

ORIGINAL

1300 NORTH 17th STREET, 11th FLOOR ARLINGTON, VIRGINIA 22209

> OFFICE: (703) 812-0400 FAX: (703) 812-0486 www.fhhlaw.com www.commlawblog.com

> > MARK N. LIPP (703) 812-0445 LIPP@FHHLAW.COM

July 9, 2019

Accepted / Filed

JUL - 9 2019

Marlene H. Dortch, Esq. Secretary Federal Communications Commission 445 12th Street, SW Washington, DC 20554

Federal Communications Commission Office of the Secretary

Attention: Media Bureau

Re: Application for Moment Method License on FCC Form 302-AM and Request for

Program Test Authority

Multicultural Radio Broadcasting License, LLC Station KIQI(AM), San Francisco, California Facility Identifier Number 50703

Dear Ms. Dortch:

Transmitted herewith on behalf of Multicultural Radio Broadcasting Licensee, LLC ("MRBL"), the licensee of Station KIQI(AM) identified above, are an original and two copies of its application for license to cover BMP-20181207AAR. This modified permit increases the Station's nighttime power to 10 kW employing a revised directional antenna radiation pattern for the new nighttime operation. This Form 302-AM specifies new nighttime directional antenna parameters based on a Method of Moments proof-of-performance.

Further, while preparing this application it was determined that the geographic coordinates for the underlying construction permit are incorrect. This application uses the correct NAD-27 coordinates. MRBL respectfully requests a waiver of the Media Bureau's coordinate correction policy to allow this application to resolve the discrepancy in coordinates.

The associated filing fees totaling \$1,560.00 were paid using FCC Fee Filer and proof of payment is included as part of this submission.

Fletcher, Heald & Hildreth

July 9, 2019 Page 2

If there are any questions about his Application, please contact undersigned counsel for Multicultural Radio Broadcasting Licensee, LLC.

Sincerely,

ark Lipp

Enclosures

cc: Mr. Jerome Manarchuck, Audio Division, Media Bureau, FCC

Federal Communications Commission Washington, D. C. 20554

6

Approved by OMB 3060-0627 Expires 01/31/98

FOR FCC USE ONLY	Accepted / Filed					
	JUL -9 2019					
	Federal Communications Commission					

FCC 302-AM APPLICATION FOR AM BROADCAST STATION LICENSE

(Please read instructions before filling out form.

Office Contribution								
FOR COMMISSION USE ONLY								
FILE NO. BMML - 20190709AAC								

SECTION I - APPLICANT FEE INFORMATION			
PAYOR NAME (Last, First, Middle Initial)			
Multicultural Radio Broadcasting License, LLC			
MAILING ADDRESS (Line 1) (Maximum 35 characters) 40 Exchange Place, Suite 1010			
MAILING ADDRESS (Line 2) (Maximum 35 characters)			
CITY New York	STATE OR COUNTRY (if for New York	eign address)	ZIP CODE 10005
TELEPHONE NUMBER (include area code) 212.431.4300	CALL LETTERS KIQI(AM)	OTHER FCC IDEI 50703	NTIFIER (If applicable)
2. A. Is a fee submitted with this application?			✓ Yes No
B. If No, indicate reason for fee exemption (see 47 C.F.R. Section			
Governmental Entity Noncommercial educ	cational licensee	her (Please explain)):
C. If Yes, provide the following information:			
Enter in Column (A) the correct Fee Type Code for the service you			
Fee Filing Guide." Column (B) lists the Fee Multiple applicable for thi	is application. Enter fee amou	nt due in Column (C)).
(A) (B)	(0)		
(A) (B)	(C) FEE DUE FOR FEE		
FEE TYPE FEE MULTIPLE	TYPE CODE IN COLUMN (A)		FOR FCC USE ONLY
M M R 0 0 0 1	\$ 725.00		
To be used only when you are requesting concurrent actions which res	sult in a requirement to list mor	e than one Fee Type	e Code.
(A) (B)	(C)	 1	FOR FCC USE ONLY
M O R 0 0 0 1	\$ 835.00		TORTOG GOL ONET
ADD ALL AMOUNTS SHOWN IN COLUMN C, AND ENTER THE TOTAL HERE.	TOTAL AMOUNT REMITTED WITH TH APPLICATION	s	FOR FCC USE ONLY
THIS AMOUNT SHOULD EQUAL YOUR ENCLOSED	\$ 1560.00		
REMITTANCE.	<u> </u>		

SECTION II - APPLICAN	IT INFORMATION					
NAME OF APPLICANT Multicultural Radio Broadcas	sting License, LLC					
MAILING ADDRESS 40 Exchange Place, Suite 1	010					
CITY New York		-	STATE New Y	ork	ZIP CODE 10005	
2. This application is for:	Commercial AM Direct	[ctional	Noncomm	nercial on-Directional		
Call letters	Community of License	Construct	ion Permit File No.	Modification of Construction	Expiration Date of	
KIQI(AM)	San Francisco, CA	BP-201	40214ABF	Permit File No(s). BMP-20181207AAR	Construction Permi	t
3. Is the station n accordance with 47 C.F. If No, explain in an Exhi		to autor	matic program	test authority in	Yes √ Exhibit No. A	No
4. Have all the terms construction permit been	s, conditions, and oblig n fully met?	ations se	et forth in the	above described	✓ Yes Exhibit No.	No
If No, state exceptions in	n an Exhibit.					
the grant of the underl	ges already reported, ha lying construction permit d in the construction pern	which v	vould result in a	any statement or	Yes 🗸	No
If Yes, explain in an Ex	hibit.				Exhibit No.	
	ed its Ownership Report ce with 47 C.F.R. Section			ership	Yes	No
			, (b) .		✓ Does not a	pply
If No, explain in an Exhi	bit.				Exhibit No.	
or administrative body w criminal proceeding, bro	ing been made or an advith respect to the application or the provision elated antitrust or unfainit; or discrimination?	ant or par s of any	ties to the applic law relating to th	cation in a civil or ne following: any	Yes √	No
involved, including an id (by dates and file numl information has been required by 47 U.S.C. S of that previous submiss the call letters of the st	attach as an Exhibit a fullentification of the court of bers), and the disposition earlier disclosed in correction 1.65(c), the application by reference to the ation regarding which the filling; and (ii) the disposition	or administ n of the nnection ant need file numb e applica	strative body an litigation. Wh with another a only provide: (i per in the case of ation or Section	d the proceeding ere the requisite application or as an identification of an application, 1.65 information	Exhibit No.	

8. Does the applicant, or any party to the application, have a the expanded band (1805-1705 kHz) or a permit or license expanded band that is held in combination (pursuant to the 5 with the AM facility proposed to be modified herein?	either in the existing band	or				
If Yes, provide particulars as an Exhibit.		Exhibit No.				
The APPLICANT hereby walves any claim to the use of any against the regulatory power of the United States because requests and authorization in accordance with this application amended).	e use of the same, whet	her by license or otherwise, and				
The APPLICANT acknowledges that all the statements maderial representations and that all the exhibits are a material						
CERTIFIC	CATION					
1. By checking Yes, the applicant certifies, that, in the case of an individual applicant, he or she is not subject to a denial of federal benefits that includes FCC benefits pursuant to Section 5301 of the Anti-Drug Abuse Act of 1988, 21 U.S.C. Section 862, or, in the case of a non-individual applicant (e.g., corporation, partnership or other unincorporated association), no party to the application is subject to a denial of federal benefits that includes FCC benefits pursuant to that section. For the definition of a "party" for these purposes, see 47 C.F.R. Section 1.2002(b).						
I certify that the statements in this application are true, co and are made in good faith.	mplete, and correct to the	best of my knowledge and belief,				
Name	Signature	WN				
Arthur S. Liu	The same	T				
Tiue	Date	#elephone Number				
President	07/05/2019	212.431.4300				
WILLFUL FALSE STATEMENTS ON THIS FORM AR	E PUNISHABLE BY FIN	E AND/OR IMPRISONMENT				

WILLFUL FALSE STATEMENTS ON THIS FORM ARE PUNISHABLE BY FINE AND/OR IMPRISONMENT (U.S. CODE, TITLE 18, SECTION 1001), AND/OR REVOCATION OF ANY STATION LICENSE OR CONSTRUCTION

FCC NOTICE TO INDIVIDUALS REQUIRED BY THE PRIVACY ACT AND THE PAPERWORK REDUCTION ACT

The solicitation of personal information requested in this application is authorized by the Communications Act of 1934, as amended. The Commission will use the information provided in this form to determine whether grant of the application is in the public interest. In reaching that determination, or for law enforcement purposes, it may become necessary to refer personal information contained in this form to another government agency. In addition, all information provided in this form will be available for public inspection. If information requested on the form is not provided, the application may be returned without action having been taken upon it or its processing may be delayed while a request is made to provide the missing information. Your response is required to obtain the requested authorization,

Public reporting burden for this collection of information is estimated to average 639 hours and 53 minutes per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the burden, can be sent to the Federal Communications Commission, Records Management Branch, Paperwork Reduction Project (3060-0627), Washington, D. C. 20554. Do NOT send completed forms to this address.

THE FOREGOING NOTICE IS REQUIRED BY THE PRIVACY ACT OF 1974, P.L. 93-579, DECEMBER 31, 1974, 5 U.S.C. 5528(e)(3), AND THE PAPERWORK REDUCTION ACT OF 1980, P.L. 98-511, DECEMBER 11, 1980, 44 U.S.C. 3507.

Application for License and MoM Proof-of-Performance Multicultural Radio Broadcasting Licensee, LLC Station KIQI(AM), San Francisco, CA

Exhibit A

Multicultural Radio Broadcasting Licensee, LLC, is not operating Station KIQI(AM) pursuant to automatic Program Test Authority because its nighttime operation, which this application covers, employs a revised directional antenna radiation pattern.

HATFIELD & DAWSON

THOMAS M. ECKELS, PE STEPHEN S. LOCKWOOD, PE DAVID J. PINION, PE ERIK C. SWANSON, PE

1

THOMAS S. GORTON, PE

JAMES B. HATFIELD, PE BENJAMIN F. DAWSON III, PE CONSULTANTS CONSULTING ELECTRICAL ENGINEERS 9500 GREENWOOD AVE. N. SEATTLE, WASHINGTON 98103 TELEPHONE (206) 783-9151 FACSIMILE (206) 789-9834 E-MAIL hatdaw@hatdaw.com

> Maury L. Hatfield, PE (1942-2009) Paul W. Leonard, PE (1925-2011)

Application for Station License and Method of Moments Proof of Performance per BMP-20181207AAR

KIQI(AM)
San Francisco, CA
Facility ID 50703

1010 kHz 10 kW DA-2

Multicultural Radio Broadcasting Licensee

June 2019

APPLICATION FOR LICENSE RADIO STATION KIQI(AM) San Francisco, CA 1010 kHz, DA-2

Purpose of Application

Item 1	Analysis of Tower Impedance Measurements to Verify Method of Moments Model
Item 2	Method of Moments Model Details for Towers Driven Individually
Item 3	Method of Moments Model Details for Directional Antenna Patterns
Item 4	Derivation of Operating Parameters for Directional Antenna
Item 5	Post Construction Array Geometry Statement
Item 6	Sampling System Measurements
Item 7	Reference Field Strength Measurements
Item 8	Direct Measurement of Power
Appendix A Appendix B	Construction Permit BMP-20181207AAR FCC Form 302-AM

Purpose of Application

This engineering exhibit supports an application by Multiculrtural Radio Broadcasting Licensee, LLC for a modified station license for radio station KIQI(AM) San Francisco, CA (Facility ID 50703). KIQI operates unlimited time on 1010 kHz with a power of 10 kW day and 0.5 kW night using a single directional antenna pattern for both day and night operation, as authorized by BZ-20020411ABB. This application for license is pursuant to the facility improvement authorized by BMP-20181207AAR, for increased nighttime power to 10 kW employing a revised directional antenna radiation pattern for the new nighttime operation. No changes have been made to the licensed daytime operation.

Information is provided herein demonstrating that the directional antenna parameters for the pattern authorized by the construction permit have been determined in accordance with the requirements of section §73.151(c) of the FCC Rules. The system has been adjusted to produce antenna monitor parameters within +/- 5 percent in ratio and +/- 3 degrees in phase of the modeled values, as required by the Rules.

All measurements contained in this report were made by the undersigned engineer and the Multicultural regional engineering director, Michael Gilbert, with the exception of the Reference Point field strength measurements which were taken by KIQI engineer Arthur Lebermann.

Geographic Coordinates

During the process of preparation of this license application it was determined that the geographic coordinates for the underlying construction permit, as originally filed and as amended, are incorrect. The coordinates shown in the current station license, BZ-20020411ABB as renewed by BR-20130731ATC, NL 37° 49′ 34″ by WL 122° 18′ 37″, are the correct NAD-27 coordinates, as confirmed by GPS measurement of the center tower location at the time of the reference point measurements.

For unknown reasons, the coordinates given in the original application for construction permit BP-20140214ABF are the NAD-83 coordinates, NL 37° 49' 34" by WL 122° 18' 41", and therefore those were used in the current amended nighttime power increase application, BMP-20181207AAR. (These coordinates are the NAD-83 coordinates shown in the Antenna Registration data for the center tower in the array, 1056742.)

This license application uses the correct NAD-27 coordinates. The staff will normally allow coordinate correction up to three seconds, but this correction is four seconds, so waiver of the policy is respectfully requested. The applicant requests Program Test Authority, and if such waiver cannot be granted, will promptly file a pro forma application for modification of the construction permit to the correct NAD-27 coordinates.

Item 1 Analysis of Tower Impedance Measurements to Verify Method of Moments Model - KIQI

1

Tower base impedance measurements were made at the locations of the sample system current transformers using a Hewlett Packard 8751A network analyzer in a calibrated measurement system. The other towers were open circuited at the same point where impedance measurements were made (the "reference points") for each of the measurements. The reference point measurements are listed in the table below.

