RECEIVED

2017 JUL 13 A 11: 35

AUDIUA

Akin Gump

STRAUSS HAUER & FELD LLP

TOM W. DAVIDSON +1 202.887.4011/fax: +1 202.887.4288 tdavidson@akingump.com

July 11, 2017

VIA HAND DELIVERY

Ms. Marlene H. Dortch Secretary Federal Communications Commission 445 12th Street, SW Wasghinton, DC 20554

ACCEPTED/FILED

JUL 11 201/

Federal Communications Commission Office of the Secretary

On behalf of ABC Radio Los Angeles Assets, LLC, licensee of AM radio station KRDC, Pasadena, CA (Facility ID 25076), enclosed are an original and three copies of an Application for License and Direct Power Measurement (FCC Form 302-AM) as well as a copy of the electronically filed Form 159. Please stamp one copy of the application and return it to the undersigned in the enclosed envelope.

If you have any questions regarding this application, please feel free to contact me.

Sincerely,

Tan Q-

Tom W. Davidson

Agency Tracking ID:PGC2970492 Authorization Number:286349 Successful Authorization -- Date Paid: 7/11/17 FILE COPY ONLY!!

READ INSTRUCTIONS CAREFULLY BEFORE	FEDERAL COMMUNICATIONS COMMISSION				APPROVED BY OMB 3060-059		
PROCEEDING	REMITTANCE ADVICE				L USE		
ROCLEDING	FORM 159						
(1) LOCKBOX #979089	PAGE	FCC US	E ONLY				
	I SECTIO	ON A - P	Payer Information	I			
(2) PAVER NAME (if paying by	credit card, enter name exactly as it appears on			(3) TOTAL AM	OUNT PAID (dollars and cents)		
ABC Radio Los Angeles		your car		\$1505.00			
(4) STREET ADDRESS LINE N 77 WEST 66TH STREE							
(5) STREET ADDRESS LINE N							
(6) CITY			(7) STAT	Έ	(8) ZIP CODE		
NEW YORK			NY		10023-6298		
	UMBER (INCLUDING AREA CODE)		(10) COUNTRY COI	DE (IF NOT IN U	.S.A.)		
212-4567777			US				
	FCC REGISTRATION NUMBER (FRN)	AND TA		(TIN) REQUIR	ED		
(11) PAYER (FRN) 0014625727			(12) FCC USE ONLY				
	IF PAYER NAME AND THE APPLICA IF MORE THAN ONE APPLICA	NT NAN	ME ARE DIFFERENT, COMPL	ETE SECTION I DRM 159-C)	3		
(13) APPLICANT NAME							
ABC Radio Los Angele	s Assets, LLC						
(14) STREET ADDRESS LINE	NO. 1						
77 WEST 66TH STREE							
(15) STREET ADDRESS LINE	NO. 2						
(16) CITY			(17) STA	ГЕ	(18) ZIP CODE		
NEW YORK			NY		10023-6298		
	NUMBER (INCLUDING AREA CODE)		(20) COUNTRY COI	DE (IF NOT IN U	.S.A.)		
212-4567777			US				
	FCC REGISTRATION NUMBER (FRN)	AND TA		R (TIN) REQUIR	ED		
(21) APPLICANT (FRN) 0014625727			(22) FCC USE ONLY				
COM	PLETE SECTION C FOR EACH SERVICE	, IF MO	RE BOXES ARE NEEDED, USE	CONTINUATI	ON SHEET		
(23A) FCC Call Sign/Other ID			(24A) Payment Type Code(PTC)		(25A) Quantity		
	KRDC		MMR		FCC Use Only		
(26A) Fee Due for (PTC) \$700.00			(27A) Total Fee \$700.0	0	FCC Use Only		
(28A) FCC CODE 1		(29A)	FCC CODE 2				
	25076			302-AM			
(23B) FCC Call Sign/Other ID			(24B) Payment Type Code(PTC)		(25B) Quantity		
	KRDC		MOR		1		
(26B) Fee Due for (PTC)			(27B) Total Fee FCC Use Only				
	\$805.00		\$805.00				
(28B) FCC CODE 1	25076	(29B)	FCC CODE 2	302_AM			
	25076	302-AM					

ORIGINAL			ACCEPTED/FILED		
Federal Communications Commission Approved b Washington, D. C. 20554 306	OMB	FOR	1 00 44 9017		
Expires 0		FCC USE ONLY	JUL 11 2017		
FCC 302-AM			Federal Communications Commission Office of the Secretary		
APPLICATION FOR AM			•		
BROADCAST STATION LICENSE			OMMISSION USE ONLY		
(Please read instructions before filling out form.		FILE NO	10. BZ-20170711ACG		
SECTION I - APPLICANT FEE INFORMATION					
1. PAYOR NAME (Last, First, Middle Initial)			·		
ABC Radio Los Angeles Assets, LLC		-	1		
MAILING ADDRESS (Line 1) (Maximum 35 characters) 77 W. 66th St., 16th Floor				¥	
MAILING ADDRESS (Line 2) (Maximum 35 characters) Attn: John Zukcer, Esq.					
CITY New York	STATE NY	OR COUN	NTRY (if foreign address) ZIP CODE 10023		
TELEPHONE NUMBER (include area code) 212-456-7777		ETTERS	OTHER FCC IDENTIFIER (If applicable) 0014625727		
2. A. Is a fee submitted with this application?			Yes N	0	
B. If No, indicate reason for fee exemption (see 47 C.F.R. Section	1		25071		
Governmental Entity Noncommercial educ	cational lic	ensee	Other (Please explain):		
C. If Yes, provide the following information:					
Enter in Column (A) the correct Fee Type Code for the service you Fee Filing Guide." Column (B) lists the Fee Multiple applicable for th	are applyi iis applicat	ng for. Fe ion. Enter	ee Type Codes may be found in the "Mass Media Ser r fee amount due in Column (C).	vices	
(A) (B)	Г		(C) E FOR FEE		
FEE TYPE FEE MULTIPLE		TYPE CODE IN FOR FCC US			
M M R 0 0 1	\$)			
To be used only when you are requesting concurrent actions which re	esult in a re	quirement	t to list more than one Fee Type Code.		
(A) (B)		(C) FOR FCC USE C			
M O R 0 0 1		805.0		-	
ADD ALL AMOUNTS SHOWN IN COLUMN C,	F	REMITTED	AMOUNT O WITH THIS ICATION		
AND ENTER THE TOTAL HERE. THIS AMOUNT SHOULD EQUAL YOUR ENCLOSED	\$	1505.00			
REMITTANCE.					
<u> </u>	ê				
			ŭ		
\rightarrow \triangleleft					
C N Horn					
				302-AM st 1995	
			· · · · · · · · · · · · · · · · · · ·		
the second second			v		

i.

8. Does the applicant, or any party to the application, have a petition on file to migrate to the expanded band (1605-1705 kHz) or a permit or license either in the existing band or expanded band that is held in combination (pursuant to the 5 year holding period allowed) with the AM facility proposed to be modified herein?

If Yes, provide particulars as an Exhibit.

The APPLICANT hereby waives any claim to the use of any particular frequency or of the electromagnetic spectrum as against the regulatory power of the United States because use of the same, whether by license or otherwise, and requests and authorization in accordance with this application. (See Section 304 of the Communications Act of 1934, as amended).

The APPLICANT acknowledges that all the statements made in this application and attached exhibits are considered material representations and that all the exhibits are a material part hereof and are incorporated herein as set out in full in

CERTIFICATION

1. By checking Yes, the applicant certifies, that, in the case of an individual applicant, he or she is not subject to a denial of federal benefits that includes FCC benefits pursuant to Section 5301 of the Anti-Drug Abuse Act of 1988, 21 U.S.C. Section 862, or, in the case of a non-individual applicant (e.g., corporation, partnership or other unincorporated association), no party to the application is subject to a denial of federal benefits that includes FCC benefits pursuant to that section. For the definition of a "party" for these purposes, see 47 C.F.R. Section 1.2002(b).

2. I certify that the statements in this application are true, complete, and correct to the best of my knowledge and belief, and are made in good faith.

_{Name} John Zucker, Esq.	Signature	
Title	Date	Telephone Number
Secretary	07/11/2017	212-456-7777

WILLFUL FALSE STATEMENTS ON THIS FORM ARE PUNISHABLE BY FINE AND/OR IMPRISONMENT (U.S. CODE, TITLE 18, SECTION 1001), AND/OR REVOCATION OF ANY STATION LICENSE OR CONSTRUCTION

FCC NOTICE TO INDIVIDUALS REQUIRED BY THE PRIVACY ACT AND THE PAPERWORK REDUCTION ACT

The solicitation of personal information requested in this application is authorized by the Communications Act of 1934, as amended. The Commission will use the information provided in this form to determine whether grant of the application is in the public interest. In reaching that determination, or for law enforcement purposes, it may become necessary to refer personal information contained in this form to another government agency. In addition, all information provided in this form will be available for public inspection. If information requested on the form is not provided, the application may be returned without action having been taken upon it or its processing may be delayed while a request is made to provide the missing information. Your response is required to obtain the requested authorization.

Public reporting burden for this collection of information is estimated to average 639 hours and 53 minutes per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the burden, can be sent to the Federal Communications Commission, Records Management Branch, Paperwork Reduction Project (3060-0627), Washington, D. C. 20554. Do NOT send completed forms to this address.

THE FOREGOING NOTICE IS REQUIRED BY THE PRIVACY ACT OF 1974, P.L. 93-579, DECEMBER 31, 1974, 5 U.S.C. 552a(e)(3), AND THE PAPERWORK REDUCTION ACT OF 1980, P.L. 96-511, DECEMBER 11, 1980, 44 U.S.C. 3507.

> FCC 302-AM (Page 3) August 1995

V No Yes

Exhibit No.

