

July 3, 2018

7136 S Yale Ave Suite 501 Tulsa, OK 74136

5 PM I: 52 918.664.4581 f 918.664.3066

www.iHeartMedia.com www.iHeartRadio.com #iheartradio

Accepted / Filed

JUL - 3 2018

Federal Communications Commission Office of the Secretary

COURIER DELIVERY

Ms. Marlene H. Dortch, Secretary Federal Communications Commission 445 Twelfth Street, S.W. Washington, DC 20554

> RE: AMFM Radio Licenses, L.L.C., as debtor in possession (FRN No. 0027342674) Application for New License on FCC Form 302-AM KGME (AM), 910 kHz, Phoenix, AZ; Facility ID No. 65480

Dear Ms. Dortch:

On behalf of AMFM Radio Licenses, L.L.C., as debtor in possession, the licensee of the above-referenced station, enclosed is an original and four copies of an application for New License submitted on FCC Form 302-AM.

Also enclosed is Form 159, Remittance Advice, with credit card payment of the \$1,505.00 filing fee.

Please stamp and return the additional copy of this submission in the enclosed Federal Express envelope. Please direct communications concerning this application to the undersigned.

Respectfully submitted, AMFM Radio Licenses, L.L.C., as debtor in possession

By: _

Stephen G. Davis Senior Vice President, RE, Facilities & Corporate Development

cc: Public Inspection File

Agency Tracking ID:PGC3115041 Authorization Number:128526 Successful Authorization -- Date Paid: 7/3/18 FILE COPY ONLY!!

READ INSTRUCTIONS CAREFULLY	FEDERAL COMMUNIC	CATIONS	COMMISSION	1	APPROVED BY OME
BEFORE PROCEEDING	REMITTAN	EDECIAL US	3060-059		
	FOR	SPECIAL US	E		
(1) LOCKBOX #979089	PAGEN	FCC USE ON	ILY		
I	SECTI	ON A - F	Paver Information	l	
(2) DAVEP NAME (if paying by gradit gard	anter name exactly as it appears on your card)			(3) TOTAL AMOUNT	PAID (dollars and cents)
AMFM Radio Licenses, LLC, as	debtor in possession			\$1505.00	
(4) STREET ADDRESS LINE NO. 1 7136 S. Yale Avenue					
(5) STREET ADDRESS LINE NO. 2 Suite 501					
(6) CITY Tulsa			(7) STATE		(8) ZIP CODE
(1) DAVTIME TELEDUONE NUMPER (N			KIN COLNTRY CODE (IE)	NOTINIUSA	[/4130
918-6644581	CLUDING AREA CODE)		US	NOT IN U.S.A.)	
	FCC REGISTRATION NUMBER (FRN)	AND TA	X IDENTIFICATION NUMBER (TIN) REG	QUIRED	
(11) PAYER (FRN) 0027342674			(12) FCC USE ONLY		
	IF PAYER NAME AND THE APPLICA IF MORE THAN ONE APPLICA	NT NAM	ME ARE DIFFERENT, COMPLETE SECT CONTINUATION SHEETS (FORM 159-C	ION B	
(13) APPLICANT NAME AMFM Radio Licenses, LLC, as	debtor in possession				
(14) STREET ADDRESS LINE NO. 1 7136 S. Yale Avenue					
(15) STREET ADDRESS LINE NO. 2 Suite 501		******			in an
(16) CITY Tulsa			(17) STATE OK		(18) ZIP CODE 74136
(19) DAYTIME TELEPHONE NUMBER (IN 918-6644581	NCLUDING AREA CODE)		(20) COUNTRY CODE (IF) US	NOT IN U.S.A.)	
	FCC REGISTRATION NUMBER (FRN)	AND TA	X IDENTIFICATION NUMBER (TIN) REA	QUIRED	
(21) APPLICANT (FRN) 0027342674			(22) FCC USE ONLY		
	COMPLETE SECTION C FOR EACH SERVICE	E, IF MO	RE BOXES ARE NEEDED, USE CONTIN	UATION SHEET	
(23A) FCC Call Sign/Other ID	KGME		(24A) Payment Type Code(PTC) MMR		(25A) Quantity 1
(26A) Fee Due for (PTC)	\$700.00		(27A) Total Fee \$700.00		FCC Use Only
(28A) FCC CODE 1	65480	(29A) FC	CC CODE 2 302 A	MNEWLICENSE	
		•			
(23B) FCC Call Sign/Other ID	KGME		(24B) Payment Type Code(PTC) MOR		(25B) Quantity 1
(26B) Fee Due for (PTC)	\$805.00		(27B) Total Fee \$805.00		FCC Use Only
(28B) FCC CODE 1		(29B) FC	CC CODE 2		
	65480		302A	MDIRANTENNA	

Accepted / Filed

Federal Communications Commission Washington, D. C. 20554	Approved by 306 Expires 01	y OMB 0-0627 1/31/98	FOR FCC USE		JUL Federal Comm	JUL - 3 2018		
FCC 302-AM			UNLY		Office of the Secretary			
APPLICATION FOR A	M			000-000-00-00-00-00-00-00-00-00-00-00-0				
BROADCAST STATION LIC	CENSE		FOR CO	OMMISSIC	ON USE ONLY			
(Please read instructions before filling o	out form.		FILE NO	pl	20180	1703AAU		
SECTION I - APPLICANT FEE INFORMATION								
1. PAYOR NAME (Last, First, Middle Initial)								
AMFM RADIO LICENSES, L.L.C., AS DEBTOR IN POSSESSION								
MAILING ADDRESS (Line 1) (Maximum 35 characte 7136 S YALE AVE	ers)							
MAILING ADDRESS (Line 2) (Maximum 35 character SUITE 501	ers)							
CITY TULSA		STATE OK	OR COUN	TRY (if for	reign address)	ZIP CODE 74136		
TELEPHONE NUMBER (include area code) 918-664-4581	-	CALL LI KGME	LETTERS OTHER FCC IDENTIFIER (NTIFIER (If applicable)		
2. A. Is a fee submitted with this application?	•				[✓ Yes No		
C. If Yes, provide the following information:	commercial educ	cational lic	ensee		her (Please explain)	:		
Fee Filing Guide." Column (B) lists the Fee Multiple	applicable for thi	is applicati	on. Enter	fee amour	nt due in Column (C	n une mass media Services).		
(A) (B) FEE TYPE FEE MULTIPLE CODE 0 0 1			FEE DUE TYPE (COLU 700.00	C) For Fee Code In MN (A)		FOR FCC USE ONLY		
To be used only when you are requesting concurrent a	actions which res	sult in a re	quirement	to list mor	e than one Fee Typ	e Code.		
(A) (B) (B) (B) (D) (D) (D) (D) (D)			(C) \$ 805.00		FOR FCC USE ONLY			
ADD ALL AMOUNTS SHOWN IN COLUMN C, AND ENTER THE TOTAL HERE. THIS AMOUNT SHOULD EQUAL YOUR ENCLOSEI REMITTANCE.	/·	R \$	TOTAL A EMITTED APPLIC 1,505.00	MOUNT WITH TH ATION	IS	FOR FCC USE ONLY		

