

Fletcher, Heald & Hildreth

1300 NORTH 17th STREET, 11th FLOOR ARLINGTON, VIRGINIA 22209

> OFFICE: (703) 812-0400 FAX: (703) 812-0486 www.fhhlaw.com www.commlawblog.com

March 13, 2018

2018 MAR 14 PM 2: 36

FRANCISCO R. MONTERO (703) 812-0480 MONTERO@FHHLAW.COM

VIA HAND DELIVERY

Ms. Marlene H. Dortch, Secretary Federal Communications Commission 445 12th Street, SW Washington, DC 20554 ACCEPTED/FILED

MAR 1 3 2018

Federal Communications Commission Office of the Secretary

Attn: Audio Division, Media Bureau

Re: KZSF (AM), San Jose, CA (Facility ID No. 68841) File No. BMML-20170322ABL Amendment to Form 302-AM - Direct Measurement Application

Dear Ms. Dortch:

Transmitted herewith, in triplicate, on behalf of Carlos A. Duharte, the licensee of AM Station KZSF, San Jose, CA (Facility ID No. 68841), is an amendment to direct measurement application File No. BMML-20170322ABL on Form 302-AM. Licensee, through its counsel, initially submitted File No. BMML-20170322ABL to return to direct measurement of power using the method of moments model. By correspondence dated January 24, 2018, the Commission requested the application be amended to correct certain engineering deficiencies. A copy of this correspondence is attached for reference, as well as the response of technical consultant Bert Goldman.

Please contact the undersigned if any questions arise regarding this matter.

0009634924

Sincerely, Mark a)

Francisco R. Montero Mark C. DeSantis Counsel for Carlos A. Duharte

cc (via email): Edward Lubetzky

March 7, 2018

Re: Amendment to KZSF File No.: BMML-20170322ABL

Dear Mr. Lubetzky

Attached, please find an amendment to the above referenced 302-AM application in response to your January 24th letter noting deficiencies.

All three items noted in the letter have been addressed. As a result of the corrections, the operating constants on the application form Section III, question 8 "Antenna indications for directional operation" have been modified. There are no other changes to the 302-AM form.

Also attached are the revised Method of Moments calculations as a result of the changes, and a new set of reference field readings which were taken following the changes being made to the parameters.

Thank you for your understanding on the time it took to implement these modifications.

Sincerely,

Holdman

Bert Goldman Goldman Engineering Mgmt.

FEDERAL COMMUNICATIONS COMMISSION 445 12th STREET SW WASHINGTON DC 20554

MEDIA BUREAU AUDIO DIVISION APPLICATION STATUS: (202) 418-2730 HOME PAGE: www.fcc.gov/media/radio/audio-division PROCESSING ENGINEER: Edward Lubetzky TELEPHONE: (202) 418-2700 FACSIMILE: (202) 418-1410/11 MAIL STOP: 1800B2-EAL INTERNET ADDRESS: Edward.Lubetzky@fcc.gov

JAN 2 4 2018

Carlos A. Duharte 2342 Bering Dr. San Jose, California 95131

> Re: Carlos A Duharte KZSF(AM), San Jose, California Facility ID Number: 68841 File Number: BMML-20170322ABL

Dear Applicant:

This is in reference to the above-captioned application to return to using direct measurement of power after the construction of KLOK(AM).

A preliminary engineering study reveals the following deficiencies:

- 1. The lumped series inductance of the feed system between the output port of each antenna tuning unit and the associated was not provided as required by Section 73.151(c)(1)(vii).
- 2. The proof was based on the incorrect theoretical parameters, in violation of Section 73.151(c)(2)(i) . See exhibit 4F-KZSF-Medium Wave Array Synthesis From Field Ratios.
- 3. The reference field strength measurements required under section 73.151(c)(3) were made using the wrong operating parameters.

Further action on the subject application will be withheld for thirty days from the date of this letter in order to provide you an opportunity to file a curative amendment. The amendment must be submitted in the same manner as the original application. Failure to respond or file an amendment within this time period will result in the dismissal of the application pursuant to Section 73.3568 of the rules.

Sincerely, Sorgyen

Son Nguyen Supervisory Engineer Audio Division Media Bureau

cc: Bert Godman (via e-mail only) Francisco R. Montero, Esq. (via e-mail only) Approved by OMB 3060-0627 Expires 01/31/98

FOR FCC USE ONLY

FILE NO.

FOR COMMISSION USE ONLY

20170322ARL

FCC 302-AM

APPLICATION FOR AM

BROADCAST STATION LICENSE

(Please read instructions before filling out form.

SECTION I - APPLICANT FEE INFORMATION			APP
1. PAYOR NAME (Last, First, Middle Initial)			ACCEPTED/FILED
CARLOS A. DUHARTE			MAR 1.3 2010
MAILING ADDRESS (Line 1) (Maximum 35 characters)		ł	ederal Com-
2343 BERING DR. MAILING ADDRESS (Line 2) (Maximum 35 characters)			Office of the Sound
			of the Secretary
CITY SAN JOSE	STATE OR COUNTRY (if for CA	eign address)	ZIP CODE 95131
TELEPHONE NUMBER (include area code) (408) 546-7201	CALL LETTERS KZSF	OTHER FCC IDEN 68841	NTIFIER (If applicable)
2. A. Is a fee submitted with this application?			Yes No
B. If No, indicate reason for fee exemption (see 47 C.F.R. Section		-	
Governmental Entity	ational licensee	her (Please explain)	: DIRECT MEASUREMENT/MoM
C. If Yes, provide the following information:			
Enter in Column (A) the correct Fee Type Code for the service you ar Fee Filing Guide." Column (B) lists the Fee Multiple applicable for this	re applying for. Fee Type Co application. Enter fee amou	des may be found i nt due in Column (C)	n the "Mass Media Services
(A) (B) FEE TYPE FEE MULTIPLE CODE 0 0 1	(C) FEE DUE FOR FEE TYPE CODE IN COLUMN (A)		FOR FCC USE ONLY
To be used only when you are requesting concurrent actions which resu	ult in a requirement to list mor	e than one Fee Type	e Code.
(A) (B) 0 0 0 1	(C)		FOR FCC USE ONLY
ADD ALL AMOUNTS SHOWN IN COLUMN C,	TOTAL AMOUNT REMITTED WITH TH APPLICATION	s	FOR FCC USE ONLY
THIS AMOUNT SHOULD EQUAL YOUR ENCLOSED REMITTANCE.	\$		