\checkmark	Yes	\square	No
استحصار			

SECTION III - Name of Applic	LICENSE APPLICATION ENGINEERING DATA	4					
	ABC Radio Los Angeles Assets, LLC						
PURPOSE OF	AUTHORIZATION APPLIED FOR: (check one)						
Х	Station License Direct Me	asurement of Power					
1. Facilities au	thorized in construction permit						
Call Sign	File No. of Construction Permit Frequency	Hours of Operation	Power in kilowatts				
KRDC	(if applicable) (kHz) Not Applicable 1110 kHz	Unlimited	Night Day 20.0 50.0				
2. Station loca	tion						
State		City or Town					
Califo	rnia	Pasadena	Pasadena				
3. Transmitter	location						
State	County	City or Town	Street address (or other identification)				
CA	Los Angeles	Irwindale	277 Longden Ave.				
4. Main studio	location		T				
State	County	City or Town	Street address (or other identification)				
CA	Los Angeles	Burbank	3800 W. Alameda Blvd.				
5. Remote cor	trol point location (specify only if authorized direction	nal antenna)					
State	County	City or Town	Street address (or other identification)				
CA	Los Angeles	Burbank	3800 W. Alameda Blvd.				
6. Has type-approved stereo generating equipment been installed?							
7. Does the sampling system meet the requirements of 47 C.F.R. Section 73.68? X Yes Not Attach as an Exhibit a detailed description of the sampling system as installed. Exhibit No. Exhibit No.							
Eng Rpt							

8. Operating constants:							
RF common point or antenna cu modulation for night system	rrent (in amperes) without	RF common point or antenna current (in amperes) without modulation for day system				
20	5			32	. 4		
			Management		agint registeries (ir	obme) at	
Measured antenna or common p	point resistance (I	n onms) at	operating frequ		point reactance (ir	i onins) at	
operating frequency Night	Day		Night	dency	Day		
50	50		- J6		- J6		
Antenna indications for directional operation							
Towers Phase reading(s) in degrees			Antenna monitor sample current ratio(s)		Antenna base currents		
	Night	Day	Night	Day	Night	Day	
1 (NE)	-149.2	X	0.408		no	no	
2 (East Center)	106.5		1.085				
3 (West Center)	0		1		longer	longer	
4 (SW)	-106.9	-48.5	0.325	0.679			
5 (N)		0		1	required	required	
Manufacturer and type of antenna monitor: Potomac Instruments AM-1901							

SECTION II - APPLICAN	T INFORMATION				
1. NAME OF APPLICANT ABC Radio Los Angeles Ass	sets, LLC			*	
MAILING ADDRESS		an Managa da Contra Contra		yyana yyjy pytyrana i sporowy transportinio od inie od	
77 W. 66th St., 16th Floor CITY New York			STATE NY		ZIP CODE 10023
2. This application is for:	Commercial	tional	Noncomm	nercial Ion-Directional	
Call letters	Community of License	Construct	tion Permit File No.	Modification of Construction	Expiration Date of Last Construction Permit
KRDC	Pasadena, CA	NA		Permit File No(s).	NA
3. Is the station now operating pursuant to automatic program test authority in accordance with 47 C.F.R. Section 73.1620?					
4. Have all the term construction permit bee	s, conditions, and oblig n fully met?	ations s	et forth in the	above described	Yes No
If No, state exceptions i	in an Exhibit.				
5. Apart from the changes already reported, has any cause or circumstance arisen since Yes Yes No. the grant of the underlying construction permit which would result in any statement or representation contained in the construction permit application to be now incorrect?					
If Yes, explain in an Ex	khibit.				Exhibit No.
6. Has the permittee filed its Ownership Report (FCC Form 323) or ownership certification in accordance with 47 C.F.R. Section 73.3615(b)? ✓ Does not app					
If No, explain in an Exh	ibit.				Exhibit No.
7. Has an adverse finding been made or an adverse final action been taken by any court or administrative body with respect to the applicant or parties to the application in a civil or criminal proceeding, brought under the provisions of any law relating to the following: any felony; mass media related antitrust or unfair competition; fraudulent statements to another governmental unit; or discrimination?					
If the answer is Yes, attach as an Exhibit a full disclosure of the persons and matters involved, including an identification of the court or administrative body and the proceeding (by dates and file numbers), and the disposition of the litigation. Where the requisite information has been earlier disclosed in connection with another application or as required by 47 U.S.C. Section 1.65(c), the applicant need only provide: (i) an identification of that previous submission by reference to the file number in the case of an application, the call letters of the station regarding which the application or Section 1.65 information was filed, and the date of filing; and (ii) the disposition of the previously reported matter.					

FCC 302-AM (Page 2) August 1995

SECTION III - Page 2

9. Description of antenna system ((f directional antenna is used, the information requested below should be given for each element of the array. Use separate sheets if necessary.)

Type Radiator five uniform cross section vertical towers	Overall height in meters of radiator above base insulator, or above base, if grounded.	Overall height in meters above ground (without obstruction lighting)	Overall height in meters above ground (include obstruction lighting)	If antenna is either top loaded or sectionalized, describe fully in an Exhibit.		
	112.7 (all)	99.6 (all)	100.5 (all)	Exhibit No. DNA		

Excitation

Х

Series

____ Shunt

Geographic coordinates to nearest second. For directional antenna give coordinates of center of array. For single vertical radiator give tower location.

North Latitude	0 34	06	50 "	West Longitude	0 117	59	51	
----------------	---------	----	------	----------------	----------	----	----	--

If not fully described above, attach as an Exhibit further details and dimensions including any other antenna mounted on tower and associated isolation circuits.

Also, if necessary for a complete description, attach as an Exhibit a sketch of the details and dimensions of ground system.

10. In what respect, if any, does the apparatus constructed differ from that described in the application for construction permit or in the permit?

Not applicable											
Tower Registration:	(1)	1012884	, (2)	101288	5, (3)	10128	386,	(4)	1012887,	(5)	1012888
(Numbered per anten	na m	onitor n	umberi	ng in	paragra	aph 8	of	this	form)		

Exhibit No.

see below

Exhibit No.

no change

11. Give reasons for the change in antenna or common point resistance.

Mounting of translator antenna on East Center tower. Existing unused RPU/two-way antenna remains on Northeast (#1)tower.

I certify that I represent the applicant in the capacity indicated below and that I have examined the foregoing statement of technical information and that it is true to the best of my knowledge and belief.

Name (Please Print or Type) Benj. F. Dawson III, P.E.	Signature (check appropriate box below) Benj. T. Dawsen 999, PE.					
Address (include ZIP Code) Hatfield & Dawson Consulting Engineers	Date July 10, 2017					
9500 Greenwood Avenue North Seattle, WA 98103	Telephone No. (Include Area Code) (206) 783 9151					
Technical Director	X Registered Professional Engineer					
Chief Operator	Technical Consultant					
X Other (specify) Consulting Engineer						
FCC 302-AM (Page 5) August 1995						

Exhibit 1 ABC Radio Los Angeles Assets, LLC 302-AM, KRDC, Facility ID 25076

BENJAMIN F. DAWSON III, PE THOMAS M. ECKELS, PE STEPHEN S. LOCKWOOD, PE DAVID J. PINION, PE ERIK C. SWANSON, PE

THOMAS S. GORTON, PE MICHAEL H. MEHIGAN, PE HATFIELD & DAWSON CONSULTING ELECTRICAL ENGINEERS 9500 GREENWOOD AVE. N. SEATTLE, WASHINGTON 98103

TELEPHONE (206) 783-9151 FACSIMILE (206) 789-9834 E-MAIL hatdaw@hatdaw.com

> JAMES B. HATFIELD, PE CONSULTANT

Maury L. Hatfield, PE (1942-2009) Paul W. Leonard, PE (1925-2011)

ENGINEERING REPORT:

APPLICATION FOR LICENSE and Direct Power Measurement

RADIO STATION KRDC Pasadena, CA 1110 kHz, 50 kW-D, 20 kW-N, DA-2 Facility ID #25076

ABC RADIO LOS ANGELES ASSETS, LLC

July 10, 2017

Exhibit 1 ABC Radio Los Angeles Assets, LLC 302-AM, KRDC, Facility ID 25076

1

APPLICATION FOR LICENSE and Direct Power Measurement

RADIO STATION KRDC Pasadena, CA 1110 kHz, 50 kW-D, 20 kW-N, DA-2 Facility ID #25076

Purpose of Application

- Item 2 Derivation of Operating Parameters for Directional Antenna
- Item 3 Method of Moments Model Details for Towers Driven Individually
- Item 4 Method of Moments Model Details for Directional Antenna Operation
- Item 5 Array Geometry
- Item 6 Sampling Line Measurements
- Item 7 Reference Field Strength Measurements
- Item 8 Direct Measurement of Power
- Item 9 Antenna Monitor Data, Sample Device Description and Location

Purpose of Application

This engineering exhibit supports an application for a "moment method license" for the presently authorized and unmodified antenna radiation patterns of radio station KRDC, Pasadena, CA. KRDC is authorized per license to operate on 1110 kHz with a power of 50 kW day and 20 kW night, employing separate directional antenna patterns for the daytime and nighttime operation.