SECTION II - APPLICAN	T INFORMATION						
1. NAME OF APPLICANT							
MAILING ADDRESS							
7136 S YALE AVE, SUITE 5 CITY TULSA	501		STATE OK	~	ZIP CODE 74136		
2 This application is far:			I				
Commercial Noncommercial							
	AM Direc	tional		on-Directional			
Call letters	Community of License	Construct	ion Permit File No.	Modification of Construction	Expiration Date of Last		
KGME	PHOENIX, AZ			Permit File No(s).	Construction Permit		
3. Is the station ne accordance with 47 C.F	ow operating pursuant .R. Section 73.1620?	to auto	matic program	test authority in	✓ Yes No		
If No, explain in an Exhi	bit.			· · · ·			
4. Have all the terms construction permit been	s, conditions, and oblig n fully met?	ations s	et forth in the	above described	✓ Yes No		
If No, state exceptions in	n an Exhibit.						
5. Apart from the change the grant of the underl representation contained	ges already reported, ha ying construction permit d in the construction perr	s any ca which w nit applic	use or circumsta would result in a ation to be now	ance arisen since any statement or incorrect?	Yes 🗸 No		
If Yes, explain in an Ex	hibit.						
6. Has the permittee fil	ed its Ownership Report	(FCC Fo	orm 323) or owne	ership	🗸 Yes 🔜 No		
		110,001	5(0):		Does not apply		
If No, explain in an Exhi	bit.				Exhibit No.		
7. Has an adverse finding been made or an adverse final action been taken by any court or administrative body with respect to the applicant or parties to the application in a civil or criminal proceeding, brought under the provisions of any law relating to the following: any felony; mass media related antitrust or unfair competition; fraudulent statements to another governmental unit; or discrimination?							
another governmental unit; or discrimination? If the answer is Yes, attach as an Exhibit a full disclosure of the persons and matters involved, including an identification of the court or administrative body and the proceeding (by dates and file numbers), and the disposition of the litigation. Where the requisite information has been earlier disclosed in connection with another application or as required by 47 U.S.C. Section 1.65(c), the applicant need only provide: (i) an identification of that previous submission by reference to the file number in the case of an application, the call letters of the station regarding which the application or Section 1.65 information was filed, and the date of filing; and (ii) the disposition of the previously reported matter							

8. Does the applicant, or any party to the application, have a petition on file to migrate to the expanded band (1605-1705 kHz) or a permit or license either in the existing band or expanded band that is held in combination (pursuant to the 5 year holding period allowed) with the AM facility proposed to be modified herein?

If Yes, provide particulars as an Exhibit.

The APPLICANT hereby waives any claim to the use of any particular frequency or of the electromagnetic spectrum as against the regulatory power of the United States because use of the same, whether by license or otherwise, and requests and authorization in accordance with this application. (See Section 304 of the Communications Act of 1934, as amended).

The APPLICANT acknowledges that all the statements made in this application and attached exhibits are considered material representations and that all the exhibits are a material part hereof and are incorporated herein as set out in full in

CERTIFICATION

1. By checking Yes, the applicant certifies, that, in the case of an individual applicant, he or she is not subject to a denial of federal benefits that includes FCC benefits pursuant to Section 5301 of the Anti-Drug Abuse Act of 1988, 21 U.S.C. Section 862, or, in the case of a non-individual applicant (e.g., corporation, partnership or other unincorporated association), no party to the application is subject to a denial of federal benefits that includes FCC benefits pursuant to that section. For the definition of a "party" for these purposes, see 47 C.F.R. Section 1.2002(b).

2. I certify that the statements in this application are true, complete, and correct to the best of my knowledge and belief, and are made in good faith.

		1/1
Name	Signature	
Stephen G. Davis	M75 /	
Title	Date	Telephone Number
SVP, RE, Facilities & Corp Development	07/03/2018	918-664-4581

WILLFUL FALSE STATEMENTS ON THIS FORM ARE PUNISHABLE BY FINE AND/OR IMPRISONMENT (U.S. CODE, TITLE 18, SECTION 1001), AND/OR REVOCATION OF ANY STATION LICENSE OR CONSTRUCTION

FCC NOTICE TO INDIVIDUALS REQUIRED BY THE PRIVACY ACT AND THE PAPERWORK REDUCTION ACT

The solicitation of personal information requested in this application is authorized by the Communications Act of 1934, as amended. The Commission will use the information provided in this form to determine whether grant of the application is in the public interest. In reaching that determination, or for law enforcement purposes, it may become necessary to refer personal information contained in this form to another government agency. In addition, all information provided in this form will be available for public inspection. If information requested on the form is not provided, the application may be returned without action having been taken upon it or its processing may be delayed while a request is made to provide the missing information. Your response is required to obtain the requested authorization.

Public reporting burden for this collection of information is estimated to average 639 hours and 53 minutes per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the burden, can be sent to the Federal Communications Commission, Records Management Branch, Paperwork Reduction Project (3060-0627), Washington, D. C. 20554. Do NOT send completed forms to this address.

THE FOREGOING NOTICE IS REQUIRED BY THE PRIVACY ACT OF 1974, P.L. 93-579, DECEMBER 31, 1974, 5 U.S.C. 552a(e)(3), AND THE PAPERWORK REDUCTION ACT OF 1980, P.L. 96-511, DECEMBER 11, 1980, 44 U.S.C. 3507.

Yes 🗸 No

\checkmark	Yes		No
--------------	-----	--	----

SECTION III - LICENSE APPLICATION ENGINEERING DATA							
Name of Applicant AMFM RADIO LICENSES, L.L.C.							
PURPOSE OF A	UTHORIZATION APPLIED FOR:	(check one)	,				
	Station License	✓ Direct Meas	surement of Power				
1. Facilities auth	orized in construction permit						
Call Sign	File No. of Construction Permit	Frequency	Hours of Operation	Power in kilowatts			
KGME	(if applicable)	(kHz) 910	UNLIMITED	Night 5.0	Day 5.0		
2. Station location	n		T				
State			City or Town				
ARIZONA	A Contraction of the second se		PHOENIX				
3. Transmitter lo	cation		······				
State	County		City or Town	Street address			
AZ MARICOPA		PHOENIX (or other identification) 2901 W. MARYLAND AVENUE					
4. Main studio lo	cation		r	1			
State County		City or Town	Street address (or other identific	ation)			

AZ	MARICOPA	PHOENIX	4686 E VAN BUREN ST SUITE 300
5. Remote contro	ol point location (specify only if authorized direction:	al antenna)	
State	County	City or Town	Street address
AZ	MARICOPA	PHOENIX	4686 E VAN BUREN ST SUITE 300
		1	I

6. Has type-approved stereo generating equipment been installed?	Yes 🗸 No
7. Does the sampling system meet the requirements of 47 C.F.R. Section 73.68?	✓ Yes No
	Not Applicable
Attach as an Exhibit a detailed description of the sampling system as installed.	Exhibit No.

8. Operating constants: RF common point or antenna modulation for night system 10.39	current (in amper	es) without	RF common modulation fc 7.91	RF common point or antenna current (in amperes) without modulation for day system 7.91			
Measured antenna or common operating frequency Night 50.0	n point resistance Day 80.0	(in ohms) at	Measured an operating free Night -j7.0	Measured antenna or common point reactance (in ohms) at operating frequency Night Day -j7.0 +j134.7			
Antenna indications for directional operation							
Towers Phase reading(s) in degrees		Antenna m curren	Antenna monitor sample current ratio(s)		Antenna base currents		
	Night	Day	Night	Day	Night	Day	
Tower #1 ASR 1006644	130.8	N/A	0.806	N/A			
Tower #2 ASR 1006643	0.0	N/A	1.0	N/A			
Tower #3 ASR 1006642	-139.0	N/A	0.826	N/A			
Tower #4 ASR 1006641	116.4	116.4 N/A C		N/A			
Manufacturer and type of antenna monitor: Potomac Instruments AM-19							

SECTION III - Page 2

9. Description of antenna system ((f directional antenna is used, the information requested below should be given for each element of the array. Use separate sheets if necessary.)

Type Radiator 4ea. uniform cross section, guyed	Overall height in meters of radiator above base insulator, or above base, if grounded. 4 ea. 91.51		Overall height in meters above ground (without obstruction lighting) 4 ea. 92.51		Overall height in meters above ground (include obstruction lighting) 4 ea. 93		If antenna is either to loaded or sectionalized describe fully in a Exhibit. Exhibit No.		
Excitation	√ Se	ries		Shunt		L			
Geographic coordinates	Geographic coordinates to nearest second. For directional antenna give coordinates of center of array. For single vertical radiator give								
North Latitude 33	0	32	0	0 "	West Longitud	^{de} 112	° 07	' 18	81
								Cubibit N	

If not fully described above, attach as an Exhibit further details and dimensions including any other antenna mounted on tower and associated isolation circuits.

Exhibit No.

Exhibit No.

Also, if necessary for a complete description, attach as an Exhibit a sketch of the details and dimensions of ground system.

