#99505 Agency Tracking ID:PGC3085546 Authorization Number: 057404

Successful Authorization -- Date Paid: 4/19/18 FILE COPY ONLY!!

READ INSTRUCTIONS CAREFULLY BEFORE		CATIONS COMMISSION		APPROVED BY OMB
PROCEEDING	REMITTAN	CE ADVICE	SPE	3060-059 CIAL USE
ROCEEDING	FOR	M 159		
(1) LOCKBOX #979089	PAGE N	IO 1 OF 1	FCC	USE ONLY
	SECTION	N A - Payer Information		
	redit card, enter name exactly as it appears on y	our card)	(3) TOTAL \$1505.00	AMOUNT PAID (dollars and cents)
Salem Communications I			\$1303.00	
(4) STREET ADDRESS LINE NO 4880 Santa Rosa Rd.). 1			
(5) STREET ADDRESS LINE NO). 2			
(6) CITY			(7) STATE	(8) ZIP CODE
Camarillo			CA	93012
(9) DAYTHME TELEPHONE NUM 805-3844502	MBER (INCLUDING AREA CODE)	(10) COUN US	TRY CODE (IF NOT I	N U.S.A.)
	FCC REGISTRATION NUMBER (FRN) A		UMBER (TIN) REQ	UIRED
(11) PAYER (FRN)		(12) FCC USE ONLY		
0011040359				
	IF PAYER NAME AND THE APPLICAN IF MORE THAN ONE APPLICAN			ON B
(13) APPLICANT NAME Salem Communications I	Holding Corporation			
(14) STREET ADDRESS LINE N	**************************************			
4880 Santa Rosa Rd.				
(15) STREET ADDRESS LINE N	0.2			
(1.6) CITY			(1.5) CT LT C	(10) ZID CODE
(16) CITY Camarillo			(17) STATE CA	(18) ZIP CODE 93012
	JMBER (INCLUDING AREA CODE)		TRY CODE (IF NOT I	
805-3844502	SWIDER (INCLOUDING PREED CODE)	US		
	FCC REGISTRATION NUMBER (FRN) A		UMBER (TIN) REQ	UIRED
(21) APPLICANT (FRN) 0011040359		(22) FCC USE ONLY		
COMPI	LETE SECTION C FOR EACH SERVICE, I	IF MORE BOXES ARE NEED	ED, USE CONTINUA	ATION SHEET
(23A) FCC Call Sign/Other ID	KLUP	(24A) Payment Type Co	de(PTC) MMR	(25A) Quantity
(26A) Fee Due for (PTC)		(27A) Total Fee		FCC Use Only
	\$700.00		\$700.00	
(28A) FCC CODE 1	0	(29A) FCC CODE 2	0	
(23B) FCC Call Sign/Other ID	KLUP	(24B) Payment Type Co	de(PTC) MOR	(25B) Quantity
(26B) Fee Due for (PTC)	\$805.00	(27B) Total Fee	\$805.00	FCC Use Only
(28B) FCC CODE 1	40000	(29B) FCC CODE 2	40000	
, , , , , , , , , , , , , , , , , , , ,	0		0	

Accepted / Filed

Federal Communications Commission Washington, D. C. 20554

Approved by OMB 3060-0627 Expires 01/31/98

FOR FCC USE ONLY APR 192018

Federal Communications Commission Office of the Secretary

FCC 302-AM APPLICATION FOR AM BROADCAST STATION LICENSE

(Please read instructions before filling out form.

FOR COMMISSION USE ONLY	
FILE NO. BMML-20	180419ADK

SECTION I - APPLICANT FEE INFORMATION			
PAYOR NAME (Last, First, Middle Initial)			
Salem Communications Holding Corporation			
MAILING ADDRESS (Line 1) (Maximum 35 characters)			
4880 Santa Rosa Road, Suite 300 MAILING ADDRESS (Line 2) (Maximum 35 characters)			
WAILING ADDITION (Line 2) (Waximain on statusters)	-		
CITY Camarillo	STATE OR COUNTRY (if fore	ign address)	ZIP CODE 93012
TELEPHONE NUMBER (include area code) (805) 987-0400	CALL LETTERS KLUP	OTHER FCC IDE 34975	NTIFIER (If applicable)
2. A. Is a fee submitted with this application?			✓ Yes No
B. If No, indicate reason for fee exemption (see 47 C.F.R. Section			
Governmental Entity Noncommercial educa	ational licensee Oth	er (Please explain):
C. If Yes, provide the following information:			
Enter in Column (A) the correct Fee Type Code for the service you ar			
Fee Filing Guide." Column (B) lists the Fee Multiple applicable for this	application. Enter fee amount	due in Column (C	,).
(A) (B)	(C)		
FEE TYPE FEE MULTIPLE	FEE DUE FOR FEE TYPE CODE IN		FOR FCC USE ONLY
M M R 0 0 1	\$ 700.00		
To be used only when you are requesting concurrent actions which resu	ult in a requirement to list more	than one Fee Typ	pe Code.
(A) (B)	(C)		
M O R 0 0 0 1	\$ 805.00		FOR FCC USE ONLY
	TOTAL AMOUNT		
ADD ALL AMOUNTS SHOWN IN COLUMN C, AND ENTER THE TOTAL HERE.	REMITTED WITH THIS APPLICATION	<u> </u>	FOR FCC USE ONLY
THIS AMOUNT SHOULD EQUAL YOUR ENCLOSED REMITTANCE.	\$ 1,505.00		
NEIVITTANCE.			

0505101111 100110111	T.IV.E.O.D.I.I.T.I.O.V.				
1. NAME OF APPLICANT Salem Communications Hold	,	6			
MAILING ADDRESS 4880 Santa Rosa Road, Sui	te 300				
CITY Camarillo			STATE CA		ZIP CODE 93012
2. This application is for:	Commercial AM Direct	[tional	Noncomm	nercial lon-Directional	
Call letters	Community of License	Construct	ion Permit File No.	Modification of Construction	Expiration Date of Last
KLUP	Terrell Hills, TX	N/A		Permit File No(s). N/A	Construction Permit N/A
3. Is the station no accordance with 47 C.F. If No, explain in an Exhi		to auto	matic program	test authority in	Yes ✓ No Exhibit No.
4. Have all the terms construction permit been	s, conditions, and oblig n fully met?	ations s	et forth in the	above described	Yes No
If No, state exceptions in	n an Exhibit.				N/A
the grant of the underl	ges already reported, ha ying construction permit d in the construction perr	which v	would result in	any statement or	Yes No
If Yes, explain in an Ex	hibit.				Exhibit No. N/A
	ed its Ownership Report ce with 47 C.F.R. Section	13	and the same and t	ership	Yes No ✓ Does not apply
If No, explain in an Exhi	bit.				Exhibit No.
or administrative body v criminal proceeding, bro	ing been made or an advith respect to the applications to under the provision elated antitrust or unfaint; or discrimination?	ant or pa is of any	rties to the appli law relating to t	cation in a civil or he following: any	Yes ✓ No
involved, including an ic (by dates and file num information has been required by 47 U.S.C. S of that previous submis the call letters of the st	attach as an Exhibit a full lentification of the court of bers), and the disposition earlier disclosed in con- ection 1.65(c), the application by reference to the ration regarding which the of filing; and (ii) the dispo	or adminition of the nnection ant need file number application	strative body are litigation. Who with another all only provide: (ber in the case ation or Section	nd the proceeding nere the requisite application or as i) an identification of an application, 1.65 information	Exhibit No. N/A

1300 NORTH 17th STREET, 11th FLOOR ARLINGTON, VIRGINIA 22209 ORIGINAL

2018 APR 20 PM 1: 27

OFFICE: (703) 812-0400 FAX: (703) 812-0486 www.fhhlaw.com www.commlawblog.com

April 19, 2018

FRANK R. JAZZO (703) 812-0470 JAZZO@FHHLAW.COM

VIA HAND DELIVERY

Ms. Marlene H. Dortch, Secretary Federal Communications Commission 445 12th Street, SW Washington, DC 20554

Attn: Audio Division, Media Bureau

Accepted / Filed

APR 192018

Federal Communications Commission Office of the Secretary

Re: Salem Communications Holding Corporation

KLUP, Terrell Hills, Texas (Facility ID No. 34975)

Methods of Moments License Application (FCC 302-AM)

Dear Ms. Dortch:

Submitted herewith, in triplicate, is a Method of Moments license application (FCC 302-AM) filed on behalf of Salem Communications Holding Corporation, licensee of KLUP, Terrell Hills, Texas (Facility ID No. 34975). Form 159 is also attached, demonstrating payment of the \$1,505.00 filing fee.

Please contact the undersigned if you have any questions or if any issues arise.

Sincerely,

Frank R. Jazzo

Mark C. DeSantis

Mark Dolati

Counsel for Salem Communications Holding

Corporation

8. Does the applicant, or any party to the application, have a the expanded band (1605-1705 kHz) or a permit or license of expanded band that is held in combination (pursuant to the 5	either in the existing band	or
with the AM facility proposed to be modified herein? If Yes, provide particulars as an Exhibit.		Exhibit No.
The APPLICANT hereby waives any claim to the use of any against the regulatory power of the United States because requests and authorization in accordance with this application amended).	use of the same, wheth	ner by license or otherwise, and
The APPLICANT acknowledges that all the statements maderial representations and that all the exhibits are a material		
CERTIFIC	CATION	
 By checking Yes, the applicant certifies, that, in the case or she is not subject to a denial of federal benefits that include Section 5301 of the Anti-Drug Abuse Act of 1988, 21 U. case of a non-individual applicant (e.g., corporation, partners association), no party to the application is subject to a deincludes FCC benefits pursuant to that section. For the deincludes FCC benefits pursuant to that section. For the deincludes FCC benefits pursuant to that section. I certify that the statements in this application are true, co and are made in good faith. 	udes FCC benefits pursua S.C. Section 862, or, in the ship or other unincorporate nial of federal benefits the finition of a "party" for thes	nt ne od at se
Name		
Christopher J. Henderson	Signature	
Sr. Vice President and Secretary	Date 4/18/2018	Telephone Number (805) 987-0400

WILLFUL FALSE STATEMENTS ON THIS FORM ARE PUNISHABLE BY FINE AND/OR IMPRISONMENT (U.S. CODE, TITLE 18, SECTION 1001), AND/OR REVOCATION OF ANY STATION LICENSE OR CONSTRUCTION

FCC NOTICE TO INDIVIDUALS REQUIRED BY THE PRIVACY ACT AND THE PAPERWORK REDUCTION ACT

The solicitation of personal information requested in this application is authorized by the Communications Act of 1934, as amended. The Commission will use the information provided in this form to determine whether grant of the application is in the public interest. In reaching that determination, or for law enforcement purposes, it may become necessary to refer personal information contained in this form to another government agency. In addition, all information provided in this form will be available for public inspection. If information requested on the form is not provided, the application may be returned without action having been taken upon it or its processing may be delayed while a request is made to provide the missing information. Your response is required to obtain the requested authorization.

Public reporting burden for this collection of information is estimated to average 639 hours and 53 minutes per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the burden, can be sent to the Federal Communications Commission, Records Management Branch, Paperwork Reduction Project (3060-0627), Washington, D. C. 20554. Do NOT send completed forms to this address.

THE FOREGOING NOTICE IS REQUIRED BY THE PRIVACY ACT OF 1974, P.L. 93-579, DECEMBER 31, 1974, 5 U.S.C. 552a(e)(3), AND THE PAPERWORK REDUCTION ACT OF 1980, P.L. 96-511, DECEMBER 11, 1980, 44 U.S.C. 3507.