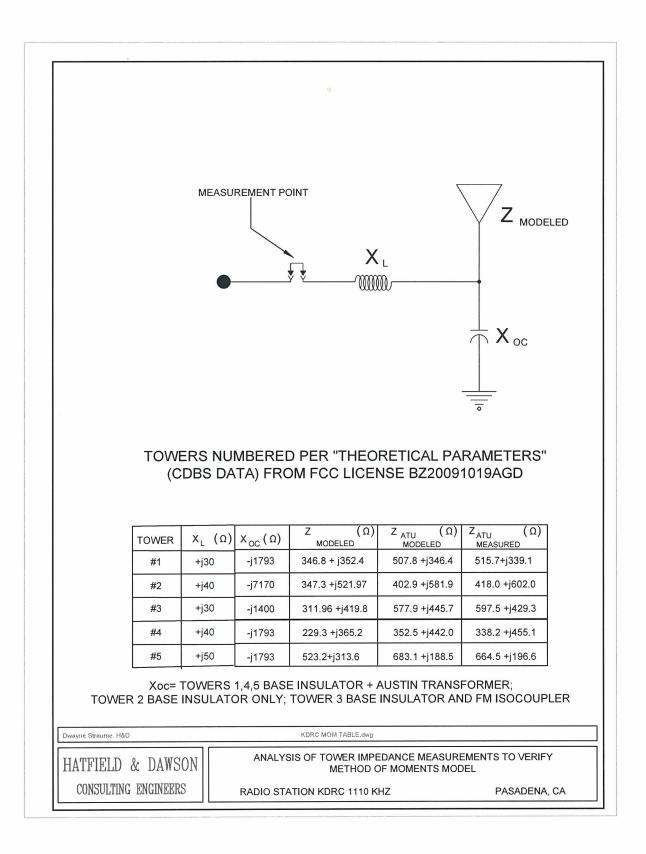
The antenna towers and ground system are unmodified from their long-established conditions and adjustments of the antenna parameters were made in accordance with the terms of the license and specifications provided for the previous licensing of the station. Information is provided herein demonstrating that the directional antenna parameters for the pattern authorized by the station license have been determined in accordance with the requirements of section 73.151(c) of the FCC Rules. The system has been adjusted to produce antenna monitor parameters within +/- 5 percent in ratio and +/- 3 degrees in phase of the modeled values, as required by the Rules. Measurements described in this report were made by Burt Weiner and Ashley Wallen under my direction.

Benjamin F.Dawson III, P.E.

July 10, 2017

Item 1

Analysis of Tower Impedance Measurements to Verify Method of Moments Model - KRDC


Tower impedance measurements were made at the locations of the sample system current transformers using an AIM-120 network analyzer in a calibrated measurement system. The other towers were open circuited at the same point where impedance measurements were made (the "reference points") for each of the measurements.

Circuit calculations were performed to relate the method of moments modeled impedances at the tower feed points to those at the current sample device locations as shown in the table. The base conditions shown for each tower, which includes the stray capacitances, were used in the moment method model as a load at ground level for the open circuited case. The lighting transformers in use on three of the towers and the newly installed FM isocoupler on one tower have been included in the models because of the high impedance of the 132 degree tall towers.

The following page shows the schematic of the assumed circuit and tabulation of calculated values. These calculations show the impedance transformations between the tower base values produced by the MININEC moment method model and the "J" plug locations where the measurements were made.

NOTE: All tower numbering in this report is per the FCC CDBS database numbering, EXCEPT as specifically noted in the tables for operating parameters and in the FCC Form 302-AM. This provides consistency with the current station license, which has the theoretical pattern numbering and the operating parameter numbering for towers 1 through 4 reversed.

Hatfield & Dawson Consulting Engineers

5

MEASURED AND MOMENT METHOD MODEL IMPEDANCE COMPARISON

Tower FCC theo	#	Lo R	Meas R	Model R	Hi R
At J Plug	1	493.2	515.7	507.8	538.4
	2	399.4	418.0	402.9	436.8
	3	571.7	597.5	577.9	623.5
	4	322.8	338.2	352.5	353.8
	5	636.0	664.5	683.1	693.2
Tower # FCC theo		Low XL	Meas XL	Model XL	Hi XL
	1	Low XL 323.6	Meas XL 339.1	Model XL 346.4	Hi XL 354.7
FCC theo					
FCC theo	1	323.6	339.1	346.4	354.7
FCC theo	1 2	323.6 576.0	339.1 602.0	346.4 581.9	354.7 628.2

All other towers open circuited at J plug.

Item 2 Derivation of Operating Parameters for Directional Antenna - KRDC

The method of moments model of the array, following verification with the measured individual open circuited base impedances, was used for directional antenna calculations. Calculations were made to determine the complex voltage values for sources located at ground level at the base of each tower of the array to produce current moment sums for the towers that, when normalized, equated to the theoretical field parameters of the authorized directional antenna pattern. With these voltage sources, the tower currents and phases were calculated. 33 segments were used for towers in the moment method model. The currents and voltages at the sample loop locations on the towers (segments 11, 44, 778, 110, 143) are shown.

Tower FCC CDBS Numbering	Modeled Current Pulse	Loop Current Magnitude	Loop Current Phase	Antenna Monitor Sample Ratio	Antenna Monitor Sample Phase	Tower # per Licensed Operating Parameters
1	11	3.1948	1.8	0.325	-106.9	4
2	44	9.8185	108.7	1	0	3
3	77	10.6516	215.2	1.085	106.5	2
4	110	4.0047	319.5	0.4079	-149.2	1

NIGHT

DAY

Tower FCC CDBS Numbering	Modeled Current Pulse	Loop Current Magnitude	Loop Current Phase	Antenna Monitor Sample Ratio	Antenna Monitor Sample Phase	Tower # per Licensed Operating Parameters
1	11	13.1181	312.2	0.679	-48.5	4
5	143	19.3122	0.1	1	0	5

Note: Each segment is 4° in physical length. The bottom of segment 11 from each tower base is 40 degrees

and its top is 44 degrees. The detuned current minimum is at segment 11 in each case. The sample loops are located at the aproximate midpoint of segment 11 on each tower.

These loop values are very close to the far field amplitudes and phases as expected for ~1/3 height loop monitoring.

Item 3 Method of Moments Model Details for Towers Driven Individually - KRDC

The array of towers was modeled using MININEC. A single wire was used to represent each tower, which are uniform cross section. The top and bottom wire end points were specified using the theoretical directional antenna specifications in electrical degrees. The maximum and minimum segment lengths are 4.24242 and 3.99242 electrical degrees respectively.

Each tower's modeled height relative to its physical height falls within the required range of 75 to 125 percent and each modeled radius falls within the required range of 80 percent to 150 percent of the radius of a circle having a circumference equal to the sum of the widths of the tower sides.

Tower # FCC CDBS Numbering	Physical Height (degrees)	Modeled Height (degrees)	Modeled Percentage of Height	Modeled Radius (Meters)	Percent of Equivalent Radius
1	132.0	137.0	103.79	0.25	85.89
2	132.0	140.0	106.06	0.291	100.0
3	132.0	137.0	103.79	0.26	89.32
4	132.0	131.5	99.62	0.235	80.74
5	132.0	139.5	105.68	0.305	104.78

The following pages show the details of the method of moments models for the individually driven towers.

Hatfield & Dawson Consulting Engineers

C:\Expert MBPro V.14\KRDC twrlothersopen rev 06-29-2017 08:57:40 33 segment KRDC GEOMETRY Wire coordinates in degrees; other dimensions in meters Environment: perfect ground wire Ζ caps Distance Angle radius seqs 1 none 0 0 0 .25 33 0 0 137. 2 none 90. 60. 0 .291 33 90. 140. 60. 3 none 180. 60. 0 .26 33 180. 60. 137. .235 4 none 270. 60. 0 33 270. 60. 131.75 .305 5 0 33 none 165. 14. 165. 14. 139.5 Number of wires 5 = current nodes = 165 minimum maximum Individual wires wire value wire value segment length 4 3.99242 2 4.24242 radius 4 .235 5 .305 ELECTRICAL DESCRIPTION Frequencies (KHz) segment length (wavelengths) no. of frequency step minimum no. lowest steps maximum .0110901 .0117845 1 1,110. 1. 1 Sources phase magnitude source node sector type voltage 1 1 1 1. 0 Lumped loads resistance reactance inductance capacitance passive (ohms) (uF) circuit load node (ohms) (mH) 34 0 -7,170. 0 0 0 1 -1,400. 0 0 0 2 67 0 -1,793. -1,793. 3 100 0 0 0 0 4 133 0 0 0 0 C:\Expert MBPro V.14\KRDC twrlothersopen rev 06-29-2017 13:18:18 IMPEDANCE normalization = 50. phase freq react imped VSWR S11 S12 resist dB dB (KHz) (ohms) (ohms) (ohms) (deg) source = 1; node 1, sector 1 45.5 14.172 -1.2279 -6.0858 346.84 352.41 494.46 1,110.

Hatfield & Dawson Consulting Engineers

C:\Expert MBPro V.14\KRDC twr2othersopen rev 06-29-2017 08:54:48

33 segment KRDC

GEOMETRY Wire coordinates in degrees; other dimensions in meters Environment: perfect ground

wire 1	caps none	Distance 0	Angle 0	Z 0	radius .25	segs 33
2	none	0 90. 90.	0 60. 60.	137. 0 140.	.291	33
3	none	180. 180.	60. 60.	0 137.	.26	33
4	none		60. 60.	0 131.75	.235	33
5	none	165. 165.	14. 14.	0 139.5	.305	33

Number of wires 5 = current nodes = 165

	mini	mum	max	imum
Individual wires	wire	value	wire	value
segment length	4	3.99242	2	4.24242
radius	4	.235	5	.305

ELECTRICAL DESCRIPTION

Frequencies (KHz)

freq no. lowe 1 1,11	<u>F</u>	no. of steps 1	segment length minimum .0110901	(wavelengths) maximum .0117845
Sources source no 1 3	de sector 1 4 1	magnitude 1.	phase 0	type voltage
Lumped lo	ads resistance	reactance	inductance	capacitance passive
load nod 1 1 2 67 3 10 4 13	e (ohms) 0 0 0 0	(ohms) -1,793. -1,400. -1,793. -1,793.	(mH) 0 0 0 0	(uF) circuit 0 0 0 0 0 0 0 0 0 0 0 0 0 0

C:\Expert MBPro V.14\KRDC twr2othersopen rev 06-29-2017 08:54:48

IMPEDANCE normalization = 50. phase VSWR S11 S12 freq react imped resist dB dB (KHz) (ohms) (ohms) (oħms) (deg) source = 1; node 34, sector 1 -7.9202 22.735 -.76459 347.32 521.97 626.96 56.4 1,110.

