

1776 K STREET NW WASHINGTON, DC 20006 PHONE 202.719.7000

www.wileyrein.com

March 21, 2017

Accepted / Filed

Mark Lipp 202.719.7503 mlipp@wileyrein.com

VIA MESSENGER

Marlene H. Dortch, Esq. Secretary Federal Communications Commission 445 12th Street, SW Washington, DC 20554 MAR 2 2017

Federal Communications Commission Office of the Secretary

Attention: Media Bureau

Re: Application for License on FCC Form 302-AM Using Method Moment Modeling for Return to Direct Measurement Multicultural Radio Broadcasting Licensee, LLC Station KSJX(AM), San Jose, California Facility Identifier Number 4118

Dear Ms. Dortch:

Transmitted herewith on behalf of Multicultural Radio Broadcasting Licensee, LLC ("MRBL"), the licensee of Station KSJX(AM) identified above, are an original and two copies of its application to operate with new parameters as determined by a new Method of Moments model. This follows the addition of Station KLOK(AM) to the existing KSJX antenna system which includes KZSF(AM). This Form 302-AM is being filed concurrently with applications for KLOK and KZSF and reflects the final measured parameters following installation of the KLOK filters and modification of the KSJX and KZSF filters and phasing equipment.

Please note that, since this is a return to direct measurement of power, no filing fee is required.

If there are any questions about this Application, please contact undersigned counsel for Multicultural Radio Broadcasting Licensee, LLC.

Sincerely,

Mark Lipp

Enclosures

cc:

Mr. Jerome Manarchuck, AM Branch, Media Bureau, FCC

Accepted / Filed

Federal Communications Commission Washington, D. C. 20554

r

Approved by OMB 3060-0627 Expires 01/31/98

FOR FCC USE ONLY MAR 21 2017

Federal Communications Commission Office of the Secretary

FCC 302-AM

APPLICATION FOR AM BROADCAST STATION LICENSE

(Please read instructions before filling out form.

FOR	COMMISSION	USE	ONLY

FILE NO. BZ-20170321ABS

SECTION I - APPLICANT FEE INFORMATION			
1. PAYOR NAME (Last, First, Middle Initial)			
MAILING ADDRESS (Line 1) (Maximum 35 characters)			
MAILING ADDRESS (Line 2) (Maximum 35 characters)		······	
CITY	STATE OR COUNTRY (if fo	reign address)	ZIP CODE
TELEPHONE NUMBER (include area code)	CALL LETTERS	OTHER FCC IDE	NTIFIER (If applicable)
2. A. Is a fee submitted with this application?			Yes 🖌 No
B. If No, indicate reason for fee exemption (see 47 C.F.R. Section			
Governmental Entity Noncommercial educ		ther (Please explain)):
C. If Yes, provide the following information:	RETURN	TO DIRECT MEASU	RMENT
Enter in Column (A) the correct Fee Type Code for the service you a Fee Filing Guide." Column (B) lists the Fee Multiple applicable for thi	are applying for. Fee Type Co is application. Enter fee amou	odes may be found i nt due in Column (C	in the "Mass Media Services).
(A) (B) FEE TYPE FEE MULTIPLE CODE 0 0 1	(C) FEE DUE FOR FEE TYPE CODE IN COLUMN (A) \$		FOR FCC USE ONLY
To be used only when you are requesting concurrent actions which res	sult in a requirement to list mor	e than one Fee Typ	e Code.
	(C)		FOR FCC USE ONLY
ADD ALL AMOUNTS SHOWN IN COLUMN C, AND ENTER THE TOTAL HERE. THIS AMOUNT SHOULD EQUAL YOUR ENCLOSED REMITTANCE.	TOTAL AMOUNT REMITTED WITH TH APPLICATION	IS	FOR FCC USE ONLY

0010215812

SECTION II - APPLICAN	TINFORMATION		•			
1. NAME OF APPLICANT	BROADCASTING LICENSEE,	LLC				
MAILING ADDRESS 27 WILLIAM STREET, 11	TH FLOOR				····•	
CITY NEW YORK			STATE NY		ZIP CODE 10005	
2. This application is for:		г				
		l	Noncomm	nercial		
		tional		on-Directional		
Call letters	Community of License	Construct	ion Permit File No.	Modification of Construction Permit File No(s).	Expiration Date of Last Construction Permit	
KSJX	SAN JOSE	N/A		N/A	N/A	
3. Is the station no accordance with 47 C.F If No, explain in an Exhi		to autor	matic program	test authority in	Yes No	
	Dit.					
4. Have all the terms construction permit been	s, conditions, and oblig n fully met?	ations se	et forth in the	above described	Yes No	
If No, state exceptions in	n an Exhibit.				Exhibit No. N/A	
the grant of the underl	ges already reported, ha ying construction permit d in the construction perr	which v	vould result in a	any statement or	Yes No	
If Yes, explain in an Exl	hibit.				Exhibit No. N/A	
-	ed its Ownership Report	•		ership	Yes No	
certification in accordance	ce with 47 C.F.R. Sectior	1 73.3618	b(b)?		Does not apply	
If No, explain in an Exhil	bit.				Exhibit No.	
7. Has an adverse finding been made or an adverse final action been taken by any court or administrative body with respect to the applicant or parties to the application in a civil or criminal proceeding, brought under the provisions of any law relating to the following: any felony; mass media related antitrust or unfair competition; fraudulent statements to another governmental unit; or discrimination?						
involved, including an id (by dates and file numl information has been required by 47 U.S.C. So		or admini on of the nnection ant need file numb e applica	strative body an litigation. Wh with another a only provide: (i per in the case of ation or Section	d the proceeding pere the requisite application or as an identification of an application, 1.65 information	Exhibit No.	

4. A

8. Does the applicant, or any party to the application, have a petition on file to migrate to the expanded band (1605-1705 kHz) or a permit or license either in the existing band or expanded band that is held in combination (pursuant to the 5 year holding period allowed) with the AM facility proposed to be modified herein?

If Yes, provide particulars as an Exhibit.

The APPLICANT hereby waives any claim to the use of any particular frequency or of the electromagnetic spectrum as against the regulatory power of the United States because use of the same, whether by license or otherwise, and requests and authorization in accordance with this application. (See Section 304 of the Communications Act of 1934, as amended).

The APPLICANT acknowledges that all the statements made in this application and attached exhibits are considered material representations and that all the exhibits are a material part hereof and are incorporated herein as set out in full in

CERTIFICATION

1. By checking Yes, the applicant certifies, that, in the case of an individual applicant, he or she is not subject to a denial of federal benefits that includes FCC benefits pursuant to Section 5301 of the Anti-Drug Abuse Act of 1988, 21 U.S.C. Section 862, or, in the case of a non-individual applicant (e.g., corporation, partnership or other unincorporated association), no party to the application is subject to a denial of federal benefits that includes FCC benefits pursuant to that section. For the definition of a "party" for these purposes, see 47 C.F.R. Section 1.2002(b).

2. I certify that the statements in this application are true, complete, and correct to the best of my knowledge and belief, and are made in good faith.

Name	Signature	
Sean Kim	s Secol	
Title	Date	Telephone Number
CFO/COO, Multicultural Broadcasting Group	3/17/2017	(212) 966-1059

WILLFUL FALSE STATEMENTS ON THIS FORM ARE PUNISHABLE BY FINE AND/OR IMPRISONMENT (U.S. CODE, TITLE 18, SECTION 1001), AND/OR REVOCATION OF ANY STATION LICENSE OR CONSTRUCTION

FCC NOTICE TO INDIVIDUALS REQUIRED BY THE PRIVACY ACT AND THE PAPERWORK REDUCTION ACT

The solicitation of personal information requested in this application is authorized by the Communications Act of 1934, as amended. The Commission will use the information provided in this form to determine whether grant of the application is in the public interest. In reaching that determination, or for law enforcement purposes, it may become necessary to refer personal information contained in this form to another government agency. In addition, all information provided in this form will be available for public inspection. If information requested on the form is not provided, the application may be returned without action having been taken upon it or its processing may be delayed while a request is made to provide the missing information. Your response is required to obtain the requested authorization.

Public reporting burden for this collection of information is estimated to average 639 hours and 53 minutes per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the burden, can be sent to the Federal Communications Commission, Records Management Branch, Paperwork Reduction Project (3060-0627), Washington, D. C. 20554. Do NOT send completed forms to this address.

THE FOREGOING NOTICE IS REQUIRED BY THE PRIVACY ACT OF 1974, P.L. 93-579, DECEMBER 31, 1974, 5 U.S.C. 552a(e)(3), AND THE PAPERWORK REDUCTION ACT OF 1980, P.L. 96-511, DECEMBER 11, 1980, 44 U.S.C. 3507.

Exhibit No.