KIQI Measured "Reference Point" Impedances

Tower	Measured R	Measured X
1 (E)	26.6	- J 12.3
2 (C)	25.2	-J 17.6
3 (W)	26.6	-J 16.8

Circuit calculations were performed to relate the method of moments modeled impedances at the tower base feed points to those at the measurement locations as shown in the diagram titled *Analysis of Tower Impedance Measurements to Verify Method of Moments Model*. The series/parallel equivalent impedance of $X_{LC_i}X_L$ and X_{OC} was used in the moment method model as a load at ground level (lumped load) for the open circuited towers.

Item 2 Method of Moments Model Details for Towers Driven Individually - KIQI

The array of towers was modeled using Expert MININEC Broadcast Professional Version 14.0. One wire was used to represent each tower. The top and bottom wire end points were specified using electrical degrees in the geographic coordinate system, using the theoretical directional antenna specifications for tower spacing and orientation. Each tower was modeled as shown in the table and description below.

Each tower's modeled height relative to its physical height falls within the required range of 75 to 125 percent of the actual tower height.

KIQI Tower Dimensions - Physical and Modeled

Tower	Physical Height (Degrees)	Modeled Height (degrees)	Modeled Height (percent)	Modeled Radius (meters)	Modeled Radius (percent)
1E	75.4 + TL	82.5 + TL	109.4	See Table	100
2C	75.4 + TL	82.5 + TL	109.4	See Table	100
3W	75.4 + TL	82.5 + TL	109.4	See Table	100

KIQI MININEC Model Node and Wire Numbering

Tower	Wire Number	Base Node Number	
1E	1	1	
2C	41	45	
3W	81	89	

(The base wire and node numbers differ because of the nodes in the toploading model.)

Tower 3 has an STL antenna and a capacitive isocoupler. The impedance of the isoucoupler was found to be in excess of -j30k and therefore deemed to have no significant effect on the model or measured impedances.

The ground system matches the specifications listed on the previous license application.

The Moment Method Model for the KIQI Antenna Towers

The KIQI antenna system employs three identical Magnum self-supporting towers equipped with a top-loading assembly.

The effective electrical height of the towers and toploading was established in an exhibit to the license application BZ-20020411ABB and no changes have occurred subsequently.

The moment method model used in the present application for the facilities described in BMP-20181207AAR is based on the model developed by Ron Rackley for the implementation of the facilities described in the 2002 application, with the modification of the toploading model to meet the requirements of the current 73.151(c) rule.

The antenna towers are 204 feet, 62.2 meters, 75.4 degrees tall, with the addition of the measured value of 14.6 degrees of toploading.

The moment method model is a "Michelin Man" or "wedding cake" model for the tower itself, with the toploading radial wires and support members individually modeled, and with the tower height adjusted (for the "speed of light in steel" effect) to 68 meters, 109.4% of the actual physical height.

Tower Model Geometry

Height Meters	Lower Face inches	Upper Face inches	Average Radius M	Model Radius M	Percentage
0-17	171	90.8	1.59	1.56	98.1
17-34	90.8	58.5	0.905	0.91	100.5
34-51	58.5	24	0.5	0.4	80.0
51-68	24	24	0.291	0.26	89.3

The towers are physically 75.4 degrees tall, and each of the four tower sections has two segments and therefore the model meets the requirement that there be at least one segment for each 10 degrees of physical height.

The tower toploading consists of 6 horizontal support members and 30 intermediate wires, resulting in a radial element each 10 degrees.

The support members are 2.13 meters (7 feet) in length, and the intermediate wires are all shorter, with the shortest intermediate wires, midway between the support member, at 1.84 meters in length. The toploading is therefore a hexagon. For simplicity it has been modeled as a disc of constant 2 meter radius, and the length adjustments are consistent with the Commission's moment method modeling limitations as shown in the table below. The support members are 2 inches square and the radial wires are #6 AWG copperweld wire. The perimeter wire has been ignored since no current flows in it. (Similarly to the lack of consideration of horizontal members when a cylindrical wire model is used.)

Toploading Model Details

Support	Length M	Model L	Percent	Radius M	Model R	Percent
Support	2.13	2.0	106.5	0.032	0.025	83.0%
Shortest Wire	1.84	2.0	92.0	0.00206	0.003	145.6%

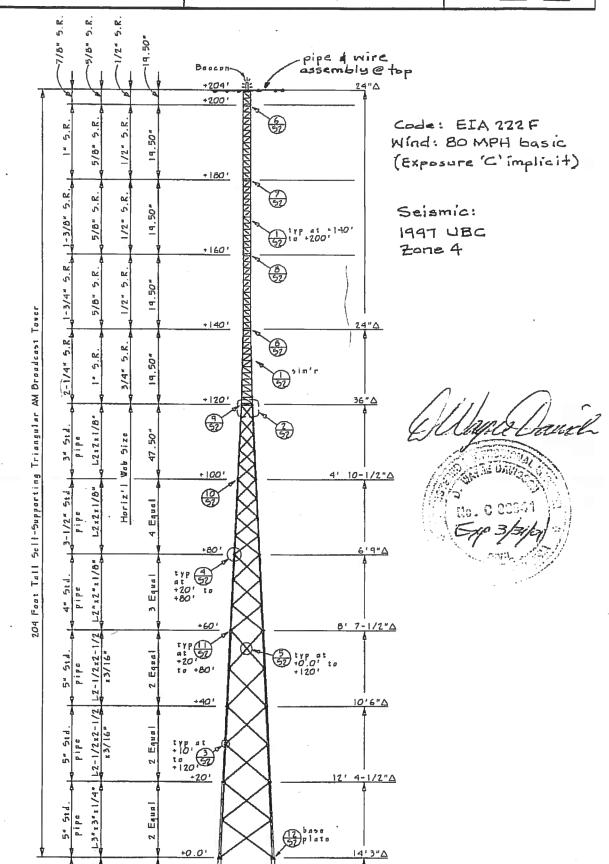
Note that the moment method model geometry has the antenna elements located on a 0-180 degree line rather than the actual 60-240 degree alignment, for computational convenience. This, of course, has no effect on the current and impedance calculation results since they relate only to the spacing and tower structure geometry of this bilaterally symmetrical linear array.

JOB

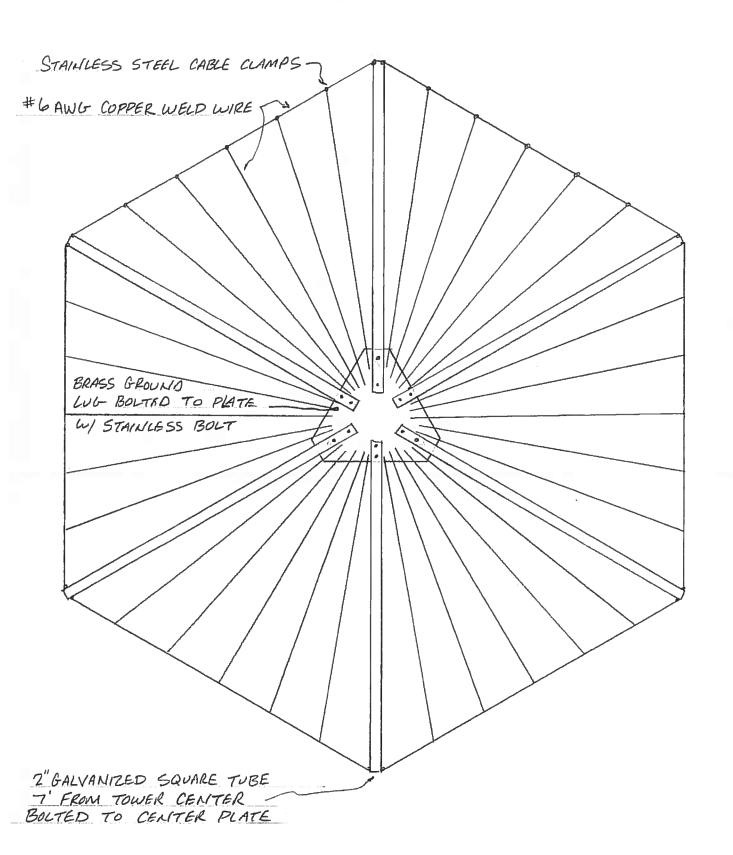
3 each 204 Foot Tall Triangular Self-Supporting AM Communication Towers KIQI AM Radio Oakland, California JOB

1501-99

MAGNUM TOWERS, INC. 9370 ELDER CREEK ROAD SACRAMENTO, CA 95829 (916) 381-5053


CLIENT: KIQI-AM - Bob Turner

DATE


Monday, January 25, 1999

PAGE

of 31

JOB			JOB 140	MAGNUM	TOWERS	INC
CLIENT					ER CREEK ROAD CALIFORNIA	95829
DRAMN BY	DATE	OWN.NO. PAGE DI	=	_ '	1 381-50	53

KIQI Tower 1 Driven, Other Towers Open Circuited at Current Transformer Location

C:\Muticultural Stations\KIQI Mininec Files\MININEC Files\kiqi05A3eastalone
KIQI CP Pattern at 10 kW

GEOMETRY

Dimensions in meters

Environment: perfect ground

wire 1	caps none	Distance	Angle	Z 0		segs
Τ	none	0	0	17.	1.56	2
2	none	0	0	17.	.91	2
3	none		0	34. 34.	. 4	2
4	none		0	51. 51.	.26	2
5	none		0	68. 68.	.025	1
6	none		0	68. 68.	.025	1
7	none		-300. 0	68. 68.	.025	1
8	none		-240. 0	68. 68.	.025	1
9	none		-180. 0	68. 68.	.025	1
10	none		-120. 0	68. 68.	.025	1
11	none		-60. 0	68. 68.	.003	1
12	none		-350. 0	68. 68.	.003	1
13	none		-340. 0	68. 68.	.003	1
14	none		-330. 0	68. 68.	.003	1
15	none	2. 0 2.	-320. 0	68. 68.	.003	1
16	none		-310. 0 -290.	68. 68.	.003	1
17	none		0 -280.	68. 68.	.003	1
18	none		0 -270.	68. 68.	.003	1
19	none		0 -260.	68. 68.	.003	1
20	none		0 -250.	68. 68.	.003	1

Hatfield & Dawson Consulting Engineers

21	none		0	68.	.003	1
22	none	2.	-230. 0	68. 68.	.003	1
		2.	-220.	68.		
23	none	0	0	68.	.003	1
0.4		2.	-210.	68.	000	-
24	none	2.	0 -200.	68. 68.	.003	1
25	none		0	68.	.003	1
0.6		2.	-190.	68.		_
26	none	0 2.	0 -170.	68. 68.	.003	1
27	none		0	68.	.003	1
~ '	110110	2.	-160.	68.	• 003	_
2.0					002	1
28	none		0	68.	.003	1
		2.	-150.	68.		
29	none	0	0	68.	.003	1
		2.	-140.	68.		
30	none	0	0	68.	.003	1
		2.	-130.	68.		
31	none		0	68.	.003	1
91	none	2.			.003	1
2.0			-110.	68.	0.00	-
32	none		0	68.	.003	1
		2.	-100.	68.		
33	none	0	0	68.	.003	1
		2.	-90.	68.		
34	none	0	0	68.	.003	1
		2.	-80.	68.		
35	none		0	68.	.003	1
55	none	2.			.005	1
2.0			-70.	68.	0.00	-
36	none		0	68.	.003	1
		2.	-50.	68.		
37	none	0	0	68.	.003	1
		2.	-40.	68.		
38	none	0	0	68.	.003	1
		2.	-30.	68.		
39	none		0	68.	.003	1
5,5	11011C	2.	-	68.	.003	
4.0			-20.		0.00	4
40	none		0	68.	.003	1
		2.	-10.	68.		
41	none	74.206	0	0	1.56	2
		74.206	0	17.		
42	none	74.206	0	17.	.91	2
		74.206	0	34.		_
43	nono	74.206	0		Λ	2
37	none		_	34.	. 4	2
4.6		74.206	0	51.	0.6	-
44	none	74.206	0	51.	.26	2
		74.206	0	68.		
45	none	74.206	0	68.	.025	1
		76.206	0	68.		
46	none	74.206	0	68.	.025	1
		75.2259	-358.681	68.	.029	-
		13.4633	220.001	00.		