Hatfield & Dawson Consulting Engineers

C:\Expert MBPro V.14\KRDC twr3othersopen rev 06-29-2017 08:51:44 33 segment KRDC GEOMETRY Wire coordinates in degrees; other dimensions in meters Environment: perfect ground Ζ caps Distance Angle radius segs wire 1 none 0 0 0 .25 33 0 137. 0 2 none 90. 60. 0 .291 33 140. 90. 60. 3 none 180. 60. 0 .26 33 137. 180. 60. none 270. 60. 0 .235 33 4 270. 60. 131.75 5 14. 0 .305 33 none 165. 139.5 165. 14. Number of wires = 5 current nodes = 165 minimum maximum value value Individual wires wire wire 4 3.99242 2 4.24242 segment length .305 radius 4 .235 5 ELECTRICAL DESCRIPTION Frequencies (KHz) segment length (wavelengths) no. of frequency step steps minimum maximum no. lowest .0117845 1,110. 1 .0110901 1 1. Sources magnitude phase type source node sector voltage 1. 0 1 67 1 Lumped loads capacitance passive resistance reactance inductance (uF) circuit (mH) load node (ohms) (ohms) -1,793. 1 0 0 0 0 1 0 0 0 2 34 0 -7,170. 100 -1,793. -1,793. 0 0 0 0 3 0 0 4 133 0 0 C:\Expert MBPro V.14\KRDC twr3othersopen rev 06-29-2017 08:51:44 IMPEDANCE normalization = 50. phase VSWR S11 S12 react imped freq resist dB dB (ohms) (ohms) (deg) (KHz) (ohms) source = 1; node 67, sector 1 -6.9234 17.641 -.98582 1,110. 311.96 419.79 523.01 53.4

Hatfield & Dawson Consulting Engineers

C:\Expert MBPro V.14\KRDC twr4othersopen rev 06-29-2017 09:09:32 33 segment KRDC GEOMETRY Wire coordinates in degrees; other dimensions in meters Environment: perfect ground caps Distance Angle Ζ radius wire segs 1 none 0 0 0 .25 33 0 0 137. 2 none 90. 60. 0 .291 33 90. 140. 60. 3 none 180. 60. 0 .26 33 137. 180. 60. 4 none 270. 60. 0 .235 33 270. 60. 131.75 14. 5 none 165. 0 .305 33 165. 14. 139.5 Number of wires 5 = 165 current nodes = minimum maximum value Individual wires wire wire value segment length 4 3.99242 2 4.24242 5 radius 4 .235 .305 ELECTRICAL DESCRIPTION Frequencies (KHz) no. of segment length (wavelengths) frequency no. lowest step steps minimum maximum .0110901 .0117845 1 1,110. 1. 1 Sources source node magnitude sector phase type 100 0 voltage 1 1 1. Lumped loads inductance capacitance passive resistance reactance node (ohms) (mH) (uF) circuit (ohms) load 1 1 0 -1,793. 0 0 0 -7,170. -1,793. 2 34 0 0 0 0 3 133 0 0 0 0 -1,400. 0 0 4 67 0 0 C:\Expert MBPro V.14\KRDC twr4othersopen rev 06-29-2017 09:09:32 IMPEDANCE normalization = 50. phase freq VSWR S11 S12 resist react imped dB dB (KHz) (ohms) (ohms) (ohms) (deg) source = 1; node 100, sector 1

Hatfield & Dawson Consulting Engineers

57.9

431.23

16.374

-1.0622

-6.6359

365.19

1,110.

229.33

08:38:15

33 segment KRDC GEOMETRY Wire coordinates in degrees; other dimensions in meters Environment: perfect ground Ζ wire caps Distance Angle radius segs 0 1 none 0 0 .25 33 0 137. 0 2 none 90. 60. 0 .291 33 90. 140. 60. 3 none 180. 60. 0 .26 33 137. 180. 60. 4 none 270. 60. 0 .235 33 131.75 270. 60. .305 5 none 165. 14. 0 33 139.5 165. 14.

C:\Expert MBPro V.14\KRDC twr5othersopen rev 06-29-2017

Number	of	wires current	nodes	=	5 165	
				mini	mum	

	mini	mum	max	Imum
Individual wires	wire	value	wire	value
segment length	4	3.99242	2	4.24242
radius	4	.235	5	.305

ELECTRICAL DESCRIPTION

Frequencies frequen no. lowest 1 1,110.	су	no. o steps 1		maz	avelengths) kimum 117845	
Sources source node 1 133	sector mag 1 1.	nitude	phase 0	type volt	e cage	
Lumped loads						
load node 1 1 2 34 3 100 4 67	resistance (ohms) 0 0 0 0	reactance (ohms) -1,793. -7,170. -1,793. -1,400.	e induct (mH) 0 0 0 0	ance capa (uF) 0 0 0 0 0	acitance passive circuit 0 0 0 0 0	
C:\Expert MB	Pro V.14\KRDC	twr5others	sopen rev 0	6-29-2017	08:38:15	
freq res	tion = 50. ist react		T	WR S11	S12	
	ms) (ohms) node 133, sec	(ohms) tor 1	(deg)	dB	dB	
1,110. 523	.19 313.64	610.	30.9 14	.25 -1.2	2211 -6.1065	

Item 4

Method of Moments Model Details for Directional Antennas - KRDC

The array was modeled using MININEC with the individual tower characteristics that were verified by the respective tower impedance measurements. Calculations were made to determine the complex voltage values for sources located at ground level under each tower of the array to produce current moment sums for the towers that, when normalized, equated to the theoretical field parameters of the authorized directional antenna pattern. The following pages contain details of the method of moments model of the directional antenna pattern.

Tower (FCC CDBS Numbering)	Wire	Base Node	Loop Node
1	1	1	11
2	2	34	44
3	3	67	77
4	4	100	110
5	5	133	143

<u>C:\Expert MBPro V.14\ KRDC Day 7-5 rev 07-05-2017 10:19:16</u>

33 segment KRDC

GEOMETRY

Wire coordinates in degrees; other dimensions in meters Environment: perfect ground

wire		Distance	Angle	Z	radius	segs
1	none	0	0	0	.25	33
		0	0	137.		
2	none	90.	60.	0	.291	33
		90.	60.	140.		
3	none	180.	60.	0	.26	33
		180.	60.	137.		
4	none	270.	60.	0	.235	33
		270.	60.	131.75		
5	none	165.	14.	0	.305	33
		165.	14.	139.5		

Number of wires = 5 current nodes = 165

	mini	mum	maximum		
Individual wires	wire	value	wire	value	
segment length	4	3.99242	2	4.24242	
radius	4	.235	5	.305	

ELECTRICAL DESCRIPTION Frequencies (KHz) no. of segment length (wavelengths) frequency steps minimum maximum no. lowest step .0117845 1 1,110. 1. 1 .0110901 Sources type sector magnitude phase source node 4,327.98 11.5 voltage 1 1 1 2 133 1 6,578.92 75.5 voltage Lumped loads

-		resistance	reactance	inductance	capacitance	passive
load	node	(ohms)	(ohms)	(mH)	(uF)	circuit
1	34	0	316.76	0	0	0
2	67	0	334.23	0	0	0
3	100	0	354.88	0	0	0

C:\Expert MBPro V.14\KRDC Day 7-5 rev 07-05-2017 10:19:16

IMPEDANCE normalization = 50. S12 phase S11 freq resist react imped VSWR (ohms) (deg) dB dB (ohms) (ohms) (KHz) source = 1; node 1, sector 1 8.063 -2.1656 -4.0599 1,110. 296.01 176.21 344.49 30.8 source = 2; node 133, sector 1

Hatfield & Dawson Consulting Engineers

16.349 308.8 394.35 500.87 51.9 -1.0639 -6.6299 1,110. C:\Expert MBPro V.14\KRDC Day 7-5 rev 07-05-2017 10:19:16 CURRENT rms = 1110 KHz Frequency Input power = 50,000. watts Efficiency = 100. % coordinates in degrees current mag phase real imaginary Ζ (amps) (deg) (amps) Y (amps) no. Χ 0 0 8.88366 340.7 8.38615 -2.93121 GND 0 4.15152 9.79445 332.6 -4.50579 2 0 8.6965 0 3 0 0 8.30303 10.422 328.3 8.86493 -5.48004 4 0 0 12.4546 10.9729 324.9 8.98259 -6.30223 0 5 16.6061 11.4598 322.2 9.05917 -7.01847 0 0 11.8869 6 0 20.7576 319.9 9.09905 -7.64892 7 0 0 24.9091 12.2547 318. 9.10436 -8.20294 0 29.0606 12.5627 316.3 9.07657 -8.68547 8 0 9 0 0 33.2121 12.8098 314.7 9.0166 -9.09898 10 37.3636 12.9953 8.92546 -9.44525 0 0 313.4 41.5152 13.1181 312.2 8.80376 -9.72512 11 0 0 0 45.6667 13.1779 8.65251 -9.93931 12 311. 0 13 0 49.8182 13.174 310. 8.47241 -10.0883 0 0 53.9697 13.1068 309.1 8.26445 -10.1728 14 0 15 0 0 58.1212 12.9761 308.2 8.02962 -10.1933 0 12.7826 307.4 7.76898 -10.1507 16 0 62.2727 0 66.4242 12.527 7.48367 17 0 306.7 -10.0459 306. 18 0 70.5758 12.2104 7.17487 -9.88005 0 74.7273 11.8341 -9.65434 19 0 0 305.3 6.84395 20 0 0 78.8788 11.3996 304.7 6.49222 -9.3703 21 0 0 83.0303 10.9088 304.1 6.12115 -9.02954 87.1818 10.3636 5.73219 -8.63399 0 303.6 22 0 91.3333 303.1 0 9.76613 5.32686 -8.18547 23 0 9.11881 4.90666 -7.68618 0 95.4849 302.6 24 0 0 99.6364 8.42398 302.1 4.47314 -7.13824 25 0 26 0 103.788 7.68398 301.6 4.02774 -6.54377 0 3.57185 301.2 -5.9049 27 0 0 107.939 6.90115 0 112.091 6.07751 300.7 -5.22348 3.10667 28 0 0 116.242 5.21453 300.3 2.63311 -4.5009 29 0 299.9 2.15153 -3.73756 30 0 0 120.394 4.31259 0 124.546 3.36986 299.5 1.66122 -2.93195 31 0 299.2 1.15903 -2.07792 0 128.697 2.3793 32 0 .635974 33 0 0 132.849 1.32144 298.8 -1.15833 137. 0 0 0 0 END 0 0 19.8 4.59766 1.65458 -77.9423 4.88632 0 GND 45. 45. -77.9423 4.24242 3.99537 19.8 3.75912 1.35352 35 1.16637 3.23322 -77.9423 8.48485 3.43717 19.8 36 45. 2.76931 19.9 1.0029 12.7273 2.94531 37 45. -77.9423 2.49494 16.9697 2.34401 -77.9423 20. .854595 38 45. 21.2121 1.94691 -77.9423 2.07496 20.2 .717629 39 45. 1.6805 20.6 1.57345 .590218 -77.9423 25.4545 40 45. -77.9423 29.697 1.30933 21.1 1.2215 .471463 41 45. 22.1 .890184 .360873 42 45. -77.9423 33.9394 .96055 -77.9423 .634186 24. .579251 .258187 38.1818 43 45. -77.9423 42.4242 .331798 29.5 .288851 .163263 45. 44