	ICENSE APPLICATION ENGI	NEERING DATA	<u> </u>	***************************************		
Name of Applica	ու mmunications Holding (Cornoration				
	AUTHORIZATION APPLIED FOR	***************************************		ALC		
FURFUSE OF A	TO THORIZATION APPLIED FOR	. (check one)				
	Station License BMML-	Direct Mea	asurement of Powe	er		
	norized in construction permit	T	<u> </u>		1	
Call Sign	File No. of Construction Permit		Hours of Opera	tion		kilowatts
KLUP	(if applicable) N/A	(kHz) 930	Unlim	ited	Night 1.0	Day 5.0
2. Station location	on				-	
State			City or Town			
Texas			Terrell Hil	ls		
3. Transmitter lo	ocation			***************************************		
State	County		City or Town		Street address	
TX	Bexar		San Anton	ilo	(or other identific	cation) Center Road
4. Main studio lo	ncation				i iliuusillai C	enter Road
State	County		City or Town	***************************************	Street address	
TX	Bexar		San Antoni	io	(or other identific	
***************************************				.0	9601 McAlli	ster Freeway
	rol point location (specify only if a	uthorized direction		***************************************	Street address	
State	County		City or Town		(or other identific	cation)
TX	Bexar		San Antoni	10	9601 McAllis	ster Freeway
7. Does the sam	proved stereo generating equipment in pling system meet the requirement in the interest in the system of the interest in the system.	ents of 47 C.F.R. S	Section 73.68?	-	✓ Y	res No Not Applicable sibit No. Change
8. Operating cor RF common poir	nstants. nt or antenna current (in amperes) without	RF common po	int or antenna	current (in amper	es) without
modulation for ni			modulation for o			
Managered onton	4.65 na or common point resistance (ir	a abma) at	Managed anto		10.43	(in almost) at
operating freque		i onns) at	operating freque	ency	n point reactance	(in onins) at
Night	Day	40	Night		Day	.:400.0
50	2	46	+j	0		+j122.8
Antenna indication	ons for directional operation		A - 1			
Towe			Antenna mon current r		Antenna I	pase currents
4/5	Night	Day	Night	Day	Night	Day
1(S 2(N		and him and sub-suc-	1.000 1.025	200 NOT HOT DOG 500	000 000 000 000	ONE THAT ARE THE THE
2(1)	75.2		1.025			
Manufachusus	d to a of automa was item					
ivianuiacturer and	d type of antenna monitor:	otomac Ins	tuments, M	odel 1901	1-2, serial #	223

SECTION III - Page 2

9. Description of antenna system ((f directional antenna is used, the information requested below should be given for each element of the array. Use separate sheets if necessary.)

Type Radiator uniform, cross-	Overall height in meters of radiator above base insulator, or above base, if	Overall heigh above ground obstruction lig	I (without	Overall height in meters above ground (include obstruction lighting)	If antenna is either top loaded or sectionalized, describe fully in an Exhibit.
section with guy	grounded.				
wire top loading	68.2	68	3.3	69.2	No Change
wire top loading					
Excitation	✓ Series	Shunt			
Geographic coordinates tower location.	to nearest second. For direc	tional antenna	give coordinate	es of center of array. For	single vertical radiator give
North Latitude 29	° 31 '	06 "	West Longitu	^{de} 98 ° 2	4 ' 25 "
	ove, attach as an Exhibit furt ver and associated isolation c		dimensions ir	ncluding any other	Exhibit No. N/A
Also, if necessary for a dimensions of ground sy	a complete description, attac estem.	ch as an Exhi	bit a sketch o	of the details and	Exhibit No. No change
10. In what respect, if a permit?	ny, does the apparatus const	ructed differ fro	om that describ	ped in the application for c	onstruction permit or in the
N/A					
11. Give reasons for the	e change in antenna or comm	on point resist	ance.		
N/A					Alter All Many 2 (The Performance on the American America
					the second contract of
I certify that I represent	the applicant in the capacity true to the best of my knowle	y indicated bel edge and belief	ow and that I	have examined the forego	oing statement of technical
Name (Please Print or T	vne)		Signature (che	ck appropriate box below)	
James D. Sadle			Oigriataro (Opo	11118)	
Address (include ZIP Co			Date /	Jun Com	
Carl T. Jones Co	A STANDARD CONTRACTOR OF THE PROPERTY OF THE P		April 17,	2018	
7901 Yarnwood	2000年の他に対するようななない。本では、2000年のできます。またからないというできている。	NET PROPERTY OF STREET PROPERTY OF STREET	Talanhana Na	(Include Area Code)	
The state of the second st		nna ký viterná víty, težíní v vitebnoster SN tellátesáv	(703) 56	(Include Area Code)	
Springfield, VA 2	22153		(703) 30	09-7704	
Technical Director			Registere	ed Professional Engineer	
Chief Operator			✓ Technica	I Consultant	
Other (specify)					

FCC 302-AM (Page 5) August 1995

Exhibit 1

This application is for a superseding license to reflect new MoM model derived daytime and nighttime operating parameters, not a license to cover application. Therefore, program testing is not required.

ENGINEERING EXHIBIT IN SUPPORT OF AN APPLICATION FOR STATION LICENSE STATION KLUP - TERRELL HILLS, TEXAS 930 kHz - 5 kW-D, 1 kW-N, U, DA-N FACILITY ID: 34975

Applicant: Salem Communications Holding Corporation

APRIL, 2018

7901 Yarnwood Court Springfield, VA 22153-2899 tel: (703) 569-7704

fax: (703) 569-6417

email: info@ctjc.com

www.ctjc.com

TABLE OF CONTENTS

SECTION III OF FCC FORM 302-AM ENGINEERING STATEMENT OF JAMES D. SADLER

	<u>FIGURE</u>
Wireframe Model	1
Tower Model Height and Radius	2
Measured and Modeled Impedances	3
Antenna Monitor Parameters and Common Point Data	4
Sample Line Verification Measurements	5
Sample Device Verification Measurements	6
Reference Field Strength Measurements	7
Individual Tower Modeling	Appendix A
Nighttime Directional Array Model	Appendix B

ENGINEERING STATEMENT OF JAMES D. SADLER
IN SUPPORT OF AN
APPLICATION FOR STATION LICENSE
STATION KLUP - TERRELL HILLS, TEXAS
930 kHz - 5 kW-D, 1 kW-N, U, DA-N
FACILITY ID: 34975

Applicant: Salem Communications Holding Corporation

I am a Technical Consultant, an employee in the firm of Carl T. Jones Corporation, with offices located in Springfield, Virginia. My education and experience are a matter of record with the Federal Communications Commission.

1.0 GENERAL

This office has been authorized by Salem Communications Holding Corporation ("Salem"), licensee of AM Station KLUP, to prepare this engineering statement, FCC Form 302-AM, Section III, and the associated figures and appendices in support of an Application for License. Station KLUP is licensed for operation on 930 kilohertz at a power of 5 kilowatts during daytime hours and 1 kilowatt during nighttime hours. The station operates non-directionally daytime from the north tower of its 2-tower array and uses both towers for its directional nighttime operation (DA-N). Presently, Station KLUP is operating under the terms of a special temporary authorization (STA), originally granted on April 6, 2017, that authorizes operation with parameters at variance.

Following evaluation of the directional pattern issues it was decided to prepare an application for license under the Commission's moment of methods rules.

Computer modeling and sample system verification techniques, as described in Section 47 CFR 73.151(c) of the Commission's Rules and Regulations, were used to verify the performance of the KLUP nighttime directional antenna system. The specific measurement and modeling techniques used in performing the proof of performance on the KLUP directional pattern are described in detail in this engineering statement. Impedance measurement data, sample system verification measurement data and model derived operating parameters are tabulated in the figures attached to this engineering statement. Finally, all pertinent computer model input and output files are contained in the attached Appendices A and B.

2.0 IMPEDANCE MEASUREMENTS, COMPUTER MODELING AND SAMPLE SYSTEM VERIFICATION

The proof of performance contained herein is based on the computer modeling and sample system verification procedures described in Section 47 CFR 73.151(c) of the FCC's Rules and Regulations. The KLUP antenna array consists of two identical, uniform cross-section, guyed, base insulated, steel, series-fed towers with guy wire top loading. The towers have an electrical height of 76.2 degrees (68.2 meters) and have an 18-inch face width. In addition, the towers are top loaded with three guy wires 15.1 degrees in length (13.5 meters). The sampling system employs identical toroidal current transformers located at the output of the antenna matching network at the base of each tower.

A detailed description of the impedance measurements, the computer models employed, and the sample system verification measurements, is contained below.

2.1 INDIVIDUAL TOWER IMPEDANCE MEASUREMENTS

Impedance measurements were performed at the base of each tower, by the undersigned, at the output branch of the antenna matching network. This measurement location is immediately adjacent to the location of the sampling system toroidal current transformer. The impedance measurements were performed using a Hewlett-Packard Model 4396A network analyzer; an ENI, Model 240L, power amplifier; and a Tunwall Radio directional coupler. The impedance of each tower was measured with the other tower open-circuited at the same ATU output location that was used to perform the impedance measurement. The measured impedances are tabulated in Figure 2.

2.2 INDIVIDUAL TOWER COMPUTER MODELS

A Method of Moments ("MoM") computer model was developed to model each element in the array using Expert MiniNEC Broadcast Professional (Version 23.0). A wire model was developed for each tower in the array that is comprised of 15 segments representing the tower and 6 segments representing the top loading¹. A short guy wire segment having a greater radius was placed against the tower to step down the tower radius to the guy wire radius so the 10:1 adjoining wire constraint in MiniNEC would not be exceeded. The lower ends of the three top load wires are connected with a

¹ The geometry of the top loading was obtained from the application for license on file, FCC File No. BL-7391.

horizontal ring that is comprised of 5 segments between each guy wire base. The physical height of the towers was increased by equally ratioing up the Z coordinates in both the tower and guy wire segments in order to maintain a constant horizontal separation between the far end of the guy wire top loading and the tower. A scale drawing of the wireframe model for each of the two towers as modeled is included herein as Figure 1.

To replicate the individual measured base impedances to within FCC specified tolerances, it was necessary to adjust the physical height of the towers and guy wire top loading in the MiniNEC model as described above. In a separate circuit model a small amount of series inductance and shunt capacitance was employed to further adjust the model derived base impedance of each tower. The actual equivalent physical tower radius and guy wire radius² was used in all computer models contained in this application. Details of the modeled individual tower adjusted heights are contained in Figure 2.

The values of the lumped series inductances and capacitances used in the circuit model are contained in the table of Figure 3. A comparison of the measured individual tower impedances, the modeled individual tower impedances, and the adjusted modeled (circuit model) individual tower impedances is also contained in the table of Figure 3. The percentage difference between the adjusted modeled tower height and the actual physical tower height and the magnitude of the lumped series inductances that were used in the circuit models are all within the tolerances set forth in the Rules.

² The 5/16 inch guy wire radius was employed for all of the guy wire top loading segments except the segment adjoining the tower where it was necessary to step the radius up to connect to the tower without violating the 10:1 MiniNEC constraint.

As demonstrated by the data contained in Figure 3, the adjusted modeled individual tower resistance and reactance for each tower is well within \pm 2 ohms and \pm 4 percent tolerance of the corresponding measured individual tower resistance and reactance. The text files containing all pertinent input and output data associated with the individual tower models are contained in Appendix A.

2.3 DIRECTIONAL ANTENNA COMPUTER MODEL AND ANTENNA MONITOR PARAMETERS

The theoretical nighttime directional field parameters and the licensed tower spacings and orientations were used in combination with the adjusted individual tower models to produce the nighttime directional antenna computer model. From the directional computer model, tower currents were derived for each wire segment of each antenna.

The new nighttime directional array operating parameters were determined from the modeled base currents and are tabulated in Figure 4. The text files containing all pertinent input and output data associated with the nighttime directional antenna computer model are contained in Appendix B.

2.4 SAMPLE SYSTEM DESCRIPTION AND VERIFICATION MEASUREMENTS

The KLUP nighttime antenna sampling system is comprised of: 1) Delta Electronics, Model TCT-3, toroidal current transformers mounted in an identical manner in the output branch of each tower's impedance matching network; 2) equal lengths of 3/8-inch, foam dielectric, coaxial cable between each toroidal current transformer and

the antenna monitor located in the transmitter building; and 3) a Potomac Instruments, Model 1901-2, antenna monitor. Each sample line between the ATU building and the transmitter building, including excess lengths, is buried below ground level such that each sample line is subjected to the same environmental conditions.