SECTION II - APPLICAN	T INFORMATION						
1. NAME OF APPLICANT CARLOS A. DUHARTE							
MAILING ADDRESS 2343 Bering Dr							
CITY San Jose			STATE CA		ZIP CODE 95131		
2. This application is for:							
	AM Direc	ctional		lon-Directional			
Call letters	Community of License	Construct	tion Permit File No.	Modification of Construction	Expiration Date of L	.ast	
KZSF	SAN JOSE, CA	N/A		N/A	N/A		
3. Is the station ne accordance with 47 C.F	ow operating pursuant .R. Section 73.1620?	to auto	matic program	test authority in	Exhibit No.	No	
If No, explain in an Exhi	bit.						
4 House all the terms						N	
construction permit beel	s, conditions, and oblig n fully met?	ations s	et forth in the	above described		NO	
If No, state exceptions in	n an Exhibit.				Exhibit No.		
5. Apart from the chan the grant of the underl representation container	ges already reported, ha ying construction permit d in the construction perr	s any ca which w	use or circumsta would result in a	ance arisen since any statement or incorrect?	Yes	No	
If Yes, explain in an Ex	hibit.				Exhibit No.		
6. Has the permittee fil	ed its Ownership Report	(FCC Fc	orm 323) or owne	ership	Yes	No	
		175.501	J(D) !		✓ Does not a	pply	
lf No, explain in an Exhi	bit.				Exhibit No.		
7. Has an adverse finding been made or an adverse final action been taken by any court or administrative body with respect to the applicant or parties to the application in a civil or criminal proceeding, brought under the provisions of any law relating to the following: any felony; mass media related antitrust or unfair competition; fraudulent statements to another governmental unit; or discrimination?						No	
If the answer is Yes, a	ttach as an Exhibit a fu	Il disclos	sure of the pers	ons and matters	Exhibit No.		
involved, including an ic (by dates and file num information has been required by 47 U.S.C. S of that previous submis- the call letters of the st was filed, and the date of							

FCC 302-AM (Page 2) August 1995 8. Does the applicant, or any party to the application, have a petition on file to migrate to the expanded band (1605-1705 kHz) or a permit or license either in the existing band or expanded band that is held in combination (pursuant to the 5 year holding period allowed) with the AM facility proposed to be modified herein?

If Yes, provide particulars as an Exhibit.

The APPLICANT hereby waives any claim to the use of any particular frequency or of the electromagnetic spectrum as against the regulatory power of the United States because use of the same, whether by license or otherwise, and requests and authorization in accordance with this application. (See Section 304 of the Communications Act of 1934, as amended).

The APPLICANT acknowledges that all the statements made in this application and attached exhibits are considered material representations and that all the exhibits are a material part hereof and are incorporated herein as set out in full in

CERTIFICATION

1. By checking Yes, the applicant certifies, that, in the case of an individual applicant, he or she is not subject to a denial of federal benefits that includes FCC benefits pursuant to Section 5301 of the Anti-Drug Abuse Act of 1988, 21 U.S.C. Section 862, or, in the case of a non-individual applicant (e.g., corporation, partnership or other unincorporated association), no party to the application is subject to a denial of federal benefits that includes FCC benefits pursuant to that section. For the definition of a "party" for these purposes, see 47 C.F.R. Section 1.2002(b).

2. I certify that the statements in this application are true, complete, and correct to the best of my knowledge and belief, and are made in good faith.

Name CARLOS DUHARTE	Signature	IME
Title	_{Date}	Telephone Number
INDIVIDUAL	3/8/2018	(408) 546-7201

WILLFUL FALSE STATEMENTS ON THIS FORM ARE PUNISHABLE BY FINE AND/OR IMPRISONMENT (U.S. CODE, TITLE 18, SECTION 1001), AND/OR REVOCATION OF ANY STATION LICENSE OR CONSTRUCTION

FCC NOTICE TO INDIVIDUALS REQUIRED BY THE PRIVACY ACT AND THE PAPERWORK REDUCTION ACT

The solicitation of personal information requested in this application is authorized by the Communications Act of 1934, as amended. The Commission will use the information provided in this form to determine whether grant of the application is in the public interest. In reaching that determination, or for law enforcement purposes, it may become necessary to refer personal information contained in this form to another government agency. In addition, all information provided in this form will be available for public inspection. If information requested on the form is not provided, the application may be returned without action having been taken upon it or its processing may be delayed while a request is made to provide the missing information. Your response is required to obtain the requested authorization.

Public reporting burden for this collection of information is estimated to average 639 hours and 53 minutes per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the burden, can be sent to the Federal Communications Commission, Records Management Branch, Paperwork Reduction Project (3060-0627), Washington, D. C. 20554. Do NOT send completed forms to this address.

THE FOREGOING NOTICE IS REQUIRED BY THE PRIVACY ACT OF 1974, P.L. 93-579, DECEMBER 31, 1974, 5 U.S.C. 552a(e)(3), AND THE PAPERWORK REDUCTION ACT OF 1980, P.L. 96-511, DECEMBER 11, 1980, 44 U.S.C. 3507.