Hatfield & Dawson Consulting Engineers

45 46 47 48 50 51 52 53 54 55	45. 45. 45. 45. 45. 45. 45. 45. 45. 45.	-77.9423 -77.9423 -77.9423 -77.9423 -77.9423 -77.9423 -77.9423 -77.9423 -77.9423 -77.9423 -77.9423 -77.9423 -77.9423	46.6667 50.9091 55.1515 59.3939 63.6364 67.8788 72.1212 76.3636 80.6061 84.8485 89.0909	.0784476 .228905 .461474 .673986 .863285 1.02849 1.16915 1.28494 1.37569 1.44133 1.48186	180.9 189.4 192. 193.2 193.8 194.2 194.5 194.7 194.8 194.9	.0193241 228877 455258 659325 840616 998718 -1.13329 -1.24408 -1.33088 -1.39363 -1.43231	.0760303 -3.55E-03 0754886 139811 196534 245689 287317 321478 348249 367722 380009
56 57 58 59 60 61 62 63 64 65 66 END	45. 45. 45. 45. 45. 45. 45. 45. 45. 45.	-77.9423 -77.9423	93.3333 97.5757 101.818 106.061 110.303 114.545 118.788 123.03 127.273 131.515 135.758 140.	1.49741 1.48816 1.45438 1.39638 1.31451 1.20907 1.08029 .928139 .752047 .550069 .317177 0	194.9 194.9 194.9 194.9 194.9 194.9 194.9 194.8 194.8 194.8 194.7 194.7 0	-1.447 -1.43788 -1.40517 -1.34915 -1.27012 -1.16837 -1.04408 897191 727132 531983 306842 0	38524 38356 37513 360122 338713 311078 277367 237677 191974 139891 0803068 0
GND 68 69 70 71 72 73 74 75 76	90. 90. 90. 90. 90. 90. 90. 90. 90.	-155.885 -155.885 -155.885 -155.885 -155.885 -155.885 -155.885 -155.885 -155.885 -155.885 -155.885	$\begin{array}{c} 0\\ 4.15152\\ 8.30303\\ 12.4546\\ 16.6061\\ 20.7576\\ 24.9091\\ 29.0606\\ 33.2121\\ 37.3636 \end{array}$	2.78255 2.28071 1.96118 1.67996 1.4227 1.18312 .958462 .747414 .549442 .3646	346.2 346.3 346.3 346.4 346.5 346.8 347.1 347.8 348.9 351.2	2.7027 2.21537 1.90531 1.63267 1.38348 1.15163 .934399 .730463 .539187 .360337	66178 542005 464754 395795 331746 271157 213419 158277 105659 055596
77 78 79 80 81 82 83 84 85 86 87	90. 90. 90. 90. 90. 90. 90. 90. 90. 90.	-155.885 -155.885 -155.885 -155.885 -155.885 -155.885 -155.885 -155.885 -155.885 -155.885 -155.885 -155.885 -155.885	$\begin{array}{r} 41.5152\\ 45.6667\\ 49.8182\\ 53.9697\\ 58.1212\\ 62.2727\\ 66.4242\\ 70.5758\\ 74.7273\\ 78.8788\\ 83.0303 \end{array}$.194051 .0540502 .128068 .257936 .377544 .484271 .577498 .656937 .722416 .773838 .811158	142.4 153.1 156.2 157.7 158.4 158.9 159.1 159.2 159.3	.193879 .0399023 101444 229981 34553 447924 53702 61271 674922 723625 758832	-8.18E-03 .0364587 .07817 .116789 .152146 .184072 .212398 .236964 .257617 .274213 .286619
88 89 90 91 92 93 94 95 96 97 98 99 89 92	90. 90. 90. 90. 90. 90. 90. 90. 90. 90.	-155.885 -155.885 -155.885 -155.885 -155.885 -155.885 -155.885 -155.885 -155.885 -155.885 -155.885 -155.885 -155.885 -155.885 -155.885 -155.885	87.1818 91.3333 95.4849 99.6364 103.788 107.939 112.091 116.242 120.394 124.546 128.697 132.849 137.	.834379 .843557 .83879 .820191 .787926 .742138 .682984 .610541 .524755 .425256 .310917 .178803 0	159.3 159.3 159.2 159.1 159. 158.9 158.8 158.6 158.5 158.3 158.1 157.9 0	780597 789018 784238 766412 735745 692423 636646 568543 488122 395102 288503 165684 0	.294717 .298394 .297554 .292107 .281969 .267057 .247282 .222529 .192626 .157282 .115911 .0672274 0

Hatfield & Dawson Consulting Engineers

GND	135.	-233.827	0	1.5409	287.9	.472588	-1.46664
101	135.	-233.827	3.99242	1.26506	287.9	.388331	-1.20398
102	135.	-233.827	7.98485	1.08763	287.9	.334931	-1.03477
103	135.	-233.827	11.9773	.93155	288.1	.288739	885673
104	135.	-233.827	15.9697	.788795	288.3	.247263	749038
105	135.	-233.827	19.9621	.655912	288.6	.209406	621586
106	135.	-233.827	23.9546	.531357	289.2	.174638	501838
107 108 109	135. 135. 135. 135.	-233.827 -233.827 -233.827	27.947 31.9394 35.9318	.414414 .304834 .202806	290.1 291.8 295.2	.142669 .113322 .0864813	389081 282988 183443
110 111 112	135. 135. 135.	-233.827 -233.827 -233.827 -233.827	39.9242 43.9167 47.9091 51.9015	.109695 .0402072 .0781956 .1483	304.5 354.2 75. 89.	.0620632 .0399991 .0202284 2.69E-03	0904496 -4.09E-03 .0755339 .148275
113 114 115 116	135. 135. 135. 135.	-233.827 -233.827 -233.827 -233.827	55.8939 59.8864 63.8788	.214371 .273786 .325947	93.4 95.4 96.5	0126677 0259158 0371192	
117 118 119	135. 135. 135. 135.	-233.827 -233.827 -233.827 -233.827	67.8712 71.8636 75.8561 79.8485	.370599 .407597 .436846 .45829	97.2 97.6 97.8 97.9	0463506 0536879 0592149 0630208	.404046 .432815
120 121 122 123	135. 135. 135. 135.	-233.827 -233.827 -233.827	83.8409 87.8333 91.8258	.471897 .47766 .475592	97.9 97.9 97.9	0651996 0658502 0650758	.467371 .473099 .471119
124	135.	-233.827	95.8182	.465725	97.8	0629827	.444106
125	135.	-233.827	99.8106	.448098	97.7	0596805	
126	135.	-233.827	103.803	.422753	97.5	0552797	
127	135.	-233.827	107.796	.389721	97.4	0498913	
128	135.	-233.827	111.788	.348995	97.2	0436235	.346258
129	135.	-233.827	115.78	.300484	97.	0365772	.29825
130	135.	-233.827	119.773	.243917	96.8	0288369	.242207
131	135.	-233.827	123.765	.178584	96.6	0204457	.17741
132	135.	-233.827	127.758	.102709	96.3	0113447	.10208
END	135.	-233.827	131.75	0	0	0	0
GND	160.099	-39.9171	0	9.28792	23.5	8.5159	3.70741
134 135 136	160.099 160.099 160.099	-39.9171 -39.9171 -39.9171	4.22727 8.45455 12.6818	11.5353 12.9467 14.1559	15.2 11.6 9.	11.1326 12.6837 13.9804 15.0962	3.02123 2.59614 2.22185 1.8795
137 138 139 140	160.099 160.099 160.099 160.099	-39.9171 -39.9171 -39.9171 -39.9171	16.9091 21.1364 25.3636 29.5909	15.2127 16.1405 16.9494 17.6441	7.1 5.5 4.3 3.2	16.0649 16.9025 17.6169	1.56047 1.26094 .979138
141	160.099	-39.9171	33.8182	18.2268	2.2	18.2128	.714256
142	160.099	-39.9171	38.0455	18.6987	1.4	18.6929	.46603
143	160.099	-39.9171	42.2727	19.0605	.7	19.059	.234505
144	160.099	-39.9171	46.5	19.3122	.1	19.3122	.0198931
145	160.099	-39.9171	50.7273	19.4545	359.5	19.4537	177504
146	160.099	-39.9171	54.9545	19.4879	358.9	19.4846	357347
147	160.099	-39.9171	59.1818	19.4131	358.5	19.4062	519294
148	160.099	-39.9171	63.4091	19.2315	358.	19.22	663024
149	160.099	-39.9171	67.6364	18.9442	357.6	18.9278	788255
150	160.099	-39.9171	71.8636	18.5533	357.2	18.5317	894752
151	160.099	-39.9171	76.0909	18.0609	356.9	18.0342	982341
152	160.099	-39.9171	80.3182	17.4695	356.6	17.4378	-1.05091
153	160.099	-39.9171	84.5455	16.782	356.2	16.7459	-1.10041
154	160.099	-39.9171	88.7727	16.0014	355.9	15.9614	-1.13086
155	160.099	-39.9171	93.	15.1314	355.7	15.0882	-1.14235