10. In what respect, if any, does the apparatus constructed differ from that described in the application for construction permit or in the permit?

11	Give reasons for the change in antenna or common point resi	stance.
	see technical narrative	

I certify that I represent the applicant in the capacity indicated below and that I have examined the foregoing statement of technical information and that it is true to the best of my knowledge and belief.

Name (Please Print or Type) Jacob Wyatt	Signature (check appropriate box below)
Address (include ZIP Code) 113 West 4th St	Date
Ogallala, NE 69153	Telephone No. (Include Area Code) 308-289-1872
Technical Director	Registered Professional Engineer
Chief Operator	Technical Consultant
Other (specify)	
FCC 302-AM (Page 5) August 1995	

APPLICATION FOR LICENSE INFORMATION

RADIO STATION KGME

AMFM RADIO LICENSES, L.L.C

PHOENIX, ARIZONA

FID 65480

910 KHZ 5KW NDD, 5KW DAN

February 20, 2018

APPLICATION FOR LICENSE INFORMATION RADIO STATION KGME PHOENIX, ARIZONA

910 KHZ 5KW NDD, 5KW DAN

Table of Contents

Executive Summary

ltem 1	Analysis of Tower Impedance Measurements to Verify Method of Moments Model
ltem 2	Method of Moments Model Details for Towers Driven Individually
Item 3	Derivation of Operating Parameters Nighttime Directional Array
Item 4	Sampling System Measurements
ltem 5	Direct Measurement of Power
ltem 6	Reference Field Strength Measurements
Item 7	RFR Compliance
Item 8	Ground System Detail

EXECUTIVE SUMMARY

This engineering exhibit has been prepared in support of an application for licensing for radio station KGME, Phoenix Arizona, Facility ID #65480. Measurements included comply with the requirements of Rule Section 73.151c.

The towers and ground system remain as described in current license BZ-901015AI. The system was adjusted to operating parameters computed using the Moment Method process as described in Rule Section 73.151c. MiniNEC Broadcast Professional version 14.6 by EM Scientific Inc. was used in the analysis.

The system has been adjusted to produce nighttime directional antenna parameters within+/-5% in ratio and +/-3 degrees in phase of the modeled values as prescribed in the Rules.

All measurements contained in this report were made by Mr. Jacob Wyatt of the iHeart Media Corporate Engineering Staff or the undersigned.

Please refer any questions regarding this report to:

Juno Many

John F. Warner johnwarner@clearchannel.com 443-255-5299

Analysis of Tower Impedance Measurements to Verify Method of Moments Model

Impedance measurements were made of the individual towers with the other tower bases open. Measurements were made using a Hewlett-Packard 8753ES network analyzer and a Tunwall Radio directional coupler in a calibrated measurement system. Measurements were made immediately adjacent to the toroidal antenna sampling transformers, inside the antenna coupling units. These measured values were related to the modeled values obtained using Expert MININEC Broadcast Professional V14.6. Heights of the towers were adjusted as permitted by Rule Section 73.151(c)(1).

The tower radii were modeled at their actual values. The towers were segmented so that each segment is less than ten (10) degrees in length.

Tower	Actual	Model	Model	Model	Model
	Height	Height	Percent	Equivalent	Percent
	Degrees	Degrees	of	Radius	Of
			Height	Meters	Radius
1	100.0	107.5	107.5	0.291	100
2	100.0	108.2	108.2	0.291	100
		-			
3	100.0	108.0	108.0	0.291	100
4	100.0	109.0	109.0	0.291	100

Method of Moments Model Details for Towers Driven Individually

The model was verified by comparison of modeled to measured tower impedances. The tower resistance and reactance were measured immediately adjacent to the toroidal base sampling transformers, inside the antenna tuning unit cabinets. The measured and modeled impedances were correlated using the Westberg Consulting WCAP Pro software program. WCAP is based on the SPICE nodal analysis program. The shunt capacitive reactance of the tower base insulator is represented in the drawing below as Xc. The series inductive reactance of the tower feed conductor is represented as XI. Z model represents the modeled impedance of the tower and Zin represents the impedance measured at the sampling point. In the following WCAP tabulations, the modeled impedance is represented between nodes 2-0. Node 0 represents ground. The calculated reference point impedances appear under the "TO NODE IMPEDANCE" columns of the WCAP calculations, following the insignificantly short transmission line (TL 1-3) that was included in series with the drive current sources (I 0-1) to provide calculation points for the impedances.

Barren and Anna Anna Anna Anna Anna Anna Anna			·	·····		
Tower	L (uh)	XI (+j)	Xc (-j)	Z Modeled	Z in Modeled	Z in Measured
1	2.1	12.01	-2332	81.16 +j124.81	90.48 +j140.55	90.36 +140.54
2	0.55	3.14	-2332	79.01 +j132.55	88.71 +j140.5	88.88 +j140.41
3	1.3	7.43	-2332	78.27 +j131.59	87.8 +j143.77	88.17 +j143.88
4	0.25	1.43	-2332	86.26 +134.71	97.01 +j140.59	97.67 +j140.48

WCAP - KGME Tower 1 Driven, others floated

WCAP OUTPUT AT FREQUENCY: 0.910 MHz

NODE VOLTAGES Node: 1 167.1546 4 57.2285° V Node: 2 157.1925 4 54.8588° V Node: 3 167.1544 4 57.2285° V CURRENT OUT WCAP PART CURRENT IN 1.00 ∡ -0.001° A TL 1→3 50.0000000 1.00 4 -0.000° A BRANCH VOLTAGE **BRANCH CURRENT** WCAP PART R 2→0 81.16000000 157.19 ≰ 54.859° V 1.06 ≰ -2.107° A 0.00007500 157.19 4 54.859° V 0.07 4 144.859° A C 2→0 L 3→2 2,10000000 12.01 ¥ 89.999° V 1.00 ¥ -0.001° A FROM IMPEDANCE TO IMPEDANCE WCAP PART R 2→0 81.16000000 81.16+j 124.810 0.00+j 0.000 C 2→0 0.00007500 0.00 - j 2331.941 0.00 + j 0.000 TL 1→3 50.0000000 90.48+j 140.550 90.48+j 140.548 2.10000000 90.48 + j 140.548 90.48 + j 128.541 L 3→2 WCAP PART VSWR TL 1→3 50.0000000 6.5767 WCAP INPUT DATA: 0.9100 0.0000000 0 R 81.16000000 2 0 124.81000000 0.00007500 2 0 С 1.00000000 0 1 0.0000000 1 TL 50.0000000 1 3 100.0000000 0.00100000 0.00000000 L 2.10000000 3 2 0.00000000

WCAP - KGME Tower 2 driven, others floated

WCAP OUTPUT AT FREQUENCY: 0.910 MHz

NODE VOLTAGES Node: 1 166.1594 4 57.7322° V Node: 2 163.5087 4 57.1438° V Node: 3 166.1592 ∡ 57.7322° V WCAP PART CURRENT OUT CURRENT IN TL 1→3 50.0000000 1.00 ≰ -0.001° A 1.00 ≰ -0.001° A BRANCH VOLTAGE **BRANCH CURRENT** WCAP PART R 2→0 79.01000000 163.51 ⋨ 57.144° V 1.06 ⋨ -2.058° A C 2→0 0.00007500 163.51 4 57.144° V 0.07 4 147.144° A L 3→2 0.55000000 3.14 4 89.999° V 1.00 4 -0.001° A FROM IMPEDANCE WCAP PART TO IMPEDANCE R 2→0 79.01000000 79.01+j 132.550 0.00+j 0.000 C 2→0 0.00007500 0.00-j 2331.941 0.00+j 0.000 TL 1→3 50.0000000 88.71+j 140.498 88.71+j 140.496 L 3→2 0.55000000 88.71+j 140.496 88.71+j 137.352 WCAP PART VSWR TL 1→3 50.0000000 6.6376 WCAP INPUT DATA: 0.9100 0.0000000 0 R 79.01000000 2 0 132.55000000 С 0.00007500 2 0 1.00000000 0 1 1 0.00000000 TL 50.0000000 1 3 100.0000000 0.00100000 0.00000000 1 0.55000000 3 2 0.00000000