Yes

No

SECTION III - L	ICENSE APPLICATION ENGI	NEERING DATA				
Name of Applica				•		
MULTICU	JLTURAL RADIO BR	JADCASTI	NG LICENSEE, LL	.C		
PURPOSE OF A	UTHORIZATION APPLIED FOR	: (check one)				
	Station License	Jirect Meas	surement of Power			
1. Facilities auth	orized in construction permit				· ···	
Call Sign	File No. of Construction Permit		Hours of Operation	Power in kild		
KSJX	(if applicable) N/A	(kHz) 1500	UNL	Night Da	ly D	
2. Station location	n					
State			City or Town			
CALIFORNIA SAN JOSE						
3. Transmitter lo	cation		·····			
State	County		City or Town	Street address (or other identificatio	n)	
CA	CA SANTA CLARA		SAN JOSE	501 WOOSTER AVE		
4. Main studio lo	cation		T	T		
State	County		City or Town	Street address (or other identificatio	n)	
CA	SANTA CLARA		SAN JOSE (or other identification) 1172 MURPHY AVE			
5. Remote contr	ol point location (specify only if a	uthorized direction	al antenna)			
State	County		City or Town	Street address (or other identificatio	c)	
CA	SANTA CLARA		SAN JOSE	1172 MURPHY AV		
L			3			
6. Has type-app	roved stereo generating equipme	nt been installed?		Yes	V No	
7. Does the sampling system meet the requirements of 47 C.F.R. Section 73.68?						
Not Applicable						
Attach as an Exhibit a detailed description of the sampling system as installed. Exhibit No. ENG. REPORT						
8. Operating con			DE common point or onter	no ourrent (in oranges)	without	
I KE COMMON DOIN	t or antenna current (in amperes)	i without	RF common point or anten	na current (in amperes) \	without	

modulation for night s	system	modulation for day system 14.51	n
Measured antenna or operating frequency	r common point resistance (in ohms) at	Measured antenna or con operating frequency	nmon point reactance (in ohms) at
Night	Day	Night	Day
50	50	+/-J0	+/-J0

Antenna indications for directional operation Antenna monitor sample current ratio(s) Antenna monitor Antenna base currents Phase reading(s) in degrees Towers Day Night Night Night Day Day 0 1.0 1 C 1.0 N/A N/A 0 101.2 0.402 0.333 2 E **56.6** -NOT USED 3 N 4 W 1.225 NOT USED -70.4 -NOT USED -61.4 NOT USED 0.609 2 -Manufacturer and type of antenna monitor: **POTOMAC INSTRUMENTS AM-1901**

SECTION III - Page 2

9. Description of antenna system ((f directional antenna is used, the information requested below should be given for each element of the array. Use separate sheets if necessary.)

Type Radiator	Overall height in meters of radiator above base insulator, or above base, if grounded.	Overall height in meters above ground (without obstruction lighting)	Overall height in meters above ground (include obstruction lighting)	If antenna is either top loaded or sectionalized, describe fully in an Exhibit.
UNIFORM CROSS SECTION GUYED	59.4	60	60	Exhibit No. N/A
Excitation	Series	Shunt		

Geographic coordinates to nearest second. For directional antenna give coordinates of center of array. For single vertical radiator give tower location.

orth Latitude 37 ° 21	' 28 "	West Longitude 121 o	52 '	17 "
-----------------------	--------	----------------------	------	------

If not fully described above, attach as an Exhibit further details and dimensions including any other antenna mounted on tower and associated isolation circuits.

Also, if necessary for a complete description, attach as an Exhibit a sketch of the details and dimensions of ground system.

Exhibit No. NO CHANGE

Exhibit No.

10. In what respect, if any, does the apparatus constructed differ from that described in the application for construction permit or in the permit? NO CHANGE FROM EXISTING LICENSE

11. Give reasons for the change in antenna or common point resistance.

MODIFICATIONS TO SYSTEM ALLOWING ADDITION OF KLOK(AM) TO ARRAY

I certify that I represent the applicant in the capacity indicated below and that I have examined the foregoing statement of technical information and that it is true to the best of my knowledge and belief.

Name (Please Print or Type) BERT GOLDMAN	Signature (check appropriate box below)
Address (include ZIP Code) 560 PERKINS WAY	Date 3/17/2017
AUBURN, CA 95603	Telephone No. (Include Area Code) (214) 395-5067
Technical Director	Registered Professional Engineer
Chief Operator	✓ Technical Consultant
Other (specify)	

FCC 302-AM (Page 5) August 1995

ENGINEERING STATEMENT IN SUPPORT OF 302-AM

k

APPLICATION FOR LICENSE EMPLOYING MOMENT METHOD MODELING

KSJX, 1500kHz Return to Direct Measurement Following KLOK Construction

> 10,000 Watt DA-D 5,000 Watt DA-N

> > San Jose, Ca.

March, 2017

Page 1 of 44

ENGINEERING STATEMENT IN SUPPORT OF 302-AM APPLICATION FOR DIRECT MEASUREMENT

KSJX, 1500kHz

March, 2017

Table of Contents	
SUMMARY	3
FCC 302-AM Form Exhibits	4
Exhibit 1 – Station Operation	5
Exhibit 2 – Description of sampling system Description of Sampling System as Constructed Antenna Monitor Verification KSJX Tower Sample Measurements	6 7
Exhibit 3 – Tower details and isolation circuits Direct Measurement of Power CONCLUSION	.10
Exhibit 4 – Method of Moments Computations	11
Exhibit 4A - Tower Base Impedance Measurements	
Exhibit 4B - Circuit Analysis for Towers Driven Individually	
Exhibit 4C - MoM Model Parameters	.17
Exhibit 4D - KSJX Derived and Measured Operating Parameters	.18
Exhibit 4E - KSJX MoM Analysis	.19
INDIVIDUAL TOWER ANALYSIS	19
DAY ANALYSIS (Incl Detuning)	23
NIGHT ANALYSIS (incl Detuning)	26
Exhibit 4F - KSJX- DA Medium Wave Array Synthesis From Field Ratios	.29
DAY	
NIGHT	
Exhibit 4G - Tower Base Circuit Analysis Model	
CIRCUIT ANALYSIS	31
Exhibit 4H - Base Network Computation	
TOWER ANALYSIS- DAY	
TOWER ANALYSIS- NIGHT	35
EXHIBIT 6 – Spurious Radiation Measurements	38
EXHIBIT 7 - Reference Field Strength Measurements- KSJX	40
EXHIBIT 8 – Site Survey	44

SUMMARY

The following engineering statement has been prepared on behalf of Multicultural Radio Broadcasting Licensee, LLC (MRBI), licensee of standard broadcast station KSJX, FCC ID 4118, 1500kHz, San Jose, CA in support of an application to operate pursuant to new parameters as determined by a new Method of Moments model. following the addition of KLOK (AM) to the existing antenna system which includes KSJX and KZSF. This application is being filed concurrently with the 302 applications for KLOK and KZSF reflecting the final measured parameters following the installation of the KLOK filters and modification of the KSJX and KZSF filters and phasing equipment.

The KLOK phasor was installed in a new building constructed by KLOK, the KLOK filters were adjusted and inserted in series with the feed from the KSJX and KZSF (existing stations') filters. The feed to each existing tower was re-worked and braised to the towers (a 4-5 turn loop was removed from the feeds to the towers). The existing sample lines for KSJX were measured and verified within one degree, all sampling toroids were measured and determined to be accurate, the KSJX antenna monitor was checked and verified within manufacturer specifications and the operating impedance bridges in each station's common point were verified to be accurate.

The antenna system has been adjusted to produce monitoring system parameters which are within $\pm 5\%$ in field ratio and $\pm 3^{\circ}$ in phase of the modeled values as required by 73.151(c)(2)(ii).

FCC 302-AM Form Exhibits

.

EXHIBIT A- There is a 4ft diameter open grid 950MHz microwave dish attached to tower 2 at approximately 100ft AGL. The antenna is not connected across the base insulator.

Ground System- The ground system is existing and has been in use by KSJX and KZSF. A description is attached below in Exhibit 1.

DESCRIPTION OF KSIX TRANSMISSION FACILITIES AS CONSTRUCTED

RF Power Day, nominal 10kW

RF Power night, nominal 5kW

RF Common Point DAY 14.51a, 50Ω common point resistance (10.5kW input¹)

RF Common Point NIGHT 10.39a, 50Ω common point resistance (5.4kW input)

TOWERS² Electrical, four towers 107.1° length. Towers 1 and 2, 24" face, towers 3 and 4, 18" face triangular uniform cross-section, guyed.

Physical, four towers, each 60m length

Antenna Struct .Reg. 1215674 1215676 1215678 1215679

GROUND SYSTEM³ Ground system consists of 120 equally spaced buried copper radials plus 7.32m by 7.32m ground screen about the base of each tower. Each radial is 60.96 m in length except where limited by property boundary. Overlapping radials shortened and bonded to copper straps.

DAY MOM OPERATING PARAMETERS

TOWER	#1	#2	#3	#4
Phasing	0.0°	101.2°	70.4°	n/a4
Field Ratio	1.0	0.333	1.225	n/a

¹ Per FCC 73.51(b)(2), For stations with nominal powers in excess of 5 kW, the authorized antenna input power to directional antennas shall exceed the nominal power by 5.3 percent.

² Note that there was no survey of the property or towers taken as there has been no change in the physical locations of the towers from the currently licensed facility.

³ From KSJX license BMML-20121003ACV. Note that the ground system was replaced in October of 2016.

⁴ Tower not used for this configuration and detuned to j336.3 ohms.

NIGHT MoM OPERATING PARAMETERS

TOWER	#1	#2	#3	#4
Phasing	0.0°	56.6°	n/a ⁵	-61.4°
Field Ratio	1.0	0.402	n/a	0.609

Exhibit 2 – Description of sampling system

Description of Sampling System as Constructed

Samples for the antenna monitor are obtained from Delta TCT-1 (0.5V/A) toroidal current transformers mounted at the outputs of the antenna coupling units.

