Fletcher, Heald & Hildreth

KARYN K. ABLIN KEENAN P. ADAMCHAK ROBERT J. BUTLER MARK C. DESANTIS DONALD J. EVANS FRANK R. JAZZO DAVID M. JANET KEVIN M. GOLDBERG PAUL J. FELDMAN HARRY F. COLE M. SCOTT JOHNSON ANNE GOODWIN CRUMP

2017 MAR

1300 NORTH 17th STREET, 11th FLOOR ARLINGTON, VIRGINIA 22209

2 ببا W 0

OFFICE: (703) 812-0400 FAX: (703) 812-0486 www.fhhlaw.com

www.commlawblog.com

March 22, 2017

RETIRED MEMBERS
VINCENT J. CURTIS, JR. HARRY C. MARTIN GEORGE PETRUTSAS RICHARD HILDRETH JAMES P. RILEY

THOMAS J. DOUGHERTY, JR. ROBERT M. GURSS* KATHRYN A. KLEIMAN MITCHELL LAZARUS

ROBERT M. WINTERINGHAM PETER TANNENWALD

SUSAN A. MARSHALL STEPHEN T. LOVELADY

ASHLEY LUDLOW CHENG-YI LIU TONY S. LEE

DANIEL A. KIRKPATRICK

MATTHEW H. McCORMICK MICHELLE A. McCLURE

FRANCISCO R. MONTERO

* NOT ADMITTED IN VIRGINIA

KATHLEEN VICTORY JAMES U. TROUP DAVINA SASHKIN

LAURA A. STEFANI

Accepted / Filed

MAR 22 2017

MONTERO@FHHLAW.COM

FRANCISCO R. MONTERO

(703) 812-0480

Federal Communications Commission Office of the Secretary

Marlene H. Dortch, Esquire

Secretary

Federal Communications Commission

445 12th Street, S.W., The Portals

Washington, D.C. 20554

Attention: Audio Division

Form 302-AM – Direct Measurement Application KZSF (AM), San Jose (Facility ID 68841)

Re:

Dear Ms. Dortch:

with this application. to direct measurement of power using the method of moments model. No filing fee is required Station KZSF, Facility ID 68841, San Jose, California, is an application on FCC 302-AM to return Transmitted herewith, in triplicate, on behalf of Carlos A. Duharte, the licensee of AM

Should any questions arise concerning this matter, please contact this office

Very truly yours,

FLETCHER, HEALD & HILDRETH, PLC

Counsel for Carlos A. Duharte Francisco R. Montero

Enclosures

KZSF Public Inspection File

978746

Federal Communications Commission RIG Mapproved by OMB 3060-0627 Washington, D. C. 20554 Expires 01/31/98

Accepted / Filed

MAR 22 2017

Federal Communications Commission
Office of the Secretary

FOR FCC USE ONLY

APPLICATION FOR AM FCC 302-AM

(Please read instructions before filling out form.

BROADCAST STATION LICENSE

FOR COMMISSION USE ONLY

-20170322ABL

ADD ALL AMOUNTS SHOWN IN COLUMN C, AND ENTER THE TOTAL HERE. THIS AMOUNT SHOULD EQUAL YOUR ENCLOSED TREMITTANCE. TOTAL AMOUNT FREMITTED WITH THIS AMOUNT SHOULD EQUAL YOUR ENCLOSED TOTAL AMOUNT FREMITTED WITH THIS AMOUNT SHOULD EQUAL YOUR ENCLOSED TOTAL AMOUNT FREMITTED WITH THIS AMOUNT SHOULD EQUAL YOUR ENCLOSED	To be used only when you are requesting concurrent actions which result in a requirement to list more than one Fee Type Code (A) (B) (C) FOR FOR	(A) (B) (C) FEE TYPE	Enter in Column (A) the correct Fee Type Code for the service you are applying for. Fee Type Codes may be found in the "Mass Media Services Fee Filing Guide." Column (B) lists the Fee Multiple applicable for this application. Enter fee amount due in Column (C).	C. If Yes, provide the following information:	cational licensee	2. A. Is a fee submitted with this application?	TELEPHONE NUMBER (include area code) (408) 546-7201 CALL LETTERS OTHER FCC IDEN: (8841	CITY SAN JOSE STATE OR COUNTRY (if foreign address)	MAILING ADDRESS (Line 2) (Maximum 35 characters)	MAILING ADDRESS (Line 1) (Maximum 35 characters) 2343 BERING DR.	CARLOS A. DUHARTE	The state of the s	1. PAYOR NAME (Last First Middle Initial)	1 PAYOR NAME (Last First Middle Initial)
FOR FCC USE ONLY	FOR FCC USE ONLY	FOR FCC USE ONLY	y be found in the "Mass Media Services τ Column (C).		Other (Please explain): DIRECT MEASUREMENT/MoM	Yes No	OTHER FCC IDENTIFIER (If applicable) 68841	ldress) ZIP CODE 95131		·				

2017 MAR 23 P 3: 30

0009634924

INDIVIDUAL	CARLOS DUHARTE	I certify that the statements in this application are true, complete, and correct to the best of my knowledge and belief, and are made in good faith.	1. By checking Yes, the applicant certifies, that, in the case of an individual applicant, he or she is not subject to a denial of federal benefits that includes FCC benefits pursuant to Section 5301 of the Anti-Drug Abuse Act of 1988, 21 U.S.C. Section 862, or, in the case of a non-individual applicant (e.g., corporation, partnership or other unincorporated association), no party to the application is subject to a denial of federal benefits that includes FCC benefits pursuant to that section. For the definition of a "party" for these purposes, see 47 C.F.R. Section 1.2002(b).	CERTI	The APPLICANT acknowledges that all the statements made in this application and attached exhibits are considered material representations and that all the exhibits are a material part hereof and are incorporated herein as set out in full in	The APPLICANT hereby waives any claim to the use of any particular frequency or of the electromagnetic spectrum as against the regulatory power of the United States because use of the same, whether by license or otherwise, and requests and authorization in accordance with this application. (See Section 304 of the Communications Act of 1934, as amended).	If Yes, provide particulars as an Exhibit.	8. Does the applicant, or any party to the application, have a petition on file to migrate to the expanded band (1605-1705 kHz) or a permit or license either in the existing band or expanded band that is held in combination (pursuant to the 5 year holding period allowed) with the AM facility proposed to be modified herein?
Date 74	Signature	complete, and correct to the be	se of an individual applicant, he ncludes FCC benefits pursuant U.S.C. Section 862, or, in the tership or other unincorporated denial of federal benefits that definition of a "party" for these	CERTIFICATION	nade in this application and at erial part hereof and are incorpo	any particular frequency or of thuse use of the same, whether tion. (See Section 304 of the C		re a petition on file to migrate to se either in the existing band or a 5 year holding period allowed)
Telephone Number (408) 546-7201	Vmm/E	st of my knowledge and belief,	Yes No		tached exhibits are considered prated herein as set out in full in	e electromagnetic spectrum as by license or otherwise, and ommunications Act of 1934, as	Exhibit No.	Yes

WILLFUL FALSE STATEMENTS ON THIS FORM ARE PUNISHABLE BY FINE AND/OR IMPRISONMENT (U.S. CODE, TITLE 18, SECTION 1001), AND/OR REVOCATION OF ANY STATION LICENSE OR CONSTRUCTION

FCC NOTICE TO INDIVIDUALS REQUIRED BY THE PRIVACY ACT AND THE PAPERWORK REDUCTION ACT

The solicitation of personal information requested in this application is authorized by the Communications Act of 1934, as amended. The Commission will use the information provided in this form to determine whether grant of the application is in the public interest. In reaching that determination, or for law enforcement purposes, it may become necessary to refer personal information contained in this form to another government agency. In addition, all information provided in this form will be available for public inspection. If information requested on the form is not provided, the application may be returned without action having been taken upon it or its processing may be delayed while a request is made to provide the missing information. Your response is required to obtain the requested authorization.

