

Gregory L. Masters ORIGINAL 202.719.7370 gmasters@wileyrein.com

2018 DEC 11 PM 2:23

December 10, 2018

BY HAND VIA COURIER

Accepted / Filed

DEC 10 2018

Marlene H. Dortch, Secretary Federal Communications Commission 445 Twelfth Street, S.W. 12th Street Lobby, TW-A325

Washington, DC 20554

Federal Communications Commission Office of the Secretary

Re: Salem Media of Massachusetts, LLC – FRN 0017216862 Station WWTC(AM), Minneapolis, MN (Fac. ID 9676) Application for Station License Request for Program Test Authority

Dear Ms. Dortch:

On behalf of Salem Media of Massachusetts, LLC, licensee of AM station WWTC, Minneapolis, Minnesota, we are submitting herewith an original and two copies of an application on FCC Form 302-AM for license to cover Construction Permit BP-20180213AAO. Program Test Authority is requested.

The fee due for this application, \$1,560.00, has been paid, using the FCC Fee Filer system. A copy of Form 159 confirming the payment is included herewith.

Should there be any questions concerning this application, please contact the undersigned.

Sincere . Masters

Enclosures

DEC 10 2018

Federal Communications Commission Office of the Secretary

Agency Tracking ID:PGC3188635 Authorization Number:027896 Successful Authorization -- Date Paid: 12/10/18 FILE COPY ONLY!!

READ INSTRUCTIONS CAREFULLY BEFORE PROCEEDING	FEDERAL COMMUNICATION REMITTANCE FORM 1	ADVICE	SF	APPROVED BY OM 3060-05 ECIAL USE
(1) LOCKBOX #979089	PAGE NO 1	OF 1	FC	C USE ONLY
	SECTION A-	Payer Information		
(2) PAYER NAME (if paying by credit Salem Media of Massachu	card, enter name exactly as it appears on usetts, LLC	your card)	(3) TOTA \$1560.	L AMOUNT PAID (dollars and cents) 00
(4) STREET ADDRESS LINE NO. 1 4880 Santa Rosa Road				
(5) STREET ADDRESS LINE NO. 2				
(6) СПҮ Camarillo			7) STATE	(8) ZIP CODE 93012
(9) DAYTIME TELEPHONE NUMBER 805-3844502	R (INCLUDING AREA CODE)	RY CODE (IF NO	T IN U.S.A.)	
FCC	REGISTRATION NUMBER (FRN) AND	TAX IDENTIFICATION NU	MBER (TIN) RE	QUIRED
(11) PAYER (FRN) 0017216862		(12) FCC USE ONLY		
IF	PAYER NAME AND THE APPLICANT NA IF MORE THAN ONE APPLICANT, US	ME ARE DIFFERENT, CO E CONTINUATION SHEE	MPLETE SECT TS (FORM 159-0	ION B C)
(13) APPLICANT NAME Salem Media of Massachu (14) STREET ADDRESS LINE NO.	usetts, LLC			
(15) STREET ADDRESS LINE NO.	2			
(16) СПҮ Camarillo		(1 C	7) STATE A	(18) ZIP CODE 93012
(19) DAYTIME TELEPHONE NUMBE 805-3844502	DAYTIME TELEPHONE NUMBER (INCLUDING AREA CODE) (20) COUNTRY 5-3844502 US)T IN U.S.A.)
FCC	REGISTRATION NUMBER (FRN) AND	TAX IDENTIFICATION NU	MBER (TIN) RE	QUIRED
(21) APPLICANT (FRN) 0017216862		(22) FCC USE ONLY	1.1	
COMPLETE	SECTION C FOR EACH SERVICE, IF MO	ORE BOXES ARE NEEDE	D, USE CONTIN	UATION SHEET
(23A) FCC Call Sign/Other ID	WWTC	(24A) Payment Type Co	de(PTC) MMR	(25A) Quantity
(26A) Fee Due for (PTC)	725.00	(27A) Total Fee \$7	25.00	FCC Use Only
(28A) FCC CODE 1 96	576) FCC CODE 2	Form302	-AM
(23B) FCC Call Sign/Other ID	WWTC	(24B) Payment Type Co	de(PTC)	(25B) Quantity

(26B) Fee Due for (PTC)	(27B) Total Fee	FCC Use Only
\$835.00	\$835.00	
(28B) FCC CODE 1	(29B) FCC CODE 2	
9676	Form302-AM	1

Federal Communications Commission Washington, D. C. 20554 Approved by OMB 3060-0627 Expires 01/31/98

FOR FCC USE ONLY

FCC 302-AM APPLICATION FOR AM BROADCAST STATION LICENSE

(Please read instructions before filling out form.

FOR COMMISSION USE ONLY FILE NO, BMML - 2018 1210 A BV

		•
STATE OR COUNTRY (if fore CA	ign address)	ZIP CODE 93012
CALL LETTERS WWTC	OTHER FCC ID 9676	ENTIFIER (If applicable)
		Ves No
cational licensee	er (Please expla	in):
are applying for. Fee Type Cod	les may be found	d in the "Mass Media Services
his application. Enter fee amount	due in Column	(C).
(C)	—	
FEE DUE FOR FEE TYPE CODE IN COLUMN (A)		FOR FCC USE ONLY
\$ 725.00		
esult in a requirement to list more	than one Fee T	ype Code.
(C)	[
\$ 835.00		FOR FCC USE UNLT
	8	FOR ECC USE ONLY
APPLICATION		
\$ 1560.00		
	STATE OR COUNTRY (if fore CA CALL LETTERS WWTC cational licensee Oth are applying for. Fee Type Cod is application. Enter fee amount (C) FEE DUE FOR FEE TYPE CODE IN COLUMN (A) \$ 725.00 esult in a requirement to list more (C) \$ 835.00 TOTAL AMOUNT REMITED WITH THIS APPLICATION \$ 1560.00	STATE OR COUNTRY (if foreign address) CA CALL LETTERS OTHER FCC ID wwtc 9676 cational licensee Other (Please explation of the content of th

1. NAME OF APPLICANT	IT INFORMATION			
SALEM MEDIA OF MASSA	CHUSETTS, LLC			
MAILING ADDRESS 4880 SANTA ROSA ROAD				
CITY CAMARILLO		STATE CA		ZIP CODE 93012
2. This application is for:	Commercial	Noncomn	nercial Ion-Directional	
O-W lotters	Community of Licoppo	Construction Pormit File No.	Modification of Construction	Expiration Date of Last
		BP-20180213AAO	Permit File No(s).	Construction Permit
VVVVIC	WIINNEAPOLIS, WIN	BF-20180213AAO	I	0/10/2021
3. Is the station in accordance with 47 C.F If No, explain in an Exh	now operating pursuant F.R. Section 73.1620? Program test authoribit. #3 of the CP. See	to automatic program prity is hereby requested Engineering Statement.	test authority in pursuant to condition	Yes ✓ No Exhibit No.
4. Have all the term construction permit bee	ns, conditions, and oblig on fully met?	ations set forth in the	above described	Yes No
If No, state exceptions	in an Exhibit.			
5. Apart from the char the grant of the under representation contained	nges already reported, ha rlying construction permi ed in the construction per	as any cause or circumst t which would result in mit application to be now	ance arisen since any statement or incorrect?	Yes V No
If Yes, explain in an Ex	xhibit.			
				Yes No
6. Has the permittee f	iled its Ownership Report	t (FCC Form 323) or own	ership	
certification in accordar	nce with 47 C.F.R. Sectio	n 73.3615(b)?		Does not apply
If No, explain in an Exh	ibit.			Exhibit No.
7. Has an adverse find or administrative body criminal proceeding, br felony; mass media another governmental	ding been made or an ad with respect to the applic rought under the provision related antitrust or unfa unit; or discrimination?	lverse final action been t ant or parties to the appl ns of any law relating to air competition; fraudule	aken by any court lication in a civil or the following: any ent statements to	Yes 🗸 No
If the answer is Yes, involved, including an i (by dates and file num information has been required by 47 U.S.C. of that previous submi the call letters of the s was filed, and the date	attach as an Exhibit a f identification of the court nbers), and the dispositi earlier disclosed in co Section 1.65(c), the appli- ssion by reference to the station regarding which t of filing; and (ii) the dispo	ull disclosure of the per or administrative body a on of the litigation. W onnection with another cant need only provide: a file number in the case he application or Section osition of the previously r	sons and matters nd the proceeding here the requisite application or as (i) an identification of an application, n 1.65 information eported matter.	Exhibit No.

8. Does the applicant, or any party to the application, have a petition on file to migrate to the expanded band (1605-1705 kHz) or a permit or license either in the existing band or expanded band that is held in combination (pursuant to the 5 year holding period allowed) with the AM facility proposed to be modified herein?

If Yes, provide particulars as an Exhibit.

The APPLICANT hereby waives any claim to the use of any particular frequency or of the electromagnetic spectrum as against the regulatory power of the United States because use of the same, whether by license or otherwise, and requests and authorization in accordance with this application. (See Section 304 of the Communications Act of 1934, as amended).

The APPLICANT acknowledges that all the statements made in this application and attached exhibits are considered material representations and that all the exhibits are a material part hereof and are incorporated herein as set out in full in

CERTIFICATION

1. By checking Yes, the applicant certifies, that, in the case of an individual applicant, he or she is not subject to a denial of federal benefits that includes FCC benefits pursuant to Section 5301 of the Anti-Drug Abuse Act of 1988, 21 U.S.C. Section 862, or, in the case of a non-individual applicant (e.g., corporation, partnership or other unincorporated association), no party to the application is subject to a denial of federal benefits that includes FCC benefits pursuant to that section. For the definition of a "party" for these purposes, see 47 C.F.R. Section 1.2002(b).

2. I certify that the statements in this application are true, complete, and correct to the best of my knowledge and belief. and are made in good faith.

Name	Signature	
CHRISTOPHER J. HENDERSON	2	
Title EXECUTIVE VICE PRESIDENT & SECRETARY	Date 12/6/2018	Telephone Number (805)987-0400

WILLFUL FALSE STATEMENTS ON THIS FORM ARE PUNISHABLE BY FINE AND/OR IMPRISONMENT (U.S. CODE, TITLE 18, SECTION 1001), AND/OR REVOCATION OF ANY STATION LICENSE OR CONSTRUCTION

FCC NOTICE TO INDIVIDUALS REQUIRED BY THE PRIVACY ACT AND THE PAPERWORK REDUCTION ACT

The solicitation of personal information requested in this application is authorized by the Communications Act of 1934, as amended. The Commission will use the information provided in this form to determine whether grant of the application is in the public interest. In reaching that determination, or for law enforcement purposes, it may become necessary to refer personal information contained in this form to another government agency. In addition, all information provided in this form will be available for public inspection. If information requested on the form is not provided, the application may be returned without action having been taken upon it or its processing may be delayed while a request is made to provide the missing information. Your response is required to obtain the requested authorization.

Public reporting burden for this collection of information is estimated to average 639 hours and 53 minutes per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the burden, can be sent to the Federal Communications Commission, Records Management Branch, Papenwork Reduction Project (3060-0627), Washington, D. C. 20554. Do NOT send completed forms to this address.

THE FOREGOING NOTICE IS REQUIRED BY THE PRIVACY ACT OF 1974, P.L. 93-579, DECEMBER 31, 1974, 5 U.S.C. 552a(e)(3), AND THE PAPERWORK REDUCTION ACT OF 1980, P.L. 96-511, DECEMBER 11, 1980, 44 U.S.C. 3507.

Yes V No

Exhibit	No.

V Yes No

SECTION III - LI Name of Applicar	ICENSE APPLICATION ENGIN	EERING DATA			
SALEM MI	EDIA OF MASSACHUS	ETTS, LLC			
PURPOSE OF A	UTHORIZATION APPLIED FOR:	(check one)			
✓ ;	Station License	Direct Me	asurement of Power		
1. Facilities auth	orized in construction permit				
Call Sign	File No. of Construction Permit	Frequency	Hours of Operation	Power in	1 kilowatts
WWTC	BP-20180213AAO	(KHZ) 1280	Unlimited	Night 15.0	10.0
2. Station location	bn				
State			City or Town		
Minnesota Minneapolis					
3. Transmitter lo	cation				
State	County		City or Town	Street address	cation)
MN	MN Dakota		Eagan	2110 Cliff Road	
4. Main studio lo	cation				
State	County		City or Town	Street address	cation)
MN	Dakota		Eagan	2110 Cliff Road	
5. Remote contr	ol point location (specify only if a	uthorized direction	nal antenna)		
State	County		City or Town	Street address	cation)
MN	Dakota		Eagan	2110 Cliff Roa	ad
 6. Has type-app 7. Does the sam 	roved stereo generating equipme	nt been installed nts of 47 C.F.R.	? Section 73.68?		Yes / No Yes No Not Applicable
Attach as an E	xhibit a detailed description of the	sampling system	m as installed.	Ex ENG.	hibit No.

Operating constants:						N
RF common point or antenna current (in amperes) without modulation for night system 17.8			RF common modulation for 14.5	point or antenna cu or day system	irrent (in amperes) without
Measured antenna or common point resistance (in ohms) at operating frequency Night Day 50.0 50.0			Measured ar operating fre Night -6.4	ntenna or common p quency	Day -6.4	ohms) at
Antenna indications for dir	ectional operation					
Antenna monitor Towers Phase reading(s) in degrees		Antenna monitor sample current ratio(s)		Antenna base currents		
	Night	Day	Night	Day	Night	Day
1(S)	-81.3	-88.5	.791	.661		
2(SC)	137.9	108.0	1.168	1.054		
3(NC)	0.0	0.0	1.000	1.000		
4(N)	-139.9	-106.6	.260	.231		

SECTION III - Page 2

permit?