The TCT's were measured with a HP 8753ES Network Analyzer with a Tunwall directional coupler and have the following measured characteristics:

Tower Number	Serial No.	Magnitude	Phase
1	1334	1.005	+0.15°
2	939	1.008	+0.53°
3	947	1.010	+0.60°
4	940	1.000	0.0°

The above measurements certify compliance within 1 percent ratio and one degree phase accuracy. Samples are returned to the antenna monitor using equal lengths of Andrew LDF4-50A, ½" foam coaxial cable with solid copper outer shield.

All sample lines were tested and verified to be within 1° electrical length and with characteristic impedance to be within FCC guidelines. Verification of the sample lines is included below.

⁵ Tower not used for this configuration and detuned to j340.7 ohms

The phase monitor is a Potomac Instruments AM-1901 -4 antenna monitor. Phase monitor accuracy was confirmed by feeding two tower inputs at a time through a splitter and equal length jumpers to confirm equal magnitude and phase on each tower within .001 current ratio and 0.1 degrees phase.

Antenna Monitor Verification DAY. NIGHT (Reference #1)

Tower Number	Value	Phase
1	1.000	0.0°
2	0.999	-0.1°
3	1.001	0.0°
4	1.000	0.1°

Impedance measurements were made of the antenna sampling system using an HP 8753ES Network Analyzer with a Tunwall directional coupler. The measurements were made looking into the antenna monitor ends of the sample lines with the tower ends open-circuited. All connectors were installed on the sample lines and readings were normalized to include the test leads. All sample lines were equally cut prior to installation and trimmed to achieve identical electrical length and phase stability.

The table in Exhibit 1 shows the frequencies above and below the carrier frequency where resonance, defined as zero reactance corresponding with low resistance, was found. As the length of distortionless transmission line is 180 electrical degrees at the difference frequency between adjacent frequencies of resonance, and frequencies of resonance occur at odd multiples of 90 degrees electrical length, the sample line length at the resonant frequency below carrier frequency, which is the closest one to the carrier frequency, was found to be 270 electrical degrees. The electrical length at carrier frequency appearing below was calculated by ratioing the frequencies.

Page 7 of 44

EXHIBIT 2 (cont'd) SAMPLE SYSTEM MEASUREMENTS

	Resonance Below 1500Khz	Resonance Above 1500Khz	Calculated Electrical Length@1500kHz	Impedance into TCT @1500kHz
Tower 1	1146.94	1916.19	353.11°	47.7 -j0.7
Tower 2	1146.77	1916.87	353.17°	48.1 -j0.38
Tower 3	1146.43	1916.36	353.27°	47.9 -j0.26
Tower 4	1145.07	1913.13	353.69°	47.2 -j0.66
			Delta 0.58 deg	Delta 0.9Ω

KSJX Tower Sample Measurements

Based upon the measurements shown above, the sample lines are within the one electrical degree requirement.

To determine the characteristic impedance values of the sample lines, open-circuited

measurements were made with frequencies offset to produce ± 45 degrees of electrical length from resonance

The characteristic impedance was calculated using the following formula, where R1 +j X1 and R2 +j X2 are the measured impedances at the +45 and -45 degree offset frequencies, respectively:

	+45 Degree Offset Frequency (KHz)	+45 Degree Measured Impedance (Ohms)	-45 Degree Offset Frequency (KHz)	-45 Degree Measured Impedance (Ohms)	Calculated Characteristic Impedance (Ohms)	
Tower 1	1338.1	7.77 +j49.48	0.9557	5.20 –j49.82	50.09 50	
Tower 2	1337.9	7.86 +j49.45	0.9556	5.21 –j49.63	49.99 🗸	
Tower 3	1337.5	7.82 +j49.69	0.9553	5.22 –j49.68	50.13	
Tower 4	1336.0	7.78 +j49.57	0.9542	5.22 -j49.56	50.01	

 $ZO = ((R1^2 + X1^2)^{\frac{1}{2}} \times (R2^2 + X2^2)^{\frac{1}{2}})^{\frac{1}{2}}$ KSJX Sample Line Characteristic Impedance Measurements

MAX Impedance	50.13
MIN Impedance	49.99

As shown above, the sample lines measured characteristic impedances meet the requirement that they be equal to 50 Ohms within +-2 ohms.

The sampling system for KSJX is type approved under 47CFR 73.68 of the FCC rules.

Exhibit 3 – Tower details and isolation circuits

The following isolation circuits are attached to the KSJX towers and have been included in the MoM analysis:

All Towers: Uniform Cross Section (no lighting). Towers 1 and 2= 24" face, Towers 3 and 4, 18" face.

Insulators: Towers 1 and 2 Lapp Model 9012

Towers 3 and 4 Utility insulator

Direct Measurement of Power

The common point current was measured using a Delta TCA 20/40 RF current meter permanently installed in the phasing cabinet. Common point resistance was set to 50Ω –j2. The transmitter was adjusted to yield the correct current as reflected on the 302-AM attached.

CONCLUSION

All adjustments and measurements were conducted jointly by Bertram Goldman and Kurt Gorman. Method of Moments analysis was conducted by Kurt Gorman. Both Gorman's and Goldman's qualifications are a matter of record with the Federal Communications Commission.

This application was prepared on behalf of Multicultural Radio Broadcasting Licensee, LLC by Bert Goldman of Goldman Engineering Management. All statements herein are true and correct to the best of his

knowledge.

Herten if Holden

Bertram S. Goldman 560 Perkins Way Auburn, CA 95603 214-395-5067 bert@bgoldman.net

Exhibit 4 – Method of Moments Computations

Exhibit 4A - Tower Base Impedance Measurements

The impedance of each tower was measured at the J plug at the output of the T matching network and at the TCT at the base of each tower. All impedance measurements were obtained using a HP 8753ES Network Analyzer with an external power amplifier operating on 1500kHz. The measurements were taken via remote calibration of the new sample lines after being disconnected from the Delta TCT's. All measurements were taken for each tower with all other towers opencircuited.

The following exhibit describes the measurement conditions and assumptions used in the MoM analysis:

Tower Impedance Measurements Compared to

Method of Moments Model

TOWER	X _{SER}	Z _{TCT}	Z _{TCT}	Z _{ANT}
	Series filter	Measured	Modeled	Modeled
1	-j137	204.2 +j96.7	202.8 +j98.1	151.4 +j250.8
2	-j49	252.9 +j138.8	256.4 +j131.4	179.6 +j208
3	-j95	240.0 +j107.9	228.9 +j113.5	165.9 +j229.9
4	-j130	203.7 +j73.9	198.1 +j73.9	155.8 +j225.8

Exhibit 4B - Circuit Analysis for Towers Driven Individually

CUSTOMER : KSJX NETWORK ID : TOWER 1 (AT TCT) (OTHERS OPEN) FREQUENCY : 1500.00 kHz ATU SHUNT IMPEDANCE (R,X) : 0.00, -1000.00 OHMS TOWER FEED IMPEDANCE (R,X) : 0.00, -137.00 OHMS TOWER SHUNT IMPEDANCE (R,X) : 0.00, -7073.60 OHMS ISPF TOWER IMPEDANCE (R,X) : 151.40, 250.80 OHMS

NODE	то	NODE	IMPEDANCE R	(OHMS) X
1		GROUND	0.00	-1000.00
2		GROUND	162.66	256.41
1		2	0.00	-137.00

	VOLTAG	E
NODE	MAGNITUDE	PHASE
1	100.00	0.00
2	150.48	21.33

	REAL	IMAGINARY	MAGNITUDE	PHASE
INPUT IMPEDANCE (OHMS) :	202.84	98.14	225.33	25.82
INPUT CURRENT (AMPS) :	0.40	-0.19	0.44	-25.82
OUTPUT CURRENT (AMPS) :	0.41	-0.31	0.51	-37.55

INPUT/OUTPUT CURRENT RATIO = 0.8639 INPUT/OUTPUT PHASE = 11.74 DEGREES CUSTOMER : KSJX NETWORK ID : TOWER 2 (AT TCT) (OTHERS OPEN)

FREQUENCY : 1500.00 kHz ATU SHUNT IMPEDANCE (R,X) : 0.00, -1000.00 OHMS TOWER FEED IMPEDANCE (R,X) : 0.00, -50.00 OHMS TOWER SHUNT IMPEDANCE (R,X) : 0.00, -7073.60 OHMS TOWER IMPEDANCE (R,X) : 179.60, 208.00 OHMS

NODE	ТО	NODE	IMPEDANCE R	(OHMS) X
1		GROUND	0.00	-1000.00
2		GROUND	190.52	209.32
1		2	0.00	-50.00

	VOLTA	AGE
NODE	MAGNITUDE	PHASE
1	100.00	0.00
2	113.97	7.79

	REAL	IMAGINARY	MAGNITUDE	PHASE
INPUT IMPEDANCE (OHMS) :	256.40	131.40	288.11	27.13
INPUT CURRENT (AMPS) :	0.31	-0.16	0.35	-27.13
OUTPUT CURRENT (AMPS) :	0.31	-0.27	0.41	-41.40

INPUT/OUTPUT CURRENT RATIO = 0.8369 INPUT/OUTPUT PHASE = 14.27 DEGREES CUSTOMER : KSJX NETWORK ID : TOWER 3 (AT TCT, OTHERS OPEN)

FREQUENCY : 1500.00 kHz ATU SHUNT IMPEDANCE (R,X) : 0.00, -1000.00 OHMS TOWER FEED IMPEDANCE (R,X) : 0.00, -95.00 OHMS TOWER SHUNT IMPEDANCE (R,X) : 0.00, -7073.60 OHMS TOWER IMPEDANCE (R,X) : 165.90, 229.90 OHMS