Hatfield & Dawson Consulting Engineers

47	none	74.206 73.2265	0 -358.645	68. 68.	.025	1
48	none	74.206 72.206	0	68.	.025	1
49	none	74.206	0	68. 68.	.025	1
50	none	73.2265 74.206	-1.35536 0	68. 68.	.025	1
51	none	75.2259 74.206	-1.31933 0	68. 68.	.003	1
52	none	76.1764 74.206	-359.739 0	68. 68.	.003	1
53	none	76.0885 74.206	-359.485 0	68. 68.	.003	1
54	none	75.9446 74.206	-359.246 0	68. 68.	.003	1
55	none	75.749 74.206	-359.028 0	68. 68.	.003	1
56	none	75.5071 74.206	-358.837 0	68. 68.	.003	1
57	none	74.9136 74.206	-358.562 0	68. 68.	.003	1
58	none	74.5793 74.206	-358.487 0	68. 68.	.003	1
59	none	74.233 74.206	-358.456 0	68. 68.	.003	1
60	none	73.885 74.206	-358.472 0	68. 68.	.003	1
61	none	73.546 74.206	-358.536 0	68. 68.	.003	1
62	none	72.9365 74.206	-358.796 0	68. 68.	.003	1
63	none	72.6853 74.206	-358.987 0	68. 68.	.003	1
64	none	72.4809 74.206	-359.21 0	68. 68.	.003	1
65	none	72.3299 74.206	-359.458 0	68. 68.	.003	1
66	none	72.2372 74.206	-359.725 0	68. 68.	.003	1
67	none	72.2372 74.206	275463 0	68. 68.	.003	1
68	none	72.3299 74.206	541868 0	68. 68.	.003	1
69	none	72.4809 74.206	79052 0	68. 68.	.003	1
70	none	72.6853 74.206	-1.01344 0	68. 68.	.003	1
71	none	72.9365 74.206	-1.20363 0	68. 68.	.003	1
72	none	73.546 74.206 73.885	-1.46429 0 -1.52756	68. 68.	.003	1

Hatfield & Dawson Consulting Engineers

73	none	74.206 74.233	0 -1.54386	68. 68.	.003	1
74	none	74.206 74.5793	0 -1.51334	68. 68.	.003	1
75	none	74.206 74.9136	0	68. 68.	.003	1
76	none	74.206 75.5071	-1.43755 0	68.	.003	1
77	none	74.206	-1.16265 0	68. 68.	.003	1
78	none	75.749 74.206	972443 0	68. 68.	.003	1
79	none	75.9446 74.206	754463 0	68. 68.	.003	1
80	none	76.0885 74.206	5151 0	68. 68.	.003	1
81	none	76.1764 148.412	261219 0	68. 0	1.56	2
82	none	148.412 148.412	0	17. 17.	.91	2
83	none	148.412 148.412	0	34. 34.	. 4	2
84	none	148.412 148.412	0	51. 51.	.26	2
85	none	148.412 148.412	0	68. 68.	.025	1
86	none	150.412 148.412	0	68. 68.	.025	1
87	none	149.422 148.412	-359.336 0	68. 68.	.025	1
88	none	147.422 148.412	-359.327 0	68. 68.	.025	1
89	none	146.412 148.412	0 (73170	68. 68.	.025	1
90	none	147.422 148.412	673179 0	68. 68.	.025	1
91	none	149.422 148.412 150.382	664169 0 -359.868	68. 68.	.003	1
92	none	148.412 150.293	0	68. 68.	.003	1
93	none	148.412 150.147	-359.739 0 -359.618	68. 68.	.003	1
94	none	148.412 149.95	0 -359.509	68. 68.	.003	1
95	none	148.412 149.705	0 -359.414	68. 68.	.003	1
96	none	148.412 149.108	0 -359.278	68. 68.	.003	1
97	none	148.412 148.772	0 -359.241	68. 68.	.003	1
98	none	148.412 148.426	0 -359.228	68. 68.	.003	1

Hatfield & Dawson Consulting Engineers

99	none	148.412	0		68.	.00	3	1
100	none	148.078 148.412	-359. 0	238	68. 68.	.00	3	1
		147.74	-359.	271	68.			
101	none	148.412	0		68.	.00	3	1
		147.134	-359.	403	68.			
102	none	148.412	0	400	68.	.00	3	1
103	nono	146.886 148.412	-359.	499	68.	0.0	2	1
103	none	146.683	-359.	609	68. 68.	.00	3	1
104	none	148.412	0	009	68.	.00	3	1
104	none	146.534	-359.	733	68.	.00	J	1
105	none	148.412	0	, 55	68.	.00	3	1
100		146.443	-359.	864	68.	• • • •	J	_
106	none	148.412	0		68.	.00	3	1
		146.443	135	8.8	68.	• • •		_
107	none	148.412	0		68.	.00	3	1
		146.534	267	465	68.			_
108	none	148.412	0		68.	.00	3	1
		146.683	390	612	68.			_
109	none	148.412	0		68.	.00	3	1
		146.886	501	472	68.			
110	none	148.412	0		68.	.00	3	1
		147.134	596	623	68.			
111	none	148.412	0		68.	.00	3	1
		147.74	7288	374	68.			
112	none	148.412	0		68.	.00	3	1
		148.078	7623	126	68.			
113	none	148.412	0		68.	.00	3	1
		148.426	7720	071	68.			
114	none	148.412	0		68.	.00	3	1
		148.772	7585	568	68.			
115	none	148.412	0		68.	.00	3	1
		149.108	722	186	68.			
116	none	148.412	0		68.	.00	3	1
		149.705	5863	377	68.			
117	none	148.412	0		68.	.00	3	1
		149.95	4912	225	68.			
118	none	148.412	0	_	68.	.00	3	1
110		150.147	3816	Ó	68.		_	
119	none	148.412	0	n =	68.	.00	3	1
100		150.293	260	//6	68.	0.0	_	_
120	none	148.412	0	201	68.	.00	3	1
		150.382	1323	321	68.			
Number	of w	ires	= 12	20				
Number		current nodes		32				
		arrene modes	Τ.	, _				
			minimu	ım		max	imum	
Indivi	dual	wires w	ire	value		wire	value	
segmer	nt ler	ngth	102	1.9988	6	1	8.5	
segmer	nt/rac	lius ratio	1	5.4487		97	667.007	

Hatfield & Dawson Consulting Engineers

Frequenc:	quency est	PTION step 0	no. of steps 1	segment lengt minimum 6.73E-03	maximum	hs)
Sources source no	ode sec	_		phase 0	type voltage	
Lumped lo	pads					
load noo 1 45 2 89	de (ohms 5 0		reactance (ohms) 108,500. 108,500.	inductance (mH) 0 0		passive circuit 0 0
C:\Muticultural Stations\KIQI Mininec Files\MININEC Files\kiqi05A3eastalone						
<pre>IMPEDANCE normalization = 50.</pre>						

phase

(deg)

308.7

VSWR

S11

2.8904 -6.2687 -1.1697

dВ

S12

dВ

imped

3.E-03

1 1.56

11

radius

freq

(MHz)

resist react

source = 1; node 1, sector 1

26.866

(ohms) (ohms) (ohms)

-33.552 42.983

KIQI Tower 2 Driven, Other Towers Open Circuited at Current Transformer Location

C:\Muticultural Stations\KIQI 1010 San Francisco\MININEC
Files\kiqi05A3centeralone

KIQI CP Pattern at 10 kW

GEOMETRY

Dimensions in meters

Environment: perfect ground

wire 1	caps none		0	Z 0	radius 1.56	segs 2
2	none	0 0 0	0 0 0	17. 17. 34.	.91	2
3	none	-	0	34. 51.	. 4	2
4	none		0	51. 68.	.26	2
5	none		0	68. 68.	.025	1
6	none		0 -300.	68. 68.	.025	1
7	none		0 -240.	68. 68.	.025	1
8	none	0 2.	0 -180.	68. 68.	.025	1
9	none	0 2.	0 -120.	68. 68.	.025	1
10	none	0 2.	0 -60.	68. 68.	.025	1
11	none	0 2.	0 -350.	68. 68.	.003	1
12	none	0 2.	0 -340.	68. 68.	.003	1
13	none	2.	0 -330.	68. 68.	.003	1
14	none	2.	0 -320.	68. 68.	.003	1
15	none	2.	0 -310.	68. 68.	.003	1
16	none	2.	0 -290.	68. 68.	.003	1
17	none	2.	0 -280.	68. 68.	.003	1
18	none	2.	0 –270.	68. 68.	.003	1
19	none	2.	0 -260.	68. 68.	.003	1
20	none	U	0	68.	.003	1

Hatfield & Dawson Consulting Engineers

0.1		2.	-250.	68.		
21	none		0	68.	.003	1
		2.	-230.	68.		
22	none		0	68.	.003	1
		2.	-220.	68.		
23	none		0	68.	.003	1
		2.	-210.	68.		
24	none		0	68.	.003	1
		2.	-200.	68.		
25	none	0	0	68.	.003	1
		2.	-190.	68.		
26	none	0	0	68.	.003	1
		2.	-170.	68.		
27	none	0	0	68.	.003	1
		2.	-160.	68.		
28	none	0	0	68.	.003	1
		2.	-150.	68.		
29	none	0	0	68.	.003	1
		2.	-140.	68.		
30	none	0	0	68.	.003	1
		2.	-130.	68.		
31	none	0	0	68.	.003	1
		2.	-110.	68.		
32	none	0	0	68.	.003	1
		2.	-100.	68.		
33	none	0	0	68.	.003	1
		2.	-90.	68.		
34	none		0	68.	.003	1
		2.	-80.	68.		
35	none		0	68.	.003	1
		2.	-70.	68.		_
36	none		0	68.	.003	1
		2.	-50.	68.	• • • • •	_
37	none		0	68.	.003 —	1
		2.	-40.	68.	.000	
38	none		0	68.	.003	1
		2.	-30.	68.	.000	_
39	none		0	68.	.003	1
0 5	110110	2.	-20.	68.	• 003	+
40	none		0	68.	.003	1
10	110110	2.	-10.	68.	.005	_
41	none	74.206	0	0	1.56	2
41	none	74.206	0	17.	1.50	2
42	none	74.206	0	17.	.91	2
72	none	74.206	0	34.	. 91	2
43	nono	74.206	0	34.	. 4	2
7.7	none	74.206	0	51.	. 4	2
44	none	74.206	0	51.	26	2
44	none		0		.26	2
45	nonc	74.206	0	68.	025	1
47	110116	74.206	-	68.	.025	1
16	none	76.206	0	68.	025	1
46	none	74.206	0	68.	.025	1

Hatfield & Dawson Consulting Engineers

47	none	75.2259 74.206	-358.681 0	68. 68.	.025	1
7 /	none	73.2265	-358.645	68.	.025	1
48	none	74.206	0	68.	.025	1
10	none	72.206	0	68.	.025	7
49	none	74.206	0	68.	.025	1
4.7	none	73.2265	-1.35536	68.	.025	_
50	none	74.206	0	68.	.025	1
30	none	75.2259	-1.31933	68.	.025	_
51	none	74.206	0	68.	.003	1
0 1	110110	76.1764	-359.739	68.	.003	_
52	none	74.206	0	68.	.003	1
02		76.0885	-359.485	68.	.000	_
53	none	74.206	0	68.	.003	1
		75.9446	-359.246	68.	• 0 0 0	_
54	none	74.206	0	68.	.003	1
		75.749	-359.028	68.	• • • • • • • • • • • • • • • • • • • •	_
55	none	74.206	0	68.	.003	1
		75.5071	-358.837	68.		_
56	none	74.206	0	68.	.003	1
		74.9136	-358.562	68.		
57	none	74.206	0	68.	.003	1
		74.5793	-358.487	68.		
58	none	74.206	0	68.	.003	1
		74.233	-358.456	68.		
59	none	74.206	0	68.	.003	1
		73.885	-358.472	68.		
60	none	74.206	0	68.	.003	1
		73.546	-358.536	68.		
61	none	74.206	0	68.	.003	1
		72.9365	-358.796	68.		
62	none	74.206	0	68.	.003	1
		72.6853	-358.987	68.		
63	none	74.206	0	68.	.003	1
		72.4809	-359.21	68.		
64	none	74.206	0	68.	.003	1
		72.3299	-359.458	68.		
65	none	74.206	0	68.	.003	1
		72.2372	-359.725	68.		
66	none	74.206	0	68.	.003	1
6.5		72.2372	275463	68.		
67	none	74.206	0	68.	.003	1
60		72.3299	541868	68.		_
68	none	74.206	0	68.	.003	1
<i>c</i> 0		72.4809	79052	68.	0.00	_
69	none	74.206	0	68.	.003	1
7.0		72.6853	-1.01344	68.	003	-
70	none	74.206	1 20262	68.	.003	1
71	none	72.9365 74.206	-1.20363	68.	003	1
/ 1	none		0 _1 46429	68.	.003	1
72	nonc	73.546	-1.46429	68.	003	1
12	House	74.206	0	68.	.003	1

Hatfield & Dawson Consulting Engineers

		73.885	-1.52756	68.		
73	none	74.206	0	68.	.003	1
		74.233	-1.54386	68.		
74	none	74.206	0	68.	.003	1
7.5		74.5793	-1.51334	68.	0.0.3	
75	none	74.206	1 42755	68.	.003	1
76		74.9136	-1.43755	68.	000	1
76	none	74.206 75.5071	0 -1.16265	68. 68.	.003	1
77	nono	74.206	0	68.	002	1
/ /	none	75.749	972443	68.	.003	Τ
78	none	74.206	0	68.	.003	1
, 0	110110	75.9446	754463	68.	.003	Τ.
79	none	74.206	0	68.	.003	1
. 5		76.0885	5151	68.	•005	_
80	none	74.206	0	68.	.003	1
		76.1764	261219	68.	• • • • • • • • • • • • • • • • • • • •	_
81	none	148.412	0	0	1.56	2
		148.412	0	17.		
82	none	148.412	0	17.	.91	2
		148.412	0	34.		
83	none	148.412	0	34.	. 4	2
		148.412	0	51.		
84	none	148.412	0	51.	.26	2
		148.412	0	68.		
85	none	148.412	0	68.	.025	1
		150.412	0	68.		
86	none	148.412	0	68.	.025	1
		149.422	-359.336	68.		
87	none	148.412	0	68.	.025	1
		147.422	-359.327	68.		
88	none	148.412	0	68.	.025	1
0.0		146.412	0	68.		
89	none	148.412	0	68.	.025	1
0.0		147.422	673179	68.	005	
90	none	148.412	0	68.	.025	1
91	2020	149.422	664169	68.	003	1
91	none	148.412 150.382	0 -359.868	68.	.003	1
92	none	148.412	0	68. 68.	.003	1
32	none	150.293	-359.739	68.	.003	1
93	none	148.412	0	68.	.003	1
,,,	110110	150.147	-359.618	68.	.005	Τ.
94	none	148.412	0	68.	.003	1
•		149.95	-359.509	68.	.005	_
95	none	148.412	0	68.	.003	1
		149.705	-359.414	68.		_
96	none	148.412	0	68.	.003	1
		149.108	-359.278	68.	-	_
97	none	148.412	0	68.	.003	1
		148.772	-359.241	68.		·
98	none	148.412	0	68.	.003	1