Hatfield & Dawson Consulting Engineers

1	0
	x
	U

156 157	160.099 160.099	-39.9171 -39.9171	97.2273 101.455	$14.1754 \\ 13.1374$	355.4 355.2	14.1299 13.0905	-1.13501 -1.10906
158	160.099	-39.9171	105.682	12.021	354.9	11.9737	-1.06471
159	160.099	-39.9171	109.909	10.8299	354.7	10.7834	-1.00223
160	160.099	-39.9171	114.136	9.5672	354.5	9.52268	921841
161	160.099	-39.9171	118.364	8.23525	354.3	8.19395	823716
162	160.099	-39.9171	122.591	6.83452	354.1	6.79777	707821
163	160.099	-39.9171	126.818	5.36183	353.9	5.33105	573723
164	160.099	-39.9171	131.046	3.80524 2.13398	353.7 353.5	3.782 2.12015	41992 242624
165 END	160.099 160.099	-39.9171 -39.9171	135.273 139.5	2.13398 0	0	0	242624 0

C:\Expert MBPro V.14\KRDC Day 7-5 rev 07-05-2017 10:20:04

CURRENT MOMENTS (amp-degrees) rms

Frequency = 1110 KHz Input power = 50,000. watts

Inpuc	lipac power - so,cool water							
			vertical cur	rrent moment				
wire	magnitude	phase (deg)	magnitude	phase (deg)				
1	1,399.83	311.	1,399.83	311.				
2	10.9159	99.	10.9159	99.				
3	8.47526	61.6	8.47526	61.6				
4	6.41581	11.5	6.41581	11.5				
5	2,094.72	360.	2,094.72	360.				

Medium wave array vertical current moment (amps-degrees) rms (Calculation assumes tower wires are grouped together. The first wire of each group must contain the source.)

tower	magnitude	phase	(deg)
1	1,390.89	311.8	
2	2,094.72	360.	

C:\Expert MBPro V.14\ KRDC Nite 7-5 rev 07-05-2017 11:00:44

33 segment KRDC

GEOMETRY

Wire coordinates in degrees; other dimensions in meters Environment: perfect ground

wire 1	caps none	Distance 0	Angle 0	Z O	radius .25	segs 33
2	none		0 60.	137. 0	.291	33
3	none		60. 60.	140. 0	.26	33
4	none		60. 60.	137. 0	.235	33
5	none		60. 14.	131.75 0	.305	33
		165.	14.	139.5		

Number of wires = 5 current nodes = 165

	mini	mum	maximum		
Individual wires	wire	value	wire	value	
segment length	4	3.99242	2	4.24242	
radius	4	.235	5	.305	

ELECTRICAL DESCRIPTION

пппст	KICAD DED	CITETTON			
Frequ	encies (Kl	Hz)			
	frequency		no. of	segment length	n (wavelengths)
no.	lowest	step	steps	minimum	maximum
1	1,110.	1.	1	.0110901	.0117845
Sourc	es				
sourc	e node	sector	magnitude	phase	type
1	1	1	2,608.96	81.1	voltage
2	34	1	4,544.	182.6	voltage
3	67	1	3,692.99	290.5	voltage
4	100	1	1,000.19	40.	voltage
					-

Lumped loads		d an dia mbana ana		
resistan load node (ohms)	ce reactance (ohms)	inductance (mH)	(uF)	nce passive circuit
1 133 0	313.5	0	0	0
C:\Expert MBPro V.14\	KRDC Nite 7-5 rev	07-05-2017	11:01:28	
-				
IMPEDANCE normalization = 50				
freq resist rea	ct imped pl	ase VSWR	S11	S12
(KHz) (ohms) (oh source = 1; node 1,		leg)	dB	dB
1,110. 492.98 -99		6.3 50.229	3459	-11.16

source = 2; node 34, sector 1

Hatfield & Dawson Consulting Engineers

1,110. 852.78 383.43 935.02 24.2 20.514 -.84752 -7.5132 3; node 67, sector 1 source = 1,110. 268.22 394.57 477.1 55.8 17.101 -1.017 -6.8033 4; node 100, sector 1 source = 1,110. 70.42 246.19 256.06 74. 19.28 -.90184 -7.2697 C:\Expert MBPro V.14\KRDC Nite 7-5 rev 07-05-2017 11:01:28 CURRENT rms Frequency = 1110 KHz Input power = 20,000. watts Efficiency = 100. % coordinates in degrees current maq phase real imaginary Χ Y Ζ (amps) (deg) (amps) (amps) no. 0 0 .9575 GND 0 1.65932 144.8 -1.35518 0 2 0 4.15152 .896225 116.1 -.393922 .805012 .736214 3 0 0 8.30303 73.3 .705261 .211227 .732626 4 0 0 12.4546 .956887 40. .615543 5 0 16.6061 1.31081 23.9 .531561 0 1.19819 6 0 0 20.7576 1.68177 15.6 1.62002 .451533 7 0 24.9091 10.6 0 2.03835 2.00361 .374741 8 0 29.0606 2.37086 7.3 2.35169 0 .300927 9 0 33.2121 2.67554 4.9 0 2.66563 .230073 10 0 0 37.3636 2.95054 3.2 2.94607 .162292 11 0 0 41.5152 3.19476 1.8 3.19326 .0977751 12 0 0 45.6667 3.40745 .6 3.40725 .0367581 0 3.58804 359.7 13 0 49.8182 3.58798 -.0204996 14 0 53.9697 3.7361 358.9 0 3.73537 -.07373 0 15 0 58.1212 3.85134 358.2 3.84939 -.122666 16 0 0 62.2727 3.93357 357.6 3.93002 -.16705 66.4242 17 0 0 3.98272 357. 3.97735 -.206641 0 70.5758 3.99885 356.5 3.99157 18 0 -.24121774.7273 3.97292 0 3.98212 356.1 19 0 -.270581 3.92178 20 0 78.8788 3.93283 355.7 0 -.294559 21 0 83.0303 3.85137 355.3 3.83863 -.313008 0 0 87.1818 3.73828 3.72405 22 0 355. -.32581 354.7 23 0 0 91.3333 3.59415 3.5787 -.332876 0 95.4849 3.41967 354.4 3.40331 24 0 -.334143 0 3.21563 -.32957 25 0 99.6364 354.1 3.19869 -.319135 26 0 0 103.788 2.9828 353.9 2.96568 0 107.939 2.72198 353.6 2.70508 27 0 -.302825 28 0 0 112.091 2.43383 353.4 2.4176 -.280629 116.242 2.11885 353.2 2.10375 29 0 0 -.252511 120.394 1.77704 0 352.9 1.76357 -.218383 30 0 31 0 0 124.546 1.40747 352.7 1.39617 -.178022 1.00689 352.5 .998349 32 0 0 128.697 -.130878 0 132.849 .566552 352.3 .561483 -.0756144 33 0 END 0 0 137. Ο 0 0 0 -77.9423 -3.19525 GND 45. 0 3.4364 158.4 1.26461 4.50764 -3.27472 -77.9423 136.6 45. 4.24242 3.09759 35 45. -77.9423 8.48485 5.35804 128.2 -3.31267 4.21128 36 -77.9423 12.7273 6.14222 122.9 -3.33444 5.15833 37 45.

Hatfield & Dawson Consulting Engineers

6.85999

119.2

-3.34249

5.9906

16.9697

38

45.