NODE	то	NODE	IMPEDANCE R	(OHMS) X
1		GROUND	0.00	-1000.00
2		GROUND	177.13	233.33
1		2	0.00	-95.00

	VOLTAG	E
NODE	MAGNITUDE	PHASE
1 2	100.00 130.35	0.00 14.81

	REAL	IMAGINARY	MAGNITUDE	PHASE
INPUT IMPEDANCE (OHMS) :	228.89	113.48	255.48	26.37
INPUT CURRENT (AMPS) :	0.35	-0.17	0.39	-26.37
OUTPUT CURRENT (AMPS) :	0.36	-0.29	0.46	-39.38

INPUT/OUTPUT CURRENT RATIO = 0.8513 INPUT/OUTPUT PHASE = 13.00 DEGREES CUSTOMER : KSJX NETWORK ID : TOWER 4 (AT TCT, OTHERS OPEN)

0 - 04

FREQUENCY : 1500.00 kHz ATU SHUNT IMPEDANCE (R,X) : 0.00, -1000.00 OHMS TOWER FEED IMPEDANCE (R,X) : 0.00, -130.00 OHMS TOWER SHUNT IMPEDANCE (R,X) : 0.00, -7073.60 OHMS TOWER IMPEDANCE (R,X) : 155.80, 225.80 OHMS

NODE	то	NODE	IMPEDANCE R	(OHMS) X
1		GROUND	0.00	-1000.00
2		GROUND	166.16	229.47
1		2	0.00	-130.00

	VOLTAG	E
NODE	MAGNITUDE	PHASE
1 2	100.00 146.30	0.00 23.19

	REAL	IMAGINARY	MAGNITUDE	PHASE
INPUT IMPEDANCE (OHMS) :	198.14	73.89	211.47	20.45
INPUT CURRENT (AMPS) :	0.44	-0.17	0.47	-20.45
OUTPUT CURRENT (AMPS) :	0.45	-0.28	0.53	-32.21

INPUT/OUTPUT CURRENT RATIO = 0.8867 INPUT/OUTPUT PHASE = 11.76 DEGREES

Exhibit 4C - MoM Model Parameters

.

Tower	Wire No.	No. Segments	Base Node	Radius	Model Length (degrees)	Physical Length (degrees)
1	1	15	1	.300	124.0	107.1
2	2	15	16	.380	122.3	107.1
3	3	15	31	.320	122.2	107.1
4	4	15	46	.320	122.6	107.1

Insulators:	Towers 1 and 2	Lapp Model 9012
	Towers 3 and 4	Utility insulator

Towers 1,2 – 24" Face width. Equivalent Radius = 0.291 meters

Towers 3,4 - 18" face width. Equivalent radius =0 .218 meters

Exhibit 4D - KSJX Derived and Measured Operating Parameters

TOWER	Input to Base Network	TCT Value Ratio/ Phase ¹
1	4.36/+50.22°	1.000/0.0°
2	1.45/-151.46°	.333/+101.2°
3	5.34/+120.62°	1.225/+70.4°
4	Detuned (+j336.31Ω)	n/a

KSJX Calculated Daytime Operating Parameters

KSJX Calculated Nighttime Operating Parameters

TOWER	Input to Base Network	TCT Value Ratio/ Phase ¹
1	4.01/+25.38°	1.000/ 0.0°
2	1.61/+81.94°	.402/+56.6°
3	Detuned (j336.31Ω)	n/a
4	2.44/-36.0°	.609/-61.4°

¹These numbers are submitted as final operating parameters on FCC 302-AM application.

Exhibit 4E - KSJX MoM Analysis

INDIVIDUAL TOWER ANALYSIS

KSJX TOWER 1 (OTHERS OPEN)

GEOMETRY Wire coordinates in degrees; other dimensions in meters Environment: perfect ground

wire	caps	Distance	Angle	Z	radius	seqs
1	none	0	0	0	.3	15
		0	0	124.		
2	none	135.	61.	0	.38	15
		135.	61.	122.3		
3	none	90.	341.	0	.32	15
		90.	341.	122.2		
4	none	100.	251.	0	.32	15
		100.	251.	122.6		

Number of wires = 4 current nodes = 60

	max	imum		
Individual wires	wire	value	wire	value
segment length	3	8.14667	1	8.26667
radius	1	.3	2	.38

ELECTRICAL DESCRIPTION Frequencies (MHz)											
no.	frequency lowest 1.5	step 0	no. stej 1		segment minimum .0226296	_	(wavelengths) maximum .022963				

Sourcessource nodesectormagnitudephasetype111.0voltage

Lumped loads												
load node 1 16 2 31 3 46	resistance (ohms) 0 0 0	reactance (ohms) -7,073.6 -7,073.6 -7,073.6	inductance (mH) O O O	capacitance (uF) 0 0 0	passive circuit 0 0 0							

C:\Users\kurtg\Desktop\ENGINEER\KSJXMOM\KSJXT1 02-06-2017 17:54:34

IMPEDANCE

normalization = 50.											
freq	resist	react	imped	phase	VSWR	S11	S12				
(MHz)	(ohms)	(ohms)	(ohms)	(deg)		dB	dB				
source =	1; node	1, sector	r 1								
1.5	151.43	250.81	292.98	58.9	11.581	-1.5038	-5.3361				

KSJX TOWER 2 (OTHERS OPEN) GEOMETRY Wire coordinates in degrees; other dimensions in meters Environment: perfect ground wire caps Distance Angle Z radius segs none O 1 0 0 .3 15 0 0 124. 2 none 135. 61. 0 .38 15 135. 61. 122.3 3 none 90. 341. 0 .32 15 90. 341. 122.2 4 none 100. 251. 0 .32 15 100. 251. 122.6 Number of wires = 4 current nodes = 60 minimum maximum Individual wires wire value wire value segment length 3 8.14667 1 8.26667 radius 1 .3 2 .38 ELECTRICAL DESCRIPTION Frequencies (MHz) frequency no. of segment length (wavelengths) step no. lowest steps minimum maximum 1 1.5 0 1 .0226296 .022963 Sources source node sector magnitude phase type 1 16 1 1. 0 voltage Lumped loads resistance reactance inductance capacitance passive (ohms) load node (ohms) (mH) (uF) circuit 1 1 0 -7,073.6 0 0 0 2 31 0 -7,073.6 0 0 0 3 46 0 -7,073.6 0 0 0 C:\Users\kurtg\Desktop\ENGINEER\KSJXMOM\KSJXT2 02-06-2017 17:56:02 IMPEDANCE normalization = 50. freq resist react imped phase VSWR S11 S12 (MHz) (ohms) (ohms) (ohms) (deg) dB dB source = 1; node 16, sector 1 1.5 179.61 208.04 274.84 49.2 8.5732 -2.0355 -4.2691

KSJX TOWER 3 (OTHERS OPEN)

GEOMETRY Wire coordinates in degrees; other dimensions in meters Environment: perfect ground

wire	caps	Distance	Angle	Z	radius	segs
1	none	0	0	0	.3	15
		0	0	124.		
2	none	135.	61.	0	.38	15
		135.	61.	122.3		
3	none	90.	341.	0	.32	15
		90.	341.	122.2		
4	none	100.	251.	0	.32	15
		100.	251.	122.6		

Number of wires = 4 current nodes = 60

	minimum							
Individual wires	wire	value	wire	value				
segment length	3	8.14667	1	8.26667				
radius	1	.3	2	.38				

Freque	RICAL D encies frequen lowest 1.5	. ,		no. of steps 1	segment lengt minimum .0226296	h (wavelengt maximum .022963	hs)
Source	es e node	sector	maqr	nitude	phase	type	
1	31	1	1.		0	voltage	
Lumpeo	d loads						
		resistance	9	reactance	inductance	capacitance	passive
load	node	(ohms)		(ohms)	(mH)	(uF)	circuit
1	1	0		-7,073.6	0	0	0
2	16	0		-7,073.6	0	0	0
3	46	0		-7,073.6	0	0	0

C:\Users\kurtg\Desktop\ENGINEER\KSJXMOM\KSJXT3 02-06-2017 17:52:23

IMPEDANCE normalization = 50.											
freq (MHz)	resist (ohms) 1; node	react (ohms)		phase (deg)	VSWR	S11 dB	S12 dB				
	165.85			54.2	9.8881	-1.7629	-4.7673				

KSJX TO	OWER 4	(OTHE	RS OPE	N)					
GEOMETF Wire co Enviror	oordin				other	dimensio	ons in m	eters	
	caps D. none O 0	istanc		Angle 0 0		Z O 124.		radius .3	segs 15
2 n	none 1	35. 35.		61. 61.		0 122.3		.38	15
3 n	none 9			341. 341.		0		.32	15
4 n	none 10 10	00. 00.		251. 251.		0 122.6		.32	15
Number			nodes	= 4 = 60)				
Individ segment radius					um value 8.146 .3	67			
ELECTRI Frequen fr no. lo 1 1.	icies requence west	(MHz) Sy	TION step 0		no. o steps 1	s mini	ent len mum 6296	gth (wave maxim .0229	ium
Sources source 1		sec ⁻ 1	tor ma	agnitu	de	phase 0		type voltag	e
Lumped	loads								
1 2	ode 1 16 31	resist (ohms) 0 0 0		(oh -7, -7,	otance ms) 073.6 073.6 073.6	(m 0 0	ductance H)	e capaci (uF) 0 0 0	tance passive circuit 0 0 0
C:\User	s\kurt	g\Desl	ktop\EM	IGINEE	R\KSJX	MOM\KSJ	XT4 02·	-06-2017	17:58:09
IMPEDAN	CE alizat resi (ohm = 1;	st node 4	50. react (ohms) 46, sec	imp (oh ctor 1	ed ms)	phase (deg)	VSWR	S11 dB	S12 dB
т.J	155.	04 2	225.8	214	.36	55.4	9.8790	5 -1.764	4 -4.7643