Hatfield & Dawson Consulting Engineers

0.0		148.426	-359.228	68.	2.2.2	_
99	none	148.412	0	68.	.003	1
100		148.078	-359.238	68.	0.00	
100	none	148.412	0	68.	.003	1
1.01		147.74	-359.271 0	68.	0.03	1
101	none	148.412 147.134	-359.403	68. 68.	.003	1
102	nono	148.412	0	68.	.003	1
102	none	146.886	-359.499	68.	.003	1
103	none	148.412	0	68.	.003	1
100		146.683	-359.609	68.	.005	
104	none	148.412	0	68.	.003	1
		146.534	-359.733	68.		_
105	none	148.412	0	68.	.003	1
		146.443	-359.864	68.		
106	none	148.412	0	68.	.003	1
		146.443	13588	68.		
107	none	148.412	0	68.	.003	1
		146.534	267465	68.		
108	none	148.412	0	68.	.003	1
100		146.683	390612	68.		
109	none	148.412	0	68.	.003	1
110		146.886	501472	68.	0.03	-
110	none	148.412	0	68.	.003	1
111	2020	147.134	596623 0	68.	003	-
111	none	148.412 147.74	728874	68. 68.	.003	1
112	none	148.412	0	68.	.003	1
	none	148.078	762126	68.	•005	
113	none	148.412	0	68.	.003	1
		148.426	772071	68.		_
114	none	148.412	0	68.	.003	1
		148.772	758568	68.		
115	none	148.412	0	68.	.003	1
		149.108	722186	68.		
116	none	148.412	0	68.	.003	1
		149.705	586377	68.		
117		148.412	0	68.	.003	1
		149.95	491225	68.		
118	none	148.412	0	68.	.003	1
440		150.147	3816	68.		
119	none	148.412	0	68.	.003	1
100		150.293	260776	68.		_
120	none	148.412	0	68.	.003	1
		150.382	132321	68.		
Number	s of t	iiroo	_ 120			
Number		urrent node:	= 120 = 132			
		arrent node:	- 132			
			minimum		maximum	
Indivi	dual	wires '	wire value	e	wire value	
segmer			102 1.99		1 8.5	
		-		-	_	

Hatfield & Dawson Consulting Engineers

segment/radius ratio radius	1 5.4487 11 3.E-03		667.007 1.56			
ELECTRICAL DESCRIPTION Frequencies (MHz) frequency no. lowest step 1 1.01 0		of segment lengt minimum 6.73E-03	maximum			
Sources source node sector 1 45 1	magnitude 100.	phase 0	type voltage			
Lumped loads						
resistance load node (ohms) 1 89 0 2 1 0	reactance (ohms) 108,500. 108,500.	inductance (mH) 0 0	capacitance passive (uF) circuit 0 0 0			
<pre>D:\KIQI 1010 San Francisco\MININEC Files\kiqi05A3centeralone IMPEDANCE normalization = 50.</pre>						
freq resist react (MHz) (ohms) (ohms source = 1; node 45, s	s) (oĥms)	phase VSWR (deg)	S11 S12 dB dB			
	909 42.266	306.7 3.0724	-5.8676 -1.3016			

KIQI Tower 3 Driven, Other Towers Open Circuited at Current Transformer Location

C:\Muticultural Stations\KIQI 1010 San Francisco\MININEC Files\kiqi05A3westalone KIQI CP Pattern at 10 kW

GEOMETRY

Dimensions in meters

Environment: perfect ground

wire 1	caps none	Distance 0	Angle	Z 0	radius 1.56	segs 2
		0	0	17.	1.00	_
2	none		0	17.	.91	2
		0	0	34.		
3	none	0	0	34.	. 4	2
		0	0	51.		
4	none	0	0	51.	.26	2
		0	0	68.		
5	none	0	0	68.	.025	1
		2.	0	68.		
6	none	0	0	68.	.025	1
		2.	-300.	68.		
7	none		0	68.	.025	1
		2.	-240.	68.		
8	none	0	0	68.	.025	1
		2.	-180.	68.		
9	none		0	68.	.025	1
		2.	-120.	68.		
10	none	0	0	68.	.025	1
		2.	-60.	68.		
11	none	0	0	68.	.003	1
		2.	-350.	68.		
12	none	0	0	68.	.003	1
		2.	-340.	68.		
13	none	0	0	68.	.003	1
		2.	-330.	68.		
14	none		0	68.	.003	1
		2.	-320.	68.		
15	none		0	68.	.003	1
		2.	-310.	68.		
16	none		0	68.	.003	1
		2.	-290.	68.		
17	none		0	68.	.003	1
		2.	-280.	68.		
18	none		0	68.	.003	1
		2.	-270.	68.		
19	none		0	68.	.003	1
		2.	-260.	68.		
20	none		0	68.	.003	1
		2.	-250.	68.		

Hatfield & Dawson Consulting Engineers

21	none		0	68.	.003	1
22	none		-230. 0	68. 68.	.003	1
23	none		-220. 0	68. 68.	.003	1
24	none	2.	-210. 0	68. 68.	.003	1
25	none	2.	-200. 0	68. 68.	.003	1
26	none	2.	-190. 0	68. 68.	.003	1
27	none	2.	-170. 0	68. 68.	.003	1
28	none	2.	-160. 0	68. 68.	.003	1
29	none	2.	-150. 0	68. 68.	.003	1
30	none	2.	-140. 0	68. 68.	.003	1
		2.	-130.	68.		
31	none	2.	0 -110.	68. 68.	.003	1
32	none	2.	0 -100.	68. 68.	.003	1
33	none	2.	0 -90.	68. 68.	.003	1
34	none	0 2.	0 -80.	68. 68.	.003	1
35	none	0 2.	0 -70.	68. 68.	.003	1
36	none	0 2.	0 -50.	68. 68.	.003	1
37	none	0 2.	0 -40.	68. 68.	.003	1
38	none		0 -30.	68. 68.	.003	1
39	none		0 -20.	68. 68.	.003	1
40	none		0 -10.	68. 68.	.003	1
41	none	74.206 74.206	0	0	1.56	2
42	none	74.206 74.206	0	17. 34.	.91	2
43	none	74.206 74.206	0	34.	. 4	2
44	none	74.206	0	51. 51.	.26	2
45	none	74.206 74.206	0	68. 68.	.025	1
46	none	76.206 74.206 75.2259	0 0 -358.681	68. 68. 68.	.025	1

Hatfield & Dawson Consulting Engineers

47	none	74.206	0	68.	.025	1
48	none	73.2265 74.206	-358.645 0	68. 68.	.025	1
		72.206	0	68.		
49	none	74.206	0	68.	.025	1
F 0		73.2265	-1.35536	68.	005	_
50	none	74.206 75.2259	0 -1.31933	68. 68.	.025	1
51	none	74.206	0	68.	.003	1
		76.1764	-359.739	68.	• • • • •	_
52	none	74.206	0	68.	.003	1
		76.0885	-359.485	68.		_
53	none	74.206	0	68.	.003	1
		75.9446	-359.246	68.	• 0 0 0	_
54	none	74.206	0	68.	.003	1
0.		75.749	-359.028	68.	.005	_
55	none	74.206	0	68.	.003	1
00	none	75.5071	-358.837	68.	.005	_
56	none	74.206	0	68.	.003	1
50	none	74.9136	-358.562	68.	.003	Τ.
57	nono	74.206	0	68.	003	1
5 /	none		•		.003	1
F.0		74.5793	-358.487	68.	0.00	
58	none	74.206	0	68.	.003	1
E 0		74.233	-358.456	68.		_
59	none	74.206	0	68.	.003	1
6.0		73.885	-358.472	68.		
60	none	74.206	0	68.	.003	1
		73.546	-358.536	68.		
61	none	74.206	0	68.	.003	1
		72.9365	-358.796	68.		
62	none	74.206	0	68.	.003	1
		72.6853	-358.987	68.		
63	none	74.206	0	68.	.003	1
		72.4809	-359.21	68.		
64	none	74.206	0	68.	.003	1
		72.3299	-359.458	68.		
65	none	74.206	0	68.	.003	1
		72.2372	-359.725	68.		
66	none	74.206	0	68.	.003	1
		72.2372	275463	68.		
67	none	74.206	0	68.	.003	1
		72.3299	541868	68.		
68	none	74.206	0	68.	.003	1
		72.4809	79052	68.		
69	none	74.206	0	68.	.003	1
		72.6853	-1.01344	68.		
70	none	74.206	0	68.	.003	1
		72.9365	-1.20363	68.		_
71	none	74.206	0	68.	.003	1
		73.546	-1.46429	68.		-
72	none	74.206	0	68.	.003	1
_		73.885	-1.52756	68.		_
			1.01,00			

Hatfield & Dawson Consulting Engineers

73	none	74.206 74.233	0 -1.54386	68. 68.	.003	1
74	none	74.206	0	68.	.003	1
75	none	74.5793 74.206	-1.51334 0	68. 68.	.003	1
76	none	74.9136 74.206	-1.43755 0	68. 68.	.003	1
77	none	75.5071 74.206	-1.16265 0	68. 68.	.003	1
78	none	75.749 74.206	972443 0	68. 68.	.003	1
79	none	75.9446 74.206	754463 0	68. 68.	.003	1
80	none	76.0885 74.206	5151 0	68. 68.	.003	1
81		76.1764 148.412	261219 0	68. 0	1.56	2
82		148.412 148.412	0	17. 17.	.91	2
83		148.412 148.412	0	34. 34.	.4	2
		148.412	0	51.		
84		148.412 148.412	0	51. 68.	.26	2
85		148.412 150.412	0	68. 68.	.025	1
86		148.412 149.422	0 -359.336	68. 68.	.025	1
87	none	148.412 147.422	0 -359.327	68. 68.	.025	1
88	none	148.412 146.412	0	68. 68.	.025	1
89	none	148.412 147.422	0 673179	68. 68.	.025	1
90	none	148.412 149.422	0 664169	68. 68.	.025	1
91	none	148.412 150.382	0 -359.868	68. 68.	.003	1
92	none	148.412 150.293	0 -359.739	68. 68.	.003	1
93	none	148.412 150.147	0 -359.618	68. 68.	.003	1
94	none	148.412 149.95	0 -359.509	68. 68.	.003	1
95	none	148.412 149.705	0	68.	.003	1
96	none	148.412	-359.414 0	68. 68.	.003	1
97	none	149.108 148.412	-359.278 0	68. 68.	.003	1
98	none	148.772 148.412 148.426	-359.241 0 -359.228	68. 68.	.003	1

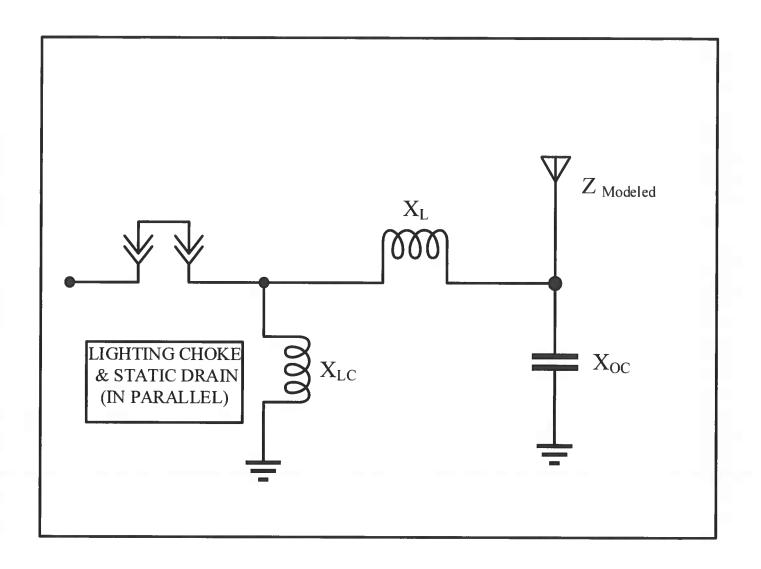
Hatfield & Dawson Consulting Engineers

99	none	148.412	0	0.2.0	68.	.00)3	1
100	none	148.078 148.412	-359.2 0		68. 68.	.00	13	1
		147.74	-359.	271	68.			
101	none	148.412	0	402	68.	.00	13	1
102	nono	147.134 148.412	-359.4 0	403	68. 68.	0.0	12	1
102	none		-359.	199	68.	.00	13	1
103	none	148.412	0	100	68.	.00	13	1
		146.683	-359.	609	68.			
104	none	148.412	0		68.	.00	13	1
		146.534	-359.	733	68.			
105	none	148.412	0		68.	.00	3	1
100		146.443	-359.8	864	68.			
106	none	148.412	1350	3.0	68.	.00	3	1
107	nono	146.443 148.412	1358 0	88	68. 68.	0.0	. 2	1
107	none	146.534	2674	165	68.	.00	3	1
108	none	148.412	0	100	68.	.00	3	1
100	nonc	146.683	3906	612	68.	.00	3	
109	none	148.412	0		68.	.00	3	1
		146.886	5014	172	68.			_
110	none	148.412	0		68.	.00	3	1
		147.134	5966	523	68.			
111	none	148.412	0		68.	.00	3	1
		147.74	7288	374	68.			
112	none	148.412	0		68.	.00	3	1
110		148.078	7621	126	68.		•	_
113	none	148.412	0	771	68.	.00	3	1
114	nono	148.426 148.412	7720 0) / <u>1</u>	68. 68.	0.0	2	1
114	none	148.772	7585	568	68.	.00	3	1
115	none	148.412	0	, , ,	68.	.00	3	1
		149.108	7221	186	68.	.00	9	_
116	none	148.412	0		68.	.00	3	1
		149.705	5863	377	68.			
117	none	148.412	0		68.	.00	3	1
		149.95	4912	225	68.			
118	none	148.412	0	_	68.	.00	3	1
110		150.147	3816		68.	0.0		_
119	none	148.412 150.293	02607	776	68.	.00	3	1
120	none	148.412	0	/ / 6	68. 68.	.00	2	1
120	none	150.382	1323	321	68.	.00	3	Τ.
		100.002	. 1020	721				
Number	of w	ires	= 12	20				
	С	urrent nodes	= 13	32				
			minimu	1m		pos. 03. 0 = 0	imum	
Indivi	dual		.re	value		wire	value	
segmen			.02	1.99886	6	1	8.5	
		lĩus ratio 1		5.44872		97	667.007	

Hatfield & Dawson Consulting Engineers

radius	11	3.E-03	Ī	L	1.56	
ELECTRICAL DESCRIPTION Frequencies (MHz) frequency no. lowest step 1 1.01 0		no. of steps 1	segment ler minimum 6.73E-03		maximum	
Sources source node sector 1 89 1	magnit	ude	phase 0		type voltage	
Lumped loads						
resistance load node (ohms) 1 45 0 2 1 0	(o 10		(mH)		_	nce passive circuit 0 0
H:\KIQI 1010 San Franc	isco\MI	NINEC Fil	les\kiqi05A3w	vest	alone	
<pre>IMPEDANCE normalization = 50. freq resist reac (MHz) (ohms) (ohms)</pre>					S11 dB	S12 dB
source = 1; node 89,	sector	1	_			QD.