Public reporting burden for this collection of information is estimated to average 639 hours and 53 minutes per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the burden, can be sent to the Federal Communications Commission, Records Management Branch, Paperwork Reduction Project (3060-0627), Washington, D. C. 20554. Do NOT send completed forms to this address.

THE FOREGOING NOTICE IS REQUIRED BY THE PRIVACY ACT OF 1974, P.L. 93-579, DECEMBER 31, 1974, 5 U.S.C. 552a(e)(3), AND THE PAPERWORK REDUCTION ACT OF 1980, P.L. 96-511, DECEMBER 11, 1980, 44 U.S.C. 3507.

SECTION III - Page 2

the	9.
the arra	Desc
ray. U	cripti
se se	on of
epara	ante
se separate sl	tenna
heets	sys
sifn	ystem (
eces	(f dir
sary.	ectio
۰	nal a
	antenn
	na is
	use
	d, the
) info
	nformat
	ion r
	eque
	sted
	belo
	w sh
	ould
	be g
	iven
	d be given for each
	ach (
	element
	ent of
	-

Excitation	UNIFORM CROSS SECTION GLYED	Type Radiator
Series	59.4	Overall height in meters of radiator above base insulator, or above base, if obstruction lighting)
Shunt	60	Overall height in meters above ground (without obstruction lighting)
	60	Overall height in meters above ground (include obstruction lighting)
	Exhibit No.	If antenna is either top loaded or sectionalized, describe fully in an Exhibit.

17

tower location. Geographic coordinates to nearest second. For directional antenna give coordinates of center of array. For single vertical radiator give

North Latitude

37

0

7

28

West Longitude 121

0

52

If not fully described above, attach as an Exhibit further details and dimensions including any other antenna mounted on tower and associated isolation circuits.

Exhibit No.

Also, if necessary for a complete description, attach as an Exhibit a sketch of the details and dimensions of ground system.

Exhibit No. NO CHANGE

permit? 10. In what respect, if any, does the apparatus constructed differ from that described in the application for construction permit or in the NO CHANGE FROM EXISTING LICENSE

11. Give reasons for the change in antenna or common point resistance.

MODIFICATIONS TO SYSTEM ALLOWING ADDITION OF KLOK(AM) TO ARRAY

I certify that I represent the applicant in the capacity indicated below and that I have examined the foregoing statement of technical information and that it is true to the best of my knowledge and belief.

Chief Operator	Technical Director	AUBURN, CA 95603	Address (include ZIP Code) 560 PERKINS WAY	Name (Please Print or Type) BERT GOLDMAN
Technical Consultant	Registered Professional Engineer	Telephone No. (Include Area Code) (214) 395-5067	AY 3/17/2017	Signature (check appropriate box below)

FCC 302-AM (Page 5) August 1995

Other (specify)

ENGINEERING STATEMENT IN SUPPORT OF 302-AM

APPLICATION FOR LICENSE EMPLOYING MOMENT METHOD MODELING

KZSF, 1370kHz Return to Direct Measurement Following KLOK Construction

5,000 Watt DA-D, DA-N

San Jose, Ca.

March, 2017

ENGINEERING STATEMENT IN SUPPORT OF 302-AM APPLICATION FOR DIRECT MEASUREMENT

KZSF, 1370kHz

March, 2017

EXHIBIT 8 - Site Survey34	EXHIBIT 8 - Site
EXHIBIT 7 - Reference Field Strength Measurements- KZSF	EXHIBIT 7 - Refei
EXHIBIT 6 - Spurious Radiation Measurements30	EXHIBIT 6 – Spur
TOWER ANALYSIS- DAY	TOWER ANALY
Exhibit 4H - Base Network Computation26	Exhibit 4H - Base
4NALYSIS	CIRCUIT ANALYSIS
Exhibit 4G - Tower Base Circuit Analysis Model25	Exhibit 4G - Tow
Exhibit 4F - KZSF- DA Medium Wave Array Synthesis From Field Ratios24	Exhibit 4F - KZSI
DAY/ NIGHT DIRECTIONAL	DAY/ NIGHT D
INDIVIDUAL TOWER ANALYSIS18	INDIVIDUAL T
Exhibit 4E - KZSF MoM Analysis18	Exhibit 4E - KZSI
Exhibit 4D - KZSF Derived and Measured Operating Parameters17	Exhibit 4D - KZS
Exhibit 4C - MoM Model Parameters16	Exhibit 4C - MoN
Exhibit 4B - Circuit Analysis for Towers Driven Individually12	Exhibit 4B - Circ
Exhibit 4A - Tower Base Impedance Measurements10	Exhibit 4A - Tow
Exhibit 4 - Method of Moments Computations10	Exhibit 4 – Metho
)N9	CONCLUSION
Direct Measurement of Power9	Direct Measurer
Exhibit 3 - Tower details and isolation circuits8	Exhibit 3 – Towei
KZSF Tower Sample Measurements7	KZSF Tower San
Antenna Monitor Verification6	Antenna Monito
Description of Sampling System as Constructed5	Description of S
Exhibit 2 – Description of sampling system5	Exhibit 2 – Descr
Exhibit 1 - Station Operation4	Exhibit 1 - Statio
3	SUMMARY
ontents	Table of Contents

SUMMARY

the final measured parameters following the installation of the KLOK filters and modification of the KSJX and KZSF filters and phasing equipment. This application is being filed concurrently with the 302 applications for KLOK and KSJX reflecting following the addition of KLOK (AM) to the existing antenna system which includes KSJX and KZSF to operate pursuant to new parameters as determined by a new Method of Moments model, standard broadcast station KZSF, FCC ID 68841, 1370kHz, San Jose, CA in support of an application The following engineering statement has been prepared on behalf of Carlos A. Duharte, licensee of

impedance bridges in each station's common point were verified to be accurate antenna monitor was checked and verified within manufacturer specifications and the operating within one degree, all sampling toroids were measured and determined to be accurate, the KZSF from the feeds to the towers), The existing sample lines for KZSF were measured and verified feed to each existing tower was re-worked and braised to the towers (a 4-5 turn loop was removed adjusted and inserted in series with the feed from the KSJX and KZSF (existing stations') filters. The The KLOK phasor was installed in a new building constructed by KLOK, the KLOK filters were

 \pm 5% in field ratio and \pm 3° in phase of the modeled values as required by 73.151(c)(2)(ii). The antenna system has been adjusted to produce monitoring system parameters which are within

Exhibit 1 – Station Operation

DESCRIPTION OF KZSF TRANSMISSION FACILITIES AS CONSTRUCTED

RF Power Day, nominal 5kW

RF Power night, nominal 5kW

RF Common Point DAY 10.4a, 50Ω common point resistance (5.4kW input¹)