The sample lines were verified to be equal in length by measuring the open-circuit series resonate frequency closest to the carrier frequency. The characteristic impedance was verified by measuring the impedance at frequencies corresponding to odd multiples of 1/8 wavelength immediately above and below the open circuit series resonant frequency closest to the carrier frequency, while the line was open-circuited at the sample element end of the line. The characteristic impedance was calculated by the following formula:

$$Z = \sqrt{\sqrt{R_1^2 + X_1^2} \times \sqrt{R_2^2 + X_2^2}}$$

where:

Z = Characteristic impedance and $R_1 + j X_1$ and $R_2 + j X_2$ are the measured impedances at \pm 45 degrees offset frequencies.

A tabulation of the measured sample line lengths and the characteristic impedance of each line is contained in Figure 5. All sample line verification measurements were performed by the undersigned using a Hewlett-Packard, Model 4396A, network analyzer; an ENI, Model 240L, power amplifier; and a Tunwall Radio directional coupler. As demonstrated by the measured values in Figure 5, the measured sample line lengths are within 1 electrical degree with respect to each other

and the measured characteristic impedances are well within 2 ohms of each other, as required by Section 47 CFR 73.151(c)(2)(I) of the FCC Rules and Regulations.

An impedance measurement was performed at the input to each sample line, at the antenna monitor end of the line, with the toroidal current transformer connected. The measurement was performed at the KLUP operating frequency of 930 kilohertz. The measured sample line impedances with the current transformers connected are tabulated in Figure 5 under the heading "Reference Impedance Sample Transformer Connected."

The performance of the toroidal current transformers was verified by driving a common reference current through the two KLUP transformers along with a third test transformer and comparing the relative outputs as observed on the network analyzer. The test confirmed that the performance of the two KLUP current transformers is well within the manufacturer's stated accuracy. A tabulation of the toroidal current transformer measurement data and the serial number of each toroidal current transformer is contained in Figure 6.

The performance of the Potomac Instruments, Model 1901-2, Serial No. 223, antenna monitor employed at KLUP was checked, by the undersigned, and the accuracy was found to be outside of the manufacturer's stated accuracy. Therefore, the antenna monitor is being returned to Potomac Instruments for repair and calibration.

3.0 COMMON POINT IMPEDANCE AND COMMON POINT CURRENT

The networks associated with the nighttime directional antenna system were adjusted for proper impedance transformation and the common point impedance

matching network was set for $Z = 50 + j \ 0$ Ohms. The transmitter output power level was adjusted for a common point current of 4.65 amperes.

3.1 DAYTIME TOWER NUMBER 2 NON-DIRECTIONAL BASE IMPEDANCE AND OPERATING CURRENT

The non-directional impedance at the output of the tower number 2 (north) matching network was measured by the undersigned, using a Delta Electronics, Model OIB-3, operating impedance bridge, and found to be Z = 46 + j 122.8 ohms. Based on the licensed antenna input of 5,000 Watts, the transmitter output power level was adjusted for an unmodulated base current of 10.43 amperes.

4.0 REFERENCE FIELD STRENGTH MEASUREMENTS

Reference field strength measurements were performed on the KLUP nighttime directional antenna pattern on the 190° radial bearing, corresponding to the major lobe of the pattern³ and on the 10° radial bearing, corresponding to the nighttime directional pattern minima. Three reference field strength measurements were performed on each of the selected radial bearings.

The field strength measurements were performed by Mr. Pat Delaney, Contract Engineer for Station KLUP, and the undersigned. A single meter was used to perform the measurements, a Potomac Instruments, Model FIM-41, Serial Number 714, last calibrated by the manufacturer in August, 2017.

³ The 190 degree radial bearing represents the maxima of the modified standard pattern and is within 2 percent of the standard pattern maxima at 153 and 227 degrees. Therefore, this was the only radial selected for measurement of the reference points representing the major lobe of the pattern.

PAGE 9 OF 9

STATEMENT OF JAMES D. SADLER STATION KLUP, TERRELL HILLS, TEXAS

The measured field strength value for each established reference point location

is tabulated in Figure 7. The tabulations contained in Figure 7 also include for each

reference location; GPS coordinates (NAD83), distance from the KLUP array center,

and a description of measurement location.

SUMMARY

It is submitted that the KLUP nighttime directional pattern performance has been

verified using computer modeling and sample system verification procedures in

accordance with Section 47 CFR 73.151(c) of the Commission's Rules and Regulations.

It is believed that the nighttime directional antenna system, as adjusted, fully complies

with the terms of the station's FCC Authorization and all applicable FCC Rules and

Regulations. It is requested that a superseding license be issued to Salem reflecting

the new MoM model derived nighttime operating parameters and the daytime non-

directional base impedance and operating current as contained herein.

This engineering statement, FCC Form 302-AM, Section III, and the attached

figures and appendices were prepared by the undersigned or under the direct

supervision of the undersigned and are believed to be true and correct.

Dated: April 17, 2018

James D. Sadler

WIREFRAME MODEL - TOWER 1 STATION KLUP - TERRELL HILLS, TEXAS 930 kHz - 5 kW-D, 1 kW-N, U, DA-N APRIL, 2018

WIREFRAME MODEL - TOWER 2 STATION KLUP - TERRELL HILLS, TEXAS 930 kHz - 5 kW-D, 1 kW-N, U, DA-N APRIL, 2018

TOWER MODEL HEIGHT AND RADIUS STATION KLUP - TERRELL HILLS, TEXAS 930 kHz - 5 kW-D, 1 kW-N, U, DA-N APRIL, 2018

	Physical	Modeled	Percent of	Physical	Modeled	Percent of		
	Tower	Tower	Tower	Guy Wire Top	Guy Wire Top Guy Wire Top Guy Wire Top	Guy Wire Top	Modeled	Percent of
	Height	Height	Physical	Load Length	Load Length	Load	Radius	Equivalent
Tower	(degrees)	(degrees)	Height	(degrees)¹	(degrees)	Length	(meters)	Radius
_	68.23	71.61	104.95	18.90	19.60	103.70	0.2183	100.0
2	68.23	69.56	101.95	18.90	19.18	101.48	0.2183	100.0

¹ This is based on the actual physical length of the guy wire top loading of 62 feet (18.90 meters).

MEASURED AND MODELED IMPEDANCES

	Measured	Modeled	Shunt	Modeled plus	Lumped Series	Total Adjusted
	Tower Base	Tower Base	Capacitance	Shunt	Inductance	Tower Base
Tower	Impedance¹	Impedance	(pF)	Reactance	(nH)	Impedance
~	58.6 +j 156.5	56.9 +j 134.5	17.11	58.4 +j 135.9	3.5	58.4 +j 156.4
2	51.6 +j 129.2	50.8 +j 116.4	17.11	52.0 +j 117.5	2.0	52.0 +j 129.2

1 Measured at output of matching network with other towers open-circuited

ANTENNA MONITOR PARAMETERS AND COMMON POINT DATA

	NIGHTTIME	
	Modeled F	arameters
_	-	Phase
Tower	Ratio	(deg)
1	1.000	0.0
2	1.025	75.2
	Common Point Impedance = 50	+j 0 ohms
	Common Point Current = 4.65	amperes
	Antenna Input Power = 1,080) Watts

SAMPLE LINE VERIFICATION MEASUREMENTS

	Open		Resonant	Resonant	Resonant	Resonant		Reference
	Circuit	Open	Frequency	Frequency	Frequency	Frequency		Impedance
	Series	Circuit	-45 degree	-45 degree	+45 degree	+45 degree	Calculated	Sample
	Resonant	Measured	Offset	Offset	Offset	Offset	Characteristic	Toroid
	Frequency ¹	Line Length ²	Frequency	Impedance	Frequency	Impedance	Impedance	Connected ²
Tower	(kHz)	(degrees)	(kHz)	(Ohms)	(kHz)	(Ohms)	(Ohms)	(Shms)
<u> </u>	923.70	271.8	769.8	5.94 -j 50.62	1077.7	8.85 +j 50.37	51.05	52.16 -j 2.24
2	926.10	271.1	771.8	5.93 -j 50.63	1080.5	8.72 +j 50.30	51.01	52.24 -j 3.13

¹ At this frequency, the sample line electrical length is equal to 270°.

² At carrier frequency (930 kHz)

SAMPLE DEVICE VERIFICATION MEASUREMENTS

Reference	Measured	Meas	sured
Sample Toroid	Sample Toroid	Field	Phase
Number	Number	Ratio	(degrees)
1	2	1.005	-0.6
1	Test Unit	1.005	-0.5

Sample Toroid Number	Туре	Serial Number
1	Delta Electronics, TCT-3	2363
2	Delta Electronics, TCT-3	17832
Test Unit	Delta Electronics, TCT-3	1443

REFERENCE FIELD STRENGTH MEASUREMENTS
STATION KLUP - TERRELL HILLS, TEXAS
930 KHz - 5 KW-D, 1 KW-N, U, DA-N
APRIL, 2018

10 Degree Radial

		Nighttime	Geographic	Nighttime Geographic Coordinates	
Point	Point Distance	Field	(NA	(NAD83)	
Number	(km)	(mV/m)	Latitude	Longitude	Description
_	2.95	12.2	29° 32' 41.7" 98°	98° 23' 54.8"	The point is located adjacent to the mailbox at #4734 Guadalajara Dr., San Antonio, Texas.
2	3.42	5.4	29° 32' 56.9" 98°	23' 52.2"	The point is located adjacent to the fire hydrant on the east corner of the intersection of Casa Manana St. and Casa Bonita St., San Antonio, Texas.
င	4.30	9	29° 33' 24.8" 98°	23' 45.9"	The point is located at the curb, center of house #4807 El Gusto St., San Antonio, Texas.

190 Degree Radial

		Nighttime	Nighttime Geographic Coo	Coordinates	
Point	Point Distance	Field	(NA	(NAD83)	
Number	(km)	(mV/m)	Latitude	Longitude	Description
,	7		"9 OC 10C 90C	24. 24 G.	The point is located approximately 15 feet east of the wooden fence at the dead
-	<u>o</u> .	780	0.00 00 82	29 30 30.0 90 24 21.0	end of Northgate Dr., San Antonio, Texas.
(0		00000	OC	The point is located at the edge of the street in the center of the driveway apron
7	2.23	8/-	0.00 82 82	29 29 36.6 86 24 29.1	for #262 Goodhue Ave., San Antonio, Texas.
	0	1	.00.00	"C CC 17C 00	The point is located adjacent to the mailbox for #4218 Tropical Dr., San Antonio,
n	7.99	130	29 29 32.0	29 29 32.0 90 24 33.3	Texas.