WCAP - KGME Tower 3 driven, others floated

WCAP OUTPUT AT FREQUENCY: 0.910 MHz

NODE VOLTAGES Node: 1 168.4625 ∡ 58.5869° V Node: 2 162.1648 ∡ 57.2179° V Node: 3 168.4623 4 58.5868° V WCAP PART CURRENT OUT CURRENT IN TL 1→3 50.00000000 1.00 4 -0.000° A 1.00 4 -0.001° A BRANCH VOLTAGE **BRANCH CURRENT** WCAP PART R 2→0 78.27000000 162.16 ≠ 57.218° V 1.06 ≠ -2.038° A C 2→0 0.00007500 162.16 4 57.218° V 0.07 4 147.218° A L 3→2 1.30000000 7.43 ≰ 89.999° V 1.00 ≰ -0.001° A WCAP PART FROM IMPEDANCE TO IMPEDANCE R 2→0 78.27000000 78.27 + j 131.590 0.00 + j 0.000 C 2→0 0.00007500 0.00-j 2331.941 0.00+j 0.000 TL 1→3 50.0000000 87.80+j 143.771 87.80+j 143.769 L 3→2 1.30000000 87.80 + j 143.769 87.80 + j 136.336 WCAP PART VSWR 50.0000000 6.8886 TL 1→3 WCAP INPUT DATA: 0.9100 0.0000000 0 R 78.27000000 2 0 131.59000000 С 0.00007500 2 0 1.00000000 0 1 0.0000000 1 TL 50.0000000 1 3 100.0000000 0.00100000 0.00000000 1 1.3000000 3 2 0.0000000

WCAP – KGME Tower 4 driven, others floated

h

WCAP OUTPUT AT FREQUENCY: 0.910 MHz

NODE VOLTAGES Node: 1 170.8151 4 55.3924° V Node: 2 169.6403 4 55.1182° V Node: 3 170.8149 4 55.3924° V

 WCAP PART
 CURRENT IN
 CURRENT OUT

 TL 1→3
 50.00000000
 1.00 ≠
 0.000° A
 1.00 ≠
 -0.001° A

WCAP PARTBRANCH VOLTAGEBRANCH CURRENTR $2 \rightarrow 0$ 86.2600000169.64 \measuredangle 55.118° V1.06 \measuredangle -2.249° AC $2 \rightarrow 0$ 0.00007500169.64 \measuredangle 55.118° V0.07 \measuredangle 145.118° AL $3 \rightarrow 2$ 0.250000001.43 \measuredangle 89.999° V1.00 \measuredangle -0.001° A

,			FROM IMPEDANCE	TO IMPE	DANCE
	WCAP PA		oc 26 + i 134 710	0.00 + i	0.000
R	2→0	86.26000000	00.201 1311/10	$0.00 \pm i$	0.000
С	2→0	0.00007500	0.00 - j 2331.941	0.001	140 500
TL	1→3	50.00000000	97.01+j 140.591	97.01 +]	140.590
1	3->2	0.25000000	97.01+j 140.590	97.01 + j	139.160

 WCAP PART
 VSWR

 TL 1→3
 50.00000000
 6.3736

WCAP INPUT DATA:

	0.9100 0.00000000			
R	86.26000000 2 0	134.71000000		
С	0.00007500 2 0			
1	1.00000000 0 1	0.00000000		0 0000000
TL	50.0000000 1 3	100.00000000	0.00100000	0.00000000
1	0.25000000 3 2	0.00000000		

Tower 1 driven, others floated

IMPED	ANCE	ation =	= 50								
freq (MHz)	re (C	sist	react (ohms)	ir (d	mped ohms) 1	pha: (de	se g)	VSWR	S11 dB	S12 dB	2
.91	81	.155	124.81	L 14	48.87	57.		5.9088	-2.9686	-3.	0524
GEOME' Wire Envire	TRY coordi onment	nates i : perfe	n degi ect gro	rees; ound	other	dime	nsions	s in me	ters		
wire 1	caps none	Distand 0	ce	Angle 0	9	Z 0	7 5	r.	adius 291	sec 15	IS D
2	none	120.		0 176. 176		0	0.0		291	15)
3.	none	240.		176.		0	, , ,		291 .	15	j
4	none	360. 360.		176. 176. 176.		108 0 109	9.		291	15	i.
Numbe	r of w c	vires Surrent	nodes	= 4	4 60						
T	1 -1			minir	num			m	aximum		
segmen radiu:	nt len s	lgth	2 [[L	7.166 .291	67		4 1	7.2666 .291	7	
ELECT	RICAL encies	DESCRII (MHz)	PTION.								
no. 1	freque lowest .91	ency	step 0		no. step 1	of : s i	segmer ninimu .01990	nt leng um)74	th (wavel maximu .02018	ength m 52	ns)
Source source 1	es e node 1	sec 1	ctor n	nagni∣ L.	tude	pl 0	nase		type voltage		
Lumpe	d load	ls					i n de	. at an ac	aanaait		·
load 1 2 3	node 16 31 46	(ohms 0 0 0	s)		eactanc ohms) 2,332. 2,332. 2,332.	e	(mH) 0 0 0)	(uF) 0 0 0	ance	circuit 0 0 0

Tower 2 driven, others floated

IMPEDANCE	$\pm i \circ n = 50$					
freq res (MHz) (oh	ist react ms) (ohms	imped (ohms)	phase (deg)	VSWR	S11 dB	S12 dB
.91 79.	009 132.5	5 154.31	59.2	6.5069	-2.6911	-3.3549
GEOMETRY Wire coordin Environment:	ates in dec perfect gr	rees; other	dimension	s in met	ers	
wire caps D 1 none O 0	istance	Angle O O	Z O 107.5	ra .2	dius 91	segs 15
2 none 1	20.	176. 176	0	. 2	91	15
3 none 2	40.	176.	0	.2	91 .	15
4 none 3 3	40. 60. 60.	176. 176.	0 109.	.2	91	15
Number of wi cu	res rrent nodes	= 4 = 60				
Individual w segment leng radius	vires w	minimum vire valu 1 7.16 1 .291	e 667	ma wire 4 1	ximum value 7.26667 .291	•
ELECTRICAL D Frequencies frequen no. lowest 1 .91	ESCRIPTION (MHz) cy step 0	no. ste 1	of segme ps minim .0199	nt lengt um 074	h (wavele maximum .020185	ngths) 2
Sources source node 1 16	sector 1	magnitude 1.	phase 0		type voltage	
Lumped loads load node l l 2 31 3 46	resistance (ohms) 0 0 0	reactan (ohms) -2,332. -2,332. -2,332.	ce ind (mH 0 0 0	uctance)	capacita (uF) 0 0 0	nce passive circuit 0 0 0

Tower 3 driven, others floated

IMPEDANCE							
normaliza	ation = 50 .						
freq res	sist react	imped	phase \	VSWR	S11	S12	
(MHZ) (Of	ims) (onms)	(onms)	(aeg)		dВ	aв	
source = 1;	1000 31, SE	153 11	50.2 6	6 1712	-2 7040	2 2200	
.91 70.	213 131.35	100.11	59.5	0,4/42	-2.7049	-3.3300	
GEOMETRY							
Wire coordin	nates in degr	ees; other o	dimensions	in mete	ers		
Environment:	perfect gro	und					
wire caps D)istance	Angle	Z	rac	lius	segs	
1 none C)	0	0	.29	91	15	
C)	0	107.5				
2 none 1	.20.	176.	0	.29	91	15	
· 2 ·	.20.	176.	108.2		11	1 5	
S none z	.40.	176	108	. 23	· ·	12	
A none 3	.40.	176	100.	20	1	15	
3	360.	176.	109.	• 20 -	7.1	10	
C C		1,0,	2001				
Number of wi	res	= 4					
cu	rrent nodes	= 60					
	т	minimum		max	.imum		
Individual w	vires wi	re value	×	wire	value		
segment leng	rth 1	7.1666	57	4	7.26667		
radius	1	.291		- 1	.291		
	RCOTOTION						
Frequencies	(MHz)						
frequen	(IIII2)	no. c	of seament	: length	n (waveler	ngths)	
no. lowest	step	steps	s minimum	a.	maximum	/	
1.91	0	1	.019907	74	.0201852	2	
Sources							
source node	sector m	agnitude	phase		type		
1 31	1 1	•	0		voltage		
_ ,, ,					10		
Lumped loads			d				
lood podo	resistance	reactance		cance	capacitar	ice passive	3
1 1	0	-2 332	(1117)		(ur) 0	φττομτι Ο	-
2 16	0	-2,332	0		0	0	
3 46	0	-2,332.	0		0	0	
		4,0011			-	Ũ	