9. Description of antenna system ((f directional antenna is used, the information requested below should be given for each element of the array. Use separate sheets if necessary.)

Type Radiator Guyed tower	Overall height in meters of radiator above base insulator, or above base, if grounded. 76.2	Overall height in meters above ground (without obstruction lighting) 77.1	Overall height in meters above ground (include obstruction lighting) 78.0	If antenna is either top loaded or sectionalized, describe fully in an Exhibit. Exhibit No. N/A
Excitation	✓ Series	Shunt		
Coographia apordinatos	to persent second. For direct	innel entenne eive enertineter	a of contex of error. For sine	de contres l'andres etce

Geographic coordinates to nearest second. For directional antenna give coordinates of center of array. For single vertical radiator give tower location.

	North Latitude 44	0	47	•	18	11	West Longitude 93	0	12		54	н
--	-------------------	---	----	---	----	----	-------------------	---	----	--	----	---

If not fully described above, attach as an Exhibit further details and dimensions including any other antenna mounted on tower and associated isolation circuits.

Exhibit No. ENG.

Exhibit No.

ENG.

Also, if necessary for a complete description, attach as an Exhibit a sketch of the details and dimensions of ground system.

10. In what respect, if any, does the apparatus constructed differ from that described in the application for construction permit or in the

Change to ground system description

11. Give reasons for the change in antenna or common point resistance.

New Construction	

I certify that I represent the applicant in the capacity indicated below and that I have examined the foregoing statement of technical information and that it is true to the best of my knowledge and belief.

Name (Please Print or Type) Kurt Gorman	Signature (check appropriate box below)
Address (include ZIP Code) Phasetek Inc.	Date December 6, 2018
550 California Rd., Unit 11	Telephone No. (Include Area Code)
Quakertown, PA 18951	215-536-6648

	Technical Director		Registered Professional Engineer
	Chief Operator	1	Technical Consultant
П	Other (specify)		

FCC 302-AM (Page 5) August 1995

ENGINEERING STATEMENT CONCERNING

APPLICATION FOR LICENSE INFORMATION EMPLOYING MOMENT METHOD MODELING

WWTC, 1280 KHZ, DA-2 MINNEAPOLIS, MINNESOTA

DECEMBER, 2018

PHASETEK INC. ENGINEERING STATEMENT CONCERNING APPLICATION FOR LICENSE INFORMATION EMPLOYING MOMENT METHOD MODELING WWTC, 1280 KHZ, DA-2 MINNEAPOLIS, MINNESOTA DECEMBER. 2018

TABLE OF CONTENTS

ENGINEERING STATEMENT FIGURE 1: ANTENNA SYSTEM AS ADJUSTED SAMPLING SYSTEM DESCRIPTION/MEASUREMENTS FIGURE 2: TOWER IMPEDANCE MEASUREMENTS VS. MODELED FIGURE 3: MOMENT MODEL PARAMETERS FIGURE 4: MOMENT MODEL SUMMARY FOR INDIVIDUAL TOWERS FIGURE 5: FIGURE 6: MOMENT MODEL ARRAY SYNTHESIS (DIRECTIONAL DAY) MOMENT MODEL SUMMARY FOR DIRECTIONAL DAY MODE FIGURE 7: MOMENT MODEL ARRAY SYNTHESIS (DIRECTIONAL - NIGHT) FIGURE 8: MOMENT MODEL SUMMARY FOR DIRECTIONAL NIGHT MODE FIGURE 9: **DERIVED DIRECTIONAL PARAMETERS** FIGURE 10: TOWER BASE CIRCUIT ANALYSIS DESCRIPTION FIGURE 11: **CIRCUIT ANALYSIS FOR INDIVIDUAL TOWERS** FIGURE 12: **CIRCUIT ANALYSIS FOR DIRECTIONAL DAY MODE** FIGURE 13: **CIRCUIT ANALYSIS FOR DIRECTIONAL NIGHT MODE** FIGURE 14: **REFERENCE FIELD INTENSITY MEASUREMENTS** FIGURE 15 **CERTIFIED ARRAY GEOMETRY SURVEY** FIGURE 16: **SPURIOUS RADIATION MEASUREMENTS** FIGURE 17: **REVISED KKMS SAMPLING LINE MEASUREMENTS** FIGURE 18:

302-AM

PHASETEK INC.

ENGINEERING STATEMENT CONCERNING APPLICATION FOR LICENSE INFORMATION EMPLOYING MOMENT METHOD MODELING WWTC, 1280 KHZ, DA-2 MINNEAPOLIS, MINNESOTA DECEMBER. 2018

SUMMARY

Adjustment of the Antenna System and a Proof of Performance employing Moment Method Modeling was performed on Radio Station WWTC, 1280 KHz, Minneapolis, Minnesota, after installation of Antenna Phasing equipment, Transmission and Sampling Lines, and new Tower Feed Assemblies. WWTC holds Construction Permit Number: BP-20180213AAO to change Transmitter site and patterns. This report was prepared on behalf of Salem Media of Massachusetts, LLC, licensee of Radio Station WWTC.

SITE MODIFICATIONS

The WWTC Transmitter site is that as currently licensed for Radio Station KKMS, 980 KHz. New Transmission Lines, Sampling Lines, and Antenna Phasing and Branching equipment have been installed. All Towers remain unchanged. A License Application employing Moment Method Modeling as set forth in Section 73.151(C) has been done to cover the Radio Station WWTC Construction Permit and license under the new rules.

REFERENCE POINTS

Reference Points were measured at pattern minima and maxima for the Directional modes of operation. These Points and their measured field intensity are shown in Figure 15.

SPURIOUS EMISSIONS

Due to the common usage of the Transmitter site by both Radio Stations WWTC, 1280 KHz and KKMS, 980 KHz, filtering has been installed and adjusted at all Towers to prevent interaction and spurious radiation products. Figure 17 shows measurement of any spurious radiation products. All filter circuits are located on the matching network side of the Sampling TCT's for both stations. The "reject" 1280 kHz Filters (located in the KKMS equipment) measure greater than 50,000 ohms, and are not included in the circuit model.

PHASETEK INC.

ENGINEERING STATEMENT CONCERNING APPLICATION FOR LICENSE INFORMATION EMPLOYING MOMENT METHOD MODELING WWTC, 1280 KHZ, DA-2 MINNEAPOLIS, MINNESOTA DECEMBER. 2018

SPECIAL OPERATING CONDITION #3

As stated above, filtering has been installed and adjusted at all Towers to prevent interaction and spurious radiation products. All filter circuits are located on the matching network side of the Sampling TCT's for both stations. The "reject" Filters for both stations measure greater than 50,000 ohms, and are not included in the circuit model. The currently licensed sampling system for KKMS remains unchanged, except that the TCT's were re-located to the tower output side of the filtering. Short equal length jumpers were used to make the connections. The sampling lines with the jumpers were measured for all KKMS towers, and are within 1.0 electrical degree of each other. A summary of the revised line measurements is included as Figure 18. Due to the high impedance of the reject filtering in parallel, the TCT current equals the base network input current. KKMS tower impedance measurements agree with previously taken, therefore there is no change to the current licensed operating parameters or common point current. A form 302-AM has not been done, as there are no operating changes.

METHOD OF MOMENTS DETAIL

All Moment Method Modeling was done with Expert MININEC Broadcast Professional, Version 23. One wire was used to represent each Tower. Towers were driven individually to verify the Model compared to measured impedance data. Once the Model was verified, both the Day and Night Directional Antenna Systems were computed. For Directional modes, the complex voltage values for sources located at ground level were computed. These sources produce current moment sums for each Tower that, when normalized, equate to the Theoretical Field Parameters for each respective Tower.

PHASETEK INC.

ENGINEERING STATEMENT CONCERNING APPLICATION FOR LICENSE INFORMATION EMPLOYING MOMENT METHOD MODELING WWTC, 1280 KHZ, DA-2 MINNEAPOLIS, MINNESOTA DECEMBER. 2018

MEASURING EQUIPMENT AND PERSONNEL

All Tower Resistance and Reactance measurements were made with a HP 8753ES Network analyzer with a Tunwall directional coupler and a Delta Electronics OIB-3 Operating Impedance Bridge. Before use, tests of known impedances were made to verify operation. All Field Intensity Measurements were made with a Potomac Instruments Field Intensity Meter; FIM-21, Serial Number 1235, calibrated on May 18, 2017. The meter was calibrated by Potomac Instruments, Frederick, Maryland. All measurements were taken by Phasetek Inc. and WWTC personnel supervised by Kurt Gorman of Phasetek Inc.

CONCLUSION

It is believed that the WWTC Antenna System has been constructed and adjusted in accordance with all applicable Commission rules and regulations. The foregoing was prepared on behalf of Salem Media of Massachusetts, LLC, under the immediate supervision of Kurt Gorman, Phasetek Inc., Quakertown, Pennsylvania, whose qualifications are a matter of record with the Federal Communications Commission. The statements herein are true and correct of his knowledge, except such statements made on information and belief, and as to these statements he believes them to be true and correct.

Kurt Gorman, President Phasetek Inc. Quakertown, Pennsylvania

FIGURE 1

ANTENNA SYSTEM AS ADJUSTED

APPLICATION FOR LICENSE INFORMATION EMPLOYING MOMENT METHOD MODELING WWTC, 1280 KHZ, DA-2 MINNEAPOLIS, MINNESOTA DECEMBER. 2018

ANTENNA SYSTEM DESCRIPTION

- The Antenna System consists of four (4), uniform, guyed, vertical steel transmitting Towers. All Towers stand 76.2M (117.4°) above their Base Insulators. The Towers are arranged with Tower 1 as a reference; Tower 2 is spaced 117.6° on a bearing of 17.0°T. Tower 3 is spaced 235.2° on a bearing of 17.0°T. Tower 4 is spaced 352.8° on a bearing of 17.0°T. All towers have lighting. The AC feed for the lighting is isolated at the base with a ring transformer.
- 2. The Ground System for each Tower consists of (120) buried copper Radials, 76.2M in length, except where they intersect with copper transverse straps between Towers or property boundaries. In addition, a 7.3M by 7.3M copper ground screen is installed at the base of each tower. Copper strap connects all Towers to the main Transmitter grounding point.
- 3. The Sampling System consists of four (4), Phasetek Inc. P600-203, 1.0 V/A Toroidal Current Transformers. All TCT's are at the Output of each diplexing filter. These TCT's are connected to a Potomac Instruments 1901-4 Antenna Monitor via four (4) equal lengths of RFS, LCF-12-50J, 1/2" phase stabilized foam coaxial cable.
- 4. Tower registration numbers:

Tower 1: 1039518 Tower 2: 1039519 Tower 3: 1039520 Tower 4: 1039521

FIGURE 1 ANTENNA SYSTEM AS ADJUSTED

APPLICATION FOR LICENSE INFORMATION EMPLOYING MOMENT METHOD MODELING CONTINUED WWTC, 1280 KHZ, DA-2 MINNEAPOLIS, MINNESOTA DECEMBER. 2018

ANTENNA SYSTEM DESCRIPTION – Continued

DIRECTIONAL OPERATION (DAY)

COMMON POINT

Impedance	=	50.0 – j 6.4 Ohms
Current	=	14.5 Amperes
Power	=	10,530 Watts

DIRECTIONAL OPERATION (NIGHT)

COMMON POINT

Impedance	=	50.0 – j 6.4 Ohms
Current	Ξ	17.8 Amperes
Power	=	15.795 Watts

Directional Antenna Monitor indications are within $\pm 5\%$ and $\pm 3^{\circ}$ of the modeled TCT values.

FIGURE 2

WWTC SAMPLING SYSTEM DESCRIPTION/MEASUREMENTS

APPLICATION FOR LICENSE INFORMATION EMPLOYING MOMENT METHOD MODELING WWTC, 1280 KHZ, DA-2 MINNEAPOLIS, MINNESOTA DECEMBER. 2018

SAMPLING SYSTEM DESCRIPTION

The Sampling System consists of Phasetek Inc. P600-203 Toroidal Sampling Transformers (1.0 volt/amp) mounted at the base of each Tower. The sampling devices are connected to the Antenna Monitor with equal lengths of RFS LCF-12-50J. The Antenna Monitor is a Potomac Instruments Model 1901-4, Serial Number 473.

SAMPLE LINE MEASUREMENTS

Impedance measurements were made of the Antenna Sampling Lines using a HP 8753ES Network Analyzer with a Tunwall directional coupler. Measurements were done with the lines open circuited and then connected to the TCT's.

The table below shows the frequencies above and below the carrier frequency where resonance, defined as zero reactance corresponding with low resistance, was found. Frequencies of resonance occur at odd multiples of 90 degrees electrical length, the Sample Line length at the resonant frequency below the carrier frequency, which is the closest one to the carrier frequency, was found to be 450 electrical degrees. The electrical length at carrier frequency appearing in the table below was calculated by ratioing the frequencies.