APPENDIX A INDIVIDUAL TOWER MODELING

APPENDIX A – INDIVIDUAL TOWER MODEL KLUP(AM) – TERRELL HILLS, TEXAS

	ANCE - rmaliza									
freq (MHz)	res (oh	sist ms)	react (ohms)	(oł		phase (deg)	VSWR		511 dB	S12 dB
.93	e = 1; 56.		1, sec 134.45		5.98	67.1	8.253	5 -	-2.1152	-4.1391
Dimen	TRY - T sions i onment:	n mete	rs	ound						
wire	caps X	2		Y		Z		rad:	ius	segs
1	none 0			0		0		.218	33	15
2	none 9			0 0 0		71.61 54.53 69.51		.004	4	5
3	none -			-8.33 -1.02		54.53 69.51		.004	4	5
4	none -			8.33		54.53 69.51		.00	4	5
5	none 1	1.18		0		69.51		.03		1
6	none -	59		0 -1.02 0		71.61 69.51 71.61		.03		1
7	none -	59		1.02		69.51 71.61		.03		1
8	none 9			0 -8.33		54.53 54.53		.00	4	5
9	none -	-4.81		-8.33		54.53		.00	4	5
10	none -	-4.81 -4.81 9.62		8.33 8.33 0		54.53 54.53 54.53		.00	4	5
11	none 8	38.2		-15.5		0		.21	83	15
12	none 9			-15.5 -15.5		69.56 52.97		.00	4	5
13	none 8			-15.5 -23.83		67.52 52.97		.00	4	5
14	none 8			-16.53 -7.17 -14.43		67.52 52.97 67.52		.00	4	5
15	none 8	37.61 39.38 38.2		-14.4 -15.5 -15.5	0	67.52 67.52		.03		1
16	none 8	37.61		-16.53 -15.5	2	67.52 69.56		.03		1
17	none 8	38.2 37.61 38.2		-14.4 -15.5	8	67.52 69.56		.03		1
18	none 9	97.82		-15.5		52.97		.00	4	5
19	none 8			-23.8 -23.8	3	52.97 52.97 52.97		.00	4	5
20	none 8	33.39 33.39 97.82		-7.17 -7.17 -15.5		52.97 52.97		.00	4	5
Numbe	r of wi		nodes	= 2		32.37				
				minim					imum	
segme	ridual went leng	gth	io i	ire 16 11 2	value 2.355 21.24 4.E-0	87 29	wi 1 3 1		value 4.774 859.717 .2183	
rauru	10		4	_	- · r - 0		1		. 2100	

PAGE A-2

APPENDIX A – INDIVIDUAL TOWER MODEL KLUP(AM) – TERRELL HILLS, TEXAS

ELECTRICAL DESCRIPTION - TOWER 1

Frequencies (MHz)

frequency no. of segment length (wavelengths)
no. lowest step steps minimum maximum
1 .93 0 1 7.31E-03 .0148093

Sources

source node sector magnitude phase type 1 1 1 1. 0 voltage

Lumped loads

		resistance	reactance	inductance	capacitance	passive
load	node	(ohms)	(ohms)	(mH)	(uF)	circuit
1	1	.01	0	0	0	0
2	52	.01	-10,000.	0	0	0

APPENDIX A – INDIVIDUAL TOWER MODEL KLUP(AM) – TERRELL HILLS, TEXAS

req resist react imped phase (NSWR SI1 S12 (MHz) resist react imped (MHz) resist react imped (NHz) resist react imped (NHz) resist resist react imped (NHz) resist			- TOWER							
GEOMETRY - TOWER 2 Dimensions in meters Environment: perfect ground wire caps X	freq (MHz)	re (c	esist ohms)	react (ohms) (0	hms)		VSWR		
Dimensions in meters Environment: perfect ground wire caps X Y Z radius segs 1 none 0 0 0 71.61 0 0 2 15 0 0 0 0 1.02 0 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>66.4</td> <td>7.1966</td> <td>-2.4296</td> <td>-3.6808</td>							66.4	7.1966	-2.4296	-3.6808
1 none 0 0 0 71.61 2 none 9.62 0 54.53 .004 5 1.18 0 69.51 3 none -4.81 -8.33 54.53 .004 559 -1.02 69.51 5 none 1.18 0 69.51 5 none 1.18 0 71.61 7 none -5.9 -1.02 69.51 7 none -5.9 -1.02 69.51 -0 0 71.61 7 none -5.9 -1.02 69.51 -0 0 71.61 7 none -5.9 1.02 69.51 .03 1 -0 0 71.61 8 none 9.62 0 71.61 8 none 9.62 0 71.61 8 none 9.62 0 71.61 9 none -4.81 -8.33 54.53 .004 5 -4.81 -8.33 54.53 .004 5 -4.81 -8.33 54.53 .004 5 -4.81 8.33 54.53 .004 5 -4.81 8.33 54.53 .004 5 -4.81 8.33 54.53 .004 5 -4.81 8.33 54.53 .004 5 -4.81 8.33 54.53 .004 5 -4.81 8.33 54.53 .004 5 -4.81 8.33 54.53 .004 5 -4.81 8.33 54.53 .004 5 -4.81 8.33 54.53 .004 5 -5.5 69.56 .50 .50 .50 .50 .50 .50 .50 .50 .50 .50	Dimens	sions	in mete	ers	ound					
1.16	wire	caps	X				Z	r	adius	segs
2 none 9.62	1	none							2183	15
3	2	none							004	5
59	3	none							004	5
59	5	none						•	001	J
5 none 1.18 0 69.51 .03 1 0 0 71.61 6 none59 -1.02 69.51 .03 1 0 0 71.61 7 none59 1.02 69.51 .03 1 0 0 71.61 8 none 9.62 0 54.53 .004 5 -4.81 -8.33 54.53 .004 5 -4.81 8.33 54.53 .004 5 -4.81 8.33 54.53 .004 5 -4.81 8.33 54.53 .004 5 -4.81 8.33 54.53 .004 5 -4.81 8.33 54.53 .1004 5 -4.81 8.	4	none							004	5
6 none59	5	none							03	1
7 none59									0.0	1
7 none59	6	none							03	Ţ
8 none 9.62	7	none	59		1.02		69.51		03	1
-4.81 -8.33 54.53 9	8	none							004	5
-4.81 8.33 54.53 10 none -4.81 8.33 54.53 9.62 0 54.53 11 none 88.2 -15.5 0 .2183 15 88.2 -15.5 69.56 12 none 97.82 -15.5 67.52 13 none 83.39 -23.83 52.97 .004 5 87.61 -16.52 67.52 14 none 83.39 -7.17 52.97 .004 5 88.2 -15.5 69.56 16 none 87.61 -16.52 67.52 16 none 87.61 -16.52 67.52 17 none 87.61 -16.52 67.52 18 none 87.61 -14.48 67.52 17 none 87.61 -14.48 67.52 18 none 97.82 -15.5 69.56 17 none 87.61 -14.48 67.52 .03 1 88.2 -15.5 69.56 18 none 97.82 -15.5 69.56 19 none 83.39 -23.83 52.97 19 none 83.39 -23.83 52.97 19 none 83.39 -7.17 52.97 .004 5 84.774 segment/radius ratio 11 21.2429 3 859.717			-4.81				54.53			_
10	9	none				3			004	5
11 none 88.2	10	none	-4.81		8.33		54.53		004	5
88.2	11	none				5			2183	15
89.38			88.2		-15.5	5	69.56			
13 none 83.39	12	none							004	5
14 none 83.39	13	none	83.39		-23.8	33	52.97		004	5
15 none 89.38 -15.5 67.52 .03 1 88.2 -15.5 69.56 16 none 87.61 -16.52 67.52 .03 1 88.2 -15.5 69.56 17 none 87.61 -14.48 67.52 .03 1 88.2 -15.5 69.56 18 none 97.82 -15.5 69.56 18 none 97.82 -15.5 52.97 .004 5 83.39 -23.83 52.97 19 none 83.39 -23.83 52.97 20 none 83.39 -7.17 52.97 37.82 -15.5 52.97 Number of wires = 20 current nodes = 102 minimum maximum maximum Individual wires wire value wire value segment length 16 2.35587 1 4.774 segment/radius ratio 11 21.2429 3 859.717	14	none							004	5
88.2			87.61		-14.4	18	67.52			
16	15	none							03	1
17 none 87.61	16	none	87.61		-16.5	52	67.52		03	1
88.2	17	none							03	1
83.39							69.56		004	-
19 none 83.39	18	none							004	5
20 none 83.39	19	none	83.39		-23.8	33	52.97		004	5
Number of wires = 20 current nodes = 102 minimum maximum Individual wires wire value wire value segment length 16 2.35587 1 4.774 segment/radius ratio 11 21.2429 3 859.717	20	none							004	5
current nodes = 102 minimum maximum Individual wires wire value wire value segment length 16 2.35587 1 4.774 segment/radius ratio 11 21.2429 3 859.717			97.82		-15.5	5	52.97			
Individual wires wire value wire value segment length 16 2.35587 1 4.774 segment/radius ratio 11 21.2429 3 859.717	Numbe			nodes						
segment length 16 2.35587 1 4.774 segment/radius ratio 11 21.2429 3 859.717	800.5									
segment/radius ratio 11 21.2429 3 859.717				W						
radius 2 4.E-03 1 .2183	segme:	nt/ra		tio		21.2	429		859.717	7
	radiu	S			2	4.E-	03	1	.2183	

PAGE A-4

APPENDIX A - INDIVIDUAL TOWER MODEL KLUP(AM) - TERRELL HILLS, TEXAS

ELECTRICAL DESCRIPTION - TOWER 2

Frequencies (MHz)

frequencies (MHZ)
frequency
no. of segment length (wavelengths)
no. lowest step steps minimum maximum
1 .93 0 1 7.31E-03 .0148093

Sources

source node sector magnitude phase type 1 52 1 1. 0 volta voltage

Lumped loads

		resistance	reactance	inductance	capacitance	passive
load	node	(ohms)	(ohms)	(mH)	(uF)	circuit
1	1	.01	-10,000.	0	0	0
2	52	.01	0	0	0	0

APPENDIX B

NIGHTTIME DIRECTIONAL ARRAY MODEL

APPENDIX B – NIGHTTIME DIRECTIONAL ARRAY MODEL PAGE B-1 KLUP(AM) - TERRELL HILLS, TEXAS

no	rmaliz	· NIGHTT	= 50.				-11	-10
	(<	esist ohms) ; node		(ohms)	phase (deg)	VSWR	S11 dB	S12 dB
.93).465	149.26		58.8	7.1472	-2.4466	-3.6582
source		2; node 0.622		otor 1 93.077	71.4	7.402	-2.3614	-3.7735
Dimen	sions	NIGHTT: in meter : perfe	ers	und				
wire	caps	X		Y	Z	ra	dius	segs
1	none	0		0	0	. 2	183	15
		0		0	71.61	η,	0.4	F
2	none			0	54.53	. 0	04	5
3	nono	1.18 -4.81		0 -8.33	69.51 54.53		04	5
3	none	59		-1.02	69.51	• 0	.04	, 5
4	none	-4.81		8.33	54.53	. 0	04	5
		59		1.02	69.51			
5	none	1.18		0	69.51	. 0	13	1
		0		0	71.61			
6	none			-1.02	69.51	.0	13	1
-	Mar surregues and	0		0	71.61	.0	10	1
7	none	59 0		1.02	69.51 71.61	• (13	1
8	none	9.62		0	54.53	. (004	5
0	none	-4.81		-8.33	54.53			-
9	none	-4.81		-8.33	54.53	. (004	5
		-4.81		8.33	54.53			
10	none	-4.81		8.33	54.53	. (004	5
		9.62		0	54.53			4.5
11	none	88.2		-15.5	0	• 2	2183	15
12	nono	88.2 97.82		-15.5 -15.5	69.56 52.97	(004	5
12	none	89.38		-15.5	67.52	• .	704	9
13	none	83.39		-23.83	52.97	. (004	5
		87.61		-16.52	67.52			
14	none	83.39		-7.17	52.97	. (004	5
		87.61		-14.48	67.52			
15	none	89.38		-15.5	67.52	. ()3	1
1.6		88.2		-15.5	69.56	(13	1
16	none	87.61 88.2		-16.52 -15.5	67.52 69.56	. (13	1
17	none	87.61		-14.48	67.52	. ()3	1
Ι,	110110	88.2		-15.5	69.56			_
18	none	97.82		-15.5	52.97	. (004	5
		83.39		-23.83	52.97			
19	none	83.39		-23.83	52.97	. (004	5
		83.39		-7.17	52.97		0.0.4	E
20	none	83.39		-7.17 -15.5	52.97 52.97	. (004	5
		97.82		-10.0	34.31			