Tower 4 driven, others floated

IMPEDANCE								
normaliza	ation $= 50$	•						
freq rea	sist rea	ct	imped	phase	VSWR	S11	S12	
(MHz) (ol	hms) (ohi	ns)	(ohms)	(deg)		dB	dB	
source $= 1$; node 46,	secto	r 1					
.91 86	.263 134	.71	159.97	57.4	6.3551	-2.7564	-3.28	
GEOMETRY								
Wire coordi	nates in de	arees	: other	dimension	ns in met	ers		
Environment	: perfect	ground						
wire caps 1	Distance	Ang	le	Z	ra	dius	seqs	
1 none	C	0		0	.2	91	15	
	C	0		107.5				
2 none :	120.	176	•	0	.2	91	15	
:	120.	176		108.2				
3 none 2	240.	176	•	0	.2	91	15	
:	240.	176	•	108.				
4 none 3	360.	176		0	.2	91	15	
:	360.	176		109.				
Number of w	ires	=	4					
CI	irrent node	es =	60					
		min	imum		ma	ximum		
Individual N	wires	wire	value		wire	value		
segment lend	gth	1	7.166	67	4	7.26667		
radius		1	.291		1	.291		
ELECTRICAL I	DESCRIPTIO	1						
Frequencies	(MHz)							
freque	ncy		no.	of segme	ent lengt	h (wavele	ngths)	
no. lowest	ste	2 C	step	s minin	num	maximum		
1 .91	0		1	.0199	9074	.020185	2	
Sources								
source node	sector	magn	itude	phase		type		
1 46	1	1.		0		voltage		
Lumped loads	5							
	resistan	ce	reactanc	e inc	ductance	capacita	nce pass	sive
load node	(ohms)		(ohms)	. (mH	I)	(uF)	ciro	cuit
1 1	0		-2,332.	0		0	0	
2 16	0		-2,332.	0		0	0	
3 31	0		-2,332.	0		0	0	

CURRI	ENT NODES					
	coordinates	(degrees)		connec	ctions	node
wire	Х	Y	Z	end1	end2	no.
1	0	0	0	GND	1	1
1	0	0	7.16667	1	1	2
1	0	0	14.3333	1	1	3
1	0	0	21 5	1	1	Δ
1	0	0	21.5	1	1	5
1	0	0	20.0007	1	1	5
1	0	0	35.8333	1	1	6
1	0	0	43.	T	T	/
1	0	0	50.1667	1	1	8
1	0	0	57.3333	1	1	9
1	0	0	64.5	1	1	10
1	0	0	71.6667	1	1	11
1	0	0	78.8333	1	1	12
1	0	0	86.	1	1	13
1	0	0	93.1667	1	1	14
1	0	0	100 333	1	END	15
2	110 700	0 27070	0	CND	2	16
2	-119.708	0.27079	U 7 01000	GND	2	17
2	-119.708	-8.37079	1.21333	. 2	2	10
2	-119.708	-8.37079	14.4267	Z	Z	18
2	-119.708	-8.37079	21.64	2	2	19
2	-119.708	-8.37079	28.8533	2	2	20
2	-119.708	-8.37079	36.0667	2	2	21
2	-119.708	-8.37079	43.28	2	2	22
2	-119.708	-8.37079	50.4933	2	2	23
2	-119.708	-8.37079	57.7067	2	2	24
2	-119 708	-8.37079	64.92	2	2	25
2	-119 708	-8 37079	72 1333	2	2	26
2	-119.700	-0.37075	72,1333	2	2	20
2	-119.700	-0.37079	19.5407	2	2	20
2	-119.708	-8.37079	80.30	2	2	20
2	-119.708	-8.37079	93.7733	2	2	29
2	-119.708	-8.37079	100.987	2	END	30
3	-239.415	-16.7416	0	GND	3	31
3	-239.415	-16.7416	7.2	3	3	32
3	-239.415	-16.7416	14.4	3	3	33
3	-239.415	-16.7416	21.6	3	3	34
3	-239.415	-16.7416	28.8	3	3	35
3	-239.415	-16.7416	36.	3	3	36
3	-239.415	-16.7416	43.2	3	3	37
3	-239,415	-16.7416	50.4	3	3	38
3	-239 415	-16 7416	57.6	3	3	39
3	-239 /15	-16 7/16	64.8	3	3	40
2	-239.415	-10.7410	72	2	3	11
3	-239.415	-10.7410	72.	5	5	41
3	-239.415	-16,7416	19.2	3	3	42
3	-239.415	-16.7416	86.4	3	3	43
3	-239.415	-16.7416	93.6	3	3	44
3	-239.415	-16.7416	100.8	3	END	45
. 4	-359.123	-25.1124	0	GND	4	46
4	-359.123	-25.1124	7.26667	4	4	47
4	-359.123	-25.1124	14.5333	4	4	48
4	-359.123	-25.1124	21.8	4	4	49
4	-359,123	-25,1124	29.0667	4	4	50
4	-359 123	-25,1124	36.3333	4	4	51
-1	_350 102	-25 1124	13 6	1	Δ	52
4	-250 102	_25.1124 _25.1124	50 8667	1	1	52
4	-339.123	-ZJ, 1124	50.000/	4	4	55
4	-359.123	-23.1124	20.1333	4	4	54

•

4	-359.123	-25.1124	65.4	4	4	55
4	-359.123	-25.1124	72.6667	4	4	56
4	-359.123	-25,1124	79.9333	4	4	57
4	-359.123	-25.1124	87.2	4	4	58
4	-359.123	-25.1124	94.4667	4	4	59
4	-359.123	-25.1124	101.733	4	END	60

Derivation of Operating Parameters, Nighttime Directional Array

Following verification of the moment method model of the individual array elements, by comparison of the measured and modeled base impedances, directional antenna array base parameters were calculated. Calculations were made to determine the complex voltage sources which when applied to the base of each array element produce current moment sums which when normalized, equate to the theoretical field parameters of the authorized directional pattern. Using these voltages, the tower currents were calculated. The currents at the ATU sampling points were related to those of the moment method model by using the WCAP Pro nodal analysis program from Westberg Consulting. The assumptions that were used for the single tower calculations were used in the directional array case as well. In the following WCAP calculations node 3 represents the reference point, node 2 represents the tower feed point, and node 0 represents ground. The tower operating impedance is represented from node 2 to ground (R 2-0). The current magnitude and phases at the sample point is represented following the insignificantly short transmission line (TL 1-3). The value shown at TL 1-3 has been rounded by the program. The actual current values shown as "I" in the "WCAP INPUT DATA" represent the values before rounding and were used in the calculation of antenna monitor amplitude and phase indications to yield greater accuracy.

Additionally, a single static drain is installed on each tower and is represented from node 2 to ground (L 2-0). These static drains are of unknown manufacturer with no indicated impedance. The static drains were disconnected and measured directly and tabulated accordingly.

In so much as the sample lines are equal in length and the sample torroids responses are identical, the antenna monitor amplitudes and phases have been calculated directly from the reference point currents and phases.