No

SECTION III - LICENSE APPLICATION ENGINEERING DATA							
Name of Applicat	Name of Applicant						
CARLOS	DUHARTE						
PURPOSE OF A	UTHORIZATION APPLIED FOR	: (check one)					
	Station License	Direct Meas	surement of Power				
1. Facilities auth	orized in construction permit						
Call Sign	File No. of Construction Permit	Frequency	Hours of Operation	Power in	kilowatts		
KZSF	(if applicable) N/A	(kHz) 1370	UNLIMITED	Night 5.0	Day 5.0		
2. Station location	n						
State City or Town CALIFORNIA SAN JOSE							
3. Transmitter lo	cation			T			
State	State County		City or Town Street address (or other identification		ation)		
CA	SANTA CLARA		SAN JOSE	501 WOOSTER AVE			
4. Main studio lo	cation						
State	County		City or Town	Street address (or other identification)			
CA	SANTA CLARA		SAN JOSE	2343 Bering Dr San Jose, CA 9513			
5. Remote contro	ol point location (specify only if au	thorized direction	al antenna)	1			
State			City or Town	Street address			
CA	SANTA CLARA		SAN JOSE	2343 Bering Dr San Jose, CA 95131			
6. Has type-approved stereo generating equipment been installed?							
7. Does the sam	pling system meet the requireme	nts of 47 C.F.R. Se	ection 73.68?	✓ Y	es No		
Not Applicable							
Attach as an Ex	Attach as an Exhibit a detailed description of the sampling system as installed. Exhibit No. ENGR REPORT						
8 Operating constants:							

o. Operating constants.							
RF common point or antenna cu modulation for night system 10.4	RF common p modulation fo 10.4	RF common point or antenna current (in amperes) without modulation for day system 10.4					
Measured antenna or common point resistance (in ohms) at operating frequency			Measured ant	Measured antenna or common point reactance (in ohms) at			
Night	Day		Night	, ,	Dav		
50.0	50.0		+/ -J(+/ -J0		JO	
Antenna indications for direction	al operation						
Towers	Antenna monitor Towers Phase reading(s) in degrees		Antenna mo current	Antenna monitor sample current ratio(s)		Antenna base currents	
	Night	Day	Night	Day	Night	Day	
1C	106.2	106.2	1.496	1.496	N/A	N/A	
2E	177.0	177.0	0.555	0.555			
3N	27.9	27.9	0.408	0.408			
4W	0.0	0.0	1.0	1.0			
Manufacturer and type of antenna monitor: POTOMAC INSTRUMENTS AM-1901							

FCC 302-AM (Page 4) August 1995

SECTION III - Page 2

9. Description of antenna system ((f directional antenna is used, the information requested below should be given for each element of the array. Use separate sheets if necessary.)

Type Radiator	Overall height in meters of radiator above base insulator, or above base, if grounded. 59.4	Overall height in meters above ground (without obstruction lighting) 60	Overall height in meters above ground (include obstruction lighting) 60	If antenna is either top loaded or sectionalized, describe fully in an Exhibit. Exhibit No. N/A

Excitation

Series

L Shunt

Geographic coordinates to nearest second. For directional antenna give coordinates of center of array. For single vertical radiator give tower location.

North Latitude 37	0	21	ı	28	"	West Longitude 121	0	52	,	17	"	
-------------------	---	----	---	----	---	--------------------	---	----	---	----	---	--

Exhibit No.

Exhibit No.

NO CHANGE

If not fully described above, attach as an Exhibit further details and dimensions including any other antenna mounted on tower and associated isolation circuits.

Also, if necessary for a complete description, attach as an Exhibit a sketch of the details and dimensions of ground system.

10. In what respect, if any, does the apparatus constructed differ from that described in the application for construction permit or in the permit?

 NO CHANGE FROM EXISTING LICENSE	COLUMN SHOT SHOT SHOT SHOT SHOT SHOT SHOT SHOT
	TWANTAMADAMANA T

11. Give reasons for the change in antenna or common point resistance.

MODIFICATIONS TO SYSTEM ALLOWING ADDITION OF

KLOK(AM) TO ARRAY

I certify that I represent the applicant in the capacity indicated below and that I have examined the foregoing statement of technical information and that it is true to the best of my knowledge and belief.

Name (Please Print or Type) BERT GOLDMAN	Signature (check appropriate box below)
Address (include ZIP Code) 560 PERKINS WAY	Date
AUBURN, CA 95603	Telephone No. (Include Area Code) (214) 395-5067
Technical Director	Registered Professional Engineer
Chief Operator	✓ Technical Consultant

Other (specify)

ENGINEERING AMENDMENT KZSF, 1370 KHZ, DA-1 March, 2018

This Amendment is in response to the Commission's letter dated January 24, 2018, concerning the License Application for Radio Station KZSF. The data included in this amendment should supersede the original data submitted in BMML-20170322ABL.

1. Concerning the lumped series inductance of the feed system, a detailed breakdown is included that shows the network topology, along with the value series inductance used for each tower in the model. The inductance is lumped in series with the filter reactance at 1370 kHz. The total net series reactance is the value used in the model for directional computation and also used for impedance values to verify the model. These values are shown below. Also, during the review of the model, it was noticed that for tower open circuit calculations the lumped reactance at the base of the un-driven towers was that of the base insulator only. Measurements had been made with that configuration and also with the TCT jack open circuited. Revised impedance data and calculations are included with measured/modeled data, as shown below, at the TCT location for accuracy.

TOWER	MODELED Z(TCT) W/OTHERS OPEN	MEASURED Z(TCT) W/OTHERS OPEN
1	66.9 –j 85.2 Ω	66.0 –j 87.6 Ω
2	86.7 –j 99.6 Ω	88.1 –j 100.5 Ω
3	81.7 –j 83.3 Ω	82.2 –j 84.9 Ω
4	76.8 –j 98.8 Ω	79.9 –j 99.1 Ω

To confirm there was no excessive phase shift with the filter reactance in series, the TCT phase values with the measured net series reactance were compared to the series reactance set to a short circuit (J0.0 ohms) and agreed. These values are shown below.