Number of wires = 20 current nodes = 102

APPENDIX B – NIGHTTIME DIRECTIONAL ARRAY MODEL KLUP(AM) – TERRELL HILLS, TEXAS

Individ segment segment radius	length	n	minim vire 16 11 2	um value 2.35587 21.2429 4.E-03		ma> wire 1 3 1	value 4.774 859.717 .2183	
Frequen	cies (1 equency west		- NIGH	no. of steps	segment minimur 7.31E-0	n	n (waveleng maximum .0148093	ths)
Sources source 1 2		sector 1 1	magnit 709.03 385.06		phase 65.8 153.9		type voltage voltage	
Lumped load n 1 2	: .ode 1	resistance (ohms) .01		eactance hms)	indu (mH) 0 0	ctance	capacitano (uF) 0	ce passive circuit 0
Frequen Input p Efficie	cy = lower = ency = lates i	- NIGHTT .93 MHz 1,000. wa 99.98 % n meters			mag	phase	real	imaginary
no. GND 2 3 4 5 6 7 8 9 10 11 12 13 14 15 J1 J2 16 17 18 19 J2 J3 20 21	X 0 0 0 0 0 0 0 0 0 0 0 0 0		9 - 14 19 23 28 33 38 42 47 52 56 66 67 66 69 54	774 548 1.322 2.096 3.87 1.644 8.418 8.192 2.966 7.74 2.514 7.288 2.062 5.836 1.61 1.53 7.526 0.522 3.518 6.514 9.51	(amps) 4.06245 4.3793 4.56413 4.68878 4.76258 4.77368 4.77368 4.71728 4.62524 4.50528 4.37271 4.26034 4.17526 4.02967 3.83643 3.62552 .585325 .702168 .825724 .947241 1.06219 1.16401 .556553 .674764 .799446	(deg) 7. 4.4 2.9 1.8 .9 .1 359.5 358.9 358.5 357.7 357.6 357.6 357.7 357.6 357.7 178.4 178.6 178.6 178.5	4.36961 4.25681 4.1716 4.02617	(amps) .49433 .338121 .234083 .14708 .0726464 9.06E-030444460882839122731480611646891733961747321679515412832E-03 1.45E-03 7.87E-03 .0155254 .0240046 .0325998 .0136015 .0158982
22 23	-3.122 -2.278 -1.434	-3.94	4 63	3.518 5.514	.921814	178.4 178.1	921435 -1.0368	.0264411