DAY ANALYSIS (Incl Detuning)

KSJX

GEOME Wire Envir	coordin	nates i perfe	n degree ct groun	s; other d	dimensior	ns in met	cers	
wire 1	caps I none (e An 0 0	gle	Z O 124.	ra .3	adius 3	segs 15
2	none 1 1	.35. .35.	61 61		124. 0 122.3	.3	38	15
3	none 9 9	0. 0.	34: 34:	1. ⁰ 1.	0 122.2	.3	32	15
4	none 1 1	.00. .00.	25: 25:		0 122.6	.3	32	15
Numbe	r of wi cu	res	= nodes =	4 60				
			mir	nimum		ma	ximum	
	idual w nt leng s		wire 3 1	value 8.1460 .3	57	wire 1 2	e value 8.26667 .38	
Freque	RICAL D encies frequen	(MHz)	TION		6			
no.	lowest 1.5	-	step O	no. c steps 1		um	h (wavele maximum .022963	_
Source source 1 2 3	es e node 1 16 31	sec; 1 1 1	3,16	nitude 54.62 95.83 .0.72	phase 70.6 260.4 177.4		type voltage voltage voltage	
Lumpeo	d loads							
load 1	node 46	resist (ohms) 0		reactance (ohms) 336.31	e ind (mH O	uctance)	capacita (uF) 0	nce passive circuit O
C:\Use	ers\kur	tg\Des]	ktop\ENG1	NEER\KSJX	MOM\KSJX	DAYWDETU	NE 02-23	-2017 16:18:02
IMPEDA nor freq (MHz) source	ANCE rmalizar res (ohr e = 1;	tion = ist n ms) node 1	50. react (ohms) L, sector	imped (ohms) 1	phase (deg)	VSWR	S11 dB	S12 dB
1.5	309			438.37	45.2	12.52	-1.3905	-5.6229
source 1.5		node 1 .136 3	l6, secto 364.22		101.4	* * * *	* * * *	* * * *
source 1.5	e = 3; 71.5		81, secto 133.5		61.8	6.9655	-2.5113	-3.5741

C:\Users\kurtg\Desktop\ENGINEER\KSJXMOM\KSJXDAYWDETUNE 02-23-2017 16:18:02

Frequ Input	power = 1	.5 MHz 0,000. wat 00. %	ts				
coord	inates in						
curre		2		mag	phase	real	imaginary
no.	Х	Y	Z	(amps)	(deg)	(amps)	(amps)
GND	0	0	0	5.11505		4.61982	2.19567
2	0	0	8.26667	6.75585	12.6	6.59211	1.47837
3	0	0	16.5333	7.79191	7.5	7.72602	1.01121
4	0	0	24.8	8.55424	4.1	8.53206	.615598
5	0	0	33.0667	9.06532	1.7	9.06113	.275582
6	0	0	41.3333	9.33322	359.9	9.33321	0132539
7	0	0	49.6	9.3623	358.5	9.35893	251363
8 9	0	0	57.8667	9.1577	357.3	9.14721	438029
9 10	0 0	0 0	66.1333	8.7265	356.2	8.70771	572395
11	0	0	74.4	8.07846	355.4	8.05195	653925
12	0	0	82.6667 90.9333	7.22565	354.6	7.19334	682567
13	0	0	99.2	6.1818 4.96009	353.9	6.1466	658746
14	0	0	107.467	4.96009	353.2 352.7	4.9257	583117
15	0	õ	115.733	1.99891	352.7	3.53959 1.97995	455849 274628
END	0	0	124.	0	0	0	2/4628
GND	65.4493	-118.074	0	2.28078	159.	-2.12995	.815646
17	65.4493	-118.074	8.15333	3.13667	162.2	-2.98671	.958283
18	65.4493	-118.074	16.3067	3.60594	163.4	-3.45548	1.03075
19	65.4493	-118.074	24.46	3.93473	164.1	-3.78498	1.07519
20	65.4493	-118.074	32.6133	4.14423	164.7	-3.99686	1.09534
21	65.4493	-118.074	40.7667	4.24348	165.1	-4.10033	1.09291
22 23	65.4493	-118.074	48.92	4.23715	165.4	-4.10012	1.06886
23 24	65.4493 65.4493	-118.074	57.0733	4.12902	165.6	-4.00002	1.02402
25	65.4493	-118.074 -118.074	65.2267	3.92312	165.8	-3.80402	.959317
26	65.4493	-118.074	73.38 81.5333	3.62415	166.	-3.51675	.875773
27	65.4493	-118.074	89.6867	3.23749 2.7689	166.2	-3.14348	.774543
28	65.4493	-118.074	97.84	2.2237	166.3 166.4	-2.68987 -2.16115	.656825
29	65.4493	-118.074	105.993	1.6046	166.5	-1.56003	.523687 .375555
30	65.4493	-118.074	114.147	.906686	166.5	881774	.211078
END	65.4493	-118.074	122.3	0	0	0	0
GND	85.0967	29.3011	0	5.66318	115.6	-2.44717	5.10715
32	85.0967	29.3011	8.14667	6.3708	112.1	-2.39606	5.90305
33	85.0967	29.3011	16.2933	6.72749	110.3	-2.33281	6.31008
34	85.0967	29.3011	24.44	6.92267	108.9	-2.248	6.54751
35	85.0967	29.3011	32.5867	6.97459	107.9	-2.14147	6.6377
36 37	85.0967	29.3011	40.7333	6.89181	107.	-2.01403	6.59096
38	85.0967 85.0967	29.3011 29.3011	48.88	6.68023	106.2	-1.86707	6.41401
39	85.0967	29.3011	57.0267	6.34583	105.6	-1.70239	6.11322
40	85.0967	29.3011	65.1733 73.32	5.89548	105.	-1.52218	5.69558
41	85.0967	29.3011	81.4667	5.33719 4.67992	104.4 103.9	-1.32897	5.16908
42	85.0967	29.3011	89.6133	3.93312	103.9	-1.12546 91441	4.54257 3.82534
43	85.0967	29.3011	97.76	3.10555	103.4	698411	3.026
44	85.0967	29.3011	105.907	2.20257	102.6	479229	2.1498
45	85.0967	29.3011	114.053	1.21898	102.1	256448	1.1917
END	85.0967	29.3011	122.2	0	0	0	0
GND	-32.5568	94.5519	0	1.8823	78.3	.381827	1.84317
47	-32.5568	94.5519	8.17333	1.26067	78.3	.254782	1.23466
48	-32.5568	94.5519	16.3467	.86195	78.5	.171146	.844788
49	-32.5568	94.5519	24.52	.525655	79.2	.0986164	.516321
50	-32.5568	94.5519	32.6933	.237925	81.6	.0347307	.235376

51	-32.5568	94.5519	40.8667	.0209957	186.3	0208686	-2.31E-03
52	-32.5568	94.5519	49.04	.208883	251.1	067773	197583
53	-32.5568	94.5519	57.2133	.36576	253.3	105342	350262
54	-32.5568	94.5519	65.3867	.478797	253.9	132923	459976
55	-32.5568	94.5519	73.56	.547486	254.1	149953	52655
56	-32.5568	94.5519	81.7333	.571835	254.2	156009	550142
57	-32.5568	94.5519	89.9067	.552229	254.2	150801	53124
58	-32.5568	94.5519	98.08	.489216	254.1	134104	470477
59	-32.5568	94.5519	106.253	.382902	254.	105579	368059
60	-32.5568	94.5519	114.427	.231318	253.9	0642771	222208
END	-32.5568	94.5519	122.6	0	0	0	0

KSJX MoM Analysis

NIGHT ANALYSIS (incl Detuning)

KSJX NIGHT

	coordir	ates in perfect			dimensio	ns in met	ters		
wire 1	caps I none (An 0 0	gle	Z O 124.	ra	adius 3	segs 15	
2	none 1 1	.35.	61 61	-	0 122.3	•	38	15	
3	none 9		34	1. 1.	0	. 3	32	15	
4	none 1		25 25	1.	0 122.6	. 3	32	15	
Numbe	r of wi cu	res rrent no	= des =	4 60					
	idual w nt leng s		mi wire 3 1	nimum value 8.146 .3		ma wire 1 2	value 8.26667 .38	7	
Freque f no.]	RICAL D encies frequen lowest 1.5	су	CON ep	no. step 1		num	h (wavele maximum .022963	1	
Source									
source 1	e node 1	secto 1	-	nitude	phase		type		
2	16	1	1,4. 441	19.57 29	67.6 144.1		voltage		
3	46	1		10.71	323.7		voltage voltage		
Lumpeo	d loads								
load	node	resista (ohms)	nce	reactanc		luctance		ince passi	
1	31	0		(ohms) 340.67	(mF 0	1)	(uF) 0	circu 0	it
C:\Use	ers\kur	tg\Deskt	op\ENG:	INEER\KSJ	XMOM/KSJX	NIGHTWDE	TUNE 02-	23-2017	19:04:39
IMPEDA			0						
freq		tion = 5 ist re	u. act	imped	phase	VSWR	011	010	
		ms) (o		(ohms)	(deq)	VOWK	S11 dB	S12 dB	
		node 1,			(0.09)		uD.	чъ	
1.5	142	.98 18	5.89	234.52	52.4	7.9167	-2.2061	-3.998	
source 1.5	e = 2; 65.	node 16 764 15	, secto 5.81	or 1 169.12	67.1	9.3516	-1.8648	-4.5707	
source 1.5	e = 3; 378	node 46 .67 17	, secto 7.58	or 1 418.24	25.1	9.263	-1.8827	-4.5374	