	WITH ACTUAL SERIES REACTANCE	WITH SERIES REACTANCE JO
TOWER	PHASE(°)	PHASE(°)
1	106.2	106.3
2	177.0	176.8
3	27.9	27.5
4	0.0	0.0

2. Concerning the theoretical fields, original fields that were used had been changed, and this was not incorporated into the calculations. The current Fields for all towers have been run in the attached revised calculations. New parameters have been calculated.

KZSF, 1370 kHz, BASE CIRCUIT DESCRIPTION METHOD OF MOMENTS MODEL

TOWER	Specified	Measured	Measured	Filter	Series Total	Stray C
	Cs (pf)	$L_F(\mu H)$	X _F (Ω)	Z _{SER} (Ω)	Z _{sert} (Ω)	Z _{SHUNT} (Ω)
1	15	2.71	+j23.3	0.0 <i>—</i> j245.3	0.0 –j 222.0	0.0 —j 1000.0
2	15	0.85	+j7.3	0.0 –j 245.3	0.0 –j 238.0	0.0 –j 1500.0
3	15	3.52	+j30.3	0.0 –j 245.3	0.0 –j 215.0	0.0 –j 15000.0
4	15	2.24	+j19.3	0.0 –j 245.3	0.0 –j 226.0	0.0 –j 2200.0

DERIVED DIRECTIONAL PARAMETERS EMPLOYING MOMENT METHOD MODELING KZSF 1370 KHZ, DA-1

DA:

	Theoretical		Base Network Input Current		Normalized TCT	
Tower	Field	Phase	Amplitude	Phase	Amplitude	Phase
1 (C)	1.000	0.0°	6.12	+8.63°	1.496	+106.2°
2 (E)	.407	+71.4°	2.27	+79.46°	.555	+177.0°
3 (N)	.371	-92.6°	1.67	-69.60°	.408	+27.9°
4 (W)	.875	-119.0°	4.09	-97.53°	1.000	0.0°

Freque	ncy = 1.37 M	HZ				
tower 1 2 3 4	field ratio magnitude 1. .407 .371 .875	phase (d 0 71.4 -92.6 -119.	eg)			
VOLTAG source node 1 13 25 37 Sum of Total	ES AND CURREN voltage magnitude 609.239 275.578 457.799 960.893 square of som power = 5,000	TS - rms phase (d 69.4 144.5 326.2 304. urce curr . watts	curren eg) magnit 5.5201 2.1399 1.7032 4.0742 ents = 109.3	t ude p 5 1 7 2 2 2 102	ohase .7 7.2 88. 257.	(deg)
Tower admitt Y(1, 1 Y(1, 2 Y(1, 3 Y(1, 4 Y(2, 1 Y(2, 2 Y(2, 3 Y(2, 4 Y(2, 3 Y(2, 4 Y(3, 1 Y(3, 1 Y(3, 3 Y(3, 4 Y(4, 1 Y(4, 2 Y(4, 3) Y(4, 4)	ADMITTANCE MA ance real (1) .00302) .00205) .002120) .00206) .00206) .00205) .00205) .00183) .00183) .00255) .00183) .00183) .003796) .00266) .00266) .00266) .00266) .00266) .003796	TRIX nhos) 772 258 037 811 257 342 465 4092 035 465 834 596 81 4089 596 424	imaginary 0032995 .00046963 .0020552 .00132657 .00046963 0042578 .00015166 0003821 .00205524 .00015169 0038926 .00042856 .0013266 0003821 .00042855 00042855	(mhos) 6 7 8 4 3 8 4 3 8		
TOWER impeda Z(1, 1 Z(1, 2 Z(1, 3 Z(1, 4 Z(2, 1 Z(2, 2 Z(2, 3 Z(2, 4 Z(2, 3 Z(3, 4 Z(3, 1 Z(3, 2 Z(3, 3 Z(3, 4 Z(4, 1 Z(4, 2 Z(4, 3) Z(4, 4)	IMPEDANCE MATI nce real (0 79.440) 5.5577 40.223 5.5579 5.5579 5.5579 -4.6724 -40.733 40.2229 -4.6730 40.2229 -4.6730 4.7486 -40.733 -40.733 -4.6730 -4.6730 -4.6730 -4.7486 -40.733 -40.733 -40.733 -40.736 -40.7486 -40.74	RIX ohms) 5 1 7 5 45 7 9 02 3 9 3 5 8 7	imaginary 131.05 -46.1193 -37.4782 -44.6304 -46.1196 134.634 -45.72 -1.37609 -37.4786 -45.7198 127.414 -50.3399 -44.6306 -1.3758 -50.3399 124.323	(ohms)		

KZSF

GEOME Wire Envir	ETRY coordinates ronment: perf	in degree ect grour	es; other nd	dimension	s in met	ers	
wire 1	caps Distar none 0	ice Ar 0	ngle	Z 0	ra .3	dius	segs 12
2	none 123.3	0 61	L.	110. 0	.3	2	12
3	none 82.2	61 34	i.	110.5	.3	2	12
4	82.2 none 91.3 91.3	34 25 25	11. 51. 51.	109. 0 109.3	.3	2	12
Numbe	er of wires current	= nodes =	= 4 = 48				
Indiv segme radiu	vidual wires ent length us	mi wire 3 1	nimum value 9.083 .3	33	ma wire 2 2	ximum value 9.20833 .32	
ELECT Frequ no. 1	RICAL DESCRI Jencies (MHz) frequency lowest 1.37	STION step 0	no. step 1	of segme s minim .0252	nt lengt um 315	h (wavele maximum .025578	ngths) 7
Sourc sourc 1 2 3 4	ces ce node se 1 1 13 1 25 1 37 1	ctor mag 861 389 647 1,3	nitude 594 .726 .426 58.91	phase 69.4 144.5 326.2 304.		type voltage voltage voltage voltage	
IMPED no freq (MHz) sourc 1.37	DANCE prmalization resist (ohms) ce = 1; node 48.905	= 50. react (ohms) 1, secto 98.941	imped (ohms) r 1 110.37	phase (deg) 63.7	VSWR 5.8324	S11 dB -3.0082	S12 dB -3.0124
sourc 1.37	e = 2; node 49.833	13, sect 118.75	or 1 128.78	67.2	7.5265	-2.3218	-3.8289
sourc 1.37	e = 3; node 211.13	25, sect 166.34	or 1 268.79	38.2	6.9363	-2.522	-3.5605
sourc 1.37	e = 4; node 160.8	37, sect 172.53	or 1 235.85	47.	7.0884	-2.4672	-3.6312