SAMPLE LINE MEASUREMENTS

	Resonant Frequency (KHz) below 1280 KHz	Resonant Frequency (KHz) above 1280 KHz	Calculated Electrical Length (deg) at 1280 KHz	Measured Impedance (ohms) Connected to TCT @ 1280 KHz
Tower 1	1103.9	1547.9	521.8	48.6 +j 1.67
Tower 2	1103.5	1547.6	522.0	48.7 +j 1.67
Tower 3	1103.6	1547.3	521.9	48.5 +j 1.54
Tower 4	1104.5	1548.5	521.5	48.7 +j 1.21

FIGURE 2 WWTC SAMPLING SYSTEM DESCRIPTION/MEASUREMENTS

APPLICATION FOR LICENSE INFORMATION EMPLOYING MOMENT METHOD MODELING WWTC, 1280 KHZ, DA-2 MINNEAPOLIS, MINNESOTA DECEMBER. 2018 CONTINUED

SAMPLE LINE MEASUREMENTS (CONTINUED)

To determine the characteristic impedance values of the Sample Lines, open-circuited measurements were made with frequencies offset to produce \pm 45 degrees of electrical length from resonance. The characteristic impedance was calculated using the following formula, where R1 +j X1 and R2 +j X2 are the measured impedances at the +45 and -45 degree offset frequencies, respectively:

$$Z_0 = ((R_1^2 + X_1^2)^{1/2} \bullet (R_2^2 + X_2^2)^{1/2})^{1/2}$$

Tower	+ 45 Degree Offset Frequency (kHz)	+ 45 Degree Measured Impedance (Ohms)	- 45 Degree Offset Frequency (kHz)	- 45 Degree Measured Impedance (Ohms)	Calculated Characteristic Impedance (Ohms)
1	1214.3	8.7 +j 49.9	993.5	7.0 –j 50.1	50.62
2	1213.9	8.7 +j 50.2	993.2	6.9 –j 50.2	50.81
3	1214.0	8.7 +j 50.2	993.2	7.0 –j 50.3	50.87
4	1215.0	8.7 +j 49.9	994.1	7.0 –j 50.3	50.72

SAMPLING TCT MEASUREMENTS

Measurements of the Phasetek Inc. Model P600-203, 1.0 V/A Toroidal Current Transformers were performed by a Hewlett Packard 8752A, Network Analyzer. Measurements are normalized to Tower #3 (reference) and are within the manufacturer's rating of $\pm 1.5\%$ and $\pm 2.0^{\circ}$.

FIGURE 2 WWTC SAMPLING SYSTEM DESCRIPTION/MEASUREMENTS

APPLICATION FOR LICENSE INFORMATION EMPLOYING MOMENT METHOD MODELING WWTC, 1280 KHZ, DA-2 MINNEAPOLIS, MINNESOTA DECEMBER. 2018 CONTINUED

SAMPLING TCT MEASUREMENTS CONT'D

TOWER	TCT SERIAL #	MAGNITUDE	PHASE
1	764	1.000	-0.2°
2	765	1.000	-0.1°
3	766	1.000	0.0°
4	767	1.001	-0.2°

ANTENNA MONITOR MEASUREMENT

Measurement of the Potomac Instruments Model 1901-4 Antenna Monitor was performed to verify calibration. A single RF Voltage was applied to the Reference Input (Tower #3) and each other Input by use of a "T" divider and equal electrical length coaxial cables. This yields the following:

Tower	Ratio	Phase
1	1.001	-0.1 ⁰
2	1.001	-0.2 ⁰
3	1.000	0.00
4	1.001	-0.2 ⁰

The above is within the manufacturer's rating of $\pm 1.0\%$ and $\pm 1.0^{\circ}$.

FIGURE 3 WWTC TOWER IMPEDANCE MEASUREMENTS COMPARED TO METHOD OF MOMENTS MODEL

TOWER	Specified	Measured	Measured	Modeled	Modeled	Measured
	Cs (pf)	L _F (μH)	X _F (Ω)	Z _{ANT} (Ω)	Z _{ATU} (Ω)	Z _{ATU} (Ω)
1	30	1.87	+j15.0	210.3 +j 275.4	234.9 +j 295.7	235.0 +j 297.0
2	30	0.62	+j5.0	202.0 +j 318.8	230.1 +j 335.5	231.0 +j 331.5
3	50	0.62	+j5.0	190.3 +j 298.3	237.7 +j 320.9	241.0 +j 314.0
4	30	0.87	+j7.0	207.3 +j 263.1	230.6 +j 274.5	230.0 +j 274.0

Tower	Calculated X_{oc} (Ω)
1	-j 4,967.8
2	-j 4,968.2
3	-j 2,761.4
4	-j 4,968.1

FIGURE 4 WWTC MOMENT MODEL PARAMETERS

Tower #	Wire #	# of Segments	Base Node
1	1	24	1
2	2	24	25
3	3	24	49
4	4	24	73

Tower #	Physical Height Degrees	Modeled Height Degrees	Modeled Radius Meters	% of Equivalent Radius
1	117.4	127.6	.26	119.3
2	117.4	128.5	.26	119.3
3	117.4	127.1	.28	128.4
4	117.4	126.8	.30	137.6

All Towers are uniform cross section, guyed with Base Insulator. All Towers are three (3) sided, 18" face width.

All Base Insulators were manufactured by Lapp Insulators. Towers #1, #2, and #3 have an assumed base capacity of 30pf (-j 4,144.7 ohms @ 1280 kHz). Tower 4 has an assumed base capacity of 50pf (-j 2,486.8 ohms @ 1280 kHz).

All Towers have a static Drain Choke. These measure +j 25,000 ohms @ 1280 KHz.

WWTC TOWER 1 (OTHERS OPEN)

GEOMETRY Wire coordinates in degree Environment: perfect groun	s; other c d	limensions	; in mete	ers	
wire caps Distance An 1 none 0 0	gle	Z 0 127 6	rac .26	lius	segs 24
2 none 117.6 17		0	.26	5	24
3 none 235.2 17 235.2 17		0	.28	3	24
4 none 352.8 17 352.8 17		0 126.8	.3		24
Number of wires = current nodes =	4 96				
mi Individual wires wire segment length 4 radius 1	nimum value 5.2833 .26	33	max wire 2 4	value 5.35417 .3	
ELECTRICAL DESCRIPTION Frequencies (MHz) frequency no. lowest step 1 1.28 0	no. c steps 1	of segmer minimu .01467	nt length um 759	m (waveler maximum .0148722	ngths) 7
Sources source node sector mag 1 1 1 1.	nitude	phase 0		type voltage	
Lumped loads	reactance	a indu	ictance	canacita	nce nassive
load node (ohms) 1 25 0 2 49 0 3 73 0	(ohms) -4,968.2 -2,761.4 -4,968.1	(mH) 0 0)	(uF) 0 0 0	circuit 0 0
IMPEDANCE normalization = 50.					
freq resist react (MHz) (ohms) (ohms)	imped (ohms)	phase (deg)	VSWR	S11 dB	s12 dB
source = 1; node 1, secto 1.28 210.25 275.43	346.51	52.6	11.573	-1.5048	-5.3337

WWTC TOWER 2 (OTHERS OPEN)

25

1

1

GEOMETRY Wire coordinates in degrees; other dimensions in meters Environment: perfect ground caps Distance Ζ radius wire Angle segs 1 none 0 0 0 .26 24 0 127.6 0 17. 2 none 117.6 0 .26 24 17. 128.5 117.6 3 none 235.2 17. 0 .28 24 127.1 235.2 17. 4 .3 24 none 352.8 17. 0 126.8 352.8 17. Number of wires = 4 current nodes = 96 maximum minimum Individual wires wire value wire value 5.35417 .3 segment length 5.28333 4 2 radius 4 1 .26 ELECTRICAL DESCRIPTION Frequencies (MHz) segment length (wavelengths) no. of frequency no. lowest steps minimum maximum step .0148727 0 .0146759 1 1.28 1 Sources source node sector magnitude phase type

1. Lumped loads resistance inductance capacitance passive reactance (uF)circuit load node (ohms) (ohms) (mH) Õ -4,967.8 Ő Ő 0 1 1 -2,761.4 -4,968.1 2 49 0 0 0 0 3 73 Ô 0 0 Ô

Ò

voltage

IMPEDANCE		50					
freq	ization =	= 50. react	imped	nhase	VSWR	\$11	\$12
(MHz)	(ohms)	(ohms)	(ohms)	(deg)	VJWK	dB	dB
source =	1; node	25, secto	r 1				
1.28	202.	318.75	377.37	57.6	14.277	-1.2188	-6.1138

WWTC TOWER 3 (OTHERS	OPEN)				
GEOMETRY Wire coordinates in c Environment: perfect	legrees; other ground	dimensions	s in met	ers	
wire caps Distance 1 none 0	Angle 0 0	Z 0 127 6	ra .2	dius 5	segs 24
2 none 117.6	17.	0	. 20	5	24
3 none 235.2	17.	$0 \\ 127 1$. 28	8	24
4 none 352.8 352.8	17. 17. 17.	127.1 0 126.8	.3		24
Number of wires current noc	= 4 les = 96				
Individual wires segment length radius	minimum wire value 4 5.283 1 .26	33	max wire 2 4	kimum Value 5.35417 .3	
ELECTRICAL DESCRIPTIC Frequencies (MHz) frequency no. lowest ste 1 1.28 0	on no. ep step 1	of segmer s minimu .01467	nt lengtl um 759	ı (wavele maximum .014872	ngths) 7
Sources source node sector 1 49 1	magnitude	phase 0		type voltage	
Lumped loads	ronstand	a tudi		conscito	
load node (ohms) 1 1 0 2 25 0 3 73 0	ice reactanc (ohms) -4,967.8 -4,968.2 -4,968.1	e 1nd((mH) 0 0)	Capacita (uF) 0 0 0	nce passive circuit 0 0 0
IMPEDANCE					
normalization = 50 freq resist rea (MHz) (ohms) (oh). lct imped lms) (ohms)	phase (deg)	VSWR	S11 dB	S12 dB
1.28 190.33 298	3.25 353.81	57.5	13.342	-1.3045	-5.8593

WWTC TOWER 4 (OTHERS OPEN)

GEOMETRY

1.28

Wire coordinates in degrees; other dimensions in meters Environment: perfect ground