C:\Users\kurtg\Desktop\ENGINEER\KSJXMOM\KSJXNIGHTWDETUNE 02-23-2017 19:04:39

Freque	-	.5 MHz ,000. watts					
	iency = 10		,				
	inates in d						
curre		J		mag	phase	real	imaginary
no.	Х	Y	Z	(amps)	(deg)	(amps)	(amps)
GND	0	0	0	4.28138	15.2	4.13228	1.12003
2	0	0	8.26667	5.04232	8.6	4.98595	.751878
3	0	0	16.5333	5.47186	5.4	5.44777	.512876
4	0	0	24.8	5.75075	3.1	5.74233	.311162
5	0	0	33.0667	5.89444		5.89281	.138374
6	0	0	41.3333	5.90921		5.90921	-7.96E-03
7	0	0	49.6	5.7991	358.7	5.79768	128262
8	0	0	57.8667	5.56836	357.7	5.56391	222359
9	0	0	66.1333	5.2223	356.8	5.21424	289951
10	0	0	74.4	4.76749		4.756	330856
11 12	0 0	0	82.6667	4.21164		4.19747	345093
13	0	0 0	90.9333 99.2	3.56308	354.6	3.5475	332882
14	0	0	99.2 107.467	2.8298 2.01683	354. 353.4	2.81443	294543
15	0	0	115.733	1.11948	352.9	2.00365 1.11087	230152 138567
END	0	Õ	124.	0	0	0	0
GND	65.4493	-118.074	0	1.84557	, 77.	.415679	1.79815
17	65.4493	-118.074		2.13772	73.6	.603682	2.05072
18	65.4493	-118.074	16.3067	2.28476	72.	.707311	2.17252
19	65.4493	-118.074	24.46	2.37147	70.8	.781032	2.23916
20	65.4493	-118.074	32.6133	2.40533	69.8	.829581	2.25774
21	65.4493	-118.074	40.7667	2.38992	69.	.854931	2.23178
22	65.4493	-118.074	48.92	2.32757	68.4	.858092	2.16362
23	65.4493	-118.074	57.0733	2.22047	67.8	.83983	2.05552
24 25	65.4493	-118.074	65.2267	2.07102	67.2	.800936	1.90988
26	65.4493 65.4493	-118.074	73.38	1.88201	66.8	.742357	1.72941
27	65.4493	-118.074 -118.074	81.5333	1.65649	66.3	.665139	1.51709
28	65.4493	-118.074	89.6867 97.84	1.39767 1.10845	65.9 65.5	.570429	1.27597
29	65.4493	-118.074	105.993	.790436	65.1	.459276 .332196	1.00882
30	65.4493	-118.074	114.147	.441549	64.8	.188132	.717241 .399464
END	65.4493	-118.074	122.3	0	04.0	0	0
GND	85.0967	29.3011	0	.752743	41.2	.566229	.495991
32	85.0967		8.14667	.50159		.377084	.330757
33	85.0967	29.3011	16.2933	.341023		.255662	.225685
34	85.0967	29.3011	24.44	.206035		.153131	.137844
35	85.0967	29.3011	32.5867	.0909734		.065308	.0633327
36	85.0967	29.3011	40.7333	9.02E-03	174.7	-8.99E-03	
37	85.0967	29.3011	48.88	.0859569		0698755	0500601
38	85.0967	29.3011	57.0267	.147445		117194	0894737
39	85.0967	29.3011	65.1733	.191138		150771	117482
40	85.0967	29.3011	73.32	.217019	218.2	170554	134196
41 42	85.0967 85.0967	29.3011 29.3011	81.4667	.225286	218.4	17666	139803
43	85.0967	29.3011	89.6133 97.76	.216311 .190553	218.5	169363	13456
44	85.0967	29.3011	105.907	.148312		149023 115884	118755
45	85.0967	29.3011	114.053		218.0	069573	0925604 0556618
END	85.0967	29.3011	122.2	0	0	0	0
GND	-32.5568	94.5519	0	2.38569	298.6	1.14111	-2.09508
47	-32.5568	94.5519	8.17333	2.91348	281.2	.564343	-2.8583
48	-32.5568	94.5519	16.3467	3.29212	273.5	.202135	-3.28591
49	-32.5568	94.5519	24.52	3.58442	268.5	0953797	

.

50 51 52 53 54 55 56 57 58 59 60	-32.5568 -32.5568 -32.5568 -32.5568 -32.5568 -32.5568 -32.5568 -32.5568 -32.5568 -32.5568 -32.5568 -32.5568	94.5519 94.5519 94.5519 94.5519 94.5519 94.5519 94.5519 94.5519 94.5519 94.5519 94.5519 94.5519	32.6933 40.8667 49.04 57.2133 65.3867 73.56 81.7333 89.9067 98.08 106.253 114.427	3.78556 3.89288 3.90502 3.82217 3.64605 3.37981 3.02778 2.59504 2.08657 1.50527 .846726	264.8 259.8 257.9 256.4 255. 253.8 252.7 251.8 250.9 250.	341492 540375 693031 799556 859981 874615 844173 769716 652425 492853 289003	-3.77013 -3.85519 -3.84303 -3.7376 -3.54317 -3.26468 -2.90772 -2.47825 -1.98195 -1.4223 795879
60 END	-32.5568 -32.5568	94.5519 94.5519	114.427 122.6	.846726 0	250. 0	289003 0	795879 0

Exhibit 4F - KSJX- DA Medium Wave Array Synthesis From Field Ratios

Frequency = 1.5 MHz

DAY

Fred	quen	cy = 1.5	MHZ							
		field ra	tio							
towe		magnitud		phase	(dea	r)				
1		1.		0	()	, ,				
2		.45		165.						
3		.73		107.						
4		0		0						
VOT		S AND CU	חזגים כו כו							
		voltage	RRENI	15 - 11	is			+		
node		nagnitude	2	nhaco	(dog	• 1	curren magnit		~~~~~	(-))
1		2,237.73		70.6	lucy	'	5.1116		phase 25.5	(deg)
16		345.577		260.4			2.2745		159.1	
31	8	356.109		177.4			5.6538		115.6	
46	(534.469		348.8			1.8862		77.7	
Sum	of s	square of	f sou	irce cu	ırren	ts	= 133.	653		
Tota	al po	ower = 10	0,000). watt	s					
ா∩wா	B Ar	MITTANCE	ጉ እለአጣ	עדסי						
			al (m			i	ainam	(mh `		
Y(1,)2465				017743	(mhos)		
Y(1,)1426				002800			
Y(1,)1731				073892			
Y(1,	4))1507				034545			
Υ(2,	1)	.00	01426	26			002800			
Y(2,		.00)3045	82			027484			
Y(2,)1205				004537			
Y(2,			549E				004340			
Y(3,)1731				073896			
Y(3, Y(3,)1205)2778				004537	69		
Y(3,)1112				023159	71		
Y(4,)1507				001796 034547			
Y(4,			.547E				004340			
Y(4,			1112				001796			
Y(4,			2604				024327			
		PEDANCE								
Impe Z(1,			1 (0	hms)				(ohms)		
Z(1, Z(1,			.081	1			.23			
Z(1,			5508	T			.0454 .4044			
Z(1,	4)		3564				.5869			
Z(2,	1)		.886	5			.0442			
Ζ(2,	2)		.073	-			.988			
Ζ(2,	3)		.639	6			.9831			
Ζ(2,	4)		.855				3423			
Ζ(3,	1)		549				.4047			
Ζ(3,	2)		.6392	2			.9838			
Ζ(3,	3)		.288		2	228	.076			
Ζ(3,	4)		.362	9			.2318			
Z(4,	1)		3548	<u>^</u>			.5863			
Z(4, Z(4,	2) 3)		.855				3421			
Z(4, Z(4,	3) 4)		.3620	D			.2321			
		100	. 022		2	23	.716			