1.434								
44 -4,81 8.33 54,53 .550555 178.3 -550308 .016511 26 -3,966 6.686 57,526 .66024 178.4 -66871 .018402 26 -2,278 3.944 63,518 .916474 178.2 -916038 .022456 27 -1,434 2.482 66,514 1.03214 178. -1.03153 .035451 JJ 59 1.02 69,51 1.16401 178.4 -1.13353 .034393 JZ 0 0 71.61 1.22654 178.2 -1.22593 .038544 JJ1 59 -1.02 69,51 1.13499 177.7 -1.120112 .047569 JJ1 59 1.02 69,51 1.13496 177.7 -1.19595 .04898 JJ1 9.62 0 71.61 1.19695 177.7 -1.19595 .04898 JJ1 9.62 0 54.53 .281458 1.2291457 6358-0 <	.т3	- 59	-1 02	69.51	1.13949	177.9	-1.13872	.0418215
24 -3.966 6.868 57.526 .669024 178.4 668771 .018402 26 -2.278 3.944 63.518 .916474 178.2 916038 .028272 27 -1.434 2.482 66.514 1.03214 178. -1.03153 .035431 3J1 1.18 0 69.51 1.13436 177.8 -1.13353 .033259 2J2 0 0 71.61 1.22654 178.2 -1.22593 .038549 2J1 59 -1.02 69.51 1.13499 177.9 -1.13872 .041821 2J2 0 0 71.61 1.22654 177.7 -1.12593 .041821 2J2 0 0 71.61 1.19695 177.7 -1.19595 .048293 2J2 0 0 71.61 1.19695 177.7 -1.19595 .048293 3J3 5.6734 -1.666 54.53 .291458 1.22164 3.7826 35								
25 -3.122 5.406 60.522 .79393 178.4 916038 .022456 26 -2.278 3.944 63.518 .916474 178.2 916038 .022272 27 -1.434 2.482 66.514 1.03214 178. -1.03153 .035451 J4 59 1.02 69.51 1.16401 178.4 -1.16355 .03293 J2J 0 0 71.61 1.22664 178.2 -1.22593 .038544 J2J 59 1.02 69.51 1.13436 177.9 -1.13872 .04152 J2J 59 1.02 69.51 1.13436 177.7 -1.19959 .04898 J2J 59 1.02 69.51 1.13436 177.7 -1.19959 .04898 J31 9.62 0 54.53 .291458 .1 .291457 -3.586,63 .182203 1.2 .18164 -4.045062 9.3856,63 36 3.848 -3.332								
26 -2.278 3,944 63.518 ,916474 178.2 -,916038 .028272 27 -1.434 2.482 66.514 1.03214 178. -1.03153 .035451 J1 1.18 0 69.51 1.13436 177.8 -1.13353 .032593 J2 0 0 71.61 1.26641 178.2 -1.2593 .038544 J2 0 0 71.61 1.22664 177.7 -1.13872 .041821 J2 0 0 71.61 1.12965 177.7 -1.19595 .041821 J3 -5.59 1.02 69.51 1.13436 177.7 -1.19595 .04898 J1 9.62 0 71.61 1.19695 177.7 -1.19595 .04898 J3 6.734 -1.666 54.53 .291488 1 .291467 6.358-0 35 6.734 -1.666 54.53 .28169 1.22.4481 -4.664 54.53 .18149								
1.62	25	-3.122						
JA 59 1.02 69.51 1.13436 17.8 -1.13353 .043293 2JZ 0 0 69.51 1.16401 178.4 -1.16355 .03293 2JZ 0 0 71.61 1.22654 178.2 -1.23593 .038544 2JZ 0 0 71.61 1.20266 177.7 -1.13872 .041821 2JZ 0 0 71.61 1.19496 177.7 -1.13953 .043293 1JZ 0 0 71.61 1.19695 177.7 -1.15995 .04892 3JZ 0.62 -1.666 54.53 .291458 .1 .291457 6.35E-0 35 6.734 -1.666 54.53 .182203 1.2 .182164 3.78E-0 36 3.848 -3.332 54.53 .068252 5.7 .0679164 6.76e 37 .962 -4.988 54.53 .16073 176. -1.6331 .01117 41 <td>26</td> <td>-2.278</td> <td>3.944</td> <td>63.518</td> <td>.916474</td> <td>178.2</td> <td>916038</td> <td>.0282721</td>	26	-2.278	3.944	63.518	.916474	178.2	916038	.0282721
JA 59 1.02 69.51 1.13436 17.8 -1.13353 .043293 2JZ 0 0 69.51 1.16401 178.4 -1.16355 .03293 2JZ 0 0 71.61 1.22654 178.2 -1.23593 .038544 2JZ 0 0 71.61 1.20266 177.7 -1.13872 .041821 2JZ 0 0 71.61 1.19496 177.7 -1.13953 .043293 1JZ 0 0 71.61 1.19695 177.7 -1.15995 .04892 3JZ 0.62 -1.666 54.53 .291458 .1 .291457 6.35E-0 35 6.734 -1.666 54.53 .182203 1.2 .182164 3.78E-0 36 3.848 -3.332 54.53 .068252 5.7 .0679164 6.76e 37 .962 -4.988 54.53 .16073 176. -1.6331 .01117 41 <td>27</td> <td>-1.434</td> <td>2.482</td> <td>66.514</td> <td>1.03214</td> <td>178.</td> <td>-1.03153</td> <td>.0354516</td>	27	-1.434	2.482	66.514	1.03214	178.	-1.03153	.0354516
2JI 1.18 0 69.51 1.16401 178.4 -1.16355 .032599 2JZ 0 0 71.61 1.22654 178.2 -1.22593 .038544 2JZ 0 0 71.61 1.20206 177.7 -1.20112 .047569 2JZ 0 0 71.61 1.20206 177.7 -1.13959 .043293 2JZ 0 0 54.53 .291458 1. .291457 6.35E-0 35 6.734 -1.666 54.53 .0682522 5.7 .0679164 6.76E-0 36 3.848 -3.332 54.53 .0682522 5.7 .0679164 6.76E-0 37 .962 -4.998 54.53 .16073 176. -1.60331 .011317 1JZ -4.81 -8.93 54.53 .271011 177.3 -270719 .012581 41 -4.81 -4.998 54.53 .056457 9.59.8 8285668 -1.02E							-1.13353	
2JZ 0 0 71.61 1.22654 178.2 -1.2393 .038544 2JZ 0 0 71.61 1.20266 177.7 -1.20112 .047569 2JT 59 1.02 69.51 1.13436 177.7 -1.20112 .047569 2JZ 0 0 71.61 1.19695 177.7 -1.13533 .048298 1JT 9.62 0 54.53 .291458 .1 .291457 6.35E-0 36 3.848 -3.332 54.53 .082522 5.7 .0679164 6.76E-0 37 .962 -4.998 54.53 .064523 166.4 -0.455062 9.33E-0 38 -1.924 -6.664 54.53 .271011 177.3 -2.270719 .012581 1JJ -4.81 -8.33 54.53 .28567 359.8 .285668 -1.02E-4 41 -4.81 -6.664 54.53 .0596457 .9 .0596385 9.28E-0								
271			-					
2JZ 0 0 71.61 1.20206 1.77.7 -1.20112 .047569 2JZ 0 0 71.61 1.13436 177.7 -1.19595 .043293 1JT 9.62 0 54.53 .291458 .1 .291457 6.35E-0 36 3.848 -3.332 54.53 .0682522 5.7 .0679164 6.76E-0 37 .962 -4.998 54.53 .0682522 5.7 .0679164 6.76E-0 38 -1.924 -6.664 54.53 .16073 176. -1.60331 .011317 1JZ -4.81 -8.33 54.53 .28567 359.8 .285668 -1.02E-1 1JZ -4.81 -4.998 54.53 .17506 360. .17506 -1.14E-1 42 -4.81 -1.666 54.53 .0596457 .9 .0596385 9.28E-0 1JZ -4.81 1.666 54.53 .0596457 .9 .0596385 9.28E-0			-					
ZJI 59 1.02 69.51 1.13436 177.8 -1.13535 .043298 JJI 9.62 0 54.53 .291458 .1 .291457 .635E-0 35 6.734 -1.666 54.53 .182203 1.2 .182164 3.78E-0 36 3.848 -3.332 54.53 .0682522 5.7 .0679164 6.76E-0 37 .962 -4.998 54.53 .0464523 166.4 0455062 9.33E-0 38 -1.924 -6.664 54.53 .16073 176. -160331 .01137 JJ2 -4.81 -8.33 54.53 .28567 359.8 .285668 -1.02E-144 41 -4.81 -4.998 54.53 .0596477 9 .0547411 1.96E-0 43 -4.81 1.666 54.53 .0596477 9 .0547411 1.96E-0 44 -4.81 4.998 54.53 .0547762 179. 0547411 1.96E-0 <td></td> <td>59</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		59						
2JZ 0 0 71.61 1.19695 177.7 -1.19595 .048988 1JI 9.62 0 54.53 .291458 .1 .291457 6.35E-0 36 3.848 -3.332 54.53 .0662522 5.7 .0679164 6.7662 37 .962 -4.998 54.53 .0464523 168.4 -0455062 9.33E-0 38 -1.924 -6.664 54.53 .0464523 168.4 -0455062 9.33E-0 1J2 -4.81 -8.33 54.53 .271011 177.7 -270719 .012564 41 -4.81 -4.998 54.53 .17506 360. .17506 -1.14E- 42 -4.81 1.666 54.53 .0596457 .9 -0557411 1.96E-0 43 -4.81 4.998 54.53 .170304 179. -17028 2.84E-0 1J2 -4.81 8.93 54.53 .29167 197. -0547411 1.96E-0 </td <td>2J2</td> <td>0</td> <td>0</td> <td>71.61</td> <td>1.20206</td> <td>177.7</td> <td>-1.20112</td> <td>.0475698</td>	2J2	0	0	71.61	1.20206	177.7	-1.20112	.0475698
101	2J1	59	1.02	69.51	1.13436	177.8	-1.13353	.043293
1J1	2J2	0	0	71.61	1.19695	177.7	-1.19595	.0489983
35 6.734 -1.666 54.53 .182203 1.2 .182164 3.78E-0 36 3.848 -3.332 54.53 .0464523 168.4 0455062 9.38E-0 38 -1.924 -6.664 54.53 .16073 176. -1.60331 .011317 1J2 -4.81 -8.33 54.53 .28567 359.8 .285668 -1.02E-1 41 -4.81 -4.998 54.53 .17506 360. .17506 -1.14E-1 42 -4.81 -1.666 54.53 .0596457 .9 -0.596385 -282E-0 43 -4.81 1.666 54.53 .0547762 177.9 -0.547411 1.96E-0 44 -4.81 4.998 54.53 .170304 179. -17028 2.84E-0 1J2 -4.81 8.93 54.53 .26917 357.2 2.692 -0.0123 47 -1.924 6.664 54.53 .159012 355.6 .18842 -0.0			0		291458	. 1	.291457	6.35E-04
36 3.048 -3.332 54.53 .0682522 5.7 .0679164 6.76E-0 37 .962 -4.998 54.53 .0464523 168.4 0455062 9.33E-0 38 -1.924 -6.664 54.53 .16073 176. -160331 .011317 1J1 -4.81 -8.33 54.53 .271011 177.3 -2270719 .012581 41 -4.81 -1.666 54.53 .17506 360. .17506 -1.14E- 42 -4.81 -1.666 54.53 .0547762 177.9 -0.0547411 1.98E-0 43 -4.81 1.666 54.53 .0547762 177.9 -0.0547411 1.96E-0 44 -4.81 4.998 54.53 .281129 179.3 -281108 3.43E-0 1J2 -4.81 8.33 54.53 .26917 357.2 2692 -0.1307 48 .962 4.998 54.53 .159012 355.6 .158542 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>								
37 .962 -4.998 54.53 .0464523 168.4 0455062 9.33E-0 38 -1.924 -6.664 54.53 .16073 176. 160331 .011317 1J1 -4.81 -8.33 54.53 .271011 177.3 270719 .012581 41 -4.81 -4.998 54.53 .17506 360. .17506 -1.14E- 42 -4.81 -1.666 54.53 .0596457 9 .0596385 9.28E-0 43 -4.81 1.666 54.53 .0547762 177.9 0547411 1.96E-0 44 -4.81 4.998 54.53 .281129 179.3 281108 3.43E-0 1J2 -4.81 8.33 54.53 .269517 357.2 .2692 01307 47 -1.924 6.664 54.53 .159012 355.6 .158542 01221 48 .962 4.998 54.53 .0747526 346.3 .041771 -								
38 -1.924 -6.664 54.53 .16073 176. -1.60331 .011317 1J2 -4.81 -8.33 54.53 .28567 359.8 .285668 -1.02E 41 -4.81 -4.998 54.53 .17506 360. .17506 -1.14E 42 -4.81 -1.666 54.53 .0596457 .9 .0596385 9.28E-0 43 -4.81 4.998 54.53 .0547762 177.9 0547411 1.96E-0 44 -4.81 8.33 54.53 .269517 357.2 .2692 -0.01307 1J2 -4.81 8.33 54.53 .269517 357.2 .2692 -0.01307 47 -1.924 6.664 54.53 .059617 357.2 .2692 -0.01307 48 .962 4.998 54.53 .047526 346.3 .043771 -01060 49 3.848 3.322 54.53 .0476317 186.8 -0.701348 -8.36E-0<								
1J2								
1J1 -4.81 -8.33 54.53 .28567 359.8 .285668 -1.02E-1.14E-2.14 41 -4.81 -4.998 54.53 .17506 360. .17506 -1.14E-2.14 42 -4.81 1.666 54.53 .0596457 9 .0596385 9.28E-0 43 -4.81 4.998 54.53 .170304 179. 17028 2.84E-0 44 -4.81 8.933 54.53 .281129 179.3 281108 3.43E-0 1J1 -4.81 8.33 54.53 .159012 355.6 .158542 -01221 47 -1.924 6.664 54.53 .159012 355.6 .158542 -01221 48 .962 4.998 54.53 .047526 346.3 .0434771 -01060 49 3.848 3.332 54.53 .0706317 186.8 -0701348 -6.664 54.53 .184596 181.7 -184511 -5.61E-6 GND 8.82								
41 -4.81 -4.998 54.53 .17506 360. .17506 -1.14E-42 -4.81 -1.666 54.53 .0596457 .9 .0596385 9.28E-0 .44 -4.81 4.666 54.53 .0547762 177.9 -0.547411 1.96E-0 .44 -4.81 4.998 54.53 .170304 179. -17028 2.84E-0 .172 -4.81 8.33 54.53 .281129 179.3 -281108 3.43E-0 .171 -4.81 8.33 54.53 .26917 357.2 .2692 -0.01307 .47 -1.924 6.664 54.53 .159012 355.6 .158542 -0.1221 .48 .962 4.998 54.53 .0447526 346.3 .0434771 -0.1060 .48 .962 4.998 54.53 .184596 181.7 -184511 -5.61E-112 .9.62 0 54.53 .184596 181.7 -184511 -5.61E-112 .9.62 0 54.53 .184596 181.7 -184511 -5.61E-112 .9.62	1J2	-4.81	-8.33	54.53	.271011	177.3		.012581
42 -4.81 -1.666 54.53 .0596457 .9 .0596385 9.28E-0 43 -4.81 1.666 54.53 .0547762 177.9 0547411 1.96E-0 1J2 -4.81 8.33 54.53 .281129 179.3 281108 3.43E-0 1J1 -4.81 8.33 54.53 .269517 357.2 .2692 01307 47 -1.924 6.664 54.53 .159012 355.6 .158542 01221 48 .962 4.998 54.53 .0447526 346.3 .0434771 01060 49 3.848 3.332 54.53 .0706317 186.8 0701348 -8.36E- 50 6.734 1.666 54.53 .184596 181.7 184511 -5.61E- 1JZ 9.62 0 54.53 .29387 180.5 -2.93859 -2.56E- GND 88.2 -15.5 0 4.13712 82.5 539715 4.10177 </td <td>1J1</td> <td>-4.81</td> <td>-8.33</td> <td>54.53</td> <td>.28567</td> <td>359.8</td> <td>.285668</td> <td>-1.02E-03</td>	1J1	-4.81	-8.33	54.53	.28567	359.8	.285668	-1.02E-03
42 -4.81 -1.666 54.53 .0596457 .9 .0596385 9.28E-0 43 -4.81 1.666 54.53 .0547762 177.9 0547411 1.96E-0 1J2 -4.81 8.33 54.53 .281129 179.3 281108 3.43E-0 1J1 -4.81 8.33 54.53 .269517 357.2 .2692 01307 47 -1.924 6.664 54.53 .159012 355.6 .158542 01221 48 .962 4.998 54.53 .0447526 346.3 .0434771 01060 49 3.848 3.332 54.53 .0706317 186.8 0701348 -8.36E- 50 6.734 1.666 54.53 .184596 181.7 184511 -5.61E- 1JZ 9.62 0 54.53 .29387 180.5 -2.93859 -2.56E- GND 88.2 -15.5 0 4.13712 82.5 539715 4.10177 </td <td>41</td> <td>-4.81</td> <td>-4.998</td> <td>54.53</td> <td>.17506</td> <td>360.</td> <td>.17506</td> <td>-1.14E-04</td>	41	-4.81	-4.998	54.53	.17506	360.	.17506	-1.14E-04
43 -4.81 1.666 54.53 .0547762 177.9 0547411 1.96E-0 44 -4.81 4.998 54.53 .170304 179.3 17028 2.84E-0 1J1 -4.81 8.33 54.53 .289129 179.3 281108 3.43E-0 1J1 -4.81 8.33 54.53 .269517 357.2 .2692 01307 47 -1.924 6.664 54.53 .159012 355.6 .158542 01221 48 .962 4.998 54.53 .0447526 346.3 .0434771 01060 49 3.848 3.332 54.53 .0706317 186.8 0701348 -8.36E-8 50 6.734 1.666 54.53 .184596 181.7 184511 -5.61E-1 1JZ 9.62 0 54.53 .19372 82.5 .539715 4.10177 53 88.2 -15.5 0 4.37728 81.7 .626792 4.27214 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>.0596385</td> <td>9.28E-04</td>							.0596385	9.28E-04
44 -4.81 4.998 54.53 .170304 179. 17028 2.84E-0 1JZ -4.81 8.33 54.53 .281129 179.3 281108 3.43E-0 1J1 -4.81 8.33 54.53 .269517 357.2 .2692 01307 47 -1.924 6.664 54.53 .159012 355.6 .158542 01221 48 .962 4.998 54.53 .0447526 346.3 .0434771 01060 49 3.848 3.332 54.53 .0706317 186.8 0701348 -8.36E- 50 6.734 1.666 54.53 .184596 181.7 184511 -5.61E- 1JZ 9.62 0 54.53 .29387 180.5 293859 -2.56E- GND 88.2 -15.5 0 4.13712 82.5 .539715 4.1017 53 88.2 -15.5 9.27467 4.41023 81.1 .679884 4.35751								
1J2								
1J1 -4.81 8.33 54.53 .269517 357.2 .2692 01307 47 -1.924 6.664 54.53 .159012 355.6 .158542 01221 48 .962 4.998 54.53 .0447526 346.3 .0434771 01060 50 6.734 1.666 54.53 .0706317 186.8 0701348 -8.36E- 50 6.734 1.666 54.53 .184596 181.7 184511 -5.61E- GND 88.2 -15.5 0 4.13712 82.5 .539715 4.10177 53 88.2 -15.5 4.63733 4.31787 81.7 .626792 4.27214 54 88.2 -15.5 9.27467 4.41023 81.1 .679884 4.35751 55 88.2 -15.5 13.912 4.45822 80.7 .719341 4.39981 56 88.2 -15.5 23.1867 4.44297 80.1 .766555 4.37634 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
47 -1.924 6.664 54.53 .159012 355.6 .158542 01221 48 .962 4.998 54.53 .0447526 346.3 .0434771 01060 49 3.848 3.332 54.53 .0706317 186.8 0701348 -8.36E- 50 6.734 1.666 54.53 .184596 181.7 184511 -5.61E- 1J2 9.62 0 54.53 .29387 180.5 293859 -2.56E- GND 88.2 -15.5 0 4.13712 82.5 .539715 4.10177 53 88.2 -15.5 4.63733 4.31787 81.7 .626792 4.27214 54 88.2 -15.5 13.912 4.45822 80.7 .719341 4.39961 55 88.2 -15.5 18.5493 4.46806 80.4 .747842 4.40503 57 88.2 -15.5 23.1867 4.92976 80.1 .766555 4.37634 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
48 .962 4.998 54.53 .0447526 346.3 .0434771 01060 49 3.848 3.332 54.53 .0706317 186.8 0701348 -8.36E- 50 6.734 1.666 54.53 .184596 181.7 184511 -5.61E- GND 88.2 -15.5 0 4.13712 82.5 .539715 4.10177 53 88.2 -15.5 9.27467 4.41023 81.1 .679884 4.35751 54 88.2 -15.5 9.27467 4.41023 81.1 .679884 4.35751 55 88.2 -15.5 13.912 4.45822 80.7 .719341 4.39981 56 88.2 -15.5 18.5493 4.46806 80.4 .747842 4.40503 57 88.2 -15.5 23.1867 4.44297 80.1 .766555 4.37634 58 88.2 -15.5 32.4613 4.29865 79.6 .777351 4.22778<								
49 3.848 3.332 54.53 .0706317 186.8 0701348 -8.36E-50 50 6.734 1.666 54.53 .184596 181.7 184511 -5.61E-51 GND 88.2 -15.5 0 54.53 .29387 180.5 -293859 -2.56E-51 53 88.2 -15.5 0 4.13712 82.5 .539715 4.10177 54 88.2 -15.5 4.63733 4.31787 81.7 .626792 4.27214 54 88.2 -15.5 9.27467 4.41023 81.1 .679884 4.35751 55 88.2 -15.5 13.912 4.45822 80.7 .719341 4.39981 56 88.2 -15.5 18.5493 4.46806 80.4 .747842 4.40503 57 88.2 -15.5 23.1867 4.44297 80.1 .766555 4.37634 58 88.2 -15.5 37.0987 4.18653 79.4 .770833 4.11496 59 88.2 -15.5 37.0987 4.18653								
50 6.734 1.666 54.53 .184596 181.7 184511 -5.61E-1JZ 9.62 0 54.53 .29387 180.5 293859 -2.56E-256E-256E-256E-256E-256E-256E-256E-2	48	.962	4.998	54.53	.0447526			0106086
172 9.62 0 54.53 .29387 180.5 293859 -2.56E-GND 88.2 -15.5 0 4.13712 82.5 .539715 4.10177 53 88.2 -15.5 4.63733 4.31787 81.7 .626792 4.27214 6.566793 6.56679	49	3.848	3.332	54.53	.0706317	186.8	0701348	-8.36E-03