2 none $\frac{117.6}{117.6}$ $\frac{127.6}{17.}$ $\frac{127.6}{128.5}$ $\frac{26}{24}$ $\frac{24}{117.6}$ $\frac{117.6}{17.}$ $\frac{128.5}{128.5}$ $\frac{26}{24}$ $\frac{24}{235.2}$ $\frac{17.}{17.}$ $\frac{127.1}{127.1}$ $\frac{28}{352.8}$ $\frac{17.}{17.}$ $\frac{127.1}{126.8}$ $\frac{127.6}{352.8}$ $\frac{17.}{17.}$ $\frac{127.1}{126.8}$ $\frac{127.6}{352.8}$ $\frac{24}{24}$ $\frac{24}{235.2}$ $\frac{17.}{17.}$ $\frac{127.1}{126.8}$ $\frac{127.6}{352.8}$ $\frac{24}{24}$ $\frac{24}{235.2}$ $\frac{24}{17.}$ $\frac{127.1}{126.8}$ $\frac{127.6}{352.8}$ $\frac{24}{24}$ $\frac{24}{235.2}$ $\frac{24}{17.}$ $\frac{127.6}{126.8}$ $\frac{24}{24}$ $\frac{24}{235.2}$ $\frac{24}{17.}$ $\frac{127.6}{126.8}$ $\frac{24}{24}$ $\frac{24}{235.2}$ $\frac{24}{17.}$ $\frac{24}{17.1}$ $\frac{24}{126.8}$ $\frac{127.6}{126.8}$ $\frac{24}{24}$ $\frac{24}{235.2}$ $\frac{24}{17.1}$ $\frac{24}{126.8}$ $\frac{24}{17.1}$ $\frac{24}{126.8}$ $\frac{24}{17.1}$ $\frac{24}{126.8}$ $\frac{24}{17.1}$ $\frac{24}{17.1}$ $\frac{24}{17.1}$ $\frac{24}{17.1}$ $\frac{24}{17.1}$ $\frac{24}{17.1}$ $\frac{24}{17.1}$ $\frac{24}{17.1}$ $\frac{25}{17.1}$ $\frac{25}{17.1}$ $\frac{12}{1.1}$ $\frac{25}{17.1}$ $\frac{25}{1$	wire 1	caps none	Distance 0	Angle 0	Z 0	radius .26	segs 24
3 none 235.2 17. 120.3 .28 24 235.2 17. 127.1 .3 24 4 none 352.8 17. 0 .3 24 Number of wires = 4 current nodes = 96 Individual wires wire value wire value segment length 4 5.28333 2 5.35417 radius 1 .26 4 .3 ELECTRICAL DESCRIPTION Frequencies (MH2) frequency no. of segment length (wavelengths) no. lowest step steps minimum maximum 1 1.28 0 1 .0146759 .0148727 Sources source node sector magnitude phase type 1 73 1 1. 0 voltage Lumped loads resistance reactance inductance capacitance passive load node (ohms) (ohms) (mH) (uF) circuit 1 1 0 -4,967.8 0 0 0 3 49 0 -2,761.4 0 0 0	2	none	0 117.6 117.6	0 17. 17	127.6 0 128.5	.26	24
4 none $\frac{352.6}{352.8}$ $\frac{17.}{17.}$ $\frac{1}{126.8}$ Number of wires = 4 current nodes = 96 Individual wires wire value wire value segment length 4 5.28333 2 5.35417 radius 1 $.26$ 4 $.3$ ELECTRICAL DESCRIPTION Frequencies (MH2) frequency no. of segment length (wavelengths) minimum maximum 1 1.28 0 1 $.0146759$ $.0148727$ Sources source node sector magnitude phase type 1 73 1 $1.$ 0 $.0146759$ $.0148727$ Sources source node sector magnitude phase type 1 73 1 $1.$ 0 $.0146759$ $.0148727$ Sources source node resistance reactance inductance capacitance passive load node (ohms) (ohms) (mH) (uF) circuit 1 1 0 $-4,967.8$ 0 0 0 2 25 0 $-4,968.2$ 0 0 0 3 49 0 $-2,761.4$ 0 0 0	3	none	235.2	17.	0	.28	24
Number of wires = 4 current nodes = 96 Individual wires wire value wire value segment length 4 5.28333 2 5.35417 radius 1 .26 4 .3 ELECTRICAL DESCRIPTION Frequency no. of segment length (wavelengths) frequency no. lowest step steps minimum maximum 1 1.28 0 1 .0146759 .0148727 Sources source node sector magnitude phase type 1 73 1 1. 0 voltage Lumped loads load node (ohms) (ohms) (mH) (uF) circuit 1 1 0 -4,967.8 0 0 0 2 25 0 -4,968.2 0 0 0 3 49 0 -2,761.4 0 0 0	4	none	352.8	17. 17. 17.	0 126.8	.3	24
Individual wires segment lengthminimum wire 4maximum value yire 2stime segment lengthIndividual wires segment length45.28333 425.35417 4Individual wires reduces frequencies (MHZ) frequency no. lowest 1no. of segment length25.35417 4ELECTRICAL DESCRIPTION Frequency no. lowest 1no. of segment length(wavelengths) maximum naximum .0146759no. of maximum maximum .01467591Sources source node 1sector magnitude resistance resistance 1phase (mH) (uF)type circuit circuit 1Lumped loads 1resistance (ohms) (ohms) 1inductance (mH) (uF)circuit circuit 0ImpedDance normalization = 502,761.4000	Number	of	wires current nodes	= 4 = 96			
ELECTRICAL DESCRIPTION Frequencies (MHz) frequency no. lowest step steps minimum maximum 1 1.28 0 1 .0146759 .0148727 Sources source node sector magnitude phase type 1 73 1 1. 0 voltage Lumped loads Lumped loads resistance reactance inductance capacitance passive (mH) (uF) circuit 1 1 0 -4,967.8 0 0 0 2 25 0 -4,968.2 0 0 0 3 49 0 -2,761.4 0 0 0	Indivi segmer radius	idual nt len s	wires w ngth	minimum ire value 4 5.2833 1 .26	w 3	maximum rire value 2 5.35417 4 .3	
Sources source node sector magnitude phase type 1 73 1 1. 0 voltage Lumped loads resistance reactance inductance capacitance passive (ohms) (ohms) (mH) (uF) circuit 1 1 0 -4,967.8 0 0 0 0 2 25 0 -4,968.2 0 0 0 0 3 49 0 -2,761.4 0 0 0	ELECTE Freque no.	RICAL encies freque lowes 1.28	DESCRIPTION s (MHz) ency t step 0	no. c steps 1	of segment le s minimum .0146759	ngth (wavele maximum .014872	ngths) 7
Lumped loads resistance reactance inductance capacitance passive load node (ohms) (ohms) (mH) (uF) circuit 1 1 0 $-4,967.8$ 0 0 0 2 25 0 $-4,968.2$ 0 0 0 3 49 0 $-2,761.4$ 0 0 0 IMPEDANCE normalization = 50.	Source source 1	es e nod 73	e sector 1	magnitude 1.	phase 0	type voltage	
load node (ohms) (ohms) (mH) (uF) circuit 1 1 0 $-4,967.8$ 0 0 0 2 25 0 $-4,968.2$ 0 0 0 3 49 0 $-2,761.4$ 0 0 0 IMPEDANCE normalization = 50.	Lumpe	d loa	ds resistance	reactance	inductar	ice capacita	nce passive
IMPEDANCE normalization = 50.	load 1 2 3	node 1 25 49	(ohms) 0 0 0	(ohms) -4,967.8 -4,968.2 -2,761.4	(mH) 0 0 0	(uF) 0 0 0	circuit 0 0 0
	IMPED/	ANCE rmali	zațion = 50.			-11	212
freq resist react imped phase VSWR SII SI2 (MHz) (ohms) (ohms) (deg) dB dB source = 1: node 73. sector 1	freq (MHz)	r (esist react ohms) (ohms 1: node 73. s	imped (ohms) ector 1	phase VSWF (deg)	dB	dB

-	207.33	263.11	334.98	51.8	10.975	-1.5873	-5.1407

FIGURE 6 WWTC MOMENT MODEL ARRAY SYNTHESIS (DIRECTIONAL DAY)

phase (deg)

7.2

203.6

89.3 333.7

WWTC DAY MEDIUM WAVE ARRAY SYNTHESIS FROM FIELD RATIOS Frequency = 1.28 MHz field ratio phase (deg) magnitude tower 1. 0 1 2 1.818 -163.6 2.091 67.8 3 4 .969 -73. VOLTAGES AND CURRENTS - rms source voltage current phase (deg) magnitude node magnitude 2.72754 906.689 82.4 1 25 4.41522 280.4 1,794.37 4.53987 2,413.06 49 144.3 73 1,511.33 7.9 1.02127 Sum of square of source currents = 97.1741 Total power = 10,000. watts TOWER ADMITTANCE MATRIX real (mhos) .00199085 imaginary (mhos)
-.00214761 admittance Y(1, 1) Y(1, 2) Y(1, 3) Y(1, 4) Y(2, 1) Y(2, 2) Y(2, 3) Y(2, 4) Y(3, 1) Y(3, 2) Y(3, 3) Y(3, 4) Y(4, 1) Y(4, 2) Y(4, 3) .00102641 -.000346545 -.000269273 -.000440894 -.000194423 .000193316 -.000346546 .00102641 .0021297 -.00193257 -.000472037 .00108062 -.000437422 -.000264675 -.000440895 -.000269273 -.000472033 .00108062 .00225253 -.00204441 .00109591 -.000342049 .000193316 -.000194424 -.000264674 -.000437423 -.000342047 .00109591 Y(4, 4) -.00219323 .00212381 TOWER IMPEDANCE MATRIX real (ohms) impedance imaginary (ohms) $\begin{array}{c} \text{Impedan} \\ \text{Z(1, 1)} \\ \text{Z(1, 2)} \\ \text{Z(1, 3)} \\ \text{Z(2, 1)} \\ \text{Z(2, 1)} \\ \text{Z(2, 2)} \\ \text{Z(2, 2)} \\ \text{Z(2, 4)} \\ \text{Z(3, 1)} \end{array}$ 275.478 -122.101 48.8559 213.28 1.18173 -89.7613 76.835 30.512 1.18178 -122.101308.867 206.344 21.8699 -137.97 -90.5482 50.9139 Z(3, 1) Z(3, 2) Z(3, 3) Z(3, 4)-89.7611 48.8561 -137.971 21.8693

193.65

76.835

z(4, z(4, z(4,

z(4,

1) 2) 3)

4)

1.93518

-90.5479

1.93492

208.495

292.373

30.5117

50.9144 -117.728

259.866

-117.728

FIGURE 7 WWTC MOMENT MODEL SUMMARY FOR DIRECTIONAL DAY MODE

WWTC DAY

GEOMET Wire o Enviro	rry coordi onment	inates i : perfe	n degrees ct ground	; other o	limensions	in mete	ers	
wire 1	caps none	Distanc 0	e Ang O	le	Z 0 127 6	rac .26	lius	segs 24
2	none	117.6	17.		0	.26	5	24
3	none	235.2	17.		0	.28	3	24
4	none	235.2 352.8 352.8	17. 17. 17.		127.1 0 126.8	.3		24
Number	r of w	vires current	nodes =	4 96				
			mir	nimum		ma	cimum	
Indiv segmen radius	nt lei s	ngth	wire 4 1	5.2833 .26	33	2 4	5.35417 .3	
ELECTI Freque no. 1	RICAL encies freque lowes 1.28	DESCRIP s (MHz) ency t	TION step 0	no. step: 1	of segmen s minimu .01463	nt lengtl um 759	n (wavele maximum .014872	ngths) 7
Source source 1 2 3 4	es e nod 25 49 73	e sec 1 1 1	tor magi 1,28 2,53 3,43 2,13	nitude 32.25 37.62 12.58 37.34	phase 82.4 280.4 144.3 7.9		type voltage voltage voltage voltage	
IMPED	ANCE							
no freq (MHz)	rmali: r (zation = esist ohms)	: 50. react (ohms)	imped (ohms)	phase (deg)	VSWR	S11 dB	S12 dB
source 1.28	e = 8	1; node 4.926	1, secto 321.39	r 1 332.42	75.2	26.574	65401	-8.5449
sourc 1.28	e = 9	2; node 2.837	25, secto 395.66	or 1 406.41	76.8	36.093	48143	-9.791
sourc 1.28	e = 3	3; node 04.82	49, secto 435.43	or 1 531.53	55.	18.647	9325	-7.1393
sourc 1.28	e = 1	4; node ,223.3	73, sect 832.74	or 1 1,479.9	34.2	35.817	48514	-9.7595

Erequer	rms = 1.2	28 MH7						
Input power = 10,000. watts								
Efficie	ncy = 100	Ó. %						
coordir	nates in de	egrees		m 2 G	nhaca	real	imaginany	
current		V	7	(amps)	(deg)	(amps)	(amps)	
GND	ô	0	0	2.72755	(ueg) 7.2	2.70614	.34107	
2	õ	õ	5.31667	3,29608	4.6	3.28565	.261928	
3	ŏ	ŏ	10.6333	3.63656	3.3	3.63044	.210934	
4	Õ	Õ	15,95	3.90529	2.4	3.90173	.166555	
5	Ō	Õ	21.2667	4.11818	1.8	4.11624	.126607	
6	0	0	26.5833	4.28196	1.2	4.28101	.0902199	
7	0	0	31.9	4.39968	.7	4.39931	.0570465	
8	0	0	37.2167	4.47307	.3	4.4/299	.0269551	
9	0	0	42.5333	4.50324	300.	4.50324	-0.00E-03	
10	0	0	4/.00	4.49114	350 1	4.49107	- 0240043	
12	0	0	58 4833	4 34393	359.7	4.34348	0626837	
13	ő	õ	63.8	4.211	358.9	4.21029	0772501	
14	ŏ	ŏ	69.1167	4.04024	358.7	4.03927	0886175	
15	Ō	0	74.4333	3.83314	358.6	3.83191	0967726	
16	0	0	79.75	3.59136	358.4	3.58991	101717	
17	0	0	85.0667	3.31669	358.2	3.31508	103467	
18	0	0	90.3833	3.011	358.1	3.00927	102053	
19	0	0	95.7	2.0/01/	357.9	2.0/439	- 0800000	
20	0	0	106 333	1 92567	357 6	1 97404	- 0792427	
21	0	0	111 65	1 51185	357.5	1.51042	0655414	
23	0	õ	116.967	1.07069	357.4	1.06958	0486888	
24	ŏ	ŏ	122.283	.594826	357.3	.594153	0282899	
END	0	0	127.6	0	0	0	0	
GND	112.461	-34.3829	0	4.41523	203.6	-4.04701	-1.7652	
26	112.461	-34.3829	5.35417	5.55496	200.8	-5.19304	-1.9/22/	
27	112.461	-34.3829	10.7083	6.2442	109.0	-3.00302	-2.09110	
28	112.401	-34.3029	21 /167	7 23841	198.7	-6 88163	-7 74449	
29	112.401	-34.3029	26 7708	7 58849	197.5	-7.23548	-2.28758	
31	112.461	-34.3829	32,125	7.85106	197.1	-7.5034	-2.31045	
32	112.461	-34.3829	37.4792	8.02923	196.7	-7.68859	-2.31388	
33	112.461	-34.3829	42.8333	8.12505	196.4	-7.79317	-2.29846	
34	112.461	-34.3829	48.1875	8.14009	196.2	-7.8187	-2.26472	
35	112.461	-34.3829	53.5417	8.07605	195.9	-7.76687	-2.21323	
36	112.461	-34.3829	58.8958	7.93455	195./	-7.03924	-2.14438	
3/	112.461	-34.3829	04.25	7 42751	105 3	-7.45771	-2.03944	
20	112.401	-34.3029	74 9583	7 0669	195.1	-6.8224	-1.84279	
40	112.461	-34.3829	80.3125	6.63874	195.	-6.41394	-1.71298	
41	112.461	-34.3829	85.6667	6.14627	194.8	-5.94234	-1.57009	
42	112.461	-34.3829	91.0208	5.59284	194.7	-5.41086	-1.4151	
43	112.461	-34.3829	96.375	4.98188	194.5	-4.82278	-1.24897	
44	112.461	-34.3829	101.729	4.31658	194.4	-4.18119	-1.0/261	
45	112.461	-34.3829	117.083	3.59942	194.5	-3.48849	000/2/	
46	112.461	-34.3829	117 702	2.03124	194.1	-2,74347	- 486643	
47	112.401	-34.3023	123 146	1 11771	193.9	-1.08497	26855	
40 END	112.461	-34.3829	128.5	0	0	0	0	
GND	224.923	-68.7658	0	4.53987	89.3	.0562809	4.53952	
50	224.923	-68.7658	5.29583	5.93164	80.3	1.0031	5.8462	
51	224.923	-68.7658	10.5917	6.80706	76.6	1.58275	6.6205	
52	224.923	-68.7658	15.8875	7.52667	74.1	2.06491	7.23788	
53	224.923	-68.7658	21.1833	8.12206	72.3	2.4/595	/./354/	
54	224.923	-68./658	20.4/92	8.0000/	70.8	2.02000	8 47619	
55	224.923	-00./050	31.//3	0.30003	68 7	3 36476	8 63046	
50	224.923	-00./030	47 3667	9.20310	67 9	3,55507	8.74452	
58	224.525	-68.7658	47.6625	9.51649	67.2	3.69391	8.77033	
59	224,923	-68.7658	52,9583	9.49524	66.5	3.78174	8.70966	
60	224.923	-68.7658	58.2542	9.37738	66.	3.81901	8.56449	
61	224.923	-68.7658	63.55	9.16481	65.5	3.8063	8.33701	
62	224.923	-68.7658	68.8458	8.85989	65.	3.74438	8.02977	