1.01 26.866 -33.551 42.982 308.7 2.8904 -6.2688 -1.1697


Item 3

Method of Moments Model Details for Directional Antenna- KIQI

The array of towers was modeled using MININEC with the individual tower characteristics that were verified by the individual tower impedance measurements. Calculations were made to determine the complex voltage values for sources located at ground level under each tower of the array to produce current moment sums for the towers that, when normalized, equated to the theoretical field parameters of the authorized directional antenna patterns. In the schematic diagram on the following page,

 Xo_C represents the capacitance between the tower and ground, including the base insulator X_S represents the series inductance of the feed line connecting the ATU to the tower X_{LC} represents the reactance of the tower static drain choke and lighting choke

In all cases, the modeled impedance at the reference point is within one ohm of the measured reference point impedance.

TOWER	$X_{LC}(\Omega)$	$X_{L}(\Omega)$	$X_{OC}(\Omega)$	$Z_{MODELED}(\Omega)$	$Z_{ATUMODELED}(\Omega)$	$Z_{ATUMEASURED}(\Omega)$
#1E	+J4601	+J21.2	-J4822	26.87-J33.55	26.6-J12.1	26.6-J12.3
#2C	+J4601	+J16.3	-J4822	25.23-J33.91	25.1-J17.4	25.2-J17.6
#3W	+J4601	+J16.7	-J4822	26.87-J33.55	26.7-J16.7	26.6-J16.8

Hatfield & Dawson
Consulting Engineers

ANALYSIS OF TOWER IMPEDANCE MEASUREMENTS TO VERIFY METHOD OF MOMENTS MODEL RADIO STATION KIQI 1010 kHz SAN FRANCISCO, CA 06/2019

KIQI Driven Array

C:\Muticultural Stations\KIQI 1010 San Francisco\MININEC Files\kiqi05A3 KIQI CP Pattern at 10 kW

GEOMETRY

Dimensions in meters

Environment: perfect ground

wire	caps	Distance	Angle	Z	radius	segs
1	none	0	0	0	1.56	2
2	none		0	17. 17.	.91	2
		0	0	34.		
3	none		0	34.	. 4	2
4	nono	0	0	51.	2.0	2
4	none	0	0	51. 68.	.26	2
5	none		0	68.	.025	1
		2.	0	68.		
6	none		0	68.	.025	1
7		2.	-300.	68.	005	7
7	none	2.	0 -240.	68. 68.	.025	1
8	none		0	68.	.025	1
		2.	-180.	68.		_
9	none		0	68.	.025	1
1.0		2.	-120.	68.		
10	none	2.	0 -60.	68.	.025	1
11	none		0	68. 68.	.003	1
	110110	2.	-350.	68.	.005	_
12	none		0	68.	.003	1
		2.	-340.	68.		
13	none		0	68.	.003	1
14	none	2.	-330. 0	68. 68.	003	1
T.4	none	2.	-320.	68.	.003	1
15	none		0	68.	.003	1
		2.	-310.	68.		
16	none		0	68.	.003	1
17		2.	-290.	68.	0.00	-1
1 /	none	2.	0 -280.	68. 68.	.003	1
18	none		0	68.	.003	1
		2.	-270.	68.		_
19	none	0	0	68.	.003	1
0.0		2.	-260.	68.		
20	none		0	68.	.003	1
		2.	-250.	68.		

Hatfield & Dawson Consulting Engineers

21	none		0	68.	.003	1
22	none	2.	-230. 0	68. 68.	.003	1
		2.	-220.	68.	• 0 0 0	_
23	none	0	0	68.	.003	1
_		2.	-210.	68.		
24	none	0 2.	0 -200.	68. 68.	.003	1
25	none		0	68.	.003	1
23	none	2.	-190.	68.	.003	Τ
26	none		0	68.	.003	1
20	110110	2.	-170.	68.	.005	
27	none		0	68.	.003	1
		2.	-160.	68.	• • • • • • • • • • • • • • • • • • • •	_
28	none		0	68.	.003	1
		2.	-150.	68.		_
29	none		0	68.	.003	1
		2.	-140.	68.	• • • • • • • • • • • • • • • • • • • •	_
30	none		0	68.	.003	1
		2.	-130.	68.		_
31	none		0	68.	.003	1
		2.	-110.	68.	***************************************	_
32	none		0	68.	.003	1
		2.	-100.	68.		_
33	none		0	68.	.003	1
		2.	-90.	68.	• • • • • • • • • • • • • • • • • • • •	_
34	none		0	68.	.003	1
		2.	-80.	68.		_
35	none		0	68.	.003	1
		2.	-70.	68.		_
36	none		0	68.	.003	1
		2.	-50.	68.		_
37	none		0	68.	.003	1
		2.	-40.	68.		
38	none		0	68.	.003	1
		2.	-30.	68.		
39	none		0	68.	.003	1
		2.	-20.	68.		
40	none	0	0	68.	.003	1
		2.	-10.	68.		
41	none	74.206	0	0	1.56	2
		74.206	0	17.		
42	none	74.206	0	17.	.91	2
		74.206	0	34.		
43	none	74.206	0	34.	. 4	2
		74.206	0	51.		
44	none	74.206	0	51.	.26	2
		74.206	0	68.		
45	none	74.206	0	68.	.025	1
		76.206	0	68.		
46	none	74.206	0	68.	.025	1
		75.2259	-358.681	68.		

Hatfield & Dawson Consulting Engineers

47	none	74.206	0	68.	.025	1
48	none	73.2265 74.206	-358.645 0	68. 68.	.025	1
49	none	72.206 74.206	0	68. 68.	.025	1
		73.2265	-1.35536	68.		
50	none	74.206 75.2259	0 -1.31933	68. 68.	.025	1
51	none	74.206	0	68.	.003	1
52	none	76.1764 74.206	-359.739 0	68. 68.	.003	1
		76.0885	-359.485	68.		
53	none	74.206 75.9446	0 -359.246	68. 68.	.003	1
54	none	74.206	0	68.	.003	1
55	none	75.749 74.206	-359.028 0	68. 68.	.003	1
		75.5071	-358.837	68.	• • • • • • • • • • • • • • • • • • • •	
56	none	74.206	0	68.	.003	1
E 7		74.9136	-358.562	68.	003	1
57	none	74.206 74.5793	0 -358.487	68. 68.	.003	1
58	none	74.206	0	68.	.003	1
	110110	74.233	-358.456	68.	• 005	_
59	none	74.206	0	68.	.003	1
60	nono	73.885 74.206	-358.472 0	68.	003	4
80	none	73.546	-358.536	68. 68.	.003	1
61	none	74.206	0	68.	.003	1
		72.9365	-358.796	68.		
62	none	74.206	0	68.	.003	1
		72.6853	-358.987	68.		
63	none	74.206	0	68.	.003	1
64	nono	72.4809	-359.21	68.	003	1
04	none	74.206 72.3299	0 -359.458	68. 68.	.003	1
65	none	74.206	0	68.	.003	1
		72.2372	-359.725	68.	• 0 0 0	_
66	none	74.206	0	68.	.003	1
		72.2372	275463	68.		
67	none	74.206	0	68.	.003	1
		72.3299	541868	68.		
68	none	74.206	0	68.	.003	1
69	nono	72.4809 74.206	79052	68.	003	1
09	none	72.6853	0 -1.01344	68. 68.	.003	1
70	none	74.206	0	68.	.003	1
		72.9365	-1.20363	68.		_
71	none	74.206	0	68.	.003	1
		73.546	-1.46429	68.		
72	none	74.206	0	68.	.003	1
		73.885	-1.52756	68.		

Hatfield & Dawson Consulting Engineers

73	none	74.206	0	68.	.003	1
74	none	74.233 74.206	-1.54386 0	68. 68.	.003	1
75	none	74.5793 74.206	-1.51334 0	68. 68.	.003	1
, 5	none	74.9136	-1.43755	68.	•003	
76	none	74.206	1 16265	68.	.003	1
77	none	75.5071 74.206	-1.16265 0	68. 68.	.003	1
		75.749	972443	68.		
78	none	74.206 75.9446	0 754463	68. 68.	.003	1
79	none	74.206	0	68.	.003	1
		76.0885	5151	68.		
80	none	74.206 76.1764	0 261219	68. 68.	.003	1
81	none	148.412	0	0	1.56	2
		148.412	0	17.		
82	none	148.412	0	17.	.91	2
83	none	148.412 148.412	0	34. 34.	. 4	2
0.5	110116	148.412	0	51.	• 4	2
84	none	148.412	0	51.	.26	2
0.5		148.412	0	68.	005	-
85	none	148.412 150.412	0	68. 68.	.025	1
86	none	148.412	0	68.	.025	1
		149.422	-359.336	68.		
87	none	148.412	0	68.	.025	1
88	none	147.422 148.412	-359.327 0	68. 68.	.025	1
		146.412	0	68.	.020	-
89	none	148.412	0	68.	.025	1
90	nono	147.422 148.412	673179 0	68.	0.25	1
90	none	149.422	664169	68. 68.	.025	1
91	none	148.412	0	68.	.003	1
		150.382	-359.868	68.		
92	none	148.412 150.293	0 -359.739	68. 68.	.003	1
93	none	148.412	0	68.	.003	1
		150.147	-359.618	68.		_
94	none	148.412	0	68.	.003	1
95	none	149.95 148.412	-359.509 0	68. 68.	.003	1
75	none	149.705	-359.414	68.	.003	Τ
96	none	148.412	0	68.	.003	1
0.7		149.108	-359.278	68.	0.00	
97	none	148.412 148.772	0 -359.241	68. 68.	.003	1
98	none	148.412	0	68.	.003	1
		148.426	-359.228	68.		-

Hatfield & Dawson Consulting Engineers

99	none	148.412		68.	.00	13	1
		148.078	-359.238	68.			
100	none	148.412	0	68.	.00	13	1
		147.74	-359.271	68.			
101	none	148.412	0	68.	.00	13	1
		147.134	-359.403	68.			
102	none	148.412	0	68.	.00	13	1
		146.886	-359.499	68.			
103	none	148.412	0	68.	.00	3	1
		146.683	-359.609	68.			
104	none	148.412	0	68.	.00	3	1
		146.534	-359.733	68.			
105	none	148.412	0	68.	.00	3	1
		146.443	-359.864	68.			
106	none	148.412	0	68.	.00	3	1
		146.443	13588	68.			_
107	none	148.412		68.	.00	3	1
		146.534		68.	• • • •	J	_
108	none	148.412	0	68.	.00	3	1
100	none	146.683	_	68.	.00	3	
109	none	148.412		68.	.00	3	1
	110110	146.886		68.	.00	9	1
110	none	148.412	0	68.	.00	3	1
110	none	147.134	596623	68.	.00	3	Τ
111	none	148.412		68.	.00	2	1
T T T	none	147.74	728874	68.	.00	3	Τ
112	nono				0.0	2	1
112	none	148.412	0	68.	.00	3	1
112		148.078		68.	0.0	2	1
113	none	148.412		68.	.00	3	1
111		148.426		68.	0.0	2	
114	none	148.412	0	68.	.00	3	1
115		148.772		68.		0	_
115	none	148.412		68.	.00	3	1
116		149.108		68.		_	
116	none	148.412	0	68.	.00	3	1
		149.705	586377	68.		_	
117	none	148.412	0	68.	.00	3	1
		149.95	491225	68.		_	
118	none		0	68.	.00	3	1
		150.147	3816	68.			
119	none	148.412	0	68.	.00	3	1
		150.293	260776	68.			
120	none	148.412	0	68.	.00	3	1
		150.382	132321	68.			
Numbe	r of w	ires current nodes	= 120 = 132				
			minimum		mav	imum	
Indiv	idual	wires w	ire value		wire	value	
	nt len		102 1.9988	6	wire 1	8.5	
		. 7	1 5.4487		97	667.007	
o cyme.	, Luc	LUO LULLU	7 J.440/	۷.	21	007.007	

Hatfield & Dawson Consulting Engineers

radius 11 3.E-03 1 1.56

ELECTRICAL DESCRIPTION

Frequencies (MHz)

frequency no. of segment length (wavelengths) no. lowest step steps minimum maximum 1 1.01 0 1 6.73E-03 .0286358

Sources

source node sector magnitude phase type 1 692.863 279.1 1 voltage 2 45 1 864.051 181.7 voltage 3 89 1 371.242 141.1 voltage

D:\KIQI 1010 San Francisco\MININEC Files\kiqi05A3

IMPEDANCE

normalization = 50.

resist freq react imped phase **VSWR** S11 S12 (ohms) (ohms) (ohms) (MHz) (deg) dB dB source = 1; node 1, sector 1 1.01 5.8181 -43.275 43.664 277.7 15.081 -1.1536 -6.3215 source = 2; node 45, sector 1 17.891 -24.926 30.682 1.01 305.7 3.5668 -5.0045 -1.6488 source = 3; node 89, sector 1 22.13 1.01 14.558 26.489 33.3 2.4922 - 7.3853 - .87558