CURREN	T rms	-						
Freque	ncy = 1.	37 MHZ 000 watte						
Effici	ency = 10	0. %						
coordi	natés in d	egrees				_		
curren	t			mag	phase	real	imaginary	
	X ·	Ŷ	2	(amps)	(deg)	(amps)	(amps)	
2	ŏ	0	9.16667	6.00266	3.2	5.99305	. 339445	
3	ŏ	ŏ	18.3333	6.18335	1.9	6.18004	.202256	
4	0	0	27.5	6.18582	.8	6.18516	.0901915	
5	0	0	36.6667	5.02605	360.	6.02605 5 7137	-1.2E-03	
7	ŏ	ŏ	55.	5.25987	358.6	5.25837	125284	
8	0	0	64.1667	4.67405	358.1	4.67138	157759	
9	0	0	73.3333	3.96876	357.5	3.96511	170159	
11	0	0	91,6667	2.24652	356.6	2.24253	133676	
12	0	Ō	100.833	1.23886	356.1	1.23605	0834761	
END	0	0	110.	0	0	0	0	
14	59.777	-107.841	9 20833	2.13991	74 7	.4/3041 627331	2.08697	
15	59.777	-107.841	18.4167	2.47171	73.3	.709695	2.36763	
16	59.777	-107.841	27.625	2.49183	72.3	.758387	2.37362	
18	59.777	-107.841 -107.841	36.8333	2.44239	/1.4 70 7	.///4/1	2.31534	
19	59.777	-107.841	55.25	2.15223	70.1	.733192	2.02349	
20	59.777	-107.841	64.4583	1.92006	69.5	.672226	1.79854	
21	59.777	-107.841 -107.841	/3.666/	1.03027	69. 68 5	.58/103	1.52/31 1.21/75	
23	59.777	-107.841	92.0833	.932774	68.	.349574	.864792	
24	59.777	-107.841	101.292	.516683	67.5	.197579	.477414	
END GND	59./// 77 7216	-107.841	110.5	0	0	0 525461	$0 \\ 1 62012$	
26	77.7216	26.7617	9.08333	1.99696	277.8	.272134	-1.97833	
27	77.7216	26.7617	18.1667	2.1594	273.	.112543	-2.15647	
28	77.7216	26.7617	27.25	2.24588	269.7	0135879	-2.24584	
30	77.7216	26.7617	45.4167	2.20271	265.2	184158	-2.195	
31	77.7216	26.7617	54.5	2.07712	263.6	231013	-2.06424	
32	77.7216	26.7617	63.5833	1.88597	262.3	252997	-1.86892	
34	77.7216	26.7617	81.75	1.32265	261.2	225304	-1.01371	
35	77.7216	26.7617	90.8333	.957938	259.3	177307	941386	
36	77.7216	26.7617	99.9167	.537853	258.6	106736	527156	
GND	-29.7244	86.3258	0	4.07423	257	0 - 919126	-3 96921	
38	-29.7244	86.3258	9.10833	4.7713	249.2	-1.69192	-4.46125	
39	-29.7244	86.3258	18.2167	5.13261	245.5	-2.12916	-4.67015	
40	-29.7244	86.3258	27.325	5.30969	242.9	-2.42075	-4.72576	
42	-29.7244	86.3258	45.5417	5.15854	239.3	-2.63414	-4.4353	
43	-29.7244	86.3258	54.65	4.84448	238.	-2.56919	-4.1071	
44 45	-29.7244 -29.7244	86 3258	03.7583 72 8667	4.38209	230.8	-2.39659	-3.00800	
46	-29.7244	86.3258	81.975	3.05243	235.	-1.75136	-2.50002	
47	-29.7244	86.3258	91.0833	2.20384	234.2	-1.28937	-1.78731	
40 END	-29.7244	00.3238 86.3258	109.3	1.23358 0	233.5	/3460/ 0	990997	
		00.0200	20010	•	5	•	•	

CUSTOMER : KZSF NETWORK ID : TOWER 1DA REV

FREQUENCY : 1370.00 kHz ATU SHUNT IMPEDANCE (R,X) : 0.00, -1000.00 OHMS TOWER FEED IMPEDANCE (R,X) : 0.00, -222.00 OHMS TOWER SHUNT IMPEDANCE (R,X) : 0.00, -7744.80 OHMS TOWER IMPEDANCE (R,X) : 48.90, 98.94 OHMS

NODE	то	NODE	IMPEDANCE R	(OHMS) X
1 2			0.00 50.18	-1000.00 99.90
T		2	0.00	-222.00

NODE	VOLTAGI MAGNITUDE	E PHASE
1	719.40 609.24	-61.59 69.40

	REAL	IMAGINARY	MAGNITUDE	PHASE
INPUT IMPEDANCE (OHMS) :	39.77	-110.59	117.53	-70.22
INPUT CURRENT (AMPS) :	6.05	0.92	6.12	8.63
OUTPUT CURRENT (AMPS) :	5.49	0.55	5.52	5.70