63 64 65 66 67 68 69	224.923 224.923 224.923 224.923 224.923 224.923 224.923 224.923	-68.7658 -68.7658 -68.7658 -68.7658 -68.7658 -68.7658 -68.7658 -68.7658	74.1417 79.4375 84.7333 90.0292 95.325 100.621 105.917	8.46542 7.98461 7.42085 6.77801 6.05984 5.26988 4.41079	64.6 64.2 63.8 63.5 63.2 62.9 62.6	3.63416 3.47682 3.27369 3.02622 2.73594 2.40427 2.03224	7.64567 7.18789 6.65973 6.06493 5.40706 4.68947 3.91472
70 71 72 END GND	224.923 224.923 224.923 224.923 337.384	-68.7658 -68.7658 -68.7658 -68.7658 -103.149	111.213 116.508 121.804 127.1 0	3.48313 2.48215 1.39007 0 1.02126	62.3 62. 61.7 0 333.7	1.6199 1.16476 .658043 0 .915329	3.08353 2.19189 1.22445 0 452929
74 75 76 77 78	337.384 337.384 337.384 337.384 337.384 337.384	-103.149 -103.149 -103.149 -103.149 -103.149 -103.149	5.28333 10.5667 15.85 21.1333 26.4167	1.82653 2.3993 2.8882 3.30684 3.66258	305.4 298.3 294.5 292.1 290.3	1.05716 1.13693 1.19718 1.24201 1.27327	-1.4895 -2.11282 -2.62839 -3.06473 -3.43413
79 80 81 82 83	337.384 337.384 337.384 337.384 337.384	-103.149 -103.149 -103.149 -103.149 -103.149 -103.149	31.7 36.9833 42.2667 47.55 52.8333	3.95864 4.19653 4.37703 4.50061 4.56769	289. 288. 287.2 286.5 285.9	1.29189 1.29848 1.29347 1.27729 1.25034	-3.7419 -3.9906 -4.18154 -4.31556 -4.39323
84 85 86 87 88	337.384 337.384 337.384 337.384 337.384	-103.149 -103.149 -103.149 -103.149 -103.149 -103.149	58.1167 63.4 68.6833 73.9667 79.25	4.57883 4.53474 4.43635 4.28485 4.08164	285.4 284.9 284.5 284.1 283.8	1.21307 1.16595 1.10948 1.04423 .970774	-4.41522 -4.38229 -4.29537 -4.15566 -3.96452
89 90 91 92 93	337.384 337.384 337.384 337.384 337.384	-103.149 -103.149 -103.149 -103.149 -103.149 -103.149	84.5333 89.8167 95.1 100.383 105.667	3.82834 3.52669 3.1785 2.78544 2.34871	283.4 283.1 282.9 282.6 282.3	.889732 .801726 .707383 .607275 .501878	-3.72352 -3.43435 -3.09879 -2.71843 -2.29447
94 95 96	337.384 337.384 337.384 337.384	-103.149 -103.149 -103.149 -103.149	110.95 116.233 121.517	1.86839 1.34155 .758258	282.1 281.9 281.6	.391433 .2756 .152695	-1.82693 -1.31294 742725

FIGURE 8 WWTC MOMENT MODEL ARRAY SYNTHESIS (DIRECTIONAL – NIGHT)

WWTC NIGHT

MEDIUM N	WAVE ARRAY SY	NTHESIS F	ROM FIELD F	RATIOS	
Frequen	cy = 1.28 MH	Iz			
tower 1 2 3 4	field ratio magnitude 1. 1.943 2.067 1.056	phase (deg 0 -150.8 59.6 -86.2	3)		
VOLTAGES source node 1 25 49 73 Sum of Total po	S AND CURRENT voltage magnitude 1,137.99 2,780.27 3,273.98 2,066.33 square of sou ower = 15,000	S - rms phase (deg 87.9 291.8 139.8 358.9 Irce curren . watts	current magnitu 3.90349 5.96378 5.6776 1.56793 nts = 170.9	t ude phase 5 1.6 3 219.2 76.5 3 294.6 994	(deg)
TOWER AI admittai Y(1, 1) Y(1, 2) Y(1, 3) Y(1, 4) Y(2, 1) Y(2, 2) Y(2, 3) Y(2, 4) Y(2, 3) Y(3, 1) Y(3, 2) Y(3, 3) Y(3, 4) Y(4, 1) Y(4, 3) Y(4, 4)	DMITTANCE MAT nce real (m .001990 .001026 00026 .001026 .001026 .001026 .001080 00026 .001080 .001080 .001095 .001095 .001095 .001095 .002123	RIX hos) 85 41 9273 4423 4423 4423 4423 4675 9273 62 53 91 4424 4674 91 81	imaginary 00214762 00034654 000193310 00034654 00193257 00047203 00043742 00044089 00044089 00044089 0004404 00034204 000193310 00043742 00034204 00034204 00034204	(mhos) L 45 94 5 7 7 7 22 95 33 L 49 5 23 47	
TOWER II impedant Z(1, 1) Z(1, 2) Z(1, 3) Z(1, 4) Z(2, 1) Z(2, 2) Z(2, 2) Z(2, 3) Z(2, 4) Z(3, 1) Z(3, 2) Z(3, 3) Z(3, 4) Z(4, 2) Z(4, 3) Z(4, 4)	MPEDANCE MATR ce real (c 213.28 1.18173 -89.761 76.835 1.18178 206.344 21.8699 -90.548 -89.761 21.8693 193.65 1.93518 76.835 -90.547 1.93492 208.495	TX bhms) -3 -3 -2 -1 -1 -3 -2 -1 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3	imaginary 275.478 -122.101 48.8559 30.512 -122.101 308.867 -137.97 50.9139 48.8561 -137.971 292.373 -117.728 30.5117 50.9144 -117.728 259.866	(ohms)	

FIGURE 9 WWTC MOMENT MODEL SUMMARY FOR DIRECTIONAL NIGHT MODE

WWTC NIGHT

GEOMETRY Wire coordinates in de Environment: perfect g	grees; other round	dimensions	s in mete	ers	
wire caps Distance 1 none 0 0	Angle 0 0	Z 0 127 6	radius .26		segs 24
2 none 117.6	17. 17.	0	.26	5	24
3 none 235.2	17. 17.	0	. 28	8	24
4 none 352.8 352.8	17. 17.	0 126.8	.3		24
Number of wires current node	= 4 s = 96				
Individual winos	minimum		max	kimum	
segment length radius	4 5.283 1 .26	33	2 4	5.35417 .3	
ELECTRICAL DESCRIPTION Frequencies (MHz) frequency no. lowest step 1 1.28 0	no. step 1	of segmer s minimu .01467	nt length um 759	n (wavele maximum .014872	ngths) 7
Sources source node sector 1 1 1 2 25 1 3 49 1 4 73 1	magnitude 1,609.35 3,931.9 4,630.11 2,922.23	phase 87.9 291.8 139.8 358.9		type voltage voltage voltage voltage	
IMPEDANCE					
freq resist reac (MHz) (ohms) (ohm	t imped s) (ohms)	phase (deg)	VSWR	S11 dB	S12 dB
source = 1; node 1, s 1.28 18.721 290.	ector 1 93 291.53	86.3	93.458	18589	-13.778
source = 2; node 25, 1.28 139.42 444.	sector 1 86 466.19	72.6	31.504	5516	-9.2345
source = 3; node 49, 1.28 259.08 515.	sector 1 17 576.65	63.3	25.824	67304	-8.4296
source = 4; node 73, 1.28 571.33 1,18	sector 1 7.6 1,317.9	64.3	60.869	28542	-11.965

CURREN Freque Input	T rms ncy = 1. power = 15	28 MHz 5,000. watt	S				
coordi	nates in α	learees					
curren no. GND 2 3 4 5 6	t X 0 0 0 0 0 0	Y 0 0 0 0 0	Z 0 5.31667 10.6333 15.95 21.2667 26.5833	mag (amps) 3.90347 4.63495 5.06778 5.40565 5.66967 5.86878	phase (deg) 1.6 1. .7 .5 .4	real (amps) 3.90193 4.63422 5.06736 5.40542 5.66955 5.86872	imaginary (amps) .109521 .0824962 .065294 .0505288 .0374396 .02571
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 END			31.9 37.2167 42.5333 47.85 53.1667 58.4833 63.8 69.1167 74.4333 79.75 85.0667 90.3833 95.7 101.017 106.333 111.65 116.967 122.283 127.6	6.00715 6.08716 6.1104 6.07822 5.99194 5.85302 5.66305 5.42388 5.13754 4.80628 4.4325 4.01873 3.56748 3.08105 2.56128 2.00878 1.42121 .788795 0	.1 .1 360.9 359.9 359.8 359.8 359.8 359.7 359.6 359.6 359.6 359.6 359.5 359.5 359.5 359.5 359.5 359.5 359.5 359.5	6.00713 6.08715 6.1104 6.07821 5.99192 5.85298 5.663 5.42381 5.13745 4.80618 4.4324 4.01862 3.56737 3.08094 2.56118 2.0087 1.42115 .788758 0	.0151999 5.84E-03 -9.57E-03 -0156658 -0207046 -0247064 -02769 -0296775 -0306942 -0307694 -0299356 -0282283 -0282283 -025685 -0223422 -018229 -0133495 -7.64E-03 0
GND 26 27 28 29 30 31 32 33 34 35 37 38 9 40 42 43 45 47 48 47 8ND	$112.461 \\1$	-34.3829 -34.	0 5.35417 10.7083 16.0625 21.4167 26.7708 32.125 37.4792 42.8333 48.1875 53.5417 58.8958 64.25 69.6042 74.9583 80.3125 85.6667 91.0208 96.375 101.729 107.083 112.438 117.792 123.146 128.5	5.9638 7.7058 8.76974 9.62671 10.3242 10.882 11.3089 11.6096 11.7868 11.8429 11.7798 11.6 11.3064 10.902 10.3909 9.77704 9.06533 8.26066 7.36798 6.39198 5.33633 4.20221 2.98457 1.66252 0	219.2 215.2 213.5 212.3 211.4 210.7 210.1 209.7 209.2 208.9 208.6 208.3 208.3 208.3 207.8 207.6 207.3 207.2 207.2 207.2 206.8 206.5 206.5 206.5 206.1 0	-4.61927 -6.29797 -7.3168 -8.13903 -8.81234 -9.3566 -9.78072 -10.0894 -10.2852 -10.3704 -10.3468 -10.2166 -9.98218 -9.64637 -9.21256 -8.68435 -8.06598 -7.36177 -6.5761 -5.7131 -4.77651 -3.76584 -2.67797 -1.49358 0	-3.77217 -4.44015 -4.83453 -5.14099 -5.37883 -5.55624 -5.67709 -5.74354 -5.75714 -5.63094 -5.49383 -5.30943 -5.07953 -4.80612 -4.49138 -4.13765 -3.74736 -3.32295 -2.86669 -2.38037 -1.86469 -1.3176 730216 0
GND 551 552 554 556 557 559 601 623	224.923 224.923 224.923 224.923 224.923 224.923 224.923 224.923 224.923 224.923 224.923 224.923 224.923 224.923 224.923 224.923 224.923	-68.7658 -68.7658 -68.7658 -68.7658 -68.7658 -68.7658 -68.7658 -68.7658 -68.7658 -68.7658 -68.7658 -68.7658 -68.7658 -68.7658	0 5.29583 10.5917 15.8875 21.1833 26.4792 31.775 37.0708 42.3667 47.6625 52.9583 58.2542 63.55 68.8458 74.1417	5.6776 7.69459 8.93807 9.95356 10.7917 11.4743 12.0107 12.4059 12.6624 12.7825 12.76827 12.6217 12.3459 11.9438 11.4195	76.5 69.1 66.2 64.3 63. 61.9 61. 60.3 59.7 59.1 58.7 58.3 57.9 57.5 57.2	1.32272 2.73976 3.60046 4.30931 4.90591 5.40694 5.81966 6.14757 6.39256 6.5558 6.63825 6.64091 6.56498 6.41197 6.18365	5.52137 7.1903 8.18082 8.97235 9.61215 10.1205 10.5066 10.7756 10.9303 10.9733 10.9069 10.7334 10.4557 10.0768 9.60034