KSJX- DA Medium Wave Array Synthesis From Field Ratios

NIGHT

Freque	ncy = 1.5 MH	İz			MUTI		
tower 1 2 3 4	field ratio magnitude 1. .4 0 .65	phase 0 69. 0 262.	(deg)				
source node 1 16 31 46 Sum of	1,003.79 312.039	phase 67.6 144.1 311.6 323.7 urce cu	(deg) rrents	4.2819 1.8462 .75426 2.3840	ude 3 7 1 2	phase 15.2 76.9 40.8 298.5	(deg)
admitta Y(1, 1) Y(1, 2) Y(1, 3) Y(1, 4) Y(2, 1) Y(2, 2) Y(2, 3) Y(2, 4) Y(2, 4) Y(3, 1) Y(3, 2) Y(3, 3) Y(3, 4) Y(4, 1) Y(4, 2) Y(4, 4)) .00142 .00173 .00150 .00142 .00304 .00120 .00120 .00173 .00120 .00277 .001112 .00150 2.15471 .001112 .00260	mhos) 55 624 12 724 626 582 567 E-05 12 566 86 294 725 E-05 294 496	00 .000 00 00 00 00 00 00	aginary 0017743 0002800 0073892 0034545 00028000 00274841 00045376 00045376 00045376 00045376 00045376 00045376 00045376 00045376 00045479 00017967 00345479 00043408 00017967 00243277	5 37 9 7 0 8 3 2 4 5 9 7 1 9 3 2 7 5		
TOWER I impedar Z(1, 1) Z(1, 2) Z(1, 3) Z(1, 4) Z(2, 1) Z(2, 2) Z(2, 2) Z(2, 3) Z(2, 4) Z(2, 4) Z(3, 2) Z(3, 2) Z(3, 3) Z(3, 4) Z(4, 1) Z(4, 2) Z(4, 4)	$\begin{array}{c} 153.083\\ -20.885\\ 52.5508\\ 32.3564\\ -20.886\\ 179.073\\ -43.635\\ 52.549\\ -43.635\\ 165.288\\ -35.362\\ 32.3548\\ -55.855\\ -35.362\\ 32.3548\\ -55.855\\ -35.362\end{array}$	Dhms) 1 51 3 4 55 3 9 6 5 4 9 2 9 2 9 2 9 2 9 2 9 2 9 2 9 2 9 2 9	248 -76 -98 -76 206 -66 48. -80 -66 228 -86 -98 48. -86	ginary .23 .0454 .4044 .5869 .0442 .988 .9831 3423 .4047 .9838 .076 .2318 .5863 3421 .2321 .716			

 \mathbf{x}_{i}^{t}
Exhibit 4G - Tower Base Circuit Analysis Model

CIRCUIT ANALYSIS

Circuit analysis was performed on each tower of the KSJX model. The "Phasetek" Nodal Circuit Analysis program was used to compute base model Input/ Output voltages and currents. For directional modes of operation, the calculated Mininec Tower Base Drive Voltage was used to determine the Base Network Input Current. This point is the location of the sampling TCT. "Z₁" represents the ATU/Filter Shunt impedance, "Z₂" represents the Tower Feed and series filter impedance, and "Z₃" represents the Tower Base Shunt impedance.

Exhibit 4H - Base Network Computation

TOWER ANALYSIS- DAY

CUSTOMER : KSJX NETWORK ID : TOWER 1 DAY

> FREQUENCY : 1500.00 kHz ATU SHUNT IMPEDANCE (R,X) : 0.00, -1000.00 OHMS TOWER FEED IMPEDANCE (R,X) : 0.00, -137.00 OHMS TOWER SHUNT IMPEDANCE (R,X) : 0.00, -7073.60 OHMS TOWER IMPEDANCE (R,X) : 309.00, 310.94 OHMS

NODE	ТО	NODE	IMPEDANCE R	(OHMS) X
1		GROUND	0.00	-1000.00
2		GROUND	337.36	309.82
1		2	0.00	-137.00

	VOLTAG	Ξ
NODE	MAGNITUDE	PHASE
1	1851.83	55.16
- -		
2	2237.73	70.60

	REAL	IMAGINARY	MAGNITUDE	PHASE
INPUT IMPEDANCE (OHMS) :	422.74	36.51	424.32	4.94
INPUT CURRENT (AMPS) :	2.79	3.35	4.36	50.22
OUTPUT CURRENT (AMPS) :	4.61	2.19	5.10	25.42

INPUT/OUTPUT CURRENT RATIO = 0.8550 INPUT/OUTPUT PHASE = 24.80 DEGREES CUSTOMER : KSJX NETWORK ID : TOWER 2 DAY

1

FREQUENCY : 1500.00 kHz ATU SHUNT IMPEDANCE (R,X) : 0.00, -1000.00 OHMS TOWER FEED IMPEDANCE (R,X) : 0.00, -49.00 OHMS TOWER SHUNT IMPEDANCE (R,X) : 0.00, -7073.60 OHMS TOWER IMPEDANCE (R,X) : -73.14, 364.22 OHMS

NODE	то	NODE	IMPEDANCE R	(OHMS) X
1		GROUND	0.00	-1000.00
2		GROUND	-81.28	383.11
1		2	0.00	-49.00

	VOLTAG	E
NODE	MAGNITUDE	PHASE
1	742.41	-97.91
2	845.58	260.40

	REAL	IMAGINARY	MAGNITUDE	PHASE
INPUT IMPEDANCE (OHMS) :	-180.62	479.69	512.57	110.63
INPUT CURRENT (AMPS) :	-1.27	0.69	1.45	151.46
OUTPUT CURRENT (AMPS) :	-2.13	0.81	2.28	159.05

INPUT/OUTPUT CURRENT RATIO = 0.6363 INPUT/OUTPUT PHASE = -7.58 DEGREES CUSTOMER : KSJX NETWORK ID : TOWER 3 DAY

> FREQUENCY : 1500.00 kHz ATU SHUNT IMPEDANCE (R,X) : 0.00, -1000.00 OHMS TOWER FEED IMPEDANCE (R,X) : 0.00, -95.00 OHMS TOWER SHUNT IMPEDANCE (R,X) : 0.00, -7073.60 OHMS TOWER IMPEDANCE (R,X) : 71.59, 133.50 OHMS

			IMPEDANCE	(OHMS)
NODE	ТО	NODE	R	Х
1		GROUND	0.00	-1000.00
2		GROUND	74.36	135.30
1		2	0.00	-95.00

	VOLTAG	E
NODE	MAGNITUDE	PHASE
1 2	469.00 856.11	144.65 177.40

	REAL	IMAGINARY	MAGNITUDE	PHASE
INPUT IMPEDANCE (OHMS) :	80.25	35.78	87.87	24.03
INPUT CURRENT (AMPS) :	-2.72	4.59	5.34	120.62
OUTPUT CURRENT (AMPS) :	-2.44	5.10	5.65	115.60

INPUT/OUTPUT CURRENT RATIO = 0.9445 INPUT/OUTPUT PHASE = 5.02 DEGREES

Base Network Computation

TOWER ANALYSIS- NIGHT

CUSTOMER : KSJX NETWORK ID : TOWER 1 NIGHT

> FREQUENCY : 1500.00 kHz ATU SHUNT IMPEDANCE (R,X) : 0.00, -1000.00 OHMS TOWER FEED IMPEDANCE (R,X) : 0.00, -137.00 OHMS TOWER SHUNT IMPEDANCE (R,X) : 0.00, -7073.60 OHMS TOWER IMPEDANCE (R,X) : 142.98, 185.89 OHMS

NODE	TO NODE	IMPEDANCI R	E (OHMS) X
1 2	GROUN		-1000.00 187.78 -137.00

	VOLTAGE			
NODE	MAGNITUDE	PHASE		
1	663.06	34.97		
2	1003.79	67.60		

	REAL	IMAGINARY	MAGNITUDE	PHASE
INPUT IMPEDANCE (OHMS) :	163.18	27.58	165.49	9.59
INPUT CURRENT (AMPS) :	3.62	1.72	4.01	25.38
OUTPUT CURRENT (AMPS) :	4.13	1.12	4.28	15.17

INPUT/OUTPUT CURRENT RATIO = 0.9361 INPUT/OUTPUT PHASE = 10.21 DEGREES

CUSTOMER : KSJX NETWORK ID : TOWER 2 NIGHT

FREQUENCY : 1500.00 kHz ATU SHUNT IMPEDANCE (R,X) : 0.00, -1000.00 OHMS TOWER FEED IMPEDANCE (R,X) : 0.00, -49.00 OHMS TOWER SHUNT IMPEDANCE (R,X) : 0.00, -7073.60 OHMS TOWER IMPEDANCE (R,X) : 65.76, 155.81 OHMS

NODE	TO	NODE	IMPEDANCE R	(OHMS) X
1		GROUND	0.00	-1000.00
2		GROUND	68.75	158.67
1		2	0.00	-49.00

	VOLTAGE				
NODE	MAGNITUDE	PHASE			
1	233.57	135.44			
2	312.04	144.10			
2	512.04	144.10			

	REAL	IMAGINARY	MAGNITUDE	PHASE
INPUT IMPEDANCE (OHMS) :	86.22	116.52	144.95	53.50
INPUT CURRENT (AMPS) :	0.23	1.60	1.61	81.94
OUTPUT CURRENT (AMPS) :	0.42	1.80	1.85	76.98

INPUT/OUTPUT CURRENT RATIO = 0.8734 INPUT/OUTPUT PHASE = 4.96 DEGREES

CUSTOMER : KSJX NETWORK ID : TOWER 4 NIGHT

FREQUENCY : 1500.00 kHz ATU SHUNT IMPEDANCE (R,X) : 0.00, -1000.00 OHMS TOWER FEED IMPEDANCE (R,X) : 0.00, -130.00 OHMS TOWER SHUNT IMPEDANCE (R,X) : 0.00, -7073.60 OHMS TOWER IMPEDANCE (R,X) : 378.67, 177.58 OHMS