Tower	Model Pulse	Model Current Magnitude At Torroid, Amps	Model Current Phase at Torroid, Degrees	Modeled Antenna Monitor Ratio	Modeled Antenna Monitor Phase, Degrees
1	1	4.520	2.87	0.806	130.8
2	16	5.606	232.11	1.0	0.0
3	31	4.633	93.14	0.826	-139.0
4	46	1.072	348.48	0.191	116.4

Calculated Night Parameters

Measured Static Drain Impedances

Tower	L (uh)	Xl (+j)
1	344uH	1966.9
2	314uH	1795.4
3	304uH	1738.2
4	329uH	1881.1

WCAP Circuit Diagram

WCAP - KGME T1 DAN-U

WCAP OUTPUT AT FREQUENCY: 0.910 MHz

NODE VOLTAGES Node: 1 594.0080 ∡ 80.2040° V Node: 2 544.8104 ∡ 78.9524° V Node: 3 594.0067 ∡ 80.2040° V

1	WCAP P	ART	CURRENT II	N CL	JRRENT OL	JT
TL	1→3	50.00000000	4.52 4	2.870° A	4.52 4	2.870° A
١	WCAP P	ART	BRANCH V	OLTAGE	BRANCH	CURRENT
R	2→0	29.70000000	544.81 ∡	78.952° V	4.45 4	2.999° A
С	2→0	0.00007500	544.81 4	78.952° V	0.23 4	168.952° A
L	3→2	2.10000000	50.74 4	93.768° V	4.23 4	3.768° A
L	3→0	344.00000000	594.01 <i>4</i>	80.204° V	/ 0.30 女	-9.796° A
1	WCAP P	PART	FROM IMP	EDANCE	TO IMPI	EDANCE
R	2→0	29.70000000	29.70 + j	118.710	0.00 + j	0.000
С	2→0	0.00007500	0.00-j 2	2331.941	0.00 + j	0.000
ΤL	1→3	50.00000000	28.82 + j	128.220	28.81 + j	128.218
L	3→2	2.10000000	32.97 + j	136.642	32.97 + j	124.635
L	3→0	344.00000000	-0.00 + j	1966.888	0.00 + j	0.000
	WCAP F	PART VS	SWR			
ΤL	1→3	50.00000000	13.6489			
W	CAP INF	UT DATA:		•		
	0.9100	0.00000000	0			
R	29.7	0000000 2 0	118.71000	0000		
1000						

0.00007500 2 0 С

4.52000000 0 1 2.87000000 L

0.00100000 TL 50.0000000 1 3 100.0000000

2.10000000 3 2 0.00000000 L

L 344.0000000 3 0 0.0000000 0.00000000

WCAP Circuit Diagram

WCAP - KGME T2 DAN-U

WCAP OUTPUT AT FREQUENCY: 0.910 MHz

NODE VOLTAGES Node: 1 1050.1032 ∡ -58.2753° V Node: 2 1035.4336 ∡ -58.6151° V Node: 3 1050.1017 ∡ -58.2753° V

 WCAP PART
 CURRENT IN
 CURRENT OUT

 TL
 1→3
 50.00000000
 5.61 ⋨
 -127.890° A
 5.61 ⋨
 -127.890° A

	WCAP F	PART	BRANCH V	OLTAGE	BRANCH	CURRENT
R	2→0	68.45000000	1035.43 z	⊈ -58.615° V	5.47 4	-127.403° A
С	2→0	0.00007500	1035.43 <i>4</i>	-58.615° V	0.44 소	31.385° A
L	3→2	0.55000000	15.92 4	-35.584° V	5.06 4 -1	25.584° A
L	3→0	314.00000000	1050.10	₄ -58.275°V	0.58 4	-148.275° A

3	WCAP P	ART I	FROM IMP	EDANCE	TO IMPE	DANCE
R	2→0	68.45000000	68.45 + j	176.360	0.00 + j	0.000
С	2→0	0.00007500	0.00-j 2	2331.941	0.00 + j	0.000
TL	1→3	50.00000000	65.25 + j	175.586	65.25 + j	175.583
L	3→2	0.55000000	80.03 + j	191.392	80.03 + j	188.248
L	3→0	314.00000000	0.00 + j	1795.357	0.00 + j	0.000

 WCAP PART
 VSWR

 TL 1→3
 50.00000000
 11.4340

WCAP INPUT DATA:

0.9100 0.00000000 0

R 68.45000000 2 0 176.36000000

C 0.00007500 2 0

I 5.60600000 0 1 232.11000000

TL 50.0000000 1 3 100.0000000 0.00100000 0.00000000

L 0.55000000 3 2 0.00000000

L 314.0000000 3 0 0.0000000

WCAP Circuit Diagram

WCAP - KGME T3 DAN-U

WCAP OUTPUT AT FREQUENCY: 0.910 MHz

NODE VOLTAGES Node: 1 1090.4295 ⋨ 161.0484° V Node: 2 1063.2604 ⋨ 160.3504° V Node: 3 1090.4283 ⋨ 161.0484° V

 WCAP PART
 CURRENT IN
 CURRENT OUT

 TL
 1→3
 50.00000000
 4.63 ⋨
 93.140° A
 4.63 ⋨
 93.139° A

	WCAP P	ART	BRANCH VO	LTAGE	BRANCH C	URRENT
R	2→0	94.98000000	1063.26	160.350° V	4.47 4	93.899° A
С	2→0	0.00007500	1063.26 4	160.350° V	0.46 4 -:	109.650° A
L	3→2	1.30000000	30.17 ≰ -1	.73.528° V	4.06 4 9	5.472° A
L	3→0	304.00000000	1090.43 <i>4</i>	161.048° V	0.63 4	71.048° A

1	WCAP P	ART	FROM IMPE	EDANCE	TO IMPE	DANCE
R	2→0	94.98000000	94.98 + j	217.930	0.00 + j	0.000
С	2→0	0.00007500	0.00-j 2	331.941	0.00 + j	0.000
TL	1→3	50.00000000	88.52 + j	218.082	88.51 + j	218.077
L	3→2	1.30000000	115.34 + j	242.647	115.34 + j	235.214
L	3→0	304.00000000	0.01 + j	1738.180	0.00 + j	0.000

 WCAP PART
 VSWR

 TL 1→3
 50.00000000
 13.0042

WCAP INPUT DATA:

0.9100 0.00000000 0 R 94.98000000 2 0 217.93000000 C 0.00007500 2 0 I **4.63300000 0 1 93.14000000** TL 50.00000000 1 3 100.00000000 0.00100000 0.00000000 L 1.30000000 3 2 0.00000000

L 304.0000000 3 0 0.0000000

WCAP - KGME T4 DAN-U

WCAP OUTPUT AT FREQUENCY: 0.910 MHz

NODE VOLTAGES Node: 1 663.2245 ∡ 39.1158° V Node: 2 662.5441 ∡ 39.0317° V Node: 3 663.2242 ∡ 39.1158° V

 WCAP PART
 CURRENT IN
 CURRENT OUT

 TL
 1→3
 50.00000000
 1.07 ≰
 -11.520° A
 1.07 ≰
 -11.523° A

WCAP PARTBRANCH VOLTAGEBRANCH CURRENTR $2 \rightarrow 0$ 433.6100000662.54 \measuredangle 39.032° V**1.02 \measuredangle**-9.101° AC $2 \rightarrow 0$ 0.00007500662.54 \measuredangle 39.032° V0.28 \measuredangle 129.032° AL $3 \rightarrow 2$ 0.250000001.19 \measuredangle 94.103° V0.83 \measuredangle 4.103° AL $3 \rightarrow 0$ 329.0000000663.22 \bigstar 39.116° V0.35 \measuredangle -50.884° A

WCAP PARTFROM IMPEDANCETO IMPEDANCER $2 \rightarrow 0$ 433.6100000433.61 + j483.8200.00 + j0.000C $2 \rightarrow 0$ 0.000075000.00 - j2331.9410.00 + j0.000TL $1 \rightarrow 3$ 50.0000000392.40 + j478.320392.35 + j478.311L $3 \rightarrow 2$ 0.25000000654.34 + j458.387654.34 + j456.957L $3 \rightarrow 0$ 329.000000000.00 + j1881.1230.00 + j0.000

 WCAP PART
 VSWR

 TL
 1→3
 50.00000000
 19.5855

WCAP INPUT DATA:

	0.9100 0.0000000 0		
R	433.61000000 2 0 483.82000000		
С	0.00007500 2 0		
1	1.07200000 0 1 348.48000000		
TL	50.0000000 1 3 100.0000000	0.00100000	0.00000000
L	0.25000000 3 2 0.00000000		
L	329.0000000 3 0 0.0000000		

MEDIUM WAVE ARRAY SYNTHESIS FROM FIELD RATIOS

Frequency = .91 MHz

	field ratio	
tower	magnitude	phase (deg)
1	1.	0
2	1.37	-133.7
3	1.2	85.7
4	.424	-34.4

VOLTAGE	ES AND CURRENT	[S - rms		
source	voltage		current	
node	magnitude	phase (deg)	magnitude	phase (deg)
1	544.82	79.	4.45224	3.
16	1,035.39	301.4	5.47302	232.6
31	1,065.66	160.4	4.48271	93.9
46	663.512	39.1	1.02127	350.9
Sum of	square of sou	irce currents	= 141.828	
Total r	power = 5,000	watts		

TOWER ADMITTANCE MATRIX

admittance	real (mhos)	imaginary (mhos)
Y(1, 1)	.00406472	0052319
Y(1, 2)	.00217645	000305679
Y(1, 3)	000290985	000795582
Y(1, 4)	000299832	.000243754
Y(2, 1)	.00217645	00030569
Y(2, 2)	.00430315	00465758
Y(2, 3)	.0022651	000534203
Y(2, 4)	000296012	000754977
Y(3, 1)	000290986	000795583
Y(3, 2)	.0022651	0005342
Y(3, 3)	.00433931	00471964
Y(3, 4)	.00209457	000323135
Y(4, 1)	000299834	.000243754
Y(4, 2)	000296013	000754979
Y(4, 3)	.00209456	00032315
Y(4, 4)	.00375382	00490134

TOWER IMPEDAN	NCE MATRIX		
impedance	real (ohms)	imaginary	(ohms)
Z(1, 1)	81.5035	124.405	
Z(1, 2)	13.0676	-45.0732	
Z(1, 3)	-32.7828	4.33914	
Z(1, 4)	16.4867	20.0016	
Z(2, 1)	13.0679	-45,0731	
Z(2, 2)	80.4003	131.385	
Z(2, 3)	16.8616	-45.8689	
Z(2, 4)	-33.8552	4.92309	
Z(3, 1)	-32.7828	4.33909	
Z(3, 2)	16.8615	-45.869	
Z(3, 3)	79.6561	130.326	
Z(3, 4)	13.1656	-46.4222	
Z(4, 1)	16.4867	20.0016	
Z(4, 2)	-33.8553	4.92302	
Z(4, 3)	13.1661	-46.4223	

IMPEDANCE

norm	alization	= 50.					
freq (MHz)	resist (ohms)	react (ohms)	imped (ohms)	phase (deg)	VSWR	S11 dB	S12 dB
.91	29.702	118.71	122.37	76.	11.681	-1.4908	-5.3677
source .91	= 2; node 68.451	e 16, secto 176.36	or 1 189.18	68.8	11.097	-1.5697	-5.181
source .91	= 3; node 94.981	e 31, secto 217.93	or 1 237.73	66.5	12.345	-1.4102	-5.571
source .91	= 4; node 433.61	46, secto 483.82	or 1 649.69	48.1	19.533	89012	-7.3208
CURRENT Frequen Input p Efficie coordin current no.	rms cy = .91 oower = 5,0 ency = 100 ates in de X	_ MHz)00. watts). % egrees Y	Z	mag (amps)	phase (deg)	real (amps)	imaginary (amps)
GND 2 3 4 5	0 0 0 0 0	0 0 0 0	0 7.16667 14.3333 21.5 28.6667	4.45225 4.80107 4.96589 5.0297 5.00371	3. 1.9 1.3 .8 .3	4.44606 4.7984 4.96468 5.02926 5.00362	.234675 .159943 .109386 .0668123 .0303854
6 7 8	0 0 0	0 0 0	35.8333 43. 50.1667	4.89346 4.70313 4.43678	360. 359.7 359.4	4.89346 4.70305 4.43654	-4.54E-04 0258453 0457795
9 10 11	0	0 0	57.3333 64.5 71.6667	4.09883 3.69409 3.22772	359.2 358.9 358.7	4.09839 3.69345 3.22691	0602061 0690774 0723675
12 13	0	0	78.8333 86.	2.70482 2.12986	358.5 358.3 358.1	2.70391 2.12895 1.50405	0700738 0621996 0486836
14 15 END	0 0	0 0	100.333 107.5	.824162 0	358. 0	.823645	029183 0
GND 17 18	-119.708 -119.708 -119.708	-8.37079 -8.37079 -8.37079	0 7.21333 14.4267	5.47302 6.13147 6.48397	232.6 230.1 228.8	-3.32289 -3.92985 -4.27253	-4.34884 -4.70651 -4.87722
19 20 21	-119.708 -119.708 -119.708	-8.37079 -8.37079 -8.37079	21.64 28.8533 36.0667	6.67996 6.73831 6.66752	227.8 227. 226.3	-4.48965 -4.59878 -4.6074	-4.9462 -4.92504 -4.81952
22 23	-119.708	-8.37079 -8.37079	43.28 50.4933	6.47338 6.16133	225.7 225.2 224 8	-4.52012 -4.34093 -4.07401	-4.63392 -4.37245 -4.03964
∠4 25 26	-119.708 -119.708 -119.708	-8.37079 -8.37079 -8.37079	64.92 72.1333	5.20774	224.4 224.	-3.72394	-3.64045
27 28 29	-119.708 -119.708 -119.708	-8.37079 -8.37079 -8.37079	79.3467 86.56 93.7733	3.86075 3.05677 2.17075	223.6 223.3 223.	-2.79435 -2.22433 -1.58757	-2.66402 -2.09671 -1.48047
30 END	-119.708	-8.37079 -8.37079	100.987 108.2	1.19452 0	222.7 0	877824 0	810126 0

GND	-239.415	-16.7416	0	4.48272	93.9	305753	4.47228
32	-239.415	-16.7416	7.2	5.15716	90.6	050822	5.1569
33	-239.415	-16.7416	14.4	5.5351	88.8	.115441	5.5339
34	-239.415	-16.7416	21.6	5.76629	87.5	.248847	5.76092
35	-239.415	-16.7416	28.8	5,86896	86.5	.355881	5.85816
36	-239.415	-16.7416	36.	5.85096	85.7	.438698	5.83449
37	-239.415	-16.7416	43.2	5.7173	85.	.498067	5.69556
38	-239.415	-16.7416	50.4	5.47258	84.4	.534314	5.44644
39	-239.415	-16.7416	57.6	5.12179	83.9	.547665	5.09243
40	-239.415	-16.7416	64.8	4.6705	83.4	.538394	4.63937
41	-239.415	-16.7416	72.	4.1248	82.9	.506857	4.09354
42	-239.415	-16.7416	79.2	3.4909	82.5	.453474	3.46133
43	-239.415	-16.7416	86.4	2.77425	82.2	.378588	2.74829
44	-239.415	-16.7416	93.6	1.97714	81.8	.282107	1.95691
45	-239.415	-16.7416	100.8	1.09178	81.4	.162348	1.07965
END	-239.415	-16.7416	108.	0	0	0	0
GND	-359.123	-25.1124	0	1.02127	350.9	1.00854	160749
47	-359.123	-25,1124	7.26667	1.40271	338.	1.30024	526286
48	-359.123	-25.1124	14.5333	1.65577	332.8	1.47248	757206
49	-359.123	-25.1124	21.8	1.84484	329.6	1.5909	934053
50	-359.123	-25.1124	29.0667`	1.97609	327.3	1.66366	-1.06638
51	-359.123	-25.1124	36.3333	2.05179	325.7	1.69407	-1.15758
52	-359.123	-25.1124	43.6	2.07312	324.3	1.684	-1.20912
53	-359.123	-25.1124	50.8667	2.04119	323.2	1.63503	-1.22194
54	-359.123	-25.1124	58.1333	1.95732	322.3	1.54873	-1.19689
55	-359.123	-25,1124	65.4	1.82322	321.5	1.42691	-1.13493
56	-359.123	-25.1124	72.6667	1.64089	320.8	1.27149	-1.03723
57	-359.123	-25.1124	79.9333	1.41252	320.2	1.08453	904991
58	-359.123	-25.1124	87.2	1.14003	319.6	.867811	739302
59	-359.123	-25.1124	94.4667	.824111	319.	.622215	540376
60	-359.123	-25.1124	101.733	.461149	318.5	.345409	305534
END	-359.123	-25.1124	109.	0	0	0	0

