579839
        0
                     0
                                                                   .565708
                                                                               -.127232
                                  177.
                                                                  0
END
                     0
                                                          48.
                                                                  .555762
                                                                               .617323
GND
        14.2109
                     96.3173
                                              .830638
        14.2109
14.2109
14.2109
                                                          46.7
26
27
                     96.3173
                                  7.45833
                                               .676441
                                                                   .463802
                                                                               .492403
                                                                   .39794
                     96.3173
                                  14.9167
                                               .569881
                                                          45.7
                                                                               .40793
 28
                                  22.375
                     96.3173
                                                          44.7
                                              .470802
                                                                   .334669
                                                                               .331137
 29
        14.2109
                     96.3173
                                  29.8333
                                              .375918
                                                          43.6
                                                                   .272261
                                                                               .259206
        14.2109
                                              .284489
                                                                               .191331
                                                          42.3
 30
                     96.3173
                                  37.2917
                                                                   .210539
        14.2109
14.2109
14.2109
14.2109
 31
                     96.3173
                                  44.75
                                              .196841
                                                          40.4
                                                                   .149974
                                                                               .127492
                     96.3173
96.3173
96.3173
                                 52.2083
59.6667
67.125
 32
33
                                               .113829
                                                          36.7
                                                                   .0913064
                                                                               .067972
                                                                   .0353956
                                               .0377691 20.4
                                                                               .013178
                                                         245.2
231.2
 34
                                               .0401624
                                                                  -.0168681
                                                                               -.0364484
 35
        14.2109
                                  74.5833
                     96.3173
                                               .103207
                                                                  -.0646175 -.0804749
                                              .159697
                                                                  -.107047
 36
        14.2109
                     96.3173
                                  82.0417
                                                          227.9
                                                                               -.118508
 37
                                  89.5
                                                          226.3
        14.2109
                     96.3173
                                              .207697
                                                                  -.143441
                                                                               -.150209
        14.2109
14.2109
14.2109
                     96.3173
96.3173
96.3173
                                  96.9583
 38
                                                          225.3
                                               .246432
                                                                  -.173193
                                                                               -.175307
                                               .275376
 39
                                                          224.7
                                                                               -.193608
                                  104.417
                                                                  -.195826
 40
                                  111.875
                                               .29418
                                                                  -.210993
                                                          224.2
                                                                               -.204997
        14.2109
                     96.3173
                                                          223.8
 41
                                  119.333
                                              .302659
                                                                  -.218487
                                                                               -.209442
                                              .300784
 42
         14.2109
                     96.3173
                                  126.792
                                                          223.5
                                                                               -.20699
                                                                  -.218235
        14.2109
14.2109
14.2109
14.2109
 43
                     96.3173
                                  134.25
                                              .288669
                                                          223.2
                                                                  -.210286
                                                                               -.197762
                     96.3173
96.3173
96.3173
 44
                                  141.708
                                                          223.
                                                                  -.194798
                                              .266548
                                                                               -.181939
                                                         222.9
222.8
222.6
 45
                                  149.167
                                               .234729
                                                                  -.171993
                                                                               -.159737
 46
                                  156.625
                                               .193508
                                                                  -.142096
                                                                               -.131355
 47
        14.2109
                     96.3173
                                  164.083
                                               .142956
                                                                  -.105167
                                                                               -.096831
        14.2109
 48
                     96.3173
                                  171.542
                                               .0824032 222.5
                                                                  -.0607201 -.0557078
        14.2109
                                  179.
END
                     96.3173
                                                                  0
        157.193
157.193
157.193
157.193
                     -107.351
-107.351
-107.351
-107.351
GND
                                               .155468
                                                                               -.0943307
                                                          322.6
                                                                  .123579
                                 6.875
 50
                                               .0915621 322.4
                                                                   .0725886
                                                                               -.0558078
 51
                                              .0534666 322.2
.0230806 321.6
                                  13.75
                                                                   .0422399
                                                                               -.0327791
 52
                                 20.625
                                                                   .0180799
                                                                               -.0143468
 53
                                              1.29E-03 158.9
        157.193
                     -107.351
                                 27.5
                                                                  -1.2E-03
                                                                               4.64E-04
        157.193
157.193
157.193
157.193
 54
                                  34.375
                                              .0201001 143.3
                     -107.351
                                                                  -.0161122 .0120171
                     -107.351
-107.351
-107.351
 55
                                  41.25
                                               .0337306 142.7
                                                                  -.0268404
                                                                              .0204291
 56
                                               .0422005
                                  48.125
                                                         142.4
                                                                  -.0334558
                                                                               .0257215
 57
                                                                               .0278696
                                               .0455068
                                                         142.2
                                  55.
                                                                  -.0359743
 58
        157.193
                     -107.351
                                 61.875
                                               .0435922
                                                         142.
                                                                  -.0343718
                                                                               .0268115
 59
        157.193
                                                                  -.0285451 .0224158
                     -107.351
                                 68.75
                                              .0362945 141.9
        157.193
157.193
                     -107.351
 60
                                 75.625
                                               .0231882 141.7
                                                                  -.018189
                                                                               .0143824
                     -107.351
END
                                 82.5
```