RF Common Point NIGHT 10.4a, 50Ω common point resistance (5.4kW input)

TOWERS² and 4, 18" face triangular uniform cross-section, guyed. Electrical, four towers 97.8° length. Towers 1 and 2, 24" face, towers 3

Physical, four towers, each 60m length

Antenna Struct .Reg. 1215674

1215678 1215676

1215679

straps. except where limited by property boundary. Overlapping radials shortened and bonded to copper 7.32m by 7.32m ground screen about the base of each tower. Each radial is 60.96 m in length GROUND SYSTEM³ Ground system consists of 120 equally spaced buried copper radials plus

DAY/ NIGHT MoM OPERATING PARAMETERS

Field Ratio 1.7	Phasing 87	TOWER #1	
1.252	7.1°	_	
	87.1° 137.8° 36.4° 0.0	#2	
0.533 0.386 1.000	36.4°	#3	
1.000	0.0	#44	

directional antennas shall exceed the nominal power by 5.3 percent. ¹ Per FCC 73.51(b)(2), For stations with nominal powers in excess of 5 kW, the authorized antenna input power to

the towers from the currently licensed facility. Note that there was no survey of the property or towers taken as there has been no change in the physical locations of

From KSJX license BMML-20121003ACV. Note that the ground system was replaced in October of 2016

⁴ Reference changed from tower 1 to tower 4

transformers mounted at the outputs of the antenna coupling units. Samples for the antenna monitor are obtained from Delta TCT-1 (0.5V/A) toroidal current Description of Sampling System as Constructed Exhibit 2 – Description of sampling system

and have the following measured characteristics: The TCT's were measured with a HP 8753ES Network Analyzer with a Tunwall directional coupler

4	ω	2	Ъ	Tower Number
15708	586	1168	889	Serial No.
1.000	1.006	1.004	1.005	Magnitude
0.0°	+0.54°	+0.24°	+0.61°	Phase

Samples are returned to the antenna monitor using equal lengths of Andrew LDF4-50A, ½" foam The above measurements certify compliance within 1 percent ratio and one degree phase accuracy.

coaxial cable with solid copper outer shield.

impedance to be within FCC guidelines. Verification of the sample lines is included below All sample lines were tested and verified to be within 1° electrical length and with characteristic

jumpers to confirm equal magnitude and phase on each tower within .001 current ratio and 0.1 degrees phase accuracy was confirmed by feeding two tower inputs at a time through a splitter and equal length The phase monitor is a Potomac Instruments AM-1901 -4 antenna monitor. Phase monitor

Antenna Monitor Verification DAY. NIGHT (Reference #4)

			I	
4	3	2	1	Tower Number
1.000	1.001	0.999	1.001	Value
0.0°	0.1°	-0.1°	0.0°	Phase

sample lines were equally cut prior to installation and trimmed to achieve identical electrical were installed on the sample lines and readings were normalized to include the test leads. All length and phase stability. the antenna monitor ends of the sample lines with the tower ends open-circuited. All connectors Network Analyzer with a Tunwall directional coupler. The measurements were made looking into Impedance measurements were made of the antenna sampling system using an HP 8753ES

electrical length at carrier frequency appearing below was calculated by ratioing the frequencies. which is the closest one to the carrier frequency, was found to be 270 electrical degrees. The degrees electrical length, the sample line length at the resonant frequency below carrier frequency adjacent frequencies of resonance, and frequencies of resonance occur at odd multiples of 90 of distortionless transmission line is 180 electrical degrees at the difference frequency between resonance, defined as zero reactance corresponding with low resistance, was found. As the length The table in Exhibit 1 shows the frequencies above and below the carrier frequency where

EXHIBIT 2 (cont'd) SAMPLE SYSTEM MEASUREMENTS

KZSF Tower Sample Measurements

	Tower 4	Tower 3	Tower 2	Tower 1	
	1116.20	1117.10	1117.20	1115.15	Resonance Below 1370Khz
	1865.15	1865.15	1865.30	1862.30	Resonance Above 1370Khz
Delta 0.6 deg	331.39°	331.13°	331.10°	331.70°	Calculated Electrical Length@1370kHz
Delta 0.49Ω	47.63 –j2.46	47.29 –j1.63	47.71 -j1.10	47.78 -j0.77	Impedance into TCT @1370kHz

requirement. Based upon the measurements shown above, the sample lines are within the one electrical degree

resonance measurements were made with frequencies offset to produce ± 45 degrees of electrical length from To determine the characteristic impedance values of the sample lines, open-circuited

X2 are the measured impedances at the +45 and -45 degree offset frequencies, respectively: The characteristic impedance was calculated using the following formula, where R1 +j X1 and R2 +j

KZSF Sample Line Characteristic Impedance Measurements $Z0 = ((R1^2 + X1^2)^{\frac{1}{2}} \times (R2^2 + X2^2)^{\frac{1}{2}})^{\frac{1}{2}}$

Tower 4	Tower 3	Tower 2	Tower 1	
1302.3	1303.3	1305.8	1301.0	+45 Degree Offset Frequency (KHz)
8.32 +j49.73	8.09 +j49.53	8.60 +j49.67	8.01 +j49.58	+45 Degree Measured Impedance (Ohms)
0.9301	0.9309	0.9326	0.9293	-45 Degree Offset Frequency (KHz)
5.41 –j49.61	5.33 –j49.64	5.36 –j49.51	5.27 -j49.49	-45 Degree Measured Impedance (Ohms)
50.16	50.06	50.10	50.00	Calculated Characteristic Impedance (Ohms)

MAX Impedance 50.16
MIN Impedance 50.00

they be equal to 50 Ohms within +-2 ohms. As shown above, the sample lines measured characteristic impedances meet the requirement that

The sampling system for KZSF is type approved under 47CFR 73.68 of the FCC rules.

Exhibit 3 - Tower details and isolation circuits

included in the MoM analysis: The following isolation circuits are attached to the KZSF towers and have been

All Towers: Uniform Cross Section (no lighting). Towers 1 and 2= 24" face, Towers 3 and 4, 18" face.

Insulators: Towers 1 and 2 Lapp Model 9012

Towers 3 and 4 Utility insulator

Direct Measurement of Power

adjusted to yield the correct current as reflected on the 302-AM attached. installed in the phasing cabinet. Common point resistance was set to 50Ω –j2. The transmitter was The common point current was measured using a Delta TCA 20/40 RF current meter permanently

CONCLUSION

qualifications are a matter of record with the Federal Communications Commission. Method of Moments analysis was conducted by Kurt Gorman. Both Gorman's and Goldman's All adjustments and measurements were conducted jointly by Bertram Goldman and Kurt Gorman.

knowledge. Engineering Management. All statements herein are true and correct to the best of his This application was prepared on behalf of Carlos Duharte by Bert Goldman of Goldman

Bertram S. Goldman 560 Perkins Way

Auburn, CA 95603 214-395-5067

bert@bgoldman.net

Page 9 of 34

Exhibit 4 – Method of Moments Computations

Exhibit 4A - Tower Base Impedance Measurements

circuited. from the Delta TCT's. All measurements were taken for each tower with all other towers openmeasurements were taken via remote calibration of the new sample lines after being disconnected 8753ES Network Analyzer with an external power amplifier operating on 1500kHz. The and at the TCT at the base of each tower. All impedance measurements were obtained using a HP The impedance of each tower was measured at the J plug at the output of the T matching network

analysis: The following exhibit describes the measurement conditions and assumptions used in the MoM