NODE	ТО	NODE	IMPEDANCE R	(OHMS) X
1 2		GROUND GROUND	0.00 397.23	-1000.00
1		2	0.00	-130.00

	VOLTAC	ΞE
NODE	MAGNITUDE	PHASE
1	927.70	-53.91
2	997.52	323.70

	REAL	IMAGINARY	MAGNITUDE	PHASE
INPUT IMPEDANCE (OHMS) :	361.76	-116.91	380.18	-17.91
INPUT CURRENT (AMPS) :	1.97	-1.43	2.44	-36.00
OUTPUT CURRENT (AMPS) :	1.14	-2.09	2.39	-61.42

INPUT/OUTPUT CURRENT RATIO = 1.0231 INPUT/OUTPUT PHASE = 25.42 DEGREES

EXHIBIT 6 – Spurious Radiation Measurements

KLOK (1170 KHZ), 50.0 KW DAY (DA) MODE KZSF (1370 KHZ), 5.0 KW DAY (DA) MODE KSJX (1500 KHZ), 10.0 KW DAY (DA) MODE

		Attenuation (dB) relative to			
Frequer	ncy (kHz)	Field Intensity (mV/M)	<u>KLOK</u>	<u>KŻSF</u>	KSJX
	70	0070			
117		2270			
137		935			
150		871			
510		.016	103.0	95.3	94.7
600		.012	105.5	97.8	97.2
660		.028	98.2	90.5	89.9
77(<.01	>107.1	>99.4	>98.8
840		.065	90.9	83.2	82.5
97(.076	89.5	81.8	81.2
990		<.01	>107.1	>99.4	>98.8
111		.029	97.9	90.2	89.6
124		.049	93.3	85.6	85.0
157		.057	92.0	84.3	83.7
163		.036	96.0	88.3	87.7
176	60	.011	106.3	98.6	98.0
177		.011	106.3	98.6	98.0
183		.050	93.1	85.4	84.8
201	10	.014	104.2	96.5	95.9
214	40	.012	105.5	97.8	97.2
216	60	.010	107.1	99.4	98.8
234	40	.044	94.3	86.5	85.9
254	40	.039	95.3	87.6	87.0
261	10	<.01	>107.1	>99.4	>98.8
267	70	.079	89.2	81.5	80.8
274	40	.016	103.0	95.3	94.7
287	70	.040	95.1	87.4	86.8
294	40	<.01	>107.1	>99.4	>98.8
300	00	.075	89.6	81.9	81.3
313	30	<.01	>107.1	>99.4	>98.8
333	30	<.01	>107.1	>99.4	>98.8

SPURIOUS RADIATION MEASUREMENTS (CONTINUED)

KLOK (1170 KHZ), 50.0 KW DAY (DA) MODE KZSF (1370 KHZ), 5.0 KW DAY (DA) MODE KSJX (1500 KHZ), 10.0 KW DAY (DA) MODE

		Attenuation (dB) relative to			
Frequency (kHz)	Field Intensity (mV/M)	<u>KLOK</u>	KZSF	<u>KSJX</u>	
3510	.052	92.8	85.1	84.5	
3710	.077	89.4	81.7	81.1	
3840	.070	90.2	82.5	81.9	
3910	.048	93.5	85.8	85.2	
4110	.029	97.9	90.2	89.6	
4170	.025	99.2	91.5	90.8	
4240	.011	106.3	98.6	98.0	
4370	.018	102.0	94.3	93.7	
4500	.057	92.0	84.3	83.7	
4880	.012	105.5	97.8	97.2	

Above taken with Potomac Instruments, PI 4100, 1.17 kM from the Antenna on a bearing of 235°T. Point coordinates

(NAD 27): N37° 21' 6.0", W121° 52' 56.0".

Above readings meet required attenuation of 80.0dB.

EXHIBIT 7 - Reference Field Strength Measurements- KSJX

Reference field strength measurements were made using a Potomac Instruments FIM-41 which was compared in calibration to a Potomac Instruments PI4100 Serial Number 249, calibrated 1/21/2016 at three locations along radials at the azimuths as determined by pattern minima and lobes coinciding with the previous MoM proof on 2013.

The measured field strengths, descriptions, and GPS coordinates for the reference measurement points are shown on the following pages. All locations indicated are listed using NAD 83 datum. All measurements were taken on March 10th and 13th, 2017 between the hours of 9:00am and 5:30pm.

DAY REFERENCE POINTS

6.5° Radial

Point	Dist. Km.	N Latitude	W. Longitude	Field	Comments
No				mV/m	
1	1.51	37° 22' 16.3"	121° 52′ 14.1″	240	NE Corner Commodore & Cape Canaveral
2	1.67	37° 22' 21.5"	121° 52' 13.0"	240	1773 Cape Coral
3	1.92	37° 22' 29.5"	121° 52′ 11.6″	180	1775 Penwood

28.5° Radial

Point	Dist. Km.	N. Latitude	W. Longitude	Field	Comments
No			_	mV/m	
1	1.53	37° 22' 29.5"	121° 52′ 11.6"	240	1870 Pine Hollow Cir
2	2.28	37° 22' 32.3"	121° 51' 37.0"	125	824 Jackson
3	2.52	37° 22' 39.4"	121° 51′ 32.0"	110	Southgrove & Beaver Crk Way

Point	Dist. Km.	N. Latitude	W. Longitude	Field	Comments
No			_	mV/m	
1	1.4	37° 21' 15.6"	121° 51' 25.9"	530	87 King Rd
2	1.71	37° 21' 12.8"	121° 51' 13.5"	470	NE Corner SJ City parking lot
3	2.0	37° 21' 10.8"	121° 51' 02.5"	390	McCreary & Stowe

.

Point	Dist. Km.	N. Latitude	W. Longitude	Field	Comments
No				mV/m	
1	0.633	37° 21' 12.4"	121° 52' 04.0"	1100	At "no truck over 30ft "sign
2	0.821	37° 21' 08.1"	121° 51' 58.2"	1050	On St. James at "Customer Parking" sign
3	1.1	37° 21' 01.5"	121° 51′ 50.8″	650	At Taube Humanities building

207° Radial

Point	Dist. Km.	N. Latitude	W. Longitude	Field	Comments
No				mV/m	
1	0.985	37° 20' 59.4"	121° 52' 39.3"	820	360 N 18 th St
2	1.23	37° 20' 52.1"	121° 52' 44.0"	570	749 Julian
3	1.54	37° 20' 43.4"	121° 52′ 49.8″	490	220 N 13 th St.

325.5° Radial

Point No	Dist. Km.	N. Latitude	W. Longitude	Field mV/m	Comments
1	0.714	37° 21' 46.9"	121° 52' 37.2"	320	1155 Mabury
2	0.969	37° 21′ 53.8″	121° 52' 43.0"	210	At Fire hydrant across from dump
3	1.33	37° 22' 03.5"	121° 52' 51.5"	160	At "Berryessa Transit Ctr" sign

NIGHT REFERENCE POINTS

54.5° Radial

Point No	Dist. Km.	N. Latitude	W. Longitude	Field mV/m	Comments
1	1.05	37° 21' 48"	121° 51' 46"	56	On corner
2	1.28	37° 21' 52"	121° 51' 38"	75	End of cul de sac
3	1.58	37° 21' 58"	121° 51' 28"	52	In parking lot, E side of road

102° Radial

Point	Dist. Km.	Latitude	Longitude	Field	Comments
No		· · · · · · · · · · · · · · · · · · ·		mV/m	1720
1	1.09	37° 21' 20.5"	121° 51' 37"	110	E. St. James just past MeDonald Ave
2	1.3	37° 21' 19"	121° 51' 29"	67	W side of King, just North of Wilshire
3	1.65	37° 21' 17"	121° 51' 15"	32	Beverly Blvd & Magellan

115.5° Radial

Point	Dist.	Latitude	Longitude	Field	Comments
No	Km.		_	mV/m	
1	.935	37° 21' 14.9"	121° 51' 46.5"	140	E St. James just west of N 33 rd st.
2	1.09	37° 21' 12.4"	121° 51' 40.9"	98	N 33 rd St. Middle of block
3	1.30	37° 21′ 9.5″	121° 51' 33.3"	75	Corner Perry Ct & Eastwood Ct.

203° Radial

Point	Dist.	Latitude	Longitude	Field	Comments
No	Km.			mV/m	
1	.671	37° 21' 7.9"	121° 52′ 31.4″	1100	Just North of Julian on 18 th St.
2	1.18	37° 20' 53"	121° 52' 39.5"	340	SW Corner, Julian & 17 th St.
3	1.27	37° 20' 49.8"	121° 51' 33.3"	290	16 th St. just South of Julian

Point	Dist.	Latitude	Longitude	Field	Comments
No	Km.		_	mV/m	
1	1.03	37° 21′ 13.1″	121° 52' 58.5"	550	15 th St. just North of E. Empire
2	1.32	37° 21′ 08.5″	121° 53' 08.8"	520	13 th St across from park just So of Jackson
3	1.41	37° 21′ 07.4″	121° 53' 12.5"	500	12 th St. just south of Jackson

243.5° Radial

Point	Dist.	Latitude	Longitude	Field	Comments
No	Km.			mV/m	
1	.823	37° 21' 41.9"	121° 53′ 9.1″	1200	21 st & Marianelio
2	.926	37° 21′ 38.3″	121° 52' 56.2"	1100	Mission just West of 21st
3	1.26	37° 21′ 36.8″	121° 52′ 52.6″	1000	In small cul de sac South of Bayshore Rd

EXHIBIT 8 – Site Survey

Because this is an existing site in use by KSJX and KZSF, a survey is not necessary, however, a survey for KLOK as a new tenant at this site was conducted and verified that the towers are placed as specified in this analysis.