INPUT/OUTPUT CURRENT RATIO = 1.1089 INPUT/OUTPUT PHASE = 2.93 DEGREES CUSTOMER : KZSF NETWORK ID : TOWER 2DA REV

FREQUENCY : 1370.00 kHz ATU SHUNT IMPEDANCE (R,X) : 0.00, -1500.00 OHMS TOWER FEED IMPEDANCE (R,X) : 0.00, -238.00 OHMS TOWER SHUNT IMPEDANCE (R,X) : 0.00, -7744.80 OHMS TOWER IMPEDANCE (R,X) : 49.83, 118.75 OHMS

NODE	то	NODE	IMPEDANCE R	(OHMS) X
1		GROUND	0.00	-1500.00
2		GROUND	51.39	120.26
1		2	0.00	-238.00

	VOLTAGE	
NODE	MAGNITUDE	PHASE
1 2	270.69 275.58	11.22 144.50

	REAL	IMAGINARY	MAGNITUDE	PHASE
INPUT IMPEDANCE (OHMS) :	44.14	-110.57	119.06	-68.24
INPUT CURRENT (AMPS) :	0.42	2.24	2.27	79.46
OUTPUT CURRENT (AMPS) :	0.47	2.09	2.14	77.27

INPUT/OUTPUT CURRENT RATIO = 1.0625 INPUT/OUTPUT PHASE = 2.19 DEGREES CUSTOMER : KZSF NETWORK ID : TOWER 3DA REV

FREQUENCY : 1370.00 kHz ATU SHUNT IMPEDANCE (R,X) : 0.00, -15000.00 OHMS TOWER FEED IMPEDANCE (R,X) : 0.00, -215.00 OHMS TOWER SHUNT IMPEDANCE (R,X) : 0.00, -7744.80 OHMS TOWER IMPEDANCE (R,X) : 211.13, 166.34 OHMS

NODE	то	NODE	IMPEDANCE R	(OHMS) X
1		GROUND	0.00	-15000.00
2		GROUND	220.33	163.85
1		2	0.00	-215.00

NODE	VOLTAG MAGNITUDE	E PHASE
1	377.12 457.80	-83.51 326.20

	REAL	IMAGINARY	MAGNITUDE	PHASE
INPUT IMPEDANCE (OHMS) :	218.79	-54.18	225.39	-13.91
INPUT CURRENT (AMPS) :	0.58	-1.57	1.67	-69.60
OUTPUT CURRENT (AMPS) :	0.53	-1.62	1.70	-72.03

INPUT/OUTPUT CURRENT RATIO = 0.9823 INPUT/OUTPUT PHASE = 2.43 DEGREES CUSTOMER : KZSF NETWORK ID : TOWER 4DA REV

FREQUENCY : 1370.00 kHz ATU SHUNT IMPEDANCE (R,X) : 0.00, -2200.00 OHMS TOWER FEED IMPEDANCE (R,X) : 0.00, -226.00 OHMS TOWER SHUNT IMPEDANCE (R,X) : 0.00, -7744.80 OHMS TOWER IMPEDANCE (R,X) : 160.80, 172.53 OHMS

NODE	то	NODE	IMPEDANCE R	(OHMS) X
1		GROUND	0.00	-2200.00
2		GROUND	168.14	172.89
1		2	0.00	-226.00

	VOLTA	GE
NODE	MAGNITUDE	PHASE
1 2	702.54 960.89	-119.33 304.00

INPUT IMPEDANCE (OHMS) : INPUT CURRENT (AMPS) :	REAL 159.41 -0.54	IMAGINARY -63.75 -4.06	MAGNITUDE 171.69 4.09	PHASE -21.80 -97.53
OUTPUT CURRENT (AMPS) :	-0.92	-3.97	4.09	-97.53

INPUT/OUTPUT CURRENT RATIO = 1.0043 INPUT/OUTPUT PHASE = 5.48 DEGREES

CUSTOMER : KZSF KZSF TOWER 1 REVISED					
GEOMETRY Wire coordinates in degr Environment: perfect gro	ees; other und	dimension	ıs in met	ers	
wire caps Distance 1 none 0	Angle 0	Z 0	ra .3	dius	segs 12
2 none 123.3	0 61.	110. 0 110.5	.3	2	12
3 none 82.2	341. 341	0	.3	2	12
4 none 91.3 91.3	251. 251.	109. 0 109.3	.3	2	12
Number of wires current nodes	= 4 = 48				
Individual wires wi segment length 3 radius 1	minimum re value 9.083 .3	33	ma wire 2 2	ximum value 9.20833 .32	}
ELECTRICAL DESCRIPTION Frequencies (MHZ) frequency no. lowest step 1 1.37 0	no. step 1	of segme s minim .0252	nt lengt um 315	h (wavele maximum .025578	ngths) 7
Sources source node sector ma 1 1 1 1	agnitude	phase 0		type voltage	
Lumped loads resistance load node (ohms) 1 13 0 2 25 0 3 37 0	reactanc (ohms) -1,419.5 -5,132.3 -1,847.3	e ind (mH O O O	uctance)	capacita (uF) 0 0 0	nce passive circuit 0 0 0
IMPEDANCE normalization = 50. freq resist react (MHz) (ohms) (ohms)	imped (ohms)	phase (deg)	VSWR	S11 dB	S12 dB
1.37 76.76 133.11	153.66	60.	6.6529	-2.6311	-3.4258