1370 kHz 1370 kHz MODEL CIRCUIT TCT ICI Tower Impedance Measurements Compared to JACK TCT Method of Moments Model Reject 1500 Xser TO 1500kHz Reject 1170

84.4 +j124.5	79.6 –j99.1	81.6 -j99.1	-j226	-j2200	4
82.3 +j128.0	84.1 –j85.8	82.8 –j86.3	-j215	-j15,000	3
96.0 +j135.0	86.8 -j100.8	88.3 -j101.3	-j238	-j1500	2
78.6 +j131.4	68.2 –j87.0	65.5 –j88.0	-j222	-j1000	1
Modeled	Modeled	Measured	Series	Shunt	
$\mathbf{Z}_{ ext{ANT}}$	$\mathbf{Z}_{ ext{TCT}}$	$\mathbf{Z}_{ ext{TCT}}$	X_{SER}	X_{SH}	TOWER

Exhibit 4B - Circuit Analysis for Towers Driven Individually

CUSTOMER : KZSF

NETWORK ID : TOWER 1 (AT TCT)

FREQUENCY: 1370.00 kHz
ATU SHUNT IMPEDANCE (R,X): 0
TOWER FEED IMPEDANCE (R,X):
TOWER SHUNT IMPEDANCE (R,X):
TOWER IMPEDANCE (R,X): 78.60, 0.00, -1000.00 OHMS 0.00, -222.00 OHMS : 0.00, -7744.80 OHMS 50, 131.40 OHMS

121	NODE
	TO
GROUND GROUND 2	NODE
0.00 81.33 0.00	IMPEDANCE R
-1000.00 132.83 -222.00	X (SWHO)

2 1	NODE
÷	
100.00	VOLTAGE MAGNITUDE
0.00	GE PHASE

	OUTPUT CURRENT (AMPS) :	INPUT CURRENT (AMPS) :	INPUT IMPEDANCE (OHMS) :	
	0.57	0.56	68.18	REAL
•	0 - 62	0.71	-86.96	IMAGINARY
,	0.84	0.90	110.50	MAGNITUDE
	47.04	51.90	-51.90	PHASE

INPUT/OUTPUT CURRENT RATIO = 1.0737 INPUT/OUTPUT PHASE = 4.86 DEGREES

CUSTOMER: KZSF NETWORK ID: TOWER 2 (AT TCT)

FREQUENCY: 1370.00 kHz
ATU SHUNT IMPEDANCE (R,X): 0.
TOWER FEED IMPEDANCE (R,X): 0
TOWER SHUNT IMPEDANCE (R,X):
TOWER IMPEDANCE (R,X): 96.00, 0.00, -1500.00 OHMS 0.00, -238.00 OHMS : 0.00, -7744.80 OHMS)0, 135.00 OHMS

1 2	Н	NODE
		TO
GROUND 2	GROUND	NODE
99.42	0.00	IMPEDANCE R
136.14 -238.00	-1500.00	(OHMS)

2 1	NODE
100.00 118.44	VOLTAGE MAGNITUDE
0.00	GE PHASE

OUTPUT CURRENT (AMPS) :	INPUT CURRENT (AMPS) :	INPUT IMPEDANCE (OHMS) :	
0.51	0.49	86.84	REAL
0.51	0.57	-100.77	IMAGINARY
0.71	0.75	133.03	MAGNITUDE
			PHASE

INPUT/OUTPUT CURRENT RATIO = 1.0514 INPUT/OUTPUT PHASE = 4.27 DEGREES

CUSTOMER: KZSF NETWORK ID: TOWER 3 (AT TCT)

FREQUENCY: 1370.00 kHz
ATU SHUNT IMPEDANCE (R,X): 0
TOWER FEED IMPEDANCE (R,X): 1
TOWER SHUNT IMPEDANCE (R,X): 82.30, 0.00,-15000.00 OHMS 0.00, -215.00 OHMS : 0.00, -7744.80 OHMS 30, 128.00 OHMS

INPUT/OUTPUT	INPUT IMPEDANCE (OHM INPUT CURRENT (AMPS) OUTPUT CURRENT (AMPS	2 1	NODE	121	NODE
	PEDAN RRENT URREN				TO
CURRENT RATIO = PHASE = 0.94	INPUT IMPEDANCE (OHMS) : INPUT CURRENT (AMPS) : OUTPUT CURRENT (AMPS) :	100.00 128.07	VOI MAGNITUDE	GROUND GROUND 2	NODE
= 0.9892 DEGREES	REAL 84.11 0.58 0.60	0.00 101.87	VOLTAGE DE PHASE	0.00 85.08 0.00	ЯΗ
	IMAGINARY -85.75 0.59 0.59	0			IMPEDANCE (OHMS) R
	Y MAGNITUDE 120.12 0.83 0.84			-15000.00 129.23 -215.00	OHMS)

PHASE -45.55 45.55 44.61

CUSTOMER : KZSF NETWORK ID : TOWER 4 (AT TCT)

FREQUENCY: 1370.00 kHz
ATU SHUNT IMPEDANCE (R,X): 0
TOWER FEED IMPEDANCE (R,X):
TOWER SHUNT IMPEDANCE (R,X):
TOWER IMPEDANCE (R,X): 84.40, 0.00, -2200.00 OHMS 0.00, -226.00 OHMS : 0.00, -7744.80 OHMS 40, 124.50 OHMS

₽	2	⊢	NODE	
			TO	
2	GROUND	GROUND	NODE	
0.00	87.17	0.00	Я	IMPEDANCE (OHMS
-226.00	125.57	-2200.00	×	(OHMS)

2 1	NODE
100.00 114.94	VOLTAGE MAGNITUDE
0.00	AGE PHASE

OUTPUT CURRENT (AMPS) :	INPUT CURRENT (AMPS) :	INPUT IMPEDANCE (OHMS) :	
0.51	0.49	79.61	REAL
0.57	0.61	-99.06	IMAGINARY
0.76	0.79	127.09	MAGNITUDE
48.41	51.21	-51.21	PHASE

INPUT/OUTPUT CURRENT RATIO = 1.0296 INPUT/OUTPUT PHASE = 2.80 DEGREES

Exhibit 4C - MoM Model Parameters

4	ω	2	Ь	Tower
4	ω	2	Н	Wire No.
12	12	12	12	No. Segments
37	25	13	Н	Base Node
.320	.320	.320	.300	Radius
109.3	109.0	110.5	110.0	Model Length (degrees)
97.8	97.8	97.8	97.8	Physical Length (degrees)

Towers 1,2 - 24" face width. Equivalent Radius = 0.291 meters Insulators: Towers 3 and 4 Towers 1 and 2 Utility insulator Lapp Model 9012

Towers 3,4 - 18" face width. Equivalent radius =0 .218 meters

Exhibit 4D - KZSF Derived and Measured Operating Parameters

KZSF Calculated Directional Operating Parameters

1.000/0.0°	4.28/ -76.7°	4
.386/+36.4°	1.65/-40.3°	3
.533/+137.8°	2.28/+61.1°	2
1.252/+87.1°	5.36/+10.4°	1
TCT Value Ratio/ Phase ¹	Input to Base Network	TOWER

¹These numbers are submitted as final operating parameters on FCC 302-AM application.