D:\KIQI 1010 San Francisco\MININEC Files\kiqi05A3

CURRENT rms

Frequency = 1.01 MHz

Input power = 10,000. watts

Efficiency = 100. % coordinates in meters

curre	nt			mag	phase	real	imaginary
no.	X	Y	Z	(amps)	(deg)	(amps)	(amps)
GND	0	0	0	11.2205	1.4	11.2171	. 27368
2	0	0	8.5	10.0435	.7	10.0428	.114255
END	0	0	17.	8.97248	. 2	8.97242	.0327742
2J1	0	0	17.	8.97248	. 2	8.97242	.0327742
4	0	0	25.5	7.95632	359.9	7.9563	0156007
END	0	0	34.	6.58593	359.5	6.5857	0541271
2J2	0	0	34.	6.58593	359.5	6.5857	0541271
6	0	0	42.5	5.42003	359.3	5.41958	0697153
END	0	0	51.	3.98853	359.	3.98788	0716795
2J3	0	0	51.	3.98853	359.	3.98788	0716795
8	0	0	59.5	2.583	358.7	2.58234	0583796
END	0	0	68.	1.06139	358.4	1.061	0287839

Hatfield & Dawson Consulting Engineers

0 - 4	2						
2J4	0	0	68.	.0417995	_	.0417894	-9.17E-04
END	2.	0	68.	0	0	0	0
2J4	0	0	68.	.0416428	358.6	.0416302	-1.02E-03
END	1.	-1.73205	68.	0	0	0	0
2J4	0	0 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	68.	.041341	358.3	.0413227	-1.23E-03
END	-1.	-1.73205	68.	0	0	0	0
2J4	0	0	68.	.0411957	358.2	.0411743	-1.33E-03
END 2J4	-2. 0	0	68. 68.	0	0 358.3	0	0
END	-1.	1.73205	68.	.041341	0	.0413227	-1.23E-03
2J4	0	0	68.	.0416428	358.6	.0416302	-1.02E-03
END	1.	1.73205	68.	0 - 10420	0	0	0
2J4	0	0	68.	.0259997	358.7	.0259933	-5.72E-04
END	1.96962	347296	68.	0	0	0	0
2J4	0	0	68.	.0279821	358.7	.0279752	-6.23E-04
END	1.87939	68404	68.	0	0	0	0
2J4	0	0	68.	.0283786	358.7	.0283713	-6.43E-04
END	1.73205	-1.	68.	0	0	0	0
2J4	0	0	68.	.0279472	358.7	.0279397	-6.47E-04
END	1.53209	-1.28558	68.	0	0	0	0
2J4	0	0	68.	.025936	358.6	.0259287	-6.16E-04
END	1.28558	-1.53209	68.	0	0	0	0
2J4	0	0	68.	.025872	358.5	.0258635	-6.6E-04
END	.68404	-1.87939	68.	0	0	0	0
2J4	0	0	68.	.0278214	358.5	.0278117	-7.33E-04
END	.347296	-1.96962	68.	0	0	0	0
2J4	0	0	68.	.0281966	358.4	.0281862	-7.67E-04
END	0	-2.	68.	0	0	0	0
2J4	0	0	68.	.0277544	358.4	.0277435	-7.79E-04
END	347296	-1.96962	68.	0	0	0	0
2J4	0	0	68.	.0257499	358.3	.0257391	-7.43E-04
END	68404	-1.87939	68.	0	0	0	0
2J4	0	0	68.	.0256889	358.3	.0256769	-7.84E-04
END	-1.28558	-1.53209	68.	0	0	0	0
2J4	0	0	68.	.0276345	358.2	.0276212	-8.59E-04
END	-1.53209	-1.28558	68.	0	0	0	0
2J4	0	0	68.	.0280225	358.2	.0280085	-8.84E-04
END	-1.73205	-1.	68.	0	0	0	0
2J4	0	0	68.	.0276024	_	.0275884	-8.81E-04
END	-1.87939	684041	68.	0	0	0	0
2J4	0	0	68.	.0256303		.0256171	-8.23E-04
END	-1.96962	347297	68.	0	0	0	0
2J4	1 06062	0	68.	.0256303		.0256171	-8.23E-04
END 2J4	-1.96962 0	.347296	68. 68.	0	0	0	0 015 04
END	-1.87939	.68404	68.	.0276024	0	.0275884	-8.81E-04
2J4	0	0	68.	.0280224	-	.0280085	_
END	-1.73205	1.	68.	0	0	0	-8.84E-04
2J4	0	0	68.	.0276345		.0276212	-8.59E-04
END	-1.53209	1.28558	68.	0	0	0	0
2J4	0	0	68.	.0256889	_	.0256769	-7.84E-04
END	-1.28558	1.53209	68.	0	0	0	0
				-	-	-	-

Hatfield & Dawson Consulting Engineers

2J4	0	0	68.	.0257499	358.3	.0257391	-7.43E-04
END	68404	1.87939	68.	0	0	0	0
2J4	0	0	68.	.0277544	358.4	.0277435	-7.79E-04
END	347296	1.96962	68.	0	0	0	0
2J4	0	0	68.	.0281966	358.4	.0281862	-7.67E-04
END	0	2.	68.	0	0	0	0
2J4	0	0	68.	.0278214	358.5	.0278117	-7.33E-04
END	.347297	1.96962	68.	0	0	0	0
2J4	0	0	68.	.0258719	358.5	.0258635	-6.6E-04
END	.684041	1.87939	68.	0	0	0	0
2J4	0	0	68.	.025936	358.6	.0259287	-6.16E-04
END	1.28558	1.53209	68.	0	0	0	0.101.0
2J4	0	0	68.	.0279472	358.7	.0279397	-6.47E-04
END	1.53209	1.28558	68.	02/94/2	0	0	0
2J4	0	0	68.	.0283786	358.7	.0283713	•
END	1.73205	1	68.	0203700	0	0283713	-6.43E-04
2J4	0	0	68.	.0279821	-	•	0
	_	•			358.7	.0279752	-6.23E-04
END	1.87939	.68404	68.	0	0	0	0
2J4	0	0	68.	.0259997	358.7	.0259933	-5.72E-04
END	1.96962	.347296	68.	0	0	0	0
GND	74.206	0	0	19.9129	236.	-11.1219	<u>-16.5175</u>
46	74.206	0	8.5	18.555	233.9	-10.9365	-14.9893
END	74.206	0	17.	16.9387	232.8	-10.2426	-13.4911
2J41	74.206	0	17.	16.9387	232.8	-10.2426	-13.4911
48	74.206	0	25.5	15.2362	232.1	-9.35892	-12.023
END	74.206	0	34.	12.7947	231.4	-7.97723	-10.0034
2J42	74.206	0	34.	12.7947	231.4	-7.97723	-10.0034
50	74.206	0	42.5	10.6326	231.	-6.69307	-8.2617
END	74.206	0	51.	7.90213	230.6	-5.02096	-6.10194
2J43	74.206	0	51.	7.90213	230.6	-5.02096	-6.10194
52	74.206	0	59.5	5.16042	230.2	-3.30391	-3.9641
END	74.206	0	68.	2.13654	229.9	-1.37693	-1.63367
2J44	74.206	0	68.	.0836577	230.1	0536235	0642117
END	76.206	0	68.	0	0	0	0
2J44	74.206	0	68.	.0834251	230.	0536199	0639113
END	75.206	-1.7316	68.	0	0	0	0
2J44	74.206	0	68.	.0833373	229.7	0538533	0635997
END	73.206	-1.73159	68.	0	0	0	0
2J44	74.206	0	68.	.0833995	_	0540382	- 0635245
END	72.206	0	68.	0	0	0	0
2J44	74.206	0	68.	.0834626	-	053934	0636955
END	73.206	1.73205	68.	0	0	0	0
2J44	74.206	0	68.	.0835858		053723	0640345
END	75.206	1.73205	68.	0	0	0	0
2J44	74.206	0	68.	.0520238	_	0333496	-
END	76.1756	346975	68.	0	0	0	
2J44	74.206	0	68.	•	_	<u> </u>	0 0430057
		_		.0560427		0359345	
END	76.0854	683915	68.	0	0	0	0
2J44	74.206	0	68.	.0567823		0364228	
END	75.938	99937	68.	0	0	0	0
2J44	74.206	0	68.	.0559516	_	0359086	_
END	75.7381	-1.28496	68.	0	0	0	0

Hatfield & Dawson Consulting Engineers

2J44	74.206	0	68.	.0521458	230.	0334868	0399728
END	75.4916	-1.53253	68.	0	0	0	0
2J44	74.206	0	68.	.0521637	230.	0335587	0399358
END	74.89	-1.87994	68.	0	0	0	0
2J44	74.206	0	68.	.0558197	229.9	0359421	0427085
END	74.5533	-1.96916	68.	0	0	0	0
2J44	74.206	0	68.	.0568055	229.9	0366093	0434354
END	74.206	-2.00018	68.	0	0	0	0
2J44	74.206	0	68.	.0560914	229.8	0361812	0428621
END	73.8587	-1.97019	68.	0	0	0	0
2J44	74.206	0	68.	.0518535	229.8	0334767	0395992
END	73.522	-1.87899	68.	0	0	0	0
2J44	74.206	0	68.	.0520556	229.7	033667	0397029
END	72.9204	-1.53256	68.	0	0	0	0
2J44	74.206	0	68.	.0558288	229.7	0361301	0425614
END	72.6739	-1.28501	68.	0	0	0	0
2J44	74.206	0	68.	.0566067	229.6	0366521	0431387
END	72.474	999341	68.	0	0	0	0
2J44	74.206	0	68.	.0558998	229.6	036208	0425884
END	72.3267	684186	68.	0	0	0	0
2J44	74.206	0	68.	.0518703	229.6	0336061	0395115
END	72.2364	346692	68.	0	0	0	0
2J44	74.206	0	68.	.0518966	229.6	033623	0395316
END	72.2364	.347296	68.	0	0	0	0
2J44	74.206	0	68.	.0558596	229.6	0361821	0425577
END	72.3267	.684041	68.	0	0	0	0
2J44	74.206	0	68.	.0566875	229.6	0367043	0432003
END	72.474	1.	68.	0	0	0	0
2J44	74.206	0	68.	.0558692	229.7	0361561	0425923
END	72.6739	1.28558	68.	0	0	0	0
2J44	74.206	0	68.	.0519234	229.7	0335818	0396018
END	72.9204	1.53209	68.	0	0	0	0
2J44	74.206	0	68.	.0519364	229.8	0335301	0396627
END	73.522	1.87939	68.	0	0	0	0
2J44	74.206	0	68.	.0559247	229.8	0360739	0427346
END	73.8587	1.96961	68.	0	0	0	0
2J44	74.206	0	68.	.0567636	229.9	0365824	0434033
END	74.206	2.	68.	0	0	0	0
2J44	74.206	0	68.	.0559536		0360281	042811
END	74.5533	1.96962	68.	0	0	0	0
2J44	74.206	0	68.	.0519862			0397997
END	74.89	1.87938	68.	0	0	0	0
2J44	74.206	0	68.	.0520164		0334038	
END	75.4916	1.53209	68.	0	0	0	0
2J44	74.206	0	68.	.0560159		0359497	
END	75.7381	1.28558	68.	0	0	0	0
2J44	74.206	0	68.	.0568286		0364525	
END	75.938	1.	68.	0	0	0	0
2J44	74.206	0	68.	.0560405		0359332	
END	76.0854	.684041	68.	0	0	0	0
2J44	74.206	0 247207	68.	.0520404		0333602	_
END	76.1756	.347297	68.	0	0	0	0

Hatfield & Dawson Consulting Engineers

GND	148.412	0	0	9.90997	107.7	-3.02062	9.4384
90	148.412	0	8.5	10.0044	105.3		
END	148.412	0	17.		104.2	-2.63812	9.65025
2J81	148.412	0	17.	9.48587	104.2	-2.32959	9.19537
92		•		9.48587		-2.32959	9.19537
END	148.412 148.412	0	25.5	8.73171	103.6	-2.05273	8.48699
2J82	148.412	0	34. 34.	7.49309	103.	-1.69116	7.29975
94	148.412	0	42.5	7.49309	103. 102.7	-1.69116	7.29975
END	148.412	0	51.	6.31311 4.75438	102.7	-1.38894	6.15843
2J83	148.412	0	51.		102.4	-1.02108	4.64343
96	148.412	0	59.5	4.75438 3.13795		-1.02108	4.64343
END	148.412	0	68.	1.31097	102.2	661287	3.06748
2J84	148.412	0	68.		102.5	272221	1.28239
END	150.412	0	68.	.0509942	0	0110001 0	.0497937
2J84	148.412	0	68.	•	_	-	0 4 0 0 4 3 3
END	149.412	-1.73159	68.	.051102	102.2	0108209	.0499432
2J84	148.412	0	68.	.0512799	101.7	00104426	0 0 0 0 0 0 0 0 4
END	147.412	-1.73157	68.	0	0	0	.0502054
2J84	148.412	0	68.	.0515269	_	0102794	•
END	146.412	0	68.	0	0	0	.0504911
2J84	148.412	0	68.	•	101.8	0104677	~
END	147.412	1.73205	68.	0	0	0	.0503251
2J84	148.412	0	68.	.051122	102.2	0108251	.0499627
END	149.412	1.73205	68.	0	0	0	0
2J84	148.412	0	68.	.0317083	102.4	-6.84E-03	.0309627
END	150.382	346399	68.	0	0	0.04E-05	0
2J84	148.412	0	68.	.0342262	102.4	-7.37E-03	.0334241
END	150.291	684567	68.	0	0	0	0
2J84	148.412	0	68.	.0346926	102.4	-7.45E-03	.0338838
END	150.144	-1.00099	68.	0	0	0	0
2J84	148.412	0	68.	.0341913	102.4	-7.31E-03	.0333997
END	149.945	-1.28496	68.	0	0	0	0
2J84	148.412	0	68.	.0316552	102.3	-6.74E-03	.0309287
END	149.697	-1.53107	68.	0	0	0	0
2J84	148.412	0	68.	.0317713	102.1	-6.68E-03	.0310604
END	149.096	-1.87884	68.	0	0	0	0
2J84	148.412	0	68.	.034471	102.1	-7.21E-03	.0337092
END	148.759	-1.97071	68.	0	0	0	0
2J84	148.412	0	68.	.0347781	102.	-7.22E-03	.0340195
END	148.413	-1.99981	68.	0	0	0	0
2J84	148.412	0	68.	.0342963	101.9	-7.08E-03	.0335579
END	148.065	-1.96925	68.	0	0	0	0
2J84	148.412	0	68.	.0320123	101.8	-6.57E-03	.0313319
END	147.728	-1.8797	68.	0	0	0	0
2J84	148.412	0	68.	.0321677	101.7	-6.51E-03	.0315023
END	147.126	-1.53299	68.	0	0	0	0
2J84	148.412	0	68.	.0342505	101.6	-6.9E-03	.0335489
END	146.88	-1.28436	68.	0	0	0	0
2J84	148.412	0	68.	.0351451	101.6	-7.05E-03	.0344306
END	146.68	-1.00094	68.	0	0	0	0
2J84	148.412	0	68.	.0344614	101.5	-6.89E-03	.0337652
END	146.532	682821	68.	0	0	0	0