GND 88.2 -15.5 0 4.13712 82.5 .539715 4.10177 53 88.2 -15.5 4.63733 4.31787 81.7 .626792 4.27214 54 88.2 -15.5 9.27467 4.41023 81.1 .679884 4.35751 55 88.2 -15.5 18.5493 4.46806 80.4 .747842 4.40503 56 88.2 -15.5 23.1867 4.44297 80.1 .766555 4.37634 58 88.2 -15.5 27.824 4.38551 79.8 .776185 4.31628 59 88.2 -15.5 32.4613 4.29865 79.6 .777351 4.22778 60 88.2 -15.5 37.0987 4.18653 79.4 .770833 4.11496 61 88.2 -15.5 46.3733 3.92124 79.1 .740959 3.8506 63 88.2 -15.5 51.0107 3.81022 79. .725185 3.74057	50	6.734	1.666	54.53	.184596	181.7	184511	-5.61E-03
GND 88.2 -15.5 0 4.13712 82.5 .539715 4.10177 53 88.2 -15.5 4.63733 4.31787 81.7 .626792 4.27214 54 88.2 -15.5 9.27467 4.41023 81.1 .679884 4.35751 55 88.2 -15.5 13.912 4.45822 80.7 .719341 4.39981 56 88.2 -15.5 18.5493 4.46806 80.4 .747842 4.40503 57 88.2 -15.5 23.1867 4.44297 80.1 .766555 4.37634 58 88.2 -15.5 27.824 4.38551 79.8 .776185 4.31628 59 88.2 -15.5 37.0987 4.18653 79.4 .770833 4.11496 61 88.2 -15.5 46.3733 3.92124 79.1 .740959 3.8506 63 88.2 -15.5 51.0107 3.81022 79. .7211454 3.65904	1J2	9.62	0	54.53	.29387	180.5	293859	-2.56E-03
53 88.2 -15.5 4.63733 4.31787 81.7 .626792 4.27214 54 88.2 -15.5 9.27467 4.41023 81.1 .679884 4.35751 55 88.2 -15.5 13.912 4.45822 80.7 .719341 4.39981 56 88.2 -15.5 18.5493 4.46806 80.4 .747842 4.40503 57 88.2 -15.5 23.1867 4.44297 80.1 .766555 4.37634 58 88.2 -15.5 27.824 4.38551 79.8 .776185 4.31628 59 88.2 -15.5 32.4613 4.29865 79.6 .777351 4.22778 60 88.2 -15.5 37.0987 4.18653 79.4 .770833 4.11496 61 88.2 -15.5 46.3733 3.92124 79.1 .740959 3.8506 63 88.2 -15.5 55.648 3.72756 79. .721853 3.74057 64 88.2 -15.5 60.2853 3.5971 79. <			-15.5	0	4.13712	82.5	.539715	4.10177
54 88.2 -15.5 9.27467 4.41023 81.1 .679884 4.35751 55 88.2 -15.5 13.912 4.45822 80.7 .719341 4.39981 56 88.2 -15.5 18.5493 4.46806 80.4 .747842 4.40503 57 88.2 -15.5 23.1867 4.44297 80.1 .766555 4.37634 58 88.2 -15.5 27.824 4.38551 79.8 .776185 4.31628 59 88.2 -15.5 32.4613 4.29865 79.6 .777351 4.22778 60 88.2 -15.5 37.0987 4.18653 79.4 .770833 4.11496 61 88.2 -15.5 41.736 4.05617 79.2 .757885 3.98474 62 88.2 -15.5 51.0107 3.81022 79. .725185 3.74057 64 88.2 -15.5 55.648 3.72756 79. .711454 3.65904 65 88.2 -15.5 60.2853 3.5971 79. <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>								
55 88.2 -15.5 13.912 4.45822 80.7 .719341 4.39981 56 88.2 -15.5 18.5493 4.46806 80.4 .747842 4.40503 57 88.2 -15.5 23.1867 4.44297 80.1 .766555 4.37634 58 88.2 -15.5 27.824 4.38551 79.8 .776185 4.31628 59 88.2 -15.5 32.4613 4.29865 79.6 .777351 4.22778 60 88.2 -15.5 37.0987 4.18653 79.4 .770833 4.11496 61 88.2 -15.5 46.3733 3.92124 79.1 .740959 3.8506 63 88.2 -15.5 51.0107 3.81022 79. .725185 3.74057 64 88.2 -15.5 55.648 3.72756 79. .711454 3.65904 65 88.2 -15.5 60.2853 3.5971 79. .686309 3.53102 66 88.2 -15.5 69.56 3.24747 79.1								
56 88.2 -15.5 18.5493 4.46806 80.4 .747842 4.40503 57 88.2 -15.5 23.1867 4.44297 80.1 .766555 4.37634 58 88.2 -15.5 27.824 4.38551 79.8 .776185 4.31628 59 88.2 -15.5 32.4613 4.29865 79.6 .777351 4.22778 60 88.2 -15.5 37.0987 4.18653 79.4 .770833 4.11496 61 88.2 -15.5 41.736 4.05617 79.2 .757885 3.98474 62 88.2 -15.5 51.0107 3.81022 79.1 .740959 3.8506 63 88.2 -15.5 55.648 3.72756 79.1 .740959 3.8506 64 88.2 -15.5 60.2853 3.5971 79.1 .740959 3.65804 591 88.2 -15.5 64.9227 3.42839 79.1 .612906 3.18911 50 88.2 -15.5 69.56 3.24747 79.1 <								
57 88.2 -15.5 23.1867 4.44297 80.1 .766555 4.37634 58 88.2 -15.5 27.824 4.38551 79.8 .776185 4.31628 59 88.2 -15.5 32.4613 4.29865 79.6 .777351 4.22778 60 88.2 -15.5 37.0987 4.18653 79.4 .770833 4.11496 61 88.2 -15.5 41.736 4.05617 79.2 .757885 3.98474 62 88.2 -15.5 46.3733 3.92124 79.1 .740959 3.8506 63 88.2 -15.5 51.0107 3.81022 79. .725185 3.74057 64 88.2 -15.5 56.48 3.72756 79. .711454 3.65904 65 88.2 -15.5 60.2853 3.5971 79. .686309 3.53102 66 88.2 -15.5 64.9227 3.42839 79. .651735 3.36587 J1 88.2 -15.5 52.97 .536047 261.7 -								
58 88.2 -15.5 27.824 4.38551 79.8 .776185 4.31628 59 88.2 -15.5 32.4613 4.29865 79.6 .777351 4.22778 60 88.2 -15.5 37.0987 4.18653 79.4 .770833 4.11496 61 88.2 -15.5 41.736 4.05617 79.2 .757885 3.98474 62 88.2 -15.5 46.3733 3.92124 79.1 .740959 3.8506 63 88.2 -15.5 51.0107 3.81022 79. .725185 3.74057 64 88.2 -15.5 55.648 3.72756 79. .711454 3.65904 65 88.2 -15.5 60.2853 3.5971 79. .686309 3.53102 66 88.2 -15.5 64.9227 3.42839 79. .651735 3.36587 J11 88.2 -15.5 52.97 .536047 79.1 .612906 3.18911 J12 97.82 -15.5 52.87 .536047 261.7 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>								
59 88.2 -15.5 32.4613 4.29865 79.6 .777351 4.22778 60 88.2 -15.5 37.0987 4.18653 79.4 .770833 4.11496 61 88.2 -15.5 41.736 4.05617 79.2 .757885 3.98474 62 88.2 -15.5 46.3733 3.92124 79.1 .740959 3.8506 63 88.2 -15.5 51.0107 3.81022 79. .725185 3.74057 64 88.2 -15.5 55.648 3.72756 79. .711454 3.65904 65 88.2 -15.5 60.2853 3.5971 79. .686309 3.53102 66 88.2 -15.5 64.9227 3.42839 79. .651735 3.36587 J11 88.2 -15.5 69.56 3.24747 79.1 .612906 3.18911 J12 97.82 -15.5 55.88 .640484 261.2 0980696 63293 68 94.444 -15.5 58.79 .749914 260.8								
60 88.2 -15.5 37.0987 4.18653 79.4 .770833 4.11496 61 88.2 -15.5 41.736 4.05617 79.2 .757885 3.98474 62 88.2 -15.5 46.3733 3.92124 79.1 .740959 3.8506 63 88.2 -15.5 51.0107 3.81022 79. .725185 3.74057 64 88.2 -15.5 55.648 3.72756 79. .711454 3.65904 65 88.2 -15.5 60.2853 3.5971 79. .686309 3.53102 66 88.2 -15.5 64.9227 3.42839 79. .651735 3.36587 J11 88.2 -15.5 69.56 3.24747 79.1 .612906 3.18911 J12 97.82 -15.5 52.97 .536047 261.7 0772254 53045 67 96.132 -15.5 58.79 .749914 260.8 120379 74018 69 92.756 -15.5 61.7 .85658 260.4								
61 88.2 -15.5 41.736 4.05617 79.2 .757885 3.98474 62 88.2 -15.5 46.3733 3.92124 79.1 .740959 3.8506 63 88.2 -15.5 51.0107 3.81022 79725185 3.74057 64 88.2 -15.5 55.648 3.72756 79711454 3.65904 65 88.2 -15.5 60.2853 3.5971 79686309 3.53102 66 88.2 -15.5 64.9227 3.42839 79651735 3.36587 J11 88.2 -15.5 69.56 3.24747 79.1 .612906 3.18911 J12 97.82 -15.5 52.97 .536047 261.7077225453045 67 96.132 -15.5 55.88 .640484 261.2098069663293 68 94.444 -15.5 58.79 .749914 260.812037974018 69 92.756 -15.5 61.7 .85658 260.414255584463 70 91.068 -15.5 64.61 .956603 260.116374494248 J12 89.38 -15.5 67.52 1.04444 259.9182692 -1.0283 J13 83.39 -23.83 52.97 .513993 259097985150456 71 84.234 -22.368 55.88 .619025 259.111665460793 72 85.078 -20.906 58.79 .728911 259.213702271591 73 85.922 -19.444 61.7 .83589 259.115762582083 74 86.766 -17.982 64.61 .936102 259.11776691908								
62 88.2 -15.5 46.3733 3.92124 79.1 .740959 3.8506 63 88.2 -15.5 51.0107 3.81022 79. .725185 3.74057 64 88.2 -15.5 55.648 3.72756 79. .711454 3.65904 65 88.2 -15.5 60.2853 3.5971 79. .686309 3.53102 66 88.2 -15.5 64.9227 3.42839 79. .651735 3.36587 J11 88.2 -15.5 69.56 3.24747 79.1 .612906 3.18911 J12 97.82 -15.5 52.97 .536047 261.7 0772254 53045 67 96.132 -15.5 55.88 .640484 261.2 0980696 63293 68 94.444 -15.5 58.79 .749914 260.8 120379 74018 69 92.756 -15.5 61.7 .85658 260.4 142555 84463 70 91.068 -15.5 64.61 .956603 260.1	60	88.2			4.18653			
63 88.2 -15.5 51.0107 3.81022 79. .725185 3.74057 64 88.2 -15.5 55.648 3.72756 79. .711454 3.65904 65 88.2 -15.5 60.2853 3.5971 79. .686309 3.53102 66 88.2 -15.5 64.9227 3.42839 79. .651735 3.36587 J11 88.2 -15.5 69.56 3.24747 79.1 .612906 3.18911 J12 97.82 -15.5 52.97 .536047 261.7 0772254 53045 67 96.132 -15.5 55.88 .640484 261.2 0980696 63293 68 94.444 -15.5 58.79 .749914 260.8 120379 74018 69 92.756 -15.5 61.7 .85658 260.4 142555 84463 70 91.068 -15.5 64.61 .956603 260.1 163744 94248 J13 83.39 -23.83 52.97 .513993 259. </td <td>61</td> <td>88.2</td> <td>-15.5</td> <td>41.736</td> <td>4.05617</td> <td>79.2</td> <td>.757885</td> <td>3.98474</td>	61	88.2	-15.5	41.736	4.05617	79.2	.757885	3.98474
64 88.2 -15.5 55.648 3.72756 79. .711454 3.65904 65 88.2 -15.5 60.2853 3.5971 79. .686309 3.53102 66 88.2 -15.5 64.9227 3.42839 79. .651735 3.36587 J11 88.2 -15.5 69.56 3.24747 79.1 .612906 3.18911 J12 97.82 -15.5 52.97 .536047 261.7 0772254 53045 67 96.132 -15.5 55.88 .640484 261.2 0980696 63293 68 94.444 -15.5 58.79 .749914 260.8 120379 74018 69 92.756 -15.5 61.7 .85658 260.4 142555 84463 70 91.068 -15.5 64.61 .956603 260.1 163744 94248 J13 83.39 -23.83 52.97 .513993 259. 0979851 50456 71 84.234 -22.368 55.88 .619025 2	62	88.2	-15.5	46.3733	3.92124	79.1	.740959	3.8506
64 88.2 -15.5 55.648 3.72756 79. .711454 3.65904 65 88.2 -15.5 60.2853 3.5971 79. .686309 3.53102 66 88.2 -15.5 64.9227 3.42839 79. .651735 3.36587 J11 88.2 -15.5 69.56 3.24747 79.1 .612906 3.18911 J12 97.82 -15.5 52.97 .536047 261.7 0772254 53045 67 96.132 -15.5 55.88 .640484 261.2 0980696 63293 68 94.444 -15.5 58.79 .749914 260.8 120379 74018 69 92.756 -15.5 61.7 .85658 260.4 142555 84463 70 91.068 -15.5 64.61 .956603 260.1 163744 94248 J13 83.39 -23.83 52.97 .513993 259. 0979851 50456 71 84.234 -22.368 55.88 .619025 2	63	88.2	-15.5	51.0107	3.81022	79.	.725185	3.74057
65 88.2 -15.5 60.2853 3.5971 79. .686309 3.53102 66 88.2 -15.5 64.9227 3.42839 79. .651735 3.36587 J11 88.2 -15.5 69.56 3.24747 79.1 .612906 3.18911 J12 97.82 -15.5 52.97 .536047 261.7 0772254 53045 67 96.132 -15.5 55.88 .640484 261.2 0980696 63293 68 94.444 -15.5 58.79 .749914 260.8 120379 74018 69 92.756 -15.5 61.7 .85658 260.4 142555 84463 70 91.068 -15.5 64.61 .956603 260.1 163744 94248 J12 89.38 -15.5 67.52 1.04444 259.9 182692 -1.0283 J13 83.39 -23.83 52.97 .513993 259. 0979851 50456 72 85.078 -20.906 58.79 .728911 <			-15.5	55.648	3.72756	79.	.711454	3.65904
66 88.2 -15.5 64.9227 3.42839 79. .651735 3.36587 J11 88.2 -15.5 69.56 3.24747 79.1 .612906 3.18911 J12 97.82 -15.5 52.97 .536047 261.7 0772254 53045 67 96.132 -15.5 55.88 .640484 261.2 0980696 63293 68 94.444 -15.5 58.79 .749914 260.8 120379 74018 69 92.756 -15.5 61.7 .85658 260.4 142555 84463 70 91.068 -15.5 64.61 .956603 260.1 163744 94248 J12 89.38 -15.5 67.52 1.04444 259.9 182692 -1.0283 J13 83.39 -23.83 52.97 .513993 259. 0979851 50456 71 84.234 -22.368 55.88 .619025 259.1 116654 60793 73 85.922 -19.444 61.7 .83589							.686309	3.53102
J11 88.2 -15.5 69.56 3.24747 79.1 .612906 3.18911 J12 97.82 -15.5 52.97 .536047 261.7 0772254 53045 67 96.132 -15.5 55.88 .640484 261.2 0980696 63293 68 94.444 -15.5 58.79 .749914 260.8 120379 74018 69 92.756 -15.5 61.7 .85658 260.4 142555 84463 70 91.068 -15.5 64.61 .956603 260.1 163744 94248 J12 89.38 -15.5 67.52 1.04444 259.9 182692 -1.0283 J13 83.39 -23.83 52.97 .513993 259. 0979851 50456 71 84.234 -22.368 55.88 .619025 259.1 116654 60793 72 85.078 -20.906 58.79 .728911 259.2 137022 71591 73 85.922 -19.444 61.7 .83589 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
J12 97.82 -15.5 52.97 .536047 261.7 0772254 53045 67 96.132 -15.5 55.88 .640484 261.2 0980696 63293 68 94.444 -15.5 58.79 .749914 260.8 120379 74018 69 92.756 -15.5 61.7 .85658 260.4 142555 84463 70 91.068 -15.5 64.61 .956603 260.1 163744 94248 J12 89.38 -15.5 67.52 1.04444 259.9 182692 -1.0283 J13 83.39 -23.83 52.97 .513993 259. 0979851 50456 71 84.234 -22.368 55.88 .619025 259.1 116654 60793 72 85.078 -20.906 58.79 .728911 259.2 137022 71591 73 85.922 -19.444 61.7 .83589 259.1 157625 82089 74 86.766 -17.982 64.61 .93610								
67 96.132 -15.5 55.88 .640484 261.2098069663293 68 94.444 -15.5 58.79 .749914 260.812037974018 69 92.756 -15.5 61.7 .85658 260.414255584463 70 91.068 -15.5 64.61 .956603 260.116374494248 J12 89.38 -15.5 67.52 1.04444 259.9182692 -1.0283 J13 83.39 -23.83 52.97 .513993 259097985150456 71 84.234 -22.368 55.88 .619025 259.111665460793 72 85.078 -20.906 58.79 .728911 259.213702271593 73 85.922 -19.444 61.7 .83589 259.115762582089 74 86.766 -17.982 64.61 .936102 259.11776691908								
68 94.444 -15.5 58.79 .749914 260.8 120379 74018 69 92.756 -15.5 61.7 .85658 260.4 142555 84463 70 91.068 -15.5 64.61 .956603 260.1 163744 94248 J12 89.38 -15.5 67.52 1.04444 259.9 182692 -1.0283 J13 83.39 -23.83 52.97 .513993 259. 0979851 50456 71 84.234 -22.368 55.88 .619025 259.1 116654 60793 72 85.078 -20.906 58.79 .728911 259.2 137022 71593 73 85.922 -19.444 61.7 .83589 259.1 157625 82089 74 86.766 -17.982 64.61 .936102 259.1 17766 91908								
69 92.756 -15.5 61.7 .85658 260.414255584463 70 91.068 -15.5 64.61 .956603 260.116374494248 J12 89.38 -15.5 67.52 1.04444 259.9182692 -1.0283 J13 83.39 -23.83 52.97 .513993 259097985150456 71 84.234 -22.368 55.88 .619025 259.111665460793 72 85.078 -20.906 58.79 .728911 259.213702271593 73 85.922 -19.444 61.7 .83589 259.115762582089 74 86.766 -17.982 64.61 .936102 259.11776691908								
70 91.068 -15.5 64.61 .956603 260.1 163744 94248 J12 89.38 -15.5 67.52 1.04444 259.9 182692 -1.0283 J13 83.39 -23.83 52.97 .513993 259. 0979851 50456 71 84.234 -22.368 55.88 .619025 259.1 116654 60793 72 85.078 -20.906 58.79 .728911 259.2 137022 71593 73 85.922 -19.444 61.7 .83589 259.1 157625 82089 74 86.766 -17.982 64.61 .936102 259.1 17766 91908	68	94.444						
J12 89.38 -15.5 67.52 1.04444 259.9 182692 -1.0283 J13 83.39 -23.83 52.97 .513993 259. 0979851 50456 71 84.234 -22.368 55.88 .619025 259.1 116654 60793 72 85.078 -20.906 58.79 .728911 259.2 137022 71591 73 85.922 -19.444 61.7 .83589 259.1 157625 82089 74 86.766 -17.982 64.61 .936102 259.1 17766 91908	69	92.756				260.4		
J12 89.38 -15.5 67.52 1.04444 259.9 182692 -1.0283 J13 83.39 -23.83 52.97 .513993 259. 0979851 50456 71 84.234 -22.368 55.88 .619025 259.1 116654 60793 72 85.078 -20.906 58.79 .728911 259.2 137022 71593 73 85.922 -19.444 61.7 .83589 259.1 157625 82089 74 86.766 -17.982 64.61 .936102 259.1 17766 91908	70	91.068	-15.5	64.61	.956603	260.1		942485
J13 83.39 -23.83 52.97 .513993 259. 0979851 50456 71 84.234 -22.368 55.88 .619025 259.1 116654 60793 72 85.078 -20.906 58.79 .728911 259.2 137022 71593 73 85.922 -19.444 61.7 .83589 259.1 157625 82089 74 86.766 -17.982 64.61 .936102 259.1 17766 91908	J12	89.38		67.52	1.04444	259.9	182692	-1.02834
71 84.234 -22.368 55.88 .619025 259.1 116654 60793 72 85.078 -20.906 58.79 .728911 259.2 137022 71591 73 85.922 -19.444 61.7 .83589 259.1 157625 82089 74 86.766 -17.982 64.61 .936102 259.1 17766 91908			-23.83	52.97	.513993	259.	0979851	504567
72 85.078 -20.906 58.79 .728911 259.2 137022 71591 73 85.922 -19.444 61.7 .83589 259.1 157625 82089 74 86.766 -17.982 64.61 .936102 259.1 17766 91908							116654	607934
73 85.922 -19.444 61.7 .83589 259.115762582089 74 86.766 -17.982 64.61 .936102 259.11776691908								715917
74 86.766 -17.982 64.61 .936102 259.11776691908								820894
								919089
010 07.01 -10.02 07.02 1.02407 200190919 -1.000.								
	013	0/.01	10.52	01.02	1.02407	200.	• 100010	1.00010