Exhibit 4E - KZSF MoM Analysis

INDIVIDUAL TOWER ANALYSIS

KZSF TOWER 1 (OTHERS OPEN)

GEOMETRY
Wire coordinates in degrees;
Environment: perfect ground other dimensions in meters

		4		ω		2		Н	wire
		none		none		none		none	caps
						none 123.3			
.107	2 1 2	251.	341.	341.	61.	61.	0	0	Angle
T09.3	1000	0	109.	0	110.5	0	110.	0	Z
		.32		.32		.32		• ω	radius
		12		12		12		12	segs

Number of wires II II 48

current nodes

	minimum	mum	max	maximum
Individual wires	wire	value	wire	value
segment length	ω	9.08333	N	9.20833
radius	Н	•ω	N	. 32

ELECTRICAL DESCRIPTION Frequencies (MHz)

-	H		1			
	frequency		no. of	segment length	length	(wavelengths
no.	no. lowest	step	steps	minimum		maximum
Н	1.37	0	Ы	.0252315		.0255787

source node	Sources	1 1.37	no. Lowest
sector 1		0	step
magnitude 1.		Ъ	steps
phase 0		.0252315	mrnrmum
type voltage		.0255787	maxımum

Lumped loads

ω	2	Н	load	
37	25	13	node	
0	0	0	(ohms)	resistance
-7,744.8	-7,744.8	-7,744.8	(ohms)	reactance
0	0	0	(mH)	inductance
0	0	0	(uF)	capacitance
0	0	0	circuit	passive

C:\Users\kurtg\Desktop\ENGINEER\KZSFMOM\KZSFT1 01-13-2017 23:11:57

	source =	(MHz)	freq	norma
78.577	= 1; node	(ohms)	resist	normalization
131.4	1, sector 1	(ohms)	react	= 50.
153.1	or 1	(ohms)	imped	
59.1		(deg)	phase	
6.4476			VSWR	
-2.7162		dB	S11	
-3.3257		dB	S12	

KZSF TOWER 2 (OTHERS OPEN)

GEOMETRY
Wire coordinates in degrees;
Environment: perfect ground other dimensions in meters

Number of all and		4		ω		2		Н	wire
s h		none		none		none 1		none	caps
.	91.3	none 91.3	82.2	82.2	123.3	123.3	0	0	caps Distance
2	251.	251.	341.	341.	61.	61.	0	0	Angle
	109.3	0	109.	0	110.5	0	110.	0	Z
		.32		.32		.32		•ω	radius
		12		12		12		12	segs

Number of wires current $\parallel \parallel \parallel$ 4 48

nodes

radius	segment length	Individual wires	
₽	ω	wire	minimum
·	9.08333	value	mum
2	2	wire	max
.32	9.20833	value	maximum

ELECTRICAL DESCRIPTION Frequencies (MHz)

•	<u> </u>	no. lowest	H	Christ
	1.37	owest	frequency	THE CONTRACT CONTRACT
	0	step		
	Н	steps	no. of	
	.0252315	minimum	segment	
			length	
	.0255787	maximum	segment length (wavelengths)	

1 13	source node	Sources
Н	sector	
1.	magnitude	
0	phase	
voltage	type	

Lumped loads

J. J.	1000					
		resistance	reactance	inductance	capacitance	passive
load	node	(ohms)	(ohms)	(mH)	(uF)	circuit
Н	Н	0	-7,744.8	0	0	0
2	25	0	-7,744.8	0	0	0
ω	37	0	-7,744.8	0	0	0

C:\Users\kurtg\Desktop\ENGINEER\KZSFMOM\KZSFT2 01-13-2017 23:12:42

1.37	source =	(MHz)	freq	norma
95.952	1; node	(ohms)	resist	normalization =
134.96	1; node 13, sector 1	(ohms)	react	on $= 50$.
165.59 54.6	or 1	(ohms)	imped	
54.6		(deg)	phase	
6.0718			VSWR	
-2.8873 -3.1368		dB	S11	
-3.1368		dB	S12	

KZSF TOWER 3 (OTHERS OPEN)

GEOMETRY
Wire coordinates in degrees;
Environment: perfect ground other dimensions in meters

	4		ω		2		Н	wire	
	none		none		none		none	caps	
91 3	none 91.3	82.2	82.2	123.3	123.3	0	0	Distance	
251	251.	341.	341.	61.	61.	0	0	Angle	
109 3	0				0	110.	0	Z	
	.32		.32		.32		• ω	radius	
	12		12		12		12	segs	

Number of wires $\parallel \parallel$ 4 4 8

current nodes

	minimum	mum	max	maximum
Individual wires	wire	value	wire	value
segment length	ω	9.08333	2	9.20833
radius	Ľ	. ω	2	.32

ELECTRICAL DESCRIPTION Frequencies (MHz)

Н	no	
1.37	no. lowest	frequency
0	step	
₽	steps	no. of s
.0252315	minimum	segment l
		ength
.0255787	maximum	segment length (wavelengths)

Sources

	\vdash	source
	25	node
	Н	sector
	₽•	magnitude
,	0	phase
	voltage	type

Lumped loads

u) N) -	Load	: :
<i>د</i> /) L) -	node	ı.
C			(ohms)	resistance
-/,/44.8	-/,/44.8	-/,/44.8	(ohms)	reactance
C			(mH)	inductance
C			(uF)	capacitance
C	0 C	0 C	circuit	

C:\Users\kurtg\Desktop\ENGINEER\KZSFMOM\KZSFT3 01-13-2017 23:13:28

1.37	source:	(MHz)	freq	norm
82.266	= 1; node		resist	normalization :
127.99	1; node 25, sector 1	(ohms)	react	= 50.
152.15	or 1	(ohms)	imped	
57.3		(deg)	phase	
6.0709			VSWR	
6.0709 -2.8878 -3.1364		dB	S11	
-3.1364		dB	S12	

KZSF TOWER 4 (OTHERS OPEN)

GEOMETRY
Wire coordinates in degrees;
Environment: perfect ground other dimensions in meters

	4		ω	2		Н	wire
	none		none	none		none	caps
				none 123.3			caps Distance
				61.			Angle
109.3	0	109.	0	0	110.	0	Z
	.32		.32	.32		. ω	radius
	12		12	12		12	segs

Number of wires current nodes $\parallel \parallel \parallel$ 48

radius	segment length	Individual wires	
Н	ω	wire	minimum
·	9.08333	value	num
2	2	wire	max
.32	9.20833	value	maximum

ELECTRICAL DESCRIPTION Frequencies (MHz)

H	no.	
1.3/	lowest	frequency
C	step	
⊢	steps	no. of
.0252315	minimum	segment length (
.0255/8/	maximum	(wavelengths)

Sources

Ц	source
37	node
₽	sector
1.	magnitude
0	phase
voltage	type

Lumped loads

ω	2	Ы	load	
25	13	Н	node	
0	0	0	(ohms)	resistance
-7,744.8	-7,744.8	-7,744.8	(ohms)	reactance
0	0	0	(mH)	inductance
0	0	0	(uF)	capacitance
0	0	0	circuit	passive