Hatfield & Dawson Consulting Engineers

2J84 END	148.412 146.443	0 347544	68. 68.	.0320077	101.5	-6.39E-03	.0313634
2J84	148.412	0	68.	.032009	101.5	-6.39E-03	.0313647
END	146.443	.347297	68.	0	0	0.555	0
2J84	148.412	0	68.	.0345201	101.5	-6.9E-03	.0338226
END	146.532	.68404	68.	0	0	0	0
2J84	148.412	0	68.	.0350264	101.6	-7.03E-03	.0343144
END	146.68	.999999	68.	0	0	0	0
2J84	148.412	0	68.	.0343996	101.6	-6.93E-03	.0336949
END	146.88	1.28558	68.	0	0	0	0
2J84	148.412	0	68.	.0320237	101.7	-6.48E-03	.0313613
END	147.126	1.53208	68.	0	0	0	0
2J84	148.412	0	68.	.0319338	101.8	-6.55E-03	.031255
END	147.728	1.87939	68.	0	0	0	0
2J84	148.412	0	68.	.0343539	101.9	-7.09E-03	.0336143
END	148.065	1.96962	68.	0	0	0	0
2J84	148.412	0	68.	.0348229	102.	-7.23E-03	.0340633
END	148.413	2.00001	68.	0	0	0	0
2J84	148.412	0	68.	.0342738	102.1	-7.17E-03	.0335164
END	148.759	1.96961	68.	0	0	0	0
2J84	148.412	0	68.	.0318418	102.1	-6.7E-03	.0311294
END	149.096	1.87939	68.	0	0	0	0
2J84	148.412	0	68.	.0317327	102.3	-6.76E-03	.0310044
END	149.697	1.53209	68.	0	0	0	0
2J84	148.412	0	68.		102.4	-7.33E-03	.0334769
END	149.945	1.28558	68.	0	0	0	0
2J84	148.412	0	68.	.0346134	102.4	-7.43E-03	.0338065
END	150.144	.999998	68.	0	0	0	0
2J84	148.412	0	68.	.0341751	102.4	-7.36E-03	.0333741
END	150.291	.684041	68.	0	0	0	0
2J84	148.412	0	68.	.0317304		-6.84E-03	.0309843
END	150.382	.347298	68.	0	0	0	0

C:\Muticultural Stations\KIQI Mininec Files\MININEC Files\kiqi05A3
CURRENT MOMENTS(amp-meters) rms

Frequency = 1.01 MHz Input power = 10,000. watts

Tubuc	power = 10,0	Ju. Watts		
wire 1 2 3 4 5	magnitude 242.092 189.152 128.709 67.7809	phase (deg) .8 359.9 359.3 358.8	magnitude 242.092 189.152 128.709 67.7809	rrent moment phase (deg) .8 359.9 359.3 358.8
6 7 8 9	0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0 0
11 12 13 14	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0
16 17 18 19 20	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0
21 22 23 24 25	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0
26 27 28 29 30	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0
31 32 33 34 35 36	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0
37 38 39 40 41	0 0 0 0 444.443	0 0 0 0 234.2	0 0 0 0 444.443	0 0 0 0 234.2
42 43 44 45	361.849 252.206 135.209	232.2 231. 230.3	361.849 252.206 135.209	232.2 231. 230.3

Hatfield & Dawson Consulting Engineers

46 47 48 49 51 55 55 55 55 55 56 61 62 63 64 66 66 67 77 77 73				
74 75 76 77 78	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0
79 80	0	0	0	0
81 82 83 84 85 86 87 88 99 91 93 94 95 97	236.777 207.007 149.5 82.055 0 0 0 0 0 0 0 0	105.6 103.6 102.8 102.2 0 0 0 0 0 0 0	236.777 207.007 149.5 82.055 0 0 0 0 0 0 0	105.6 103.6 102.8 102.2 0 0 0 0 0 0 0

Hatfield & Dawson Consulting Engineers

98	0	0	0	0
99	0	0	0	0
100	0	0	0	0
101	0	0	0	0
102	0	0	0	0
103	0	0	0	0
104	0	0	0	0
105	0	0	0	0
106	0	0	0	0
107	0	0	0	0
108	0	0	0	0
109	0	0	0	0
110	0	0	0	0
111	0	0	0	0
112	0	0	0	0
113	0	0	0	0
114	0	0	0	0
115	0	0	0	0
116	0	0	0	0
117	0	0	0	0
118	0	0	0	0
119	0	0	0	0
120	0	0	0	0

Medium wave array vertical current moment (amps-meters) rms (Calculation assumes tower wires are grouped together. The first wire of each group must contain the source.)

tower	magnitude	phase	(deg)
1	627.687	360.	
2	1,193.32	232.5	
3	675.162	104.	

These values normalize to within 0.15% amplitude and to identical phase of the far field antenna parameters.

Comparison of Current Moments with Theoretical Antenna Field Parameters

Tower	Current Moment Magnitude	Current Moment Phase	Normalized Magnitude	Normalized Phase	Standard Pattern Ratio*	Standard Pattern Phase
1	627.687	360.0	0.526	127.5	0.526	127.5
2	1193.32	232.5	1.000	0	1.0	0
3	675.162	104.0	0.566	-128.5	0.565	-128.5

^{*}Normalized to center tower reference

Item 4

Derivation of Operating Parameters for Directional Antennas - KIQI

The method of moments model of the array, following verification with the measured individual open circuited base impedances, was used for directional antenna calculations. Calculations were made to determine the complex voltage values for sources located at ground level at the base of each tower of the array to produce current moment sums for the towers that, when normalized, equated to the theoretical field parameters of the authorized directional antenna pattern. With these voltage sources, the tower currents and phases were calculated. The moment method model is described in item 2 of this report. The currents and voltages at the tower bases (wire segments 1, 41, and 81 which are nodes 1, 45 and 89) were used to calculate the currents at the sample device locations by Kirchoff's law, using the analysis program NETBW.

Antenna Monitor Parameters - Night Pattern - KIQI

Tower	Ref Point Current Magnitude	Ref Point Current Phase	Normalized Magnitude	Normalized Phase
1 E	11.269	1.4	0.566	+125.4
2 C	19.977	236.0	1.0	0
3 W	9.948	107.7	0.498	-128.3

The base model shown in item 3 has essentially negligible phase shift, so the reference point phase values are the same as the moment method calculated base values. The slight transformation of the resistance values causes the reference point current ratios to differ from the tower base current ratios.

Summary of Post Construction Array Geometry - KIQI

As the KIQI antenna has been previously licensed by means of a traditional measurement based proof of performance, a post-construction survey is not required.

Ground System

Unchanged from licensed description.

Item 6

Sampling System Measurements - KIQI

Impedance measurements were made of the antenna monitor sampling system using a Hewlett Packard 8751A network analyzer in a calibrated measurement system. The measurements were made looking into the antenna monitor ends of the sampling lines for two conditions – with and without the sampling lines connected to the sampling transformers at the antenna tuning units.

The sample lines are equal lengths of ½" Heliax type cable.

The following table shows the frequency closest to the carrier frequency where series resonance – zero reactance corresponding with low resistance – was found. As frequencies of resonance occur at odd multiples of 90 degrees electrical length, the sampling line length at the resonant frequency above carrier frequency – which is the closest one to the carrier frequency – was found to be 270 electrical degrees. The electrical length at carrier frequency appearing in the table below was calculated by multiplying 270 degrees by the ratio of the carrier frequency (1010 kHz) to the resonant frequency.

Sample Line Measurements - KIQI

Tower	Sample Line Open Circuited Resonant Frequency (kHz)	Sample Line Electrical Length at 1010 kHz (Degrees)	Measured Impedance at 1010 kHz with Sample Transformer Connected
1 E	1035.2	263.4	48.2 -j1.15
2 C	1038.4	262.6	49.8 -j1.00
3 W	1036.8	263.0	48.2 -j1.25

The sample line lengths meet the requirement that they be equal in length to within 1 electrical degree.

In order to determine the characteristic impedance values of the sampling lines, open-circuited measurements were made with frequencies offset to produce +/- 45 degrees of electrical length from resonance. The characteristic impedance was calculated using the following formula, where R1 +j X1 and R2 +j X2 are the measured impedances at the +45 and -45 degree offset frequencies, respectively:

$$Zo = ((R_1^2 + X_1^2)^{1/2} \times (R_2^2 + X_2^2)^{1/2})^{1/2}$$

KIQI Sample Line Characteristic Impedance Calculations

Tower	-45° Offset Frequency (kHz)	-45° Offset Measured Impedance	+45° Offset Frequency (kHz)	+45° Measured Impedance	Calculated Characteristic Impedance
1 E	865.33	3.79-j49.48	1211.46	5.53+j50.09	50.01
2 C	862.66	3.865-j49.46	1207.73	5.67+j50.03	49.98
3 W	864.007	3.785-j49.97	1209.6	5.56+j50.27	50.18

The sample line measured characteristic impedances meet the requirement that they be equal within 2 ohms.

The sample current transformers were tested by feeding their outputs to the "A" and "B" inputs of the network analyzer, while feeding the output of the network analyzer through the sample transformers and into a resistive load. The transformers were in agreement with the reference tower transformer to within 0.5° of phase and 0.45% of ratio, well within the manufacturer's specifications.

Sample Transformer Data

Tower Number	Location	Ratio Δ	Phase Δ	Serial Number
1	East	0.995	-0.437	16334
2	Center	reference	reference	16336
3	West	0.994	0.37	16335

The antenna monitor was tested by feeding a single RF source through a "T" connector, with the outputs of the "T" then fed to the reference tower input and each or the non-reference tower inputs via short equal length jumper cables. In this configuration, the antenna monitor indicates a ratio of 1.00 and a phase angle of zero for all towers. Its amplitude and phase readings also agree with those obtained from the Hewlett-Packard 8753 network analyzer used to make the measurements in this report.

Item 7

Reference Field Strength Measurements - KIQI

Reference field strength measurements were made along radials of minimum and maximum radiation for the directional pattern. The transmitter power was adjusted to 10.53 kW for the nighttime pattern measurements.

Measurements were made using a Potomac Instruments field strength meter, model FIM-21, serial 1008. This meter was calibrated by the manufacturer on May 24 of this year.

All measurements were taken by KIQI engineer Arthur Lebermann.

The measured field strengths and descriptions including GPS (NAD83) coordinates for the reference measurement points are shown on the following pages.

FIELD MEASUREMENTS FOR KIQI-AM (1010 KHz)

Measurements made between 6/12 and 6/23/2019 by Art Lebermann, contract engineer for MRBI, San Francisco.

Measurements made with Potomac Instruments FIM-21, s/n 1008 Factory calibration, 5/24/2019

Measurements referenced to the Center Tower (Twr. #2) of the directional array:

N 37-49-34 W 122-18-37 NAD27 datum

26.9 DEGREE RADIAL:

Point #1 - 2.65 miles 2551 San Pablo Ave., Berkeley, CA N 37-51-36.8 W 122-17-17.2 17 mv / m

Point #2 - 3.75 miles California @ Francisco, Berkeley, CA N 37-52-27.7 W 122-16-46.0 10 mv / m

Point #3 - 4.49 miles 1204 Bonita, Berkeley, CA N 37-53-06.2 W 122-16-20.2 4 mv / m

93.1 DEGREE RADIAL:

Point #1 - 1.70 miles Adeline @ 34th Street, Oakland, CA N 37-49-31.2 W 122-16-45.7 36 mv / m

Point #2 - 3.06 miles Piedmont @ Yosemite, Oakland, CA N 37-49-27.1 W 122-15-16.2 32 mv / m

Point #3 - 3.75 miles 1116 Oakland Ave., Piedmont, CA N 37-49-22.6 W 122-14-30.8 27 mv / m

131.6 DEGREE RADIAL:

Point #1 - 1.47 miles
Mandela Parkway @ 15th Street, Oakland, CA
N 37-48-43.3
W 122-17-25.4
100 mv / m

Point #2 - 3.19 miles Madison @ 4th Street, Oakland, CA N 37-47-41.7 W 122-16-02.8 64 mv / m

Point #3 - 5.17 miles 2400 Embarcadero, Oakland, CA N 37-46-35.2 W 122-14-23.6 17 mv / m

240.4 DEGREE RADIAL (Main Lobe):

Point #1 - 4.90 miles Embarcadero @ Folsom, San Francisco, CA N 37-47-25.3 W 122-23-15.7 165 mv / m

Point #2 - 7.00 miles Gough @ Fell St., San Francisco, CA N 37-46-34.0 W 122-25-18.3 26 mv / m

Point #3 - 9.77 miles 10th Ave. @ Moraga, San Francisco, CA N 37-45-23.1 W 122-27-57.2 11 mv / m

348.4 DEGREE RADIAL

Point #1 - 0.95 miles
Powell St., Marina Park, Parking Lot #3, Emeryville, CA
N 37-50-22.7
W 122-18-51.0
95 mv / m

Point #2 - 3.34 miles Northwest corner of Cesar Chavez State Park, Berkeley, CA N 37-52-24.9 W 122-19-21.7 31 mv / m Point #3 - 7.01 miles 3319 Cutting Blvd., Richmond, CA N 37-55-31.6 W 122-20-11.5 13 mv / m

POTOMAC INSTRUMENTS, inc.