64	224.923	-68.7658	79.4375	10.7771	56.9	5.88213	9.03027
66	224.923	-68.7658	90.0292	9,15774	56.4	5.06924	7.62673
67	224.923	-68.7658	95.325	8.19108	56.1	4.56309	6.80235
68	224.923	-68.7658	100.621	7.12624	55.9	3.99379	5.90194
69	224.923	-68./658	105.91/	5.96684	55.7	3.36314	4.92874
70	224.923	-00./000	116 508	4./1300	55.3	2.0/133	3.88303
72	224.923	-68.7658	121.804	1.88247	55.1	1.07805	1.54321
END	224.923	-68.7658	127.1	0	0	0	0
GND	337.384	-103.149	0	1.56793	294.6	.653214	-1.42538
74	337.384	-103.149	5.28333	2.92168	282.3	.624586	-2.85414
76	337.384	-103.149 -103.149	15 85	3.7575	279.2	580257	-3.70883 -4.4111
77	337.384	-103.149	21.1333	5.03126	276.3	.556101	-5.00044
78	337.384	-103.149	26.4167	5.51938	275.5	.530229	-5.49385
79	337.384	-103.149	31.7	5.92016	274.9	.502679	-5.89878
80	337.384	-103.149	36.9833	6.23692	272.0	.4/3593	-6.21891
82	337.384	-103.149	47.55	6.62478	273.6	.411666	-6.61198
83	337.384	-103.149	52.8333	6.69799	273.2	.379337	-6.68724
84	337.384	-103.149	58.1167	6.69207	273.	.346473	-6.6831
85	337.384	-103.149	63.4	6.60828	272.7	.313373	-6.60084
80	337.384	-103.149	68.6833 72 0667	6.4481	272.5	.280341	-6.442
88	337.384	-103.149	79.25	5.90624	272.1	.215685	-5 9023
89	337.384	-103.149	84.5333	5.52909	271.9	.184657	-5.526
90	337.384	-103.149	89.8167	5.0845	271.7	.154879	-5.08214
91	337.384	-103.149	95.1	4.57511	271.6	.126624	-4.57336
92	337.384	-103.149 -103.149	100.383	4.00335	271.4	.100151	-4.0021
94	337.384	-103.149	110.95	2.67811	271.1	.0534842	-2.67757
95	337.384	-103.149	116.233	1.92059	271.	.0336769	-1.92029
96	337.384	-103.149	121.517	1.08426	270.9	.0163582	-1.08414
END	337.384	-103.149	120.8	0	0	0	0

FIGURE 10 DERIVED DIRECTIONAL PARAMETERS

APPLICATION FOR LICENSE INFORMATION EMPLOYING MOMENT METHOD MODELING WWTC, 1280 KHZ, DA-2 MINNEAPOLIS, MINNESOTA DECEMBER. 2018

DAY:

	Theoretical		Base Netv Cur	vork Input rent	Normalized TCT	
Tower	Field	Phase	Amplitude	Phase	Amplitude	Phase
1 (S)	1.000	0.0°	2.55	+8.25°	.661	-88.5°
2 (SC)	1.818	-163.6°	4.07	-155.23°	1.054	+108.0°
3 (NC)	2.091	+67.8°	3.86	+96.76°	1.000	0.0°
4 (N)	.969	-73.0°	0.89	-9.87°	.231	-106.6°

NIGHT:

	Theo	retical	Base Netw Curr	vork Input rent	Normali	zed TCT
Tower	Field	Phase	Amplitude	Phase	Amplitude	Phase
1 (S)	1.000	0.0°	3.68	+1.81°	.791	-81.3°
2 (SC)	1.943	-150.8°	5.43	-139.03°	1.168	+137.9°
3 (NC)	2.067	+59.6°	4.65	+83.08°	1.000	0.0°
4 (N)	1.056	-86.2°	1.21	-56.81°	.260	-139.9°

FIGURE 11 WWTC TOWER BASE CIRCUIT ANALYSIS DESCRIPTION

APPLICATION FOR LICENSE INFORMATION EMPLOYING MOMENT METHOD MODELING WWTC, 1280 KHZ, DA-2 MINNEAPOLIS, MINNESOTA DECEMBER. 2018

CIRCUIT ANALYSIS

Circuit Analysis was performed on each Tower of the WWTC model. "Phasetek" nodal Circuit Analysis program was used to compute base model Input/Output voltages and currents. For the Directional modes, the calculated Mininec Tower Base Drive Voltage was used to determine the Base Network Input Current. This point is the location of the Sampling TCT. "Z₁" represents the ATU Shunt impedance, "Z₂" represents the Tower Feed impedance, and "Z₃" represents the Tower Base Shunt impedance.

FIGURE 12 WWTC CIRCUIT ANALYSIS FOR INDIVIDUAL TOWERS

CUSTOMER : WWTC NETWORK ID : TOWER 1 (OTHERS OPEN)

FREQUENCY : 1280.00 kHz ATU SHUNT IMPEDANCE (R,X) : 0.00, 25000.00 OHMS TOWER FEED IMPEDANCE (R,X) : 0.00, 15.00 OHMS TOWER SHUNT IMPEDANCE (R,X) : 0.00, -4144.70 OHMS TOWER IMPEDANCE (R,X) : 210.25, 275.43 OHMS

NODE	то	NODE	IMPEDANCE R	(OHMS) X
1		GROUND	0.00	25000.00
2		GROUND	240.54	281.97
1		2	0.00	15.00

	VOLTAG	δE
NODE	MAGNITUDE	PHASE
1 2	100.00 96.98	0.00 -1.46

	REAL	IMAGINARY	MAGNITUDE	PHASE
INPUT IMPEDANCE (OHMS) :	234.90	295.71	377.66	51.54
INPUT CURRENT (AMPS) :	0.16	-0.21	0.26	-51.54
OUTPUT CURRENT (AMPS) :	0.16	-0.23	0.28	-54.10

INPUT/OUTPUT CURRENT RATIO = 0.9461 INPUT/OUTPUT PHASE = 2.57 DEGREES CUSTOMER : WWTC NETWORK ID : TOWER 2 (OTHERS OPEN)

FREQUENCY : 1280.00 kHz ATU SHUNT IMPEDANCE (R,X) : 0.00, 25000.00 OHMS TOWER FEED IMPEDANCE (R,X) : 0.00, 5.00 OHMS TOWER SHUNT IMPEDANCE (R,X) : 0.00, -4144.70 OHMS TOWER IMPEDANCE (R,X) : 202.00, 318.75 OHMS

NODE	то	NODE	IMPEDANCE R	(OHMS) X
1		GROUND	0.00	25000.00
2		GROUND	236.40	332.82
1		2	0.00	5.00

	VOLTA	GE
NODE	MAGNITUDE	PHASE
1 2	100.00 99.01	0.00

	REAL	IMAGINARY	MAGNITUDE	PHASE
INPUT IMPEDANCE (OHMS) :	230.12	335.47	406.81	55.55
INPUT CURRENT (AMPS) :	0.14	-0.20	0.25	-55.55
OUTPUT CURRENT (AMPS) :	0.14	-0.22	0.26	-58.04

INPUT/OUTPUT CURRENT RATIO = 0.9369 INPUT/OUTPUT PHASE = 2.49 DEGREES CUSTOMER : WWTC NETWORK ID : TOWER 3 (OTHERS OPEN)

FREQUENCY : 1280.00 kHz ATU SHUNT IMPEDANCE (R,X) : 0.00, 25000.00 OHMS TOWER FEED IMPEDANCE (R,X) : 0.00, 5.00 OHMS TOWER SHUNT IMPEDANCE (R,X) : 0.00, -2486.80 OHMS TOWER IMPEDANCE (R,X) : 190.33, 298.25 OHMS

NODE	то	NODE	IMPEDANCE R	(OHMS) X
1		GROUND	0.00	25000.00
2		GROUND	243.90	317.68
1		2	0.00	5.00

	VOLTA	GE
NODE	MAGNITUDE	PHASE
12	100.00 99.02	0.00

	REAL	IMAGINARY	MAGNITUDE	PHASE
INPUT IMPEDANCE (OHMS) :	237.70	320.86	399.31	53.47
INPUT CURRENT (AMPS) :	0.15	-0.20	0.25	-53.47
OUTPUT CURRENT (AMPS) :	0.15	-0.24	0.28	-57.89

INPUT/OUTPUT CURRENT RATIO = 0.8948 INPUT/OUTPUT PHASE = 4.42 DEGREES CUSTOMER : WWTC NETWORK ID : TOWER 4 (OTHERS OPEN)

FREQUENCY : 1280.00 kHz ATU SHUNT IMPEDANCE (R,X) : 0.00, 25000.00 OHMS TOWER FEED IMPEDANCE (R,X) : 0.00, 7.00 OHMS TOWER SHUNT IMPEDANCE (R,X) : 0.00, -4144.70 OHMS TOWER IMPEDANCE (R,X) : 207.33, 263.11 OHMS

NODE	то	NODE	IMPEDANCE R	(OHMS) X
1		GROUND	0.00	25000.00
2		GROUND	235.72	268.35
1		2	0.00	7.00

	VOLTA	GE
NODE	MAGNITUDE	PHASE
1 2	100.00 98.54	0.00

	REAL	IMAGINARY	MAGNITUDE	PHASE
INPUT IMPEDANCE (OHMS) :	230.59	274.50	358.50	49.97
INPUT CURRENT (AMPS) :	0.18	-0.21	0.28	-49.97
OUTPUT CURRENT (AMPS) :	0.18	-0.23	0.29	-52.49

INPUT/OUTPUT CURRENT RATIO = 0.9482 INPUT/OUTPUT PHASE = 2.52 DEGREES

FIGURE 13 WWTC CIRCUIT ANALYSIS FOR DIRECTIONAL DAY MODE

CUSTOMER : WWTC NETWORK ID : TOWER 1 DAY

FREQUENCY : 1280.00 kHz ATU SHUNT IMPEDANCE (R,X) : 0.00, 25000.00 OHMS TOWER FEED IMPEDANCE (R,X) : 0.00, 15.00 OHMS TOWER SHUNT IMPEDANCE (R,X) : 0.00, -4144.70 OHMS TOWER IMPEDANCE (R,X) : 84.93, 321.39 OHMS

NODE	то	NODE	IMPEDANCE R	(OHMS) X
1		GROUND	0.00	25000.00
2		GROUND	99.75	346.19
1		2	0.00	15.00

	VOLTA	GE
NODE	MAGNITUDE	PHASE
1	943.02	83.04
2	906.69	82.40

	REAL	IMAGINARY	MAGNITUDE	PHASE
INPUT IMPEDANCE (OHMS) :	96.93	356.43	369.37	74.79
INPUT CURRENT (AMPS) :	2.53	0.37	2.55	8.25
OUTPUT CURRENT (AMPS) :	2.71	0.34	2.73	7.20

INPUT/OUTPUT CURRENT RATIO = 0.9360 INPUT/OUTPUT PHASE = 1.05 DEGREES

CUSTOMER : WWTC NETWORK ID : TOWER 2 DAY

FREQUENCY : 1280.00 kHz ATU SHUNT IMPEDANCE (R,X) : 0.00, 25000.00 OHMS TOWER FEED IMPEDANCE (R,X) : 0.00, 5.00 OHMS TOWER SHUNT IMPEDANCE (R,X) : 0.00, -4144.70 OHMS TOWER IMPEDANCE (R,X) : 92.84, 395.66 OHMS

NODE	то	NODE	IMPEDANCE R	(OHMS) X
1		GROUND	0.00	25000.00
2		GROUND	113.40	434.61
1		2	0.00	5.00

	VOLTA	GE
NODE	MAGNITUDE	PHASE
1 2	1813.70 1794.37	-79.44 280.40

	REAL	IMAGINARY	MAGNITUDE	PHASE
INPUT IMPEDANCE (OHMS) :	109.51	432.50	446.15	75.79
INPUT CURRENT (AMPS) :	-3.69	-1.70	4.07	-155.23
OUTPUT CURRENT (AMPS) :	-4.05	-1.77	4.42	-156.40

INPUT/OUTPUT CURRENT RATIO = 0.9207 INPUT/OUTPUT PHASE = 1.16 DEGREES

CUSTOMER : WWTC NETWORK ID : TOWER 3 DAY

FREQUENCY : 1280.00 kHz ATU SHUNT IMPEDANCE (R,X) : 0.00, 25000.00 OHMS TOWER FEED IMPEDANCE (R,X) : 0.00, 5.00 OHMS TOWER SHUNT IMPEDANCE (R,X) : 0.00, -2486.80 OHMS TOWER IMPEDANCE (R,X) : 304.82, 435.43 OHMS

NODE	то	NODE	IMPEDANCE R	(OHMS) X
1		GROUND	0.00	25000.00
2		GROUND	438.28	462.73
1		2	0.00	5.00

	VOLTA	GE
NODE	MAGNITUDE	PHASE
1	2426.84	144.61
2	2413.06	144.30

	REAL	IMAGINARY	MAGNITUDE	PHASE
INPUT IMPEDANCE (OHMS) :	422.20	466.41	629.12	47.85
INPUT CURRENT (AMPS) :	-0.45	3.83	3.86	96.76
OUTPUT CURRENT (AMPS) :	0.06	4.54	4.54	89.29

INPUT/OUTPUT CURRENT RATIO = 0.8497 INPUT/OUTPUT PHASE = 7.47 DEGREES CUSTOMER : WWTC NETWORK ID : TOWER 4 DAY

FREQUENCY : 1280.00 kHz ATU SHUNT IMPEDANCE (R,X) : 0.00, 25000.00 OHMS TOWER FEED IMPEDANCE (R,X) : 0.00, 7.00 OHMS TOWER SHUNT IMPEDANCE (R,X) : 0.00, -4144.70 OHMS TOWER IMPEDANCE (R,X) : 1223.30, 832.74 OHMS