C:\Users\kurtg\Desktop\ENGINEER\KZSFMOM\KZSFT4 01-13-2017 23:14:06

1.37	source =	(MHz)	freq	norma	
84.412	1; node	(ohms)	eq resist	lization =	
124.54 150.45	37, sector 1	(ohms)	react	on $= 50$.	
150.45	or 1	(ohms)	imped		
55.9		(deg)	phase		
5.7823			VSWR		
5.7823 -3.0348 -2.986		dB	S11		
-2.986		dB	S12		

DAY/ NIGHT DIRECTIONAL

KZSF

Wire coordinates in degrees; Environment: perfect ground GEOMETRY other

dimensions

in

meters

Indivi segmen radius	Numbe		4		ω		2		Н	wire
Individual wires segment length radius	Number of wires		none		none		none		none	caps
wires	wires current nodes	91.3	91.3	82.2	82.2	123.3	123.3	0	0	Distance
	nodes									Ö
minimum wire v 3 9	= 4 = 48	251.	251.	341.	341.	61.	61.	0	0	Angle
um value 9.08333	∞									
w		109.3	0	109.	0	110.5	0	110.	0	Z
¥										
maximum ire val 2 9.2 3.32			. 32		. 32		. 32		ω	radius
maximum wire value 2 9.20833 2 .32										us
			12		12		12		12	segs

ELECTRICAL DESCRIPTION Frequencies (MHz)

no. 1. lowest frequency sector step 0 no. o segment 1 minimum .0252315 length type maximum .0255787 (wavelengths)

source node Sources 4 2 2 4 13 75 magnitude 595.624 411.653 537.066 1,268.53 phase 57.4 126.7 328.7 317.1 voltage voltage voltage voltage

C:\Users\kurtg\Desktop\ENGINEER\KZSFMOM\KZSFDAY 01-13-2017 22:31:02

IMPEDANCE

source 1.37 1.37 C:\Users\kurtg\Desktop\ENGINEER\KZSFMOM\KZSFDAY 1.37 freq source source source (MHz) normalization 11 4; node 166.36 3; 226. 2; noo 50.928 (ohms) 57.342 resist 1; node node .7 node 37**,** 136 13, 125 1, sector 69.132 8 25, sector 1 46.266 231.3 react (ohms) 50. sector sector 1 .41 215. 135.0 89.819 imped (ohms) \vdash w 7 9 phase 39.4 67. 50. 11 (deg) S 9 ω \mathcal{G} ∞ ω VSWR .0243 .3908 689 7321 01-13-2017 S11 dB 5. \dot{o} 3.0856 ω 7272 17 28 62 S12 dB 22:31:02 2 2 4. 1.5273 9363 3951 043

END
GND
114
115
116
117
119
20
21
220
21
221
224
END
GND
GND
GND
GND
GND
330
331
334
333
344
440
440
441
443 CURRENT 1
Frequency
Input pov
Efficienc
coordinat no. current S p. ∥ ∥ 444444444444 degr 6.7617 6.7617 6.7617 6.7617 6.7617 6.7617 6.3258 6.3258 6.3258 6.3258 6.3258 6.3258 6.3258 6.3258 6.3258 L07 L07 L07 L07 O 761 761 J J 7 J 7 $\overline{\mathsf{J}}$ 7 7 Ō • ∞ ∞ 44444444444 9.10 9.11 36.6 64.1 73.6 82.7 1100 9.1 1100 9.1 1100 9.2 1100 9.3 1000 9.3 1000 9.3 1000 9.3 1000 9.3 1000 9.3 1000 9.3 1000 9.3 1000 9.3 1000 9.3 1000 9.3 1000 9.3 1000 9.3 1000 9.3 1000 9.3 1000 9.3 1000 9.3 1000 9. .5833 .6667 .75 .8333 .9167 08 221 321 43 54 35 75 97 4000 0400 ∞ . . 0 ∞ \circ 0 4 $\sigma \sigma \omega \vdash$ ∞ \circ . . \mathcal{G} 3333 ∞ 6667 508765548018 33 ω σ wo 9 25 6 8 μωσω 333 67 117 9 6 6 6 6 ω ω ω or JW JW JW NW ω \sim WJ WJ 4.68911 4.967 5.044 4.99264 4.195263 4.1555 3.67377 3.10535 2.45969 1.74425 .958581 0 2.15467 2.4048 2.53802 2.49304 2.38073 2.20513 1.64135 1.74018 1.74018 1.79943 1.79943 1.79943 1.61761 1.61761 1.61761 1.6272 1.01445 .732651 0442234440040 (amps 4.689) 4.967 5.044 4.992 4.822 4.541; 4.1555 3.1053 3.1053 2.4596 1.7442 ma169 .139 .158 .158 .131 .955 .635 .180 .598 g 94105932044 4444400044001 4... 2716173 9949 321237213357 847748 0 (amp 4.65 5.03 5.03 4.95 4.15 4.15 3.10 3.10 3.15 3.15 4.15 3.15 $\circ \cdot \cdot \cdot$ 1.11394 1.33495 1.44377 1.49641 1.49917 1.45516 1.36681 1.23665 1.06747 1.06747 .862133 3689...86405 . 999 . 856 . 725 . 725 . 604 . 492 . 492 . 389 . 296 . 214 . 214 . 143 . 084 amps)
.6532
.9542
.0395
.0395
.9917
.8227
.5406
.1534
.1002
.1002 385 385 01 001 001 005 381)292 5201 5739 5739 1632 2347)33 334)599 599 129 599 1129 588 1129 1121 27715 555000071650 00 4 1.8443 2.0002 1.8443 2.0002 2.00499 1.8842 1.8842 1.9919 1.9919 1.93342 1.0320 0 | | | | | | | | | | 0 4400044460044 (amp .578 .356 .211 .093 13 73 01 11 11 05 85 51 51 77 .1166 .5826 .6698 .6938 .6595 .6595 .5700 .4286 .2387 .2387 ıgin 59 59 77 31 77 61 3167 3963 3963 5422 5422 5074 1083 1423 5152 5152 57341 8829 ω ∞ ω 7648 -993 546 7875 9112 3968 N 25 0 04 W D C C D D D D D D D 8 1 9 3 a Ω 8 9 9 WWON rry

Input powe: Efficiency

1.37 5,00 100.