GEOMETRY Wire coordinates in degrees; other dimensions in meters Environment: perfect ground

wire 1	caps Distand none 0	ce Ang 0	gle	Z 0	ra .3	dius	segs 12
2	none 123.3	0 61		$ \begin{array}{c} 110.\\ 0\\ 110.\\ \end{array} $.3	2	12
3	none 82.2	34: 34:	1.	110.5 0	.3	2	12
4	none 91.3 91.3	25	1. 1. 1.	109. 0 109.3	.3	2	12
Numbe	r of wires current	nodes =	4 48				
Indiv segmen radius	idual wires nt length S	min wire 3 1	nimum Value 9.083 .3	33	ma wire 2 2	ximum value 9.20833 .32	
ELECTR Freque no. 1 1	RICAL DESCRIF encies (MHz) frequency lowest L.37	'TION step 0	no. step 1	of segme s minim .0252	nt lengt um 315	h (wavele maximum .025578	ngths) 7
Source source 1	es e node sec 13 1	tor magr: 1.	nitude	phase 0		type voltage	
Lumped	lloads	****					
load 1 2 3	resis node (ohms 1 0 25 0 37 0)	reactance (ohms) -1,055.5 -5,132.3 -1,847.3	e ind (mH 0 0 0	uctance)	capacita (uF) 0 0 0	nce passive circuit 0 0 0
IMPEDA nor freq (MHz)	NCE malization = resist (ohms) = 1: node	50. react (ohms)	imped (ohms)	phase (deg)	VSWR	S11 dB	S12 dB
1.37	95.605	136.26	166.46	54.9	6.1568	-2.8468	-3.1802

KZSF TOWER 3 REVISED

GEOMETRY Wire coordinates in degrees; other dimensions in meters Environment: perfect ground

wire 1	caps Distanone 0	ance Ar 0	ngle	Z 0	ra .3	dius	segs 12
2	none 123.	3 6.	1.	$ \begin{array}{c} 110.\\ 0\\ 110.5 \end{array} $.3	2	12
3	none 82.2	34	41.	0	.3	2	12
4	none 91.3 91.3	2:	51. 51.	0 109.3	.3	2	12
Numbe	r of wires curre	:t nodes	= 4 = 48				
Indi∨ segmer radius	idual wires nt length s	; wire 3 1	inimum e value 9.083 .3	33	ma wire 2 2	ximum value 9.20833 .32	
ELECTR Freque no.	RICAL DESC encies (MHz frequency lowest 1.37	(IPTION :) step 0	no. step 1	of segme s minim .0252	nt lengt um 315	h (wavele maximum .025578	ngths) 7
Source source 1	es e node s 25	sector mag 1 1.	gnitude	phase 0		type voltage	
Lumpeo	lloads	istanco	roactanc	o ind	uctonco		
load 1 2 3	node (oł 1 0 13 0 37 0	ims)	(ohms) -1,055.5 -1,419.5 -1,847.3	e 11d (mH 0 0 0)	Capacita (uF) 0 0 0	nce passive circuit 0 0 0
IMPEDA nor freq (MHz) source	ANCE rmalizatior resist (ohms) e = 1: noo	= 50. react (ohms) le 25. sect	imped (ohms)	phase (deg)	VSWR	S11 dB	s12 dB
1.37	79.87	130.35	152.87	58.5	6.3197	-2.7721	-3.2623

KZSF TOWER 4 REVISED

GEOMETRY Wire coordinates in degrees; other dimensions in meters Environment: perfect ground

wire 1	caps Di none O	stance	Angle 0	Z 0	rac .3	lius	segs 12
2	none 12	3.3	61.	0	. 32	2	12
3	none 82	.2	61. 341.	110.5	. 32	2	12
4	none 91 91		251. 251.	109. 0 109.3	. 32	2	12
Numbe	r of wir cur	es rent nodes	= 4 = 48				
Indiv segmen radius	idual wi nt lengt s	res wi h 3	minimum re val 9.0 3	ue 8333	max wire 2 2	timum value 9.20833 .32	
ELECTR Freque no. 1	RICAL DE encies (frequenc lowest 1.37	SCRIPTION MHZ) y Step 0	no st 1	of segme eps minim .0252	nt length um 315	(wavele maximum .025578	ngths) 7
Source source 1	es e node 37	sector m 1 1	agnitude	phase 0		type voltage	
Lumped	l loads	nocistance	******	unan dund		•	
load 1 2 3	node 1 13 25	(ohms) 0 0 0	reacta (ohms) -1,055 -1,419 -5,132	nce 1na (mH .5 0 .5 0 .3 0	uctance)	capacita (uF) 0 0 0	nce passive circuit 0 0 0
IMPEDA nor freq (MHz) source	ANCE rmalizat resis (ohms e = 1; 1	ion = 50. st react s) (ohms) node 37, se	imped (ohms) ctor 1	phase (deg)	VSWR	S11 dB	S12 dB
T. 37	01.0	/+ 124.00	140./0	30.Ö	2.0035	-2.9810	-3.0392

CUSTOMER : KZSF NETWORK ID : TOWER 1 REVISED

FREQUENCY : 1370.00 kHz ATU SHUNT IMPEDANCE (R,X) : 0.00, -1000.00 OHMS TOWER FEED IMPEDANCE (R,X) : 0.00, -222.00 OHMS TOWER SHUNT IMPEDANCE (R,X) : 0.00, -7744.80 OHMS TOWER IMPEDANCE (R,X) : 76.76, 133.11 OHMS

NODE	то	NODE	IMPEDANCE R	(OHMS) X
1		GROUND	0.00	-1000.00
2		GROUND	79.46	134.64
1		2	0.00	-222.00

NODE	VOLTAC MAGNITUDE	GE PHASE
1	100.00 132.38	0.00 107.16

	REAL	IMAGINARY	MAGNITUDE	PHASE
INPUT IMPEDANCE (OHMS) :	66.85	-85.23	108.32	-51.89
INPUT CURRENT (AMPS) :	0.57	0.73	0.92	51.89
OUTPUT CURRENT (AMPS) :	0.59	0.63	0.86	47.13

INPUT/OUTPUT CURRENT RATIO = 1.0716 INPUT/OUTPUT PHASE = 4.76 DEGREES CUSTOMER : KZSF NETWORK ID : TOWER 2 REVISED

FREQUENCY : 1370.00 kHz ATU SHUNT IMPEDANCE (R,X) : 0.00, -1500.00 OHMS TOWER FEED IMPEDANCE (R,X) : 0.00, -238.00 OHMS TOWER SHUNT IMPEDANCE (R,X) : 0.00, -7744.80 OHMS TOWER IMPEDANCE (R,X) : 95.61, 136.26 OHMS