-77.9423

39	45.	-77.9423	21.2121	7.51369	116.4	-3.33805	6.73149
40	45.	-77.9423	25.4545	8.10376	114.2	-3.32179	7.39166
41	45.	-77.9423	29.697	8.6299	112.4	-3.29417	7.97644
42	45.	-77.9423	33.9394	9.09155	111.	-3.25557	8.48867
43	45.	-77.9423	38.1818	9.48796	109.8	-3.20637	8.92976
44	45.	-77.9423	42.4242	9.81847	108.7	-3.14691	9.3005
45	45.	-77.9423	46.6667	10.0824	107.8	-3.07759	9.60123
46	45.	-77.9423	50.9091	10.2794	107.0	-2.99877	9.83231
47	45.	-77.9423	55.1515	10.4092	106.2	-2.9109	9.99389
				10.4092		-2.81442	
48	45.	-77.9423	59.3939		105.6		10.0863
49	45.	-77.9423	63.6364	10.467	105.	-2.70979	10.1101
50	45.	-77.9423	67.8788	10.3956	104.5	-2.59754	10.0659
51	45.	-77.9423	72.1212	10.2583	104.	-2.47817	9.95443
52	45.	-77.9423	76.3636	10.0559	103.5	-2.35223	9.77695
53	45.	-77.9423	80.6061	9.78972	103.1	-2.2203	9.53462
54	45.	-77.9423	84.8485	9.46114	102.7	-2.08294	9.22901
55	45.	-77.9423	89.0909	9.07177	102.4	-1.94076	8.86174
56	45.	-77.9423	93.3333	8.62353	102.	-1.79435	8.43479
57	45.	-77.9423	97.5757	8.11847	101.7	-1.64431	7.95021
58	45.	-77.9423	101.818	7.55861	101.4	-1.49122	7.41005
59	45.	-77.9423	106.061	6.94623	101.1	-1.33566	6.8166
60	45.	-77.9423	110.303	6.28336	100.8	-1.17817	6.17192
61	45.	-77.9423	114.545	5.57192	100.5	-1.01921	5.47791
62	45.	-77.9423	118.788	4.81325	100.3	859176	4.73595
63	45.	-77.9423	123.03	4.0077	100.	698261	3.9464
64	45.	-77.9423	127.273	3.15345	99.8	53633	3.10751
65	45.	-77.9423	131.515	2.24353	99.6	372456	2.2124
66	45.	-77.9423	135.758	1.25953	99.3	203974	1.2429
END	45.	-77.9423	140.	0	0	0	0
GND	90.	-155.885	0	5.47331	234.7	-3.16214	-4.46743
68	90.	-155.885	4.15152	6.67027	227.9	-4.46881	-4.95199
69	90.	-155.885	8.30303	7.43111	224.8	-5.26972	-5.2394
			12.4546	8.0786	224.0	-5.94374	-5.47135
70	90.	-155.885					
71	90.	-155.885	16.6061	8.64207	220.9	-6.52886	-5.6621
72	90.	-155.885	20.7576	9.1344	219.6	-7.04188	-5.81801
73	90.	-155.885	24.9091	9.56123	218.4	-7.49059	-5.94208
74	90.	-155.885	29.0606	9.92528	217.5	-7.879	-6.03594
75	90.	-155.885	33.2121	10.2279	216.6	-8.20936	-6.10056
76	90.	-155.885	37.3636	10.4699	215.9	-8.48294	-6.1366
77	90.	-155.885	41.5152	10.6516	215.2	-8.70059	-6.14455
78	90.	-155.885	45.6667	10.7732	214.6	-8.86273	-6.12483
79	90.	-155.885	49.8182	10.8351	214.1	-8.96985	-6.07789
80	90.	-155.885	53.9697	10.8377	213.6	-9.02253	-6.00417
81	90.	-155.885	58.1212	10.7815	213.2		-5.90417
82	90.	-155.885	62.2727	10.6671	212.8	-8.96639	-5.7785
83	90.	-155.885	66.4242	10.4955	212.4	-8.85905	-5.6278
84	90.	-155.885	70.5758	10.2676	212.1	-8.70002	-5.45281
85	90.	-155.885	74.7273	9.98471	211.8	-8.49037	-5.25435
86	90.	-155.885	78.8788	9.64823	211.4	-8.23128	-5.03333
87	90.	-155.885	83.0303	9.25973	211.2	-7.92412	-4.79072
88	90.	-155.885	87.1818	8.82106	210.9	-7.57049	-4.52755
89	90.	-155.885	91.3333	8.33407	210.6	-7.17197	-4.24495
90	90.	-155.885	95.4849	7.80074	210.4	-6.73024	-3.94403
91	90.	-155.885	99.6364	7.2232	210.1	-6.24715	-3.62598
92	90.	-155.885	103.788	6.60352	209.9	-5.72447	-3.29194
93	90.	-155.885	107.939	5.94368	209.7	-5.16392	-2.943
94	90.	-155.885	112.091	5.24544	209.5	-4.56701	-2.58012

Hatfield & Dawson Consulting Engineers

95 96 97 98 99	90. 90. 90. 90. 90.	-155.885 -155.885 -155.885 -155.885 -155.885 -155.885	116.242 120.394 124.546 128.697 132.849	4.51006 3.73785 2.92716 2.07172 1.15447	209.3 209.1 208.9 208.7 208.5	-3.93482 -3.26759 -2.56383 -1.818 -1.01499	-2.20406 -1.81505 -1.41245 993428 550084
END GND 101 102 103 104 105 106 107 108 109 110 111	90. 135. 135. 135. 135. 135. 135. 135. 135	-155.885 -233.827 -233.827 -233.827 -233.827 -233.827 -233.827 -233.827 -233.827 -233.827 -233.827 -233.827 -233.827 -233.827 -233.827 -233.827	137. 0 3.99242 7.98485 11.9773 15.9697 19.9621 23.9546 27.947 31.9394 35.9318 39.9242 43.9167	0 2.76199 3.10069 3.30614 3.47377 3.6135 3.72967 3.82433 3.8986 3.95315 3.9884 4.00469 4.0023	0 326. 324.2 323.2 322.5 321.9 321.4 321. 320.6 320.3 320. 319.7 319.5	0 2.28924 2.51426 2.64871 2.7567 2.84499 2.91652 2.97273 3.01438 3.04195 3.05575 3.05602 3.04297	0 -1.54531 -1.81461 -2.11369 -2.22788 -2.32472 -2.4059 -2.47236 -2.52466 -2.56315 -2.58811 -2.59976
112 113 114 115 116 117 118 119 120 121 122	135. 135. 135. 135. 135. 135. 135. 135.	-233.827 -233.827 -233.827 -233.827 -233.827 -233.827 -233.827 -233.827 -233.827 -233.827 -233.827 -233.827 -233.827	47.9091 51.9015 55.8939 59.8864 63.8788 67.8712 71.8636 75.8561 79.8485 83.8409 87.8333	3.9815 3.94256 3.88581 3.8116 3.72033 3.61245 3.48845 3.34888 3.19432 3.0254 2.84277	319.3 319. 318.9 318.7 318.5 318.3 318.2 318. 317.8 317.8 317.5	3.01681 2.97774 2.92602 2.86193 2.78577 2.69789 2.59867 2.48856 2.368 2.23748 2.09752	-2.59831 -2.55694 -2.55694 -2.46584 -2.40234 -2.32727 -2.241 -2.14389 -2.03635 -1.91879
122 123 124 125 126 127 128 129 130 131 132	135. 135. 135. 135. 135. 135. 135. 135.	-233.827 -233.827 -233.827 -233.827 -233.827 -233.827 -233.827 -233.827 -233.827 -233.827 -233.827	91.8258 95.8182 99.8106 103.803 107.796 111.788 115.78 119.773 123.765 127.758	2.64713 2.43916 2.21954 1.9889 1.74779 1.4966 1.23538 .963558 .67907 .3763	317.4 317.3 317.1 317. 316.8 316.7 316.6 316.4 316.3 316.1	1.94867 1.79146 1.62644 1.45409 1.27488 1.08914 .896943 .697941 .490698 .271242	-1.79164 -1.65535 -1.51032 -1.35696 -1.1956 -1.02644 849503 664321 469415 260824
END GND 134 135 136 137 138 139 140 141 142 143 144 145	135. 160.099	-233.827 -39.9171 -39.9171 -39.9171 -39.9171 -39.9171 -39.9171 -39.9171 -39.9171 -39.9171 -39.9171 -39.9171 -39.9171 -39.9171 -39.9171	131.75 0 4.22727 8.45455 12.6818 16.9091 21.1364 25.3636 29.5909 33.8182 38.0455 42.2727 46.5 50.7273	0 1.6401 1.3379 1.15054 .985447 .834304 .693338 .560889 .436199 .318984 .209301 .107918 .0277348 .0831447	0 201.3 201.3 201.4 201.5 201.6 201.8 202.2 202.9 204. 206.4 213.1 269.8 .5	0 -1.52776 -1.24616 -1.07135 91711 775681 643562 51921 401913 291372 187513 0903851 -1.13E-04 .0831415	0 596566 486883 419449 360575 307216 257964 212174 169517 129818 0929838 0589644 0277345 7.19E-04
146 147 148 149	160.099 160.099 160.099 160.099	-39.9171 -39.9171 -39.9171 -39.9171 -39.9171	54.9545 59.1818 63.4091 67.6364	.161377 .233166 .297267 .35333	9.4 12.2 13.5 14.2	.159202 .227888 .289028 .342467	.0264031 .0493269 .0695007 .0869401

C:\Expert MBPro V.14\KRDC Nite 7-5 rev 07-05-2017 11:00:49

CURRENT MOMENTS (amp-degrees) rms

Frequency = 1110 KHz Input power = 20,000. watts

			vertical cu	rrent moment
wire	magnitude	phase (deg)	magnitude	phase (deg)
1	365.069	360.	365.069	360.
2	1,097.76	107.6	1,097.76	107.6
3	1,147.41	214.6	1,147.41	214.6
4	410.301	319.5	410.301	319.5
5	4.45886	294.7	4.45886	294.7

Medium wave array vertical current moment (amps-degrees) rms (Calculation assumes tower wires are grouped together. The first wire of each group must contain the source.)

tower	magnitude	phase	(deg)
1	365.069	360.	
2	1,097.76	107.6	
3	1,147.41	214.6	
4	414.352	319.2	

Item 5 Array Geometry – KRDC

Per the provisions of the Commission's Public Notice DA 09-2340, October 29, 2009, paragraph 5, licensed stations applying to be re-licensed under the MM Docket 93-177 Rules are exempt from the requirement to submit an as-built surveyor's certification when there is no change in the theoretical patterns, as is the case in this application.

27

Item 6

Sampling System Measurements – KRDC

Impedance measurements were made of the antenna monitor sampling system using an AIM-120 network analyzer in a calibrated measurement system. The measurements were made looking into the antenna monitor ends of the sampling lines for two conditions – with and without the sampling lines connected to the sampling loops.

The following table shows the frequency closest to the carrier frequency where series resonance – zero reactance corresponding with low resistance – was found. As frequencies of resonance occur at odd multiples of 90 degrees electrical length, the sampling line length at the resonant frequency above carrier frequency – which is the closest one to the carrier frequency – was found to be 450 electrical degrees. The electrical length at carrier frequency appearing in the table below was calculated by ratioing the carrier frequency to the resonant frequency.