wat

4 S

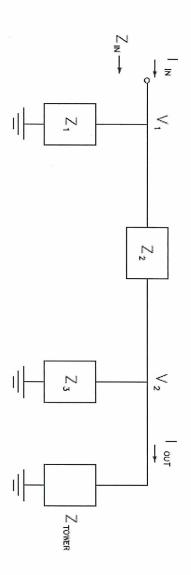
0/0

 \vdash ω

37 1

ZHM

ន


Exhibit 4F -KZSF- DA Medium Wave Array Synthesis From Field Ratios

```
Frequency = 1.37 \text{ MHz}
```

```
NUNUNUNUNUNUNUNU
                                                                         impedance
                                                                              TOWER
                                                                                                                                                                              Total
                                                                                                                                                                                  Sum
                                                                                                                                                                                                         node
                                                                                                                                                                     TOWER
                                                                                                                                                                                                              source
        (1)
(1)
(2)
(3)
(4)
                                                                                                                                                                                                                  VOLTAGES AND CURRENTS
                                                                                                                                                                                                                                              tower
    (4,
                                                                                                                                                                                       1
13
25
37
                                                                                                                                                                                                                            4 2 2 4
                                                                                                                                                                tt
                                                                                                                                                                                   0
2)
3)
4)
4)
4)
4)
4)
4)
                                                                                       IMPEDANCE
                                                                                                                                                                     ADMITTANCE
                                                                                                                                                                              power
                                                                                                                                                                ance
                                                                                                                                                                                      magnitude
421.17
291.082
379.763
896.988
                                                                                                                                                                                                                           .519
.3692
1.0549
                                                                                                                                                                                  square
                                                                                                                                                                                                             voltage
                                                                                                                                                                                                                                             magnitude
                                                                                                                                                                                                                                                  field
        40.2237
35.046
5.55795
95.949
-4.67245
-40.737
40.2229
-4.67302
82.6563
4.74849
35.0453
-40.7368
                                                                                                                                                                                                                            6
4.748
84.86
                                             real
                                                                                                                                                                                                                                                  ratio
                                                                                                   .00302772
.00205258
.00212037
.002206811
.00205257
.00423342
.00183465
.000212035
.00212035
.00183465
.00183465
.00183465
                                                                                       0016
                                                                    9
                                                                         ea
                                                                                                0002
                                                                                                                                                                                  0
                                                                                                                                                                             5,000.
                                                                              MATRIX
                                                           5771
2237
                                                                    4405
                                                                                                                                                                     MATRIX
                                                                                                                                                                                  source currents
    9
                                                                                       94
                                                                                                5408
                                                                         (ohms
                                                                                                                                                                (mhos
                                                                                                                                                                                      phase
57.4
126.7
328.7
317.1
                                                                                       20
                                                                                                                                                                                                                                             phase
                                                                                                                                                                                                                                    S
                                                                                                                                                                              watt
                                                                                       04
                                                                                                                                                                                                                           53.
-70.
                                                                                                                                                                                                                  rms
                                                                                                                                                                                                                            \infty
                                                                                                                                                                              S
                                                                                                                                                                                                         (deg)
                                                                                                                                                                                                                                             (deg)
        -46.1193
-37.4782
-44.6304
-46.1196
134.634
-45.72
-1.37609
-37.4786
-45.7198
127.414
-50.3399
-44.6306
-1.3758
                                                                                      .000469636
-.00425787
.000151668
-.000382143
.00205524
.000151698
-.00389264
.00042856
.0013266
-.000382138
-.000428553
                                                                    131
                                                                                                                                                          ima
-.0
                                                                         imaginary
-50.
124.
                                                                                                                                             001
                                                                                                                                                 .002
                                                                                                                                                      000
                                                                                                                                                                                      magnitude
4.6891
2.15467
1.64135
4.16943
                                                                                                                                                      agin
)032
)046
                                                                                                                                                                                                             current
                                                                    05
                                                                                                                                              W
                                                                                                                                                  0
    39
                                                                                                                                                                                  93.
                                                                                                                                             9
                                                                                                                                                  \mathcal{G}
                                                                                                                                                      9
                                                                                                                                                            9 9
                                                                                                                                                          12Y
                                                                                                                                                                                  4169
                                                                                                                                              7
                                                                                                                                                       9 00
                                                                                                \infty
                                                                                                                           \omega
                                                                         (ohms)
                                                                                                                                                                (mhos)
                                                                                                                                                                                      7.1
58.9
317.1
277.7
                                                                                                                                                                                                    phase
                                                                                                                                                                                                         0
                                                                                                                                                                                                         (de
                                                                                                                                                                                                        ġ)
```

CIRCUIT ANALYSIS

represents the Tower Base Shunt impedance. directional operation, the calculated Mininec Tower Base Drive Voltage was used to determine the ATU/filter Shunt impedance, " Z_2 " represents the Tower Feed and series filter impedance, and " Z_3 " Base Network Input Current. This point is the location of the sampling TCT. " Z_1 " represents the Analysis program was used to compute base model Input/Output voltages and currents. For Circuit analysis was performed on each tower of the KZSF model. The "Phasetek" Nodal Circuit

Exhibit 4H - Base Network Computation

TOWER ANALYSIS- DAY

```
CUSTOMER:
KZSF
```

NETWORK ID : TOWER 1DA (AT TCT)

FREQUENCY: 1370.00 kHz
ATU SHUNT IMPEDANCE (R,X): 0
TOWER FEED IMPEDANCE (R,X):
TOWER SHUNT IMPEDANCE (R,X):
TOWER IMPEDANCE (R,X): 57.34, 0.00, -1000.00 OHMS 0.00, -222.00 OHMS 0.00, -7744.80 OHMS 34, 69.13 OHMS

NODE 121 TO GROUND GROUND NODE 0.00 58.38 0.00 Ħ IMPEDANCE (OHMS) -1000.00 69.32 -222.00 ×

NODE MAGNITUDE VOLTAGE PHASE

2 1 759.67 421.17 -61.57 57.40

INPUT IMPEDANCE (OHMS)
INPUT CURRENT (AMPS) :
OUTPUT CURRENT (AMPS) 43.82 5.28 4.65 REAL -134.68 0.97 IMAGINARY 0.58 MAGNITUDE 141.63 5.36 4.69 -71.98 10.40 PHASE 7.07

INPUT/OUTPUT CURRENT RATIO
INPUT/OUTPUT PHASE = 3.3 3.33 DEGREES 1.1439

CUSTOMER : KZSF
NETWORK ID : TOWER 2DA (AT TCT)

FREQUENCY: 1370.00 kHz
ATU SHUNT IMPEDANCE (R,X)

TOWER FEED IMPEDANCE (R,X):
TOWER SHUNT IMPEDANCE (R,X):
TOWER IMPEDANCE (R,X): 50.93, 0.00, -1500.00 OHMS 0.00, -238.00 OHMS 0.00, -7744.80 OHMS 33, 125.13 OHMS

121	NODE
	TO
GROUND GROUND 2	NODE
0.00 52.61 0.00	IMPEDANCE R
-1500.00 126.83 -238.00	(OHMS)

NODE 2 1 MAGNITUDE 260.72 291.08 VOLTAGE -5.44126.70 PHASE

OUTPUT CURRENT (AMPS) :	INPUT CURRENT (AMPS) :	INPUT IMPEDANCE (OHMS) :	
1.11	1.10	45.55	REAL
1.84	1.99	-104.98	IMAGINARY
2.15	2.28	114.44	MAGNITUDE
58.85	61.10	-66.54	PHASE

INPUT/OUTPUT CURRENT RATIO = 1.0573 INPUT/OUTPUT PHASE = 2.25 DEGREES

CUSTOMER : KZSF
NETWORK ID : TOWER 3DA (AT TCT)

FREQUENCY: 1370.00 kHz
ATU SHUNT IMPEDANCE (R,X): 0
TOWER FEED IMPEDANCE (R,X):
TOWER SHUNT IMPEDANCE (R,X):
TOWER IMPEDANCE (R,X): 226.70, 0.00, -15000.00 OHMS 0.00, -215.00 OHMS : 0.00, -7744.80 OHMS 70, 46.27 OHMS

-215.00	0.00	N		Н
39.79	229.23	GROUND		2
-15000.00	0.00	GROUND		Н
×	R	NODE	TO	NODE
(OHMS)	IMPEDANCE (OHMS)			