Frederick, Maryland

CERTIFICATE OF CALIBRATION

Field Intensity Meter Type FIM-21

Serial Number

This instrument was calibrated in an induction field of 220.0 millivolts per meter. At each measurement frequency the measured field was recorded and a correction factor K was computed; the indicated field must be multiplied by K to obtain the true field.

kHz	<u>K</u>	kHz	<u>K</u>
540	1.000	1100	1.000
600	1 000	1200	1.000
700	1.000	1300	1.000
800	1.000	1400	1.000
900	1.000	1500	1.005
1000	1.000	1600	1.005

The calibrating field is maintained equal to the National Institute of Standards and Technology (NIST) standard field within an accuracy of 1.0 percent. NIST states that the absolute accuracy of its field is "believed to be within 3.0 percent."

The error at points on the meter scale other than the calibration point is less than 3.0 percent. The attenuator ratios are correct within 2.0 percent. These accuracies apply for battery voltages that are indicated by the instrument's battery check circuit to be useable.

NEXT RECOMMENDED CALIBRATION DATE:

May 23, 2021

Calibrated by _______ Zachary Babendreier

Date: May 24, 2019

Direct Measurement of Power - KIQI

Common point impedance measurements were made using a Hewlett Packard 8751A network analyzer in a calibrated measurement system. The measurements were made at the phasor cabinet input jack adjacent to the common point current meter that is used to determine operating power. The common point impedance was adjusted to 50 +/- j0 at the common point, then the reactance was adjusted for minimum reflected power at the transmitter output. The final measured common point impedance is 50 -j1.5

Certification

This Engineering Report has been prepared personally by the undersigned or under my immediate supervision, and all representations are true and correct to the best of my knowledge. I am an experienced radio engineer whose qualifications are a matter of record with the Federal Communications Commission, I am an engineer in the firm of Hatfield & Dawson Consulting Engineers, LLC, and I am Registered as a Professional Engineer in the States of Washington and California.

APPENDIX A: Construction Permit BMP-20181207AAR

United States of America

FEDERAL COMMUNICATIONS COMMISSION AM BROADCAST STATION CONSTRUCTION PERMIT

Authorizing Official:

Official Mailing Address:

MULTICULTURAL RADIO BROADCASTING LICENSEE, L1 Son Nguyen

27 WILLIAM STREET

11TH FLOOR

NEW YORK NY 10005

Facility Id: 50703

Call Sign: KIQI

Permit File Number: BMP-20181207AAR

Supervisory Engineer

Audio Division

Media Bureau

Grant Date: February 26, 2019

The authority granted herein has no effect on the expiration date of the underlying construction

permit.

This permit modifies permit no.: BMP-20181207AAR to change nighttime pattern and power to 10.0kW

Subject to the provisions of the Communications Act of 1934, as amended, subsequent acts and treaties, and all regulations heretofore or hereafter made by this Commission, and further subject to the conditions set forth in this permit, the permittee is hereby authorized to construct the radio transmitting apparatus herein described. Installation and adjustment of equipment not specifically set forth herein shall be in accordance with representations contained in the permittee's application for construction permit except for such modifications as are presently permitted, without application, by the Commission's Rules.

Commission rules which became effective on February 16, 1999, have a bearing on this construction permit. See Report & Order, Streamlining of Mass Media Applications, MM Docket No. 98-43, 13 FCC RCD 23056, Para. 77-90 (November 25, 1998); 63 Fed. Reg. 70039 (December 18, 1998). Pursuant to these rules, this construction permit will be subject to automatic forfeiture unless construction is complete and an application for license to cover is filed prior to expiration. See Section 73.3598.

Equipment and program tests shall be conducted only pursuant to Sections 73.1610 and 73.1620 of the Commission's Rules.

Hours of Operation: Unlimited

Average hours of sunrise and sunset: Local Standard Time (Non-Advanced)

Jan.	7:30	AM	5:15	PM	Jul.	5:00	AM	7:30	PM
Feb.	7:00	AM	5:45	PM	Aug.	5:30	AM	7:00	PM
Mar.	6:15	AM	6:15	PM	Sep.	5:45	AM	6:15	PM
Apr.	5:30	AM	6:45	PM	Oct.	6:15	AM	5:30	ΡM
May	5:00	AM	7:15	PM	Nov.	6:45	AM	5:00	PM
.Tiin	4 - 45	ΔM	7.30	PM	Dec	7.15	ΔM	4.45	ΡМ

Name of Permittee: MULTICULTURAL RADIO BROADCASTING LICENSEE, LLC

Station Location: SAN FRANCISCO, CA

Frequency (kHz): 1010

Station Class: B

Antenna Coordinates:

Day

Latitude: N 37 Deg 49 Min 34 Sec Longitude: W 122 Deg 18 Min 41 Sec

Night

Latitude: N 37 Deg 49 Min 34 Sec Longitude: W 122 Deg 18 Min 41 Sec

Transmitter(s): Type Accepted. See Sections 73.1660, 73.1665 and 73.1670 of the Commission's Rules.

Nominal Power (kW): Day: 10.0 Night: 10.0

Antenna Mode: Day: DA Night: DA

(DA=Directional Antenna, ND=Non-directional Antenna; CH=Critical Hours)

Antenna Registration Number(s):

Day:

Tower No. ASRN Overall Height (m)

1 1056743

2 1056742

3 1056741

Night:

Tower No. ASRN Overall Height (m)

1 1056743

2 1056742

3 1056741

Callsign: KIQI Permit No.: BMP-20181207AAR

DESCRIPTION OF DIRECTIONAL ANTENNA SYSTEM

Theoretical RMS (mV/m/km): Day: 930.2 Night: 1034.65 Standard RMS (mV/m/km): Night: 1086.92

Augmented RMS (mV/m/km): Day:1015

Q Factor: Day: Night:

Theoretical Parameters:

Day Directional Antenna:

Height (Deg.)	Tower Ref Switch *	Orientation (Deg.)	Spacing (Deg.)	Phasing (Deg.)	Field Ratio	Tower
TL/S	0	0.000	0.0000	-110.200	0.4300	1
TL/S	0	240.000	90.0000	117.900	1.1420	2
TL/S	0	240.000	180.0000	0.000	1.0000	3

^{*} Tower Reference Switch

0 = Spacing and orientation from reference tower

1 = Spacing and orientation from previous tower

Top-Loaded/Sectionalized Tower Parameters: (See 47 CFR 73.160)

Tower No.	A	В	C	D
1	75.4	14.60	.00	.00
2	75.4	14.60	.00	.00
3	75.4	14.60	.00	.00

Augmentation Parameters:

Aug No.	Central Azimuth (Deg. T)	Span (Deg.)	Radiation at Central Azimuth (mV/m @ 1 km)
1	7.0	34.0	265.54
2	24.0	34.0	196.34
3	41.0	14.0	144.84
4	48.0	14.0	144.84
5	79.0	30.0	144.84
6	94.0	30.0	189.90
7	112.0	36.0	252.67
8	130.0	10.0	317.04
9	172.0	36.0	1029.98
10	190.0	20.0	1367.94
11	200.0	16.0	1528.88
12	208.0	16.0	1641.53
13	240.0	17.0	1786.37
14	248.5	17.0	1818.56
15	270.0	40.0	1697.86
16	290.0	20.0	1528.88

Callsign: KIQI Permit No.: BMP-20181207AAR

Special operating conditions or restrictions:

2 Antenna Registration and Operating Tower #1, #2 & #3 refer to tower #1(E), #2(C) and #3(W).

- Licensee shall be responsible for satisfying all reasonable complaints of blanketing interference within the 1 V/m contour as required by Section 73.88 of the Commission's rules.
- A license application (FCC Form 302) to cover this construction permit must be filed with the Commission pursuant to Section 73.3536 of the Rules before the permit expires.
- The permittee/licensee in coordination with other users of the site must reduce power or cease operation as necessary to protect persons having access to the site, tower or antenna from radiofrequency electromagnetic fields in excess of FCC guidelines.
- 6 Permittee shall install a type-accepted transmitter, or submit application (FCC Form 301) along with data prescribed in Section 73.1660(b) should non type-accepted transmitter be proposed.
- 7 The permittee must submit a proof of performance as set forth in either Section 73.151(a) or 73.151(c) of the rules before program tests are authorized.

A proof of performance based on field strength measurements, per Section 73.151(a), shall include a complete nondirectional proof of performance, in addition to a complete proof on the night directional antenna system. The nondirectional and directional field strength measurements must be made under similar environmental conditions. The proof of performance submitted to the Commission must contain all of the data specified in Section 73.186 of the rules.

Permittees who elect to submit a moment method proof of performance, as set forth in Section 73.151(c), must use series-fed radiators. In addition, the sampling system must be constructed as described in Section 73.151(c) (2) (i).

*** END OF AUTHORIZATION ***

APPENDIX B: FCC Form 302-AM

Name of Applicant							
MULTICULTURAL RADIO BROADCASTING LICENSEE, LLC PURPOSE OF AUTHORIZATION APPLIED FOR: (check one)							
Station License Direct Measurement of Power							
1 Facilities auth	orized in const	ruction permit			-		
1. Facilities authorized in construction permit Call Sign File No. of Construction Permit Frequency			Hours of Open	Hours of Operation Power in kilowatts			
	(if applicable)		(kHz)	Trodis or open	allon	Night	Day
KIQI	BMP-2018	1207AAR	1010	UNLIMITED)	10.0	10.0
2. Station location							
State			City or Town	City or Town			
CALIFOR	NIA			SAN FRANCI	ISCO		
3. Transmitter lo	cation						
State	County			City or Town	City or Town Street address (or other identification)		
CA	ALAM	IEDA		OAKLAND			•
Main studio lo	cation					#1 RADIO RO	AD
State				City or Town		Street address	
	County		City or Town		(or other identification)		
CA		SAN FRANCISCO SAN FRANCISCO 44 GOUGH ST		. #301			
5. Remote control point location (specify only if authorized directional antenna)							
State	County	County		City or Town		Street address (or other identification)	
CA	CA SAN FRANCISCO		SAN FRANCISCO		44 GOUGH ST. #301		
6. Has type-approved stereo generating equipment been installed? 7. Does the sampling system meet the requirements of 47 C.F.R. Section 73.68? X Yes No Not Applicable Attach as an Exhibit a detailed description of the sampling system as installed. Exhibit No. ENG. RPT.							
Operating constants:							
RF common point or antenna current (in amperes) without RF common point or antenna current (in amperes) without							
modulation for night system modulation for day system							
14.49 AMPS 14.49 AMPS				h			
Measured antenna or common point resistance (in ohms) at operating frequency Night Day			Measured antenna or common point reactance (in ohms) at operating frequency Night Day				
50.0			+j 1.	5			
Antenna indications for directional operation							
Antenna monitor Towers Phase reading(s) in degrees		Antenna monitor sample current ratio(s) Antenna base currents					
		Night	Day	Night	Day	Night	Day
1 EA		125.4	-114.2	0.566	0.489	NOT	NOT
2 CEN		0	114.7	1.0	1.231	REQUIRED	REQUIRED
3 WE:	ST	-128.3	0	0.498	1.0		
		- Indiana					-
Manufacturer and	type of antenr	na monitor:	MAC INSTRUM	MENTS AM-190	1		

SECTION III - Page 2

9. Description of antenna system ((f directional antenna is used, the information requested below should be given for each element of the array. Use separate sheets if necessary.)

	T				
Type Radiator Self supporting tapered lattice towers	Overall height in meters of radiator above base insulator, or above base, if grounded.	Overall height in meters above ground (without obstruction lighting)	Overall height in meters above ground (include obstruction lighting)	If antenna is either top loaded or sectionalized, describe fully in an Exhibit.	
		, , , , , , , , , , , , , , , , , , , ,		Eng. Rpt.	
Excitation X Series Shunt Geographic coordinates to nearest second. For directional antenna give coordinates of center of array. For single vertical radiator give tower location.					
North Latitude 3.7	, 0 49	34 " West Longitu	ude 0 18	37	
If not fully described above, attach as an Exhibit further details and dimensions including any other antenna mounted on tower and associated isolation circuits. Exhibit No. ENG. RPT					
Also, if necessary for a complete description, attach as an Exhibit a sketch of the details and dimensions of ground system. NO CHANGE FROM DATA ON FILE Exhibit No. ENG. RPT					
10. In what respect, if any, does the apparatus constructed differ from that described in the application for construction permit or in the					

permit?

NONE

11. Give reasons for the change in antenna or common point resistance.

MODIFICATION TO IMPLEMENT 10.0 KW NIGHTTIME OPERATION

I certify that I represent the applicant in the capacity indicated below and that I have examined the foregoing statement of technical information and that it is true to the best of my knowledge and belief.

Name (Please Print or Type) BENJ. F. DAWSON III, P.E.	Signature (check appropriate box below) $Renj. \ \mathcal{F}. \ Dawson$		
Address (include ZIP Code)	Date		
HATFIELD & DAWSON CONSULTING ENGINEERS	JUNE 30, 2019		
9500 GREENWOOD AVENUE NORTH SEATTLE, WA 98103	Telephone No. (Include Area Code)		
	206 783 9151		
Technical Director	X Registered Professional Engineer		
Chief Operator	Technical Consultant		
X Other (specify) Consulting Engineer			