NODE	то	NODE	IMPEDANCE R	(OHMS) X
1		GROUND	0.00	25000.00
2		GROUND	1685.81	419.45
1		2	0.00	7.00

	VOLTAC	GE
NODE	MAGNITUDE	PHASE
1	1512.81	8.12
2	1511.33	7.90

	REAL	IMAGINARY	MAGNITUDE	PHASE
INPUT IMPEDANCE (OHMS) :	1622.60	526.88	1706.00	17.99
INPUT CURRENT (AMPS) :	0.87	-0.15	0.89	-9.87
OUTPUT CURRENT (AMPS) :	0.92	-0.45	1.02	-26.34

INPUT/OUTPUT CURRENT RATIO = 0.8683 INPUT/OUTPUT PHASE = 16.48 DEGREES

FIGURE 14 WWTC CIRCUIT ANALYSIS FOR DIRECTIONAL NIGHT MODE

CUSTOMER : WWTC NETWORK ID : TOWER 1 NIGHT

FREQUENCY : 1280.00 kHz ATU SHUNT IMPEDANCE (R,X) : 0.00, 25000.00 OHMS TOWER FEED IMPEDANCE (R,X) : 0.00, 15.00 OHMS TOWER SHUNT IMPEDANCE (R,X) : 0.00, -4144.70 OHMS TOWER IMPEDANCE (R,X) : 18.72, 290.93 OHMS

NODE	то	NODE	IMPEDANCE R	E (OHMS) X
1		GROUND	0.00	25000.00
2		GROUND	21.65	312.79
1		2	0.00	15.00

	VOLTA	GE
NODE	MAGNITUDE	PHASE
1 2	1192.31 1137.99	88.08 87.90

	REAL	IMAGINARY	MAGNITUDE	PHASE
INPUT IMPEDANCE (OHMS) :	21.10	323.56	324.25	86.27
INPUT CURRENT (AMPS) :	3.68	0.12	3.68	1.81
OUTPUT CURRENT (AMPS) :	3.90	0.11	3.90	1.58

INPUT/OUTPUT CURRENT RATIO = 0.9420 INPUT/OUTPUT PHASE = 0.23 DEGREES

CUSTOMER : WWTC NETWORK ID : TOWER 2 NIGHT

FREQUENCY : 1280.00 kHz ATU SHUNT IMPEDANCE (R,X) : 0.00, 25000.00 OHMS TOWER FEED IMPEDANCE (R,X) : 0.00, 5.00 OHMS TOWER SHUNT IMPEDANCE (R,X) : 0.00, -4144.70 OHMS TOWER IMPEDANCE (R,X) : 139.42, 444.86 OHMS

NODE	то	NODE	IMPEDANCE R	(OHMS) X
1		GROUND	0.00	25000.00
2		GROUND	174,71	491.77
1		2	0.00	5.00

	VOLTA	GE
NODE	MAGNITUDE	PHASE
1 2	2805.38 2780.27	-68.02 291.80

	REAL	IMAGINARY	MAGNITUDE	PHASE
INPUT IMPEDANCE (OHMS) :	167.96	488.24	516.32	71.02
INPUT CURRENT (AMPS) :	-4.10	-3.56	5.43	-139.03
OUTPUT CURRENT (AMPS) :	-4.62	-3.77	5.96	-140.80

INPUT/OUTPUT CURRENT RATIO = 0.9111 INPUT/OUTPUT PHASE = 1.77 DEGREES

CUSTOMER : WWTC NETWORK ID : TOWER 3 NIGHT

FREQUENCY : 1280.00 kHz ATU SHUNT IMPEDANCE (R,X) : 0.00, 25000.00 OHMS TOWER FEED IMPEDANCE (R,X) : 0.00, 5.00 OHMS TOWER SHUNT IMPEDANCE (R,X) : 0.00, -2486.80 OHMS TOWER IMPEDANCE (R,X) : 259.08, 515.17 OHMS

NODE	то	NODE	IMPEDANCE R	(OHMS) X
1		GROUND	0.00	25000.00
2		GROUND	405.16	596.54
1		2	0.00	5.00

	VOLTA	GE
NODE	MAGNITUDE	PHASE
1 2	3292.78 3273.98	140.02 139.80

	REAL	IMAGINARY	MAGNITUDE	PHASE
INPUT IMPEDANCE (OHMS) :	386.25	593.52	708.13	56.94
INPUT CURRENT (AMPS) :	0.56	4.62	4.65	83.08
OUTPUT CURRENT (AMPS) :	1.33	5.52	5.68	76.50

INPUT/OUTPUT CURRENT RATIO = 0.8190 INPUT/OUTPUT PHASE = 6.58 DEGREES

CUSTOMER : WWTC NETWORK ID : TOWER 4 NIGHT

FREQUENCY : 1280.00 kHz ATU SHUNT IMPEDANCE (R,X) : 0.00, 25000.00 OHMS TOWER FEED IMPEDANCE (R,X) : 0.00, 7.00 OHMS TOWER SHUNT IMPEDANCE (R,X) : 0.00, -4144.70 OHMS TOWER IMPEDANCE (R,X) : 571.33, 1187.60 OHMS

NODE	то	NODE	IMPEDANCE R	(OHMS) X
1		GROUND	0.00	25000.00
1		GROUND 2	0.00	1455.50

	VOLTA	GE
NODE	MAGNITUDE	PHASE
1 2	2072.74 2066.33	-0.97 358.90

	REAL	IMAGINARY	MAGNITUDE	PHASE
INPUT IMPEDANCE (OHMS) :	964.09	1421.10	1717.26	55.85
INPUT CURRENT (AMPS) :	0.66	-1.01	1.21	-56.81
OUTPUT CURRENT (AMPS) :	0.65	-1.43	1.57	-65.41

INPUT/OUTPUT CURRENT RATIO = 0.7698 INPUT/OUTPUT PHASE = 8.59 DEGREES

FIGURE 15 WWTC REFERENCE FIELD INTENSITY MEASUREMENTS DECEMBER, 2018

r			DECED		D STDENCTH MEASUREMENTS			
				ATION MAANT				
			51	1280	HT - 10 KW II DA-DAY			
				1200 1		-		
				Potom	ac FIM-21 Serial # 1235			
	_			Calibra	tion date: MAY. 18, 2017			
			[
					17 Degree Radial			
Point	Distance	Field	Geographic (WC	Coordinates				-
Number	(km)	(mV/m)	Latitude	Longitude	Description	Date	Time	
1	1.45	1.25 V/m	44 48' 03" N	93 12' 36" W	On Northside of Jasper DR. at end of the driveway for house # 4304	11/28/18	11:09	
2	2.71	760 mV/m	44 48' 42" N	93 12' 20" W	On Turquoise Trail at end of driveway for house # 1936	11/28/18	11.19	
3	4.29	360 mV/m	44 49' 31" N	93 11' 57" W	On Northside of Burgundy DR. across from Southeast corner of intersection with Vemillion CT. N	11/28/18	11:37	
				1	16.5 Degree Radial			
Point	Distance	Field	Geographic (WC	: Coordinates 3S84)				
Number	(km)	(mV/m)	Latitude	Longitude	Description	Date	Time	
1	1.13	'42 mV/m	44 47' 02" N	93 12' 09" W	Southeast corner of the intersection of Covington LN and Galaxie AVE. by telephone pole	11/28/18	12:04	
2	2.41	64 mV/m	44 46' 44" N	93 11' 17" W	On Westside of Johnny Cake Ridge RD. 50 feet south of no parking sign and two tenths of a mile North of the MN zoo gate 2.	11/28/18	12:13	
3	4.30	21.5 mV/m	44 46 17" N	93 09' 59" W	On Eastside of Pilot Knob RD. infront of wall across from yellow traffic sign. Two tenths of a mile South of 120th ST. W	11/28/18	12:25	

			REFER	ENCE FIEL	D STRENGTH MEASUREMENTS			
			ST	TATION WWT	C - MINNEAPOLIS, MINNESOTA			
				1280	(Hz - 10 kW, U, DA-DAY			
_				Potor	200 EIM-21 Seriel # 1225			
				Calibra	ition date: MAY, 18, 2017	+		_
								-
	-				173 Degree Radial			_
_								
Point	Distance	Field	Geographic (WC	: Coordinates 3S84)				
Number	(km)	(mV/m)	Latitude	Longitude	Description	Date	Time	
1	1.70	1.70 195 mV/m 44 46 24" N 93 12 46" On the Northside of 121st ST. W across from the front door of House # 728		11/28/18	13.13			
2	2.82	94 mV/m	44 45' 48" N	93 12' 39" W	On the Northside of Garret CT. across from House # 12844 by mailboxs		10.10	
3	4.51	41.5	44 44' 54" N	93 12' 30" \//	Northside of Linner 130th W across from Southeast corner of Linner 130th W	11/28/18	13:01	
	4.01	mV/m	11110111	00 12 00 11	and Galway CT.	11/28/18	12:51	
					221 Degree Radia			
Point	Distance	Field	Geographic (WG	Coordinates				
Number	(km)	(mV/m)	Latitude	Longitude	Description	Date	Time	
1	1.86	96 mV/m	44 46' 33" N	93 13 51" W	Northwest corner of 33RD AVE. and E Burnsville Parkway by fire hydrant	11/28/18	13:50	
2	2.36	63 mV/m	44 45' 46" N	93 14' 48'' W	North corner of the intersection of Acaidia CT and Parc DR.	11/28/18	12:42	
3	3.79	57 mV/m	44 45' 46" N	93 14' 48" W	Southside of Great Oaks DR, by mailbox for house # 2001	11/20/10	10.42	
		-				11/28/18	13:34	
								_

			REFER	ENCE FIEL	D STRENGTH MEASUREMENTS			-
			ST	ATION WWT	C - MINNEAPOLIS, MINNESOTA			
				1280	kHz - 10 kW, U, DA-DAY			
				Potorr	nac FIM-21 Serial # 1235			
				Calibra	tion date: MAY. 18, 2017			
				1	277.5 Degree Radial			
				U				
Point	Point Distance Geographic Coordinates (WGS84)		Coordinates 3S84)		E		4	
Number	(km)	(mV/m)	Latitude	Longitude	Description	Date	Time	
1	1.46	78	44 47' 24" N	93 14' 01" W	In the parking lot of River Hills Center strip mall on the East side of the Cliff RD entrance by the sidewalk	11/29/18	10:03	
2	2.33	33 65 44 47' 27" N 93 14' 01" W		93 14 01" W	On Millpond AVE. Just off Cliff RD on the Northside of the drive opening for the resturant by speed sign	11/29/18	10:12	
3	3.41	26	44 47' 33" N	93 15' 29" W	On Eastside of 12th AVE S across from pole # 0042 by delivery instruction sign	11/29/18	10:27	

FIGURE 15

WWTC REFERENCE FIELD INTENSITY MEASUREMENTS

CONTINUED

	_		REFER		D STRENGTH MEASUREMENTS			
		_	SI	ATION WWT				
				1280 kH	z - 15 kW. U. DA-NIGHT	-		
						-		
				Potoma	ac FIM-21 Serial # 1235			
				Calibrat	tion date: MAY 18, 2017	-		
					17 Degree Radial			
Point	E Distance Field (NAD83)							
Number	(km)	(mV/m)	Latitude	Longitude	Description	Date	Time	
1	1.45	1.5V/m	44 48' 03" N	93 12' 36" W	On Northside of Jasper DR. at end of driveway for house # 4304	11/30/2018	11:03	
2	2.71	900 mV/m	44 48' 42" N	93 12' 20" W	On Turquoise Trail at end of driveway for house # 1936	11/00/2010	11.00	
						11/30/2018	11:09	_
3	4.29	450 mV/m	44 49' 31" N	93 11' 57" W	On Northside of Burgundy DR. across from the southeast corner of intersection of Vermillion CT. N	11/30/2018	11:19	
				9	1.5 Degree Radial			
Point	Distance	Field	Geographic (NA	Coordinates				
Number	(km)	(mV/m)	Latitude	Longitude	Description	Date	Time	
1	1.67	50	44 47' 17" N	93 11' 39" W	On the Westside of Lenore LN, across from the door for house # 4644	11/30/2018	11:35	
2	2.71	70	44 47' 17" N	93 10' 52" W	On Eastside of Beacon Hill RD, at end of driveway for house 4630	11/00/2010	11.55	
	2.05	25	44 471 471 41	02 001 568 144	On Manheide of Ch. Andrew DLVD in front of dear fait and 4054	11/30/2018	11:44	
3	3,85	20	44 47 17 N	33 03 30 W	On westake of or. Andrew BLVD, in front of door for house # 1351	11/30/2018	11:53	