NODE	то	NODE	IMPEDANCE R	(OHMS) X
1		GROUND	0.00	-1500.00
2		GROUND	99.04	137.46
1		2	0.00	-238.00

NODE	VOLTAGE MAGNITUDE PHASE				
1	100.00	0.00			
2	120.04	99.66			

INPUT IMPEDANCE (OHMS) :	REAL	IMAGINARY	MAGNITUDE	PHASE
	86.66	-99.59	132.02	-48.97
INPUT CURRENT (AMPS) : OUTPUT CURRENT (AMPS) ·	0.50	0.57	0.76	48.97

INPUT/OUTPUT CURRENT RATIO = 1.0503 INPUT/OUTPUT PHASE = 4.26 DEGREES CUSTOMER : KZSF NETWORK ID : TOWER 3 REVISED

FREQUENCY : 1370.00 kHz ATU SHUNT IMPEDANCE (R,X) : 0.00, -15000.00 OHMS TOWER FEED IMPEDANCE (R,X) : 0.00, -215.00 OHMS TOWER SHUNT IMPEDANCE (R,X) : 0.00, -7744.80 OHMS TOWER IMPEDANCE (R,X) : 79.87, 130.35 OHMS

NODE	то	NODE	IMPEDANCE R	(OHMS) X
1		GROUND	0.00	-15000.00
2		GROUND	82.62	131.71
1		2	0.00	-215.00

NODE	VOLTAG MAGNITUDE	E PHASE
1	100.00	0.00
2	132.54	103.13

	REAL	IMAGINARY	MAGNITUDE	PHASE
INPUT IMPEDANCE (OHMS) :	81.71	-83.27	116.66	-45.54
INPUT CURRENT (AMPS) :	0.60	0.61	0.86	45.54
OUTPUT CURRENT (AMPS) :	0.62	0.61	0.87	44.63

INPUT/OUTPUT CURRENT RATIO = 0.9887 INPUT/OUTPUT PHASE = 0.91 DEGREES CUSTOMER : KZSF NETWORK ID : TOWER 4 REVISED

FREQUENCY : 1370.00 kHz ATU SHUNT IMPEDANCE (R,X) : 0.00, -2200.00 OHMS TOWER FEED IMPEDANCE (R,X) : 0.00, -226.00 OHMS TOWER SHUNT IMPEDANCE (R,X) : 0.00, -7744.80 OHMS TOWER IMPEDANCE (R,X) : 81.37, 124.53 OHMS

NODE	то	NODE	IMPEDANCE R	(OHMS) X
1		GROUND	0.00	-2200.00
2		GROUND	84.05	125.67
1		2	0.00	-226.00

	VOLTAGE	Ξ
NODE	MAGNITUDE	PHASE
1 2	100.00 115.51	0.00 106.27

	REAL	IMAGINARY	MAGNITUDE	PHASE
INPUT IMPEDANCE (OHMS) :	76.77	-98.76	125.09	-52.14
INPUT CURRENT (AMPS) :	0.49	0.63	0.80	52.14
OUTPUT CURRENT (AMPS) :	0.50	0.59	0.78	49.44

INPUT/OUTPUT CURRENT RATIO = 1.0295 INPUT/OUTPUT PHASE = 2.70 DEGREES

Reference Field Strength Measurements- KZSF-

REVISED 3/1/2018

Reference field strength measurements were made using a Potomac Instruments FIM-41 which was compared in calibration to a Potomac Instruments PI4100 Serial Number 249, calibrated 1/21/2016 at three locations along radials at the azimuths as determined by pattern minima and lobes coinciding with the previous MoM proof on 2013.

The measured field strengths, descriptions, and GPS coordinates for the reference measurement points are shown on the following pages. All locations indicated are listed using NAD 83 datum. All measurements were taken on March 1st, 2018 between the hours of 9:00am and 3:30pm.

KZSF DA REFERENCE POINTS

Point	Dist.	N Latitude	W. Longitude	Field	Comments
No	Km.			mV/m	
1	1.06	37° 21'	121° 51'	126	Near Life Storage sign on Las Plumas
		50.4"	48.5"		
2	1.24	37° 21'	121° 51′	170	SE Corner pkg lot Freeland Foods
		54.2"	42.7"		
3	1.54	37° 22'	121° 51'	117	1985 Las Plumas
		00.5"	33.8"		

48.5° Radial

112° Radial

Point	Dist	N Latitudo	W Longitudo	Field	Commonts
I UIIIC	DISC.	N. Lautuue	w. Longitude	Field	Comments
NO	Km.			mV/m	
1	0.93	37° 21'	121° 51'	390	NW Corner E St James & N 33 rd st
		16.3"	45.9"		
2	1.16	37° 21'	121° 51'	295	Eastwood Ct
		13.5"	37.0"		
3	1.39	37° 22'	121° 51'	210	#45 34 th St.
		10.4"	28.8"		

143.5° Radial

Point	Dist.	N. Latitude	W. Longitude	Field	Comments
No	Km.			mV/m	
1	0.26	37° 21'	121° 52'	150	SE Corner Eggo Pkg lot (pt toward
		20.9"	14.4"		array)
2	0.873	37° 21'	121° 51'	90	NE Corner SJ City parking lot
		05.5"	59.8"		
3	1.09	37° 20'	121° 51'	100	Five Wounds & N 28 th St
		59.3"	54.6"		

281.5° Radial

Point	Dist.	N. Latitude	W. Longitude	Field	Comments
No	Km.			mV/m	
1	0.861	37° 21'	121° 52'	1100	743 N 20 th St
		33.1"	55.2"		
2	1.06	37° 21'	121° 53'	1050	E Mission just West of 19 th St.
		34.9"	03.6"		
3	1.27	37° 21'	121° 53'	800	Vestal & N 17 th St
		36.1"	11.3"		