Sampling System Measurements

The following calculations confirm that the sample system as installed complies with Rule Section 73.151(c)(2)(1) in all respects. The sample toroids are Delta model TCT3 and their outputs are in agreement within the manufacturer's specification of +/-2% and +/-2°. The antenna monitor is a Potomac Instruments model AM19. The antenna monitor was recently returned to the manufacturer for calibration and holds a certificate of calibration dated 10/20/2017. The sample lines are equal in length and constructed of 3/8" Andrew FHJ2-50A coaxial cable that has a solid outer conductor and foam dielectric. The cables are equal in length within 1° as required. The cables have all been buried so as to be exposed to the same environmental conditions. The length of the cables was confirmed by measuring the impedance, looking into the line with the far end opened. The lines were found to be 7/4 wavelength long at the frequencies listed. These frequencies were used to calculate the electrical lengths of the lines at the operating frequency of 910 kHz. Frequencies were calculated at which the lines were +/- 45° the length of the resonate frequency. The impedance was then calculated using the following formula:

 $Z_{O} = ((R1^{2}+X1^{2})\frac{1}{2} * (R2^{2}+X2^{2})\frac{1}{2})\frac{1}{2}$

	Resonate Frequency	Electrical Length at	
Tower	At 630º, kHz	910 kHz, Degrees	
1	944.01	607.30	
. 2	943.71	607.50	
3	943.54	607.60	
4	943.36	607.72	

Sample Line Length Calculation

Sample Line Impedance Calculation

Tower	630º Resonant Frequency kHz	45º Above Resonant Frequency kHz	Resistance Ohms	Reactance Ohms	45º Below Resonant Frequency kHz	Resistance Ohms	Reactance Ohms	Characteristic Impedance Ohms
1	944.01	1011.44	25.28	43.87	876.58	21.5	-44.8	50.16
2	943.71	1011.12	25.47	43.53	876.30	21.25	-44.23	49.75
3	943.54	1010.94	25.02	42.46	876.15	21.25	-43.43	48.81
4	943.36	1010.74	25.21	42.69	875.98	21.07	-43.40	48.91

The sample toroid calibration was confirmed by passing a common conductor through the toroids. The common conductor was driven by a Hewlett-Packard 8753ES vector network analyzer that was properly calibrated for response measurement. The output from the tower #2 toroid was fed to the reference receiver of the analyzer and the remaining toroids outputs were alternately fed to the B input, and the results noted in the chart below.

Sample Toroid Calibration Verification

Tower	Tower Serial Number		Indicated Phase
1	1846	1.002	-0.261º
2	1697	1.00	0.09
3	1678	.9996	-0.101º
4	1705	.9994	0.1849

Sample Lines Terminated By Toroids

Tower	Serial Number	Impedance at Input to Sample Line with Torroid Connected
1	1846	52.85 –j1.67
2	1697	52.49 –j3.46
3	1678	50.74 –j1.59
4	1705	50.51-j2.96

Direct Measurement of Power

The common point network in the nighttime phasor was adjusted to provide the proper operating resistance of 50 ohms and a reactance of 0 (zero) ohms to the transmitter output. In order to compensate for hookup inductance between the power measurement point and the transmitter the common point reactance was set for a value of –j7 at the measurement point. The antenna operating powers were calculated by adding 8.0% to the nominal operating power of 5.0kW. The common point current was then calculated as indicated below.

Daytime non directional mode power measurements are made at the base of tower #4. Daytime operating impedance measures 80 +j134.7. Tower #4 current was calculated as indicated below.

Pattern	Nominal Power	Operating Power	Operating Common
	Watts		Point Current, Amps
Night	5000	5400	10.39
Day	5000	5000	7.91

Reference Field Strength Measurements

Reference field strength measurements were made on radials having existing monitor point limits on the current license as well as on radials in the main lobes as follows:

KGME DAN-U

Reference Field Strength Measurements

Point	Distance/	Field Strength	Location Description	GPS Coordinates
# ·	km	mv/m	· · · · · · · · · · · · · · · · · · ·	NAD27
1-1	2.29	119	2011 Lomo Ln	N33° 33' 14.36"
			2911 Loma Lu	W112° 07' 16.35"
1-2	3.07	76.1	2011 Saldon In	N33° 33' 39.38"
			2911 Seldon Lh	W112° 07' 16.03"
1-3	3.7	60.1	2012 W Dugat Area	N33° 34' 0.16"
			2912 w Puget Ave	W112° 07' 15.33"
36-1	2.43	38.8	2216 W Augusta Are	N33° 33' 5.26"
			2210 w Augusta Ave	W112° 06' 21.39"
36-2	3.76	25.6	1820 W Goldon Work	N33° 33' 40.16"
			1829 w Seldon way	W112° 05' 50.80"
36-3	4.22	21.0	2202 N 17th Area	N33° 33' 52.05"
			8802 IN 17th Ave	W112° 05' 40.83"
117-1	3.44	188	5627 N 12th Dr	N33° 31' 10.21"
			3627 N 13th Dr	W112° 05' 19.50"
117-2	3.84	157	002 W Marshall Ar	N33° 31' 2.95"
1			905 w Marshall Av	W112° 05' 2.79"
117-3	4.5	120	5202 W Coordin Aven	N33° 30' 53.18"
		200 - K	5302 w Georgia Ave	W112° 04' 39.63"
176-1	2.25	680		N33° 30' 47.43"
			2816 W Colter St	W112° 07' 11.82"
176-2	3.04	490	ACA1 XV II: - hland Acco	N33° 30' 21.97"
			4041 w Highland Ave	W112° 07' 9.61"
176-3	3.63	328	4419 NI 2941- Arro	N33° 30' 2.74"
			4418 IN ZOUN AVE	W112° 07' 7.89"

254-1	2.14	51.8	3922 Claremont St	N33° 31' 41.70" W112° 08' 35.97"
254-2	2.77	25.3	4232 Keim	N33° 31' 36.56" W112° 08' 57.91"
254-3	3.81	24.1	6002 N 47th Dr	N33° 31' 27.06" W112° 09' 37.27"
			· · · · · · · · · · · · · · · · · · ·	
302-1	2.09	46.1	3817 W Northview Ave	N33° 32' 36.62" W112° 08' 27.77"
302-2	3.1	26.3	4236 Morten Ave	N33° 32' 52.42" W112° 08' 58.07"
302-3	4.09	26.2	4627 W Lane Ave	N33° 33' 9.26" W112° 09' 30.30"
	· · ·			

All measurements were taken January 18th, 2017 with Potomac Instruments FIM-4100 field strength meter with serial number 133. The meter was calibrated by its manufacturer on April 17, 2017.

.

RFR Compliance

Operation of KGME at 5 kW daytime and nighttime will not result in exposure of workers or the general public to RF radiation in excess of levels specified in 47CFR 1.1310. Fences have been installed around all tower bases to comply with the minimum distance which exceeds the distances specified in OET Bulletin 65 for this frequency, calculated power levels in the towers and tower height to prevent electric and magnetic exposure greater than permissible levels. These fences limit access by the general public. If it becomes necessary for workers to enter the tower base areas for maintenance, the station will either reduce power or cease operation to provide RFR safety for the workers.

Item 8

Ground System Description

No changes were made to the ground system at KGME and remains as previously licensed:

Ground system consists of 120 copper radials 82.3m long equally spaced about each tower. Radials covered by crushed frock for first 7.6m and buried thereafter. Radials soldered to copper rings around tower bases which are brazed by copper straps to copper aprons over tower bases. Copper straps at points of radial intersections and along line of towers.