			REFER	ENCE FIELD	STRENGTH MEASUREMENTS			
			SI	TATION WWTC	C - MINNEAPOLIS, MINNESOTA			
			-	1280 kH	z - 15 kW, U, DA-NIGHT			
	_			0.4	EN4.04 0	_		
				Potoma	C FIM-21 Senal # 1235			
			1	Calibrat	ION GALE: MAY 10, 2017			
			1	. <u>12</u>	3.5 Degree Radial			
			Coorentia	Coordinates				
Point	Distance	Field	Geographic (NA	D83)		_		
Number	(km)	(mV/m)	Latitude	Longitude	Description	Date	Time	
1	1.19	105	44 46' 57" N	93 12' 10" W	South corner of Sky View CT. and Galaxie AVE. by stop sign	11/30/2018	12:20	
2	2.68	23.5	44 46' 32" N	93 11' 13" W	Eastside of Johnny Cake Ridge RD. 50' South of City of Eagan sign	11/30/2018	12:13	
3	4.48	11.5	44 45' 59" N	93 10' 05" W	South side of Genesee AVE. in front of driveway house # 12602	11/30/2018	12:05	
				15	8.5 Degree Radial			
Point	Distance	Field	Geographic (NA	Coordinates				
Number	(km)	(mV/m)	Latitude	Longitude	Description	Date	Time	
1	1.70	90	44 46' 27" N	93 12' 26" W	Eastside of Safari Pass in front of driveway of 12088	11/30/2018	12:25	
2	3,44	68.5	44 45' 35" N	93 11' 56" W	West corner of Florida CT. and 131st ST. W. in front of street sign	11/30/2018	12:32	
3	4.50	34.0	44 45' 01" N	93 11' 38" W	Southside of 137th ST. W. in front of driveway of house 6332	11/30/2018	12:37	

			REFER	ENCE FIEL	D STRENGTH MEASUREMENTS		
			ST	ATION WWT	C – MINNEAPOLIS, MINNESOTA		
				1280 kł	Hz - 15 kW, U, DA-NIGHT		
				Potom Calibra	ac FIM-21 Serial # 1235 tion date: MAY 18, 2017		
				2	35.5 Degree Radial		
Point	Distance	Field	Geographic (NA	Coordinates (D83)			
Number	(km)	(mV/m)	Latitude	Longitude	Description	Date	Time
1	1.73	101	44 46' 46" N	93 14' 00" W	In front of telephone box #L82 next to house # 12400 on Westside on 31st AVE. S	11/30/2018	13:07
2.	2.68	75	44 46' 29" N	93 14' 36" W	Northside of E. Burnsville Parkway 100' West of telephone building across from no parking sign.	11/30/2018	13:03
3	3.70	34.5	44 46' 10" N	93 15' 13" W	Directly in front of house # 12917 on Eastside of 16th ave.	11/30/2018	12:57
				2	70.5 Degree Radial		
Point	Distance	Field	Geographic (NA	Coordinates (D83)			
Number	(km)	(mV/m)	Latitude	Longitude	Description	Date	Time
1	1.93	56	44 47' 19" N	93 14' 23" W	Northeast corner of Highland View LN. and Highland View AVE. S	11/30/2018	13:12
2	3.08	22	44 47' 19" N	93 15' 16" W	On Westside of Larc Industrial BLVD by fire hydrant almost across driveway for business at address number 11965	11/30/2018	13:18
3	4.00	26.5	44 47' 18" N	93 15' 58" W	Northside of entrance t Burnsville Heights Business center @ 11975 Porland AVE. across from business park sign	11/30/2018	13:23

			REFER	ENCE FIELI ATION WWTC 1280 kH: Potoma Calibrat	D STRENGTH MEASUREMENTS C – MINNEAPOLIS, MINNESOTA z - 15 kW, U, DA-NIGHT ac FIM-21 Serial # 1235 ion date: MAY 18, 2017 12.5 Degree Radial		
Point	Distance	Field	Geographic (NA	Coordinates D83)			
Number	(km)	(mV/m)	Latitude	Longitude	Description	Date	Time
1	1.24	55	44 47' 40" N	93 13' 43" W	On Southside of Gaiter DR. across from drive of 11518 by mailboxs	11/30/2018	13:46
2	2.21	53	44 47' 56" N	93 14' 21" W	At Southern corner of E 114th ST. and Christiansen CT. near light pole	11/30/2018	13:37
3	3.11	48	44 48' 12" N	93 14' 55" W	On Northside of E. Black Dog RD, between house # 11002 and 11000	11/30/2018	13:31
							_

FIGURE 16 WWTC CERTIFIED ARRAY GEOMETRY SURVEY DECEMBER, 2018

FIGURE 16 CONTINUED WWTC CERTIFIED ARRAY GEOMETRY SURVEY DECEMBER, 2018

Station Tower Geometry Analysis

	- Enter Requested Data in Yellow Blocks						
Callsigni	wwrc	Reference Tower:	1				
Freq. (kHz):	1280 kHz	Feet per wavelength:	768.4148878				

Tower Pair Studied	Licensed Spacing (Electrical degrees)	Licensed Azimuth (Degrees True)	Measured Distance (feet)	Measured Azimuth (Degrees True)	Tower Location Error from Licensed (Result in Feet)	Tower Location Brror from Licensed (Electrics i Degrees)	Tower No. & (Loc)
1 (ref)	0.0	0.0	0,0	0,0	0.00	0.00 *	#1(S)
1.to 2	117.6	17.0	251.000	16.9850	0.29	0.18.0	#2(SC)
	285.2	17.0	502.000	16.9850	0.57	0.27.0	#9(NC)
L	853.8	17.0	758.000	16.9850	0.86	0.40 0	#4(N)
Lys Jap 1	p o	· · · · · · · · ·			-		1 7 3
(m. m. 1			610 - 10			1	
Ĺ 1						-	
i i i i i i i i i i i i i i i i i i i	- un			The second second	-		
1	1-0-AF. 5 1		La companya ing the second	T THE FLORE RELEASE		E.	1

Law of Cosines Analysis

Tower Pair Studied	Licensed Specification (Side "a") of Triangle (Feet)	Licensed Azimuth Versus Moasured Azimuth Difference	Included Angle A Converted to Radians	Tower Location Error from licensed position (Result in Feet)	Error in Feet Converted to Electrical Degrees	Error Greater Greater Than 1.5°? (8.20 ft)
1 (ref)		-		0.00	0.00 9	N/A
-1 to 2	251.02	0.0650 °	0.001134464	0.29	0,18 0	No - Therefore Okay
0	502.03	0.0650 °	0.001154464	0.87	0.17.0	No - Therefore Okay
0	753 05	0.0650 °	0.001134464	0.85	0,40 0	No - Therefore Okay
0	-	**				
0	-	-	-			
0	-			11		- I
0	-	-	-			
0	-	**	**	-		e

FIGURE 17 WWTC SPURIOUS RADIATION MEASUREMENTS DECEMBER, 2018

KKMS (980 kHz) DA MODE WWTC (1280 kHz) DAY MODE

	Attenuation (dB) relative to			
Field Intensity (mV/M)	KKMS	WWTC		
1250				
1720				
<.01	>101.9	>104.7		
.10	81.9	84.7		
<.01	>101.9	>104.7		
.11	81.1	83.9		
.08	83.9	86.6		
<.01	>101.9	>104.7		
<.01	>101.9	>104.7		
.10	81.9	84.7		
.02	95.9	98.7		
.035	91.1	93.8		
.05	88.0	90.7		
.09	82.9	85.6		
.013	99.7	102.4		
<.01	>101.9	>104.7		
.023	94.7	97.5		
	Field Intensity (mV/M) 1250 1720 <.01 .10 <.01 .11 .08 <.01 .01 .01 .02 .035 .05 .09 .013 <.01 .023	Field Intensity (mV/M) KKMS 1250 1720 <.01		

Above taken with Potomac Instruments, FIM-41, 0.93 km from the array on a bearing of 17° T. Point Coordinates (NAD27): N 44° 47' 47.2", W 93° 12' 41.5".

Above readings meet required attenuation of: 80 dB

FIGURE 17 CONTINUED WWTC SPURIOUS RADIATION MEASUREMENTS DECEMBER, 2018

KKMS (980 kHz) DA MODE WWTC (1280 kHz) NIGHT MODE

		Attenuation (dB) relative to		
Frequency (kHz)	Field Intensity (mV/M)	KKMS	WWTC	
980	1250			
1280	2220			
600	<.01	>101.9	>106.9	
680	.11	81.1	86.1	
900	<.01	>101.9	>106.9	
1580	.10	81.9	86.9	
1880	.09	82.9	87.8	
1960	<.01	>101.9	>106.9	
2260	<.01	>101.9	>106.9	
2560	.10	81.9	86.9	
2860	.02	95.9	100.9	
2940	.035	91.1	96.0	
3240	.06	86.4	91.4	
3840	.09	82.9	87.8	
4220	.022	95.1	100.1	
4520	<.01	>101.9	>106.9	
4820	.028	93.0	98.0	

Above taken with Potomac Instruments, FIM-41, 0.93 km from the array on a bearing of 17° T. Point Coordinates (NAD27): N 44° 47' 47.2", W 93° 12' 41.5".

Above readings meet required attenuation of: 80 dB

FIGURE 18 KKMS SAMPLING SYSTEM DESCRIPTION/MEASUREMENTS

APPLICATION FOR LICENSE INFORMATION EMPLOYING MOMENT METHOD MODELING WWTC, 1280 KHZ, DA-2 MINNEAPOLIS, MINNESOTA DECEMBER. 2018

SAMPLING SYSTEM DESCRIPTION

The KKMS Sampling System remains as currently licensed with the addition of short Andrew LDF4-50A jumpers added to each sampling line to allow new mounting of the TCT's. No other changes were made to the sampling system.

SAMPLE LINE MEASUREMENTS

Impedance measurements were made of the Antenna Sampling Lines using a HP 8753ES Network Analyzer with a Tunwall directional coupler. Measurements were done with the lines open circuited and then connected to the TCT's.

The table below shows the frequencies above and below the carrier frequency where resonance, defined as zero reactance corresponding with low resistance, was found. Frequencies of resonance occur at odd multiples of 90 degrees electrical length, the Sample Line length at the resonant frequency below the carrier frequency, which is the closest one to the carrier frequency, was found to be 450 electrical degrees. The electrical length at carrier frequency appearing in the table below was calculated by ratioing the frequencies.

SAMPLE LINE MEASUREMENTS

	Resonant Frequency (KHz) below 980 KHz	Resonant Frequency (KHz) above 980 KHz	Calculated Electrical Length (deg) at 980 KHz	Measured Impedance (ohms) Connected to TCT @ 980 KHz
Tower 1	856.4	1203.4	514.9	48.3 –j 0.1
Tower 2	856.3	1204.5	515.0	48.5 +j 0.1
Tower 3	856.8	1204.6	514.7	48.1 +j 0.3
Tower 4	856.1	1203.8	515.1	48.5 +j 1.0

FIGURE 18 KKMS SAMPLING SYSTEM DESCRIPTION/MEASUREMENTS

APPLICATION FOR LICENSE INFORMATION EMPLOYING MOMENT METHOD MODELING WWTC, 1280 KHZ, DA-2 MINNEAPOLIS, MINNESOTA DECEMBER. 2018 CONTINUED

SAMPLE LINE MEASUREMENTS (CONTINUED)

To determine the characteristic impedance values of the Sample Lines, open-circuited measurements were made with frequencies offset to produce \pm 45 degrees of electrical length from resonance. The characteristic impedance was calculated using the following formula, where R1 +j X1 and R2 +j X2 are the measured impedances at the +45 and -45 degree offset frequencies, respectively:

$Z_0 = ((R_1^2 + X_1^2)^{1/2} \bullet (R_2^2 + X_2^2)^{1/2})^{1/2}$

Tower	+ 45 Degree Offset Frequency (kHz)	+ 45 Degree Measured Impedance (Ohms)	- 45 Degree Offset Frequency (kHz)	- 45 Degree Measured Impedance (Ohms)	Calculated Characteristic Impedance (Ohms)
1	942.0	19.2 +j 46.5	770.8	14.1 –j 46.8	49.59
2	941.9	19.1 +j 46.4	770.7	14.1 –j 46.8	49.52
3	942.5	19.0 +j 46.5	771.1	14.4 –j 47.0	49.69
4	941.7	18.9 +j 45.7	770.5	14.3 –j 46.9	49.24

AGREEMENT FOR ONGOING OPERATIONS

Salem Communications Holding Corporation, the licensee of radio station KKMS(AM), FCC Facility ID No. 18518 ("KKMS") and Salem Media of Massachusetts, LLC, the licensee of WWTC(AM), FCC Facility ID 9676 ("WWTC"), recognize that use of the diplex site they share requires joint cooperation and coordination including occasional disruption of normal operation. Accordingly, both stations agree:

1 - Provide adequate notice to the other when work is required which will require a reduction in power or mode of operation.

2 - In the unlikely event that a failure should occur in the diplex system, the parties recognize that non-directional operation may be required until the system is repaired. WWTC, as owner of the system, agrees to make the repair and return of the system to normal operation its highest priority.

3 - Upon final implementation of the KKMS and WWTC facilities, all measurements, adjustments and FCC filings having been satisfactorily performed, KKMS and WWTC will continue to maintain their respective transmitters, monitoring, audio and remote control and day-to-day operation of the diplex and directional antenna equipment. Each station will be required to maintain the equipment in the direct path between its transmitter and towers in good repair and in accordance with all applicable FCC rules and regulations.

4. To adhere to a worker safety plan for the diplex site.

5. This agreement may be filed with the FCC by either party hereto.

6. If either party obtains FCC approval to assign the license of its radio station that is involved in the diplex operation, that party may assign this Agreement to the assignee of that license.

SALEM MEDIA OF MASSACHUSETTS, LLC

2

2

By: Christopher J. Henderson

Title: Executive Vice President of SCA License Corporation, Its Managing Member

SALEM COMMUNICATIONS HOLDING CORPORATION

By: Christopher J. Henderson Title: Executive Vice President