J14	83.39	-7.17	52.97	.50815	258.2	103535	497491
75	84.234	-8.632	55.88	.613243	258.6	121581	60107
76	85.078	-10.094	58.79	.723187	258.7	141426	709224
77	85.922	-11.556	61.7	.830217	258.8	161629	814332
78	86.766	-13.018	64.61	.930473	258.8	181387	912622
J14	87.61	-14.48	67.52	1.01846	258.7	199488	998728
2J1	89.38	-15.5	67.52	1.04444	259.9	182692	-1.02834
2J2	88.2	-15.5	69.56	1.09799	259.8	194466	-1.08063
2J1	87.61	-16.52	67.52	1.02407	259.	195919	-1.00515
2J2	88.2	-15.5	69.56	1.0776	258.9	20746	-1.05744
2J1	87.61	-14.48	67.52	1.01846	258.7	199488	998728
2J2	88.2	-15.5	69.56	1.07201	258.6	21098	-1.05104
1J1	97.82	-15.5	52.97	.266874	81.4	.0400657	.263849
86	94.934	-17.166	52.97	.16571	82.9	.0204051	.164449
87	92.048	-18.832	52.97	.0609465	89.7	2.91E-04	.0609458
88	89.162	-20.498	52.97	.0457894	245.2	0192066	0415665
89	86.276	-22.164	52.97	.150456	255.2	038406	145472
1J2	83.39	-23.83	52.97	.252014	257.1	0563338	245637
1J1	83.39	-23.83	52.97	.262259	80.9	.0416513	.25893
92	83.39	-20.498	52.97	.160436	81.3	.024229	.158596
93	83.39	-17.166	52.97	.0546025	83.4	6.29E-03	.0542394
94	83.39	-13.834	52.97	.0502756	257.	0113039	0489884
95	83.39	-10.502	52.97	.156153	259.3	0289709	153442
1J2	83.39	-7.17	52.97	.258067	259.8	045873	253957
1J1	83.39	-7.17	52.97	.250267	76.7	.0576618	.243534
98	86.276	-8.836	52.97	.14872	74.3	.0403096	.143153
99	89.162	-10.502	52.97	.0446173	61.1	.0215564	.0390644
100	92.048	-12.168	52.97	.0636282	272.1	2.37E-03	0635842
101	94.934	-13.834	52.97	.168093	264.	017565	167173
1J2	97.82	-15.5	52.97	.269183	262.1	0371597	266606