2 1	NODE
470.94 379.76	VOLTAGE MAGNITUDE
-78.54 328.70	PHASE

OUTPUT CURRENT (AMPS)	INPUT CURRENT (AMPS) :	INPUT IMPEDANCE (OHMS)	
••		••	
1.20	1.26	223.92	REAL
-1.12	-1.07	-176.57	IMAGINARY
1.64	1.65	285.16	MAGNITUDE
-42.83	-40.28	-38.26	PHASE

INPUT/OUTPUT CURRENT RATIO = 1.0062 INPUT/OUTPUT PHASE = 2.55 DEGREES

CUSTOMER : KZSF NETWORK ID : TOWER 4DA (AT TCT)

FREQUENCY: 1370.00 kHz
ATU SHUNT IMPEDANCE (R,X): 0
TOWER FEED IMPEDANCE (R,X): 1
TOWER SHUNT IMPEDANCE (R,X): 166.36, 0.00, -2200.00 OHMS 0.00, -226.00 OHMS : 0.00, -7744.80 OHMS 36, 136.41 OHMS

INPUT CU	2 1	NODE	121	NODE
IPEDAN JRRENT				TO
INPUT IMPEDANCE (OHMS) : INPUT CURRENT (AMPS) : OUTPUT CURRENT (AMPS) :	798.13 896.99	VO MAGNITUDE	GROUND GROUND 2	NODE
REAL 158.00 0.98 0.56	-108.82 317.10	VOLTAGE DE PHASE	0.00 172.30 0.00	R
IMAGINARY -99.19 -4.16 -4.13	<i>C</i> 10		000	IMPEDANCE (OHMS) R
			-2200.00 135.09 -226.00	X (SWHO)
MAGNITUDE 186.55 4.28 4.17			000	

INPUT/OUTPUT CURRENT RATIO = 1.0261 INPUT/OUTPUT PHASE = 5.55 DEGREES

PHASE -32.12 -76.70 -82.25

EXHIBIT 6 – Spurious Radiation Measurements

KLOK (1170 KHZ), 50.0 KW DAY (DA) MODE KZSF (1370 KHZ), 5.0 KW DAY (DA) MODE KSJX (1500 KHZ), 10.0 KW DAY (DA) MODE

2670 2740 2740 2870 2940 3000 3130 3330	1770 1830 2010 2140 2160 2340 2540	770 840 970 990 1110 1240 1570 1630	1170 1370 1500 510 600	Frequency (kHz)
.079 .016 .040 <.01 <.01 <.01	.011 .012 .018 .019 .019 .039	<.01 .065 .076 <.01 .029 .049 .036	2270 935 871 .016 .012	Field Intensity (mV/M)
89.2 103.0 95.1 >107.1 89.6 >107.1	106.3 106.3 104.2 107.1 94.3 95.3	>107.1 90.9 89.5 >107.1 97.9 93.3 92.0 96.0	103.0 105.5 98.2	Atten <u>KLOK</u>
81.5 95.3 87.4 >99.4 81.9 >99.4 >99.4	98.6 98.5 96.5 97.8 86.5 87.6	>99.4 81.8 90.2 88.3 88.3	95.3 97.8 90.5	Attenuation (dB) relative to KSJX
> 98.8 > 98.8 > 98.8 > 98.8 > 98.8 > 98.8	98.0 95.9 97.2 87.0 87.0	>98.8 82.5 81.2 >98.8 89.6 85.0 83.7	 94.7 97.2 89.9	ive to <u>KSJX</u>

SPURIOUS RADIATION MEASUREMENTS (CONTINUED)

KLOK (1170 KHZ), 50.0 KW DAY (DA) MODE KZSF (1370 KHZ), 5.0 KW DAY (DA) MODE KSJX (1500 KHZ), 10.0 KW DAY (DA) MODE

		Attenu	uation (dB) relative	live to
Frequency (kHz)	Field Intensity (mV/M)	KLOK	KZSF	KSJX
3510	.052	92.8	85.1	84.5
3710	.077	89.4	81.7	81.1
3840	.070	90.2	82.5	81.9
3910	.048	93.5	85.8	85.2
4110	.029	97.9	90.2	89.6
4170	.025	99.2	91.5	90.8
4240	.011	106.3	98.6	98.0
4370	.018	102.0	94.3	93.7
4500	.057	92.0	84.3	83.7
4880	.012	105.5	97.8	97.2

coordinates Above taken with Potomac Instruments, PI 4100, 1.17 kM from the Antenna on a bearing of 235°T. Point

(NAD 27): N37° 21' 6.0", W121° 52' 56.0".

Above readings meet required attenuation of 80.0dB.

EXHIBIT 7 - Reference Field Strength Measurements- KZSF

lobes coinciding with the previous MoM proof on 2013. 1/21/2016 at three locations along radials at the azimuths as determined by pattern minima and was compared in calibration to a Potomac Instruments PI4100 Serial Number 249, calibrated Reference field strength measurements were made using a Potomac Instruments FIM-41 which

3:30pm. measurements were taken on March 10th and 13th, 2017 between the hours of 9:00am and points are shown on the following pages. All locations indicated are listed using NAD 83 datum. All The measured field strengths, descriptions, and GPS coordinates for the reference measurement

KZSF DA REFERENCE POINTS

48.5° Radial

ω	2	1	No	Point
,	1.24	1.06		Dist. Km.
37° 22′ 00.5″	37° 21′ 54.2″	37° 21′ 50.4″		Point Dist. Km. N Latitude
37° 22′ 00.5″ 121° 51′ 33.8″ 115	37° 21′ 54.2″ 121° 51′ 42.7″ 175	37° 21′ 50.4″ 121° 51′ 48.5″ 125		W. Longitude Field
115	175	125	mV/m	Field
1985 Las Plumas	SE Corner pkg lot Freeland Foods	Near Life Storage sign on Las Plumas		Comments

112° Radial

#45 34th St.	130	' 121° 51′ 28.8" 130	37° 22′ 10.4″	1.39	သ
Eastwood Ct	240	37° 21′ 13.5″ 121° 51′ 37.0″ 240	37° 21′ 13.5″	1.16	2
NW Corner E St James & N 33 rd st	270	121° 51′ 45.9″ 270	37° 21′ 16.3″	0.93	1
	mV/m				No
Comments	Field	W. Longitude	Point Dist. Km. N. Latitude	Dist. Km.	Point

143.5° Radial

281.5° Radial

Vestal & N 17 th St	480	37° 21′ 36.1″ 121° 53′ 11.3″ 480	37° 21′ 36.1″	1.27	3
E Mission just West of 19th St.	1000	37° 21′ 34.9″ 121° 53′ 03.6″ 1000	37° 21′ 34.9″	1.06	2
743 N 20 th St		37° 21′ 33.1″ 121° 52′ 55.2″ 1050	37° 21′ 33.1″	0.861	1
	mV/m				No
Comments	Field	W. Longitude	Point Dist. Km. N. Latitude	Dist. Km.	Point

EXHIBIT 8 - Site Survey

as specified in this analysis. survey for KLOK as a new tenant at this site was conducted and verified that the towers are placed Because this is an existing site in use by KSJX and KZSF, a survey is not necessary, however, a