The sampling line lengths meet the requirement that they be equal in length within 1 electrical degree.

The characteristic impedance was calculated using the following formula, where R1 + jX1 and R2 + jX2 are the measured impedances of the +45 and -45 degree offset frequencies respectively:

$$Zo = ((R^{2} + X^{2})^{1/2} \times (R^{2} + X^{2})^{1/2})^{1/2}$$

The sampling line measured characteristic impedances meet the requirement that they be equal impedance within 2 Ohms.

	Sampling Line	Sampling Line	Sampling Line	1110 kHz Measured
	Open-Circuited	Open-Circuited	Calculated	Impedance with
Tower	Resonance	Resonance	Electrical Length at	Sampling Loops
	Below 1110 kHz	Above 1110 kHz	1110 kHz	Connected
	(kHz)	(kHz)	(Degrees)	(Ohms)
1	779.377	1304.277	382.970	5.04 +j29.3
2	778.790	1304.298	382.964	4.50 +j29.9
3	778.962	1304.036	383.041	5.35 +j29.6
4	778.662	1303.577	383.176	5.00 +j30.0
5	777.668	1301.779	383.705	4.77 +j29.9

KDIS 1150 kHz Sample Line Measurements

Tower	-45 Degrees	-45 Degrees	+45	+45 Degrees	Calculated
	Offset	Measured	Degrees	Measured	Characteristic
	Frequency	Impedance	Offset	Impedance	Impedance
	(kHz)	(Ohms)	Frequency	(Ohms)	(Ohms)
			(kHz)		
1	1173.849	6.286-j49.380	1434.705	7.929+j49.512	49.9607
2	1173.868	6.233-j49.513	1434.728	7.800+j49.113	49.8162
3	1173.632	6.282-j49.527	1434.439	7.913+j49.178	49.8672
4	1173.219	6.576–j49.592	1433.935	8.346+j49.924	50.3214
5	1171.601	6.281-j49.624	1431.977	7.817+j49.276	49.9560

27

Item 7 Reference Field Strength Measurements - KRDC

Reference field strength measurements were made along radials of five of the eight pattern inflection azimuths for the night pattern and four of the 6 for the day pattern. Both patterns are symmetrical around the lines of the respective towers and one radial of each symmetrical pair has been included, rendering measurement of the additional inflection radials unnecessary. The measured field strengths, point descriptions, and measured coordinates are shown on the following page. The measurements were made on July 7, 2017. The coordinates are NAD-27.

The measurements were performed by Burt Weiner and Ashley Wallen, who are experienced in the proper techniques for such work. The measurements were made with a Potomac Instruments FIM-4100 serial number 226. This instrument's calibration was checked by comparison with readings of a Potomac Instruments FIM-21, serial number 803, which was most recently calibrated by the manufacturer on March 3, 2016, and found to agree well within the manufacturer's stated accuracy for the instruments.

DAY	PATTERN					
Radial	KM Distance	Time	Field mV/m	Latitude	Longitude	Description
					j	
51°	2.30	08:45 AM	125	34 07 36.9	117 58 43.6	1232 Galen St. on water meter
	3.80	09:05 AM		34 08 6.2	117 57 59.1	1504 Highland Ave. GTE manhole cover
	5.18	09:25 AM		34 08 36.0		2322 Royal Oaks Ave between mailboxes
						on sidewalk
14°	2.10	10:24 AM	534	34 07 55.4	117 59 35.3	458 Duarte at curb on manhole cover
	4.00	09:50 AM			117 59 11.9	825 Oakdale at fire hydrant
	4.89	10:04 AM		34 09 23.3		921 Graystone Ave opposite driveway
						at stop sign
121°	2.70	10:55 AM	826	34 06 4.9	117 58 22.5	13819 Calais St. on water meter
	4.10	11:08 AM		34 05 40.8		14359 Rockenbach St. on water meter
	6.40	11:27 AM		34 05 3.8	117 56 21.2	740 Conlon Ave. on water meter
	0.10			0.000.00		
194°	5.80	12:16 PM	230	34 03 48.0	118 00 45.4	12260 Garvey Ave. center of driveway
	0.00		200	5. 55 10.0		on curb
	4.00	12:30 PM	252	34 04 42 0	118 00 27.2	12140 Lambert Ave. on water meter
	1.80	12:45 PM		34 05 51.5		11937 Rio Hondo P'way center of driveway
	1.00	12.1011	200	010001.0	110 00 10.1	on curb
NIGHT	PATTERN					
Radial	KM Distance	Time	Field mV/m	Latitude	Longitude	Description
Naulai		Time		Landae	Longitude	
5°	2.03	03:01 PM	46.2	34 07 55 3	117 59 46.1	E. Duarte Rd. on curb right of driveway
0	4.20	03:15 PM		34 09 6.4	117 59 39	415 Foothill Blvd @ fire hydrant
	5.40	03:24 PM		34 09 46.6		Crestview PI. manhole center of
	5.40	05.241 10	02.2	34 03 40.0	117 03 07.0	cul de sac
39°	1.80	04:09 PM	15.4	34 07 35.7	117 59 8 9	2138 Broach in front of fire hydrant
00	2.60	03:55 PM			117 58 49.8	1803 Broadland Ave. @ fire hydrant
	4.30	03:43 PM		34 08 36.4		1714 Royal Oaks Ave. center of
	4.50	05.451 10	0.40	54 00 50.4	117 30 4.7	driveway on street edge
	-					unveway on street edge
60°	2.20	05:51 PM	55.5	34 07 26 7	117 58 38.3	2240 Buena Vista St. center of shipping
00	2.20	05.51110	00.0	54 07 20.7	117 50 50.5	driveway at curb
	6.50	05:20 PM	10.2	34 08 34 0	117 56 15.3	777 Encanto P'way center of driveway
	0.50	03.20 F IVI	19.2	54 00 54.5	117 30 13.3	at curb
	4.90	05:00 PM	10.0	34 08 9.3	117 57 9.9	Andres Duarte School end of walkway
	4.90	05.00 FIV	10.9	34 00 9.3	117 57 5.5	right of driveway
						ngni or unveway
109°	6 70	06:42 PM	4.04	34 05 39.2	117 55 47.6	16166 E. Ringside Dr. at water meter
109	6.70	06:42 PM 06:27 PM		34 05 39.2	117 55 47.6	14853 Anada St. @ Park Ave on water mtr
	4.40			34 06 4.5	117 58 05.0	5074 Benham Ave on manhole cover
	3.00	06:12 PM	20	54 00 10.7	117 30 03.0	in cul de sac
240°	6.00	07.20 DM	204	34 05 16.8	118 03 20	4410 Temple City Bvd in front of hydrant
240	6.00	07:30 PM		34 05 16.8		10703 Grand Ave in front of hydrant
	4.00	07:40 PM				
	2.00	07:59 PM	1360	34 06 17.0	118012.5	3237 Hempstead Ave on water meter
			Hatfield 9 D	Comments	na Engineera	
			Hatfield & Day	wson Consult	ing Engineers	

POTOMAC INSTRUMENTS, inc. Frederick, MD

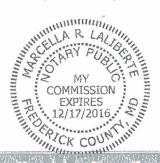
CERTIFICATE OF CALIBRATION

Field Intensity Meter Type FIM-21

Serial Number 803

This instrument was calibrated in an induction field of 220.0 millivolts per meter. At each measurement frequency the measured field was recorded and a correction factor K was computed; the indicated field must be multiplied by K to obtain the true field.

<u>kHz</u>	K	<u>kHz</u>	K
540	1.000	1100	1.000
600	1.000	1200	1.000
700	1.000	1300	1.000
800	1.000	1400	1.000
900	1.000	1500	1.005
1000	1.000	1600	1.005


The calibrating field is maintained equal to the National Institute of Standards and Technology (NIST) standard field within an accuracy of 1.0 percent. NIST states that the absolute accuracy of its field is "believed to be within 3.0 percent."

The error at points on the meter scale other than the calibration point is less than 3.0 percent. The attenuator ratios are correct within 2.0 percent. These accuracies apply for battery voltages that are indicated by the instrument's battery check circuit to be useable.

NEXT RECOMMENDED CALIBRATION DATE: March 3, 2018

Date: Mar. 3, 2016 Calibrated by STATE OF MARYLAND

Technician Michael Prettyman, personally appeared before me on Mar. 3, 2016, and testified under oath that the above calibration was made either by himself or under his direction and that the statements in the above certificate are true to the best of his knowledge and belief.

areue R. Jakure

Item 8 Direct Measurement of Power - KRDC

Common point impedance measurements were made with a Delta OIB impedance meter. The measurements were made at the phasor cabinet input adjacent to the common point current meter used to determine operating power. The impedance measured at this point was adjusted to a value of 50 - J6 ohms for the day and night common point networks, providing the main transmitter with its desired load.

31

Item 9

Antenna Monitor and Sampling System – KRDC

The antenna monitor is a Potomac Instruments model AM-1901 serial number 106. The sample transformers are connected through equal lengths of Andrew 3/8 inch foam Heliax solid outer conductor transmission lines to the antenna monitor. The five sample lines are routed to the towers such that they are subject to similar environmental conditions. The five identical sample loops are mounted at approximately 32% of the total height of the towers (42 degrees from the base), such that with 33 segments in the moment method model segment 11 on each tower (40 to 44 electrical degrees) encompasses the location of the loops.

The antenna monitor calibration was checked by placing an RF feed divided into outputs with T connectors and the outputs were connected with short, equal length coaxial cables to the inputs of the antenna monitor. The resulting readings are well within the manufacturer's rated specifications.

DAY			NIGHT	
Input #	Ratio	Phase	Ratio	Phase
1	1.000	+/-0	1.000	-0.1
2	1.000	-0.1	1.000	-0.2
3	1.000	+0.2	1.000	-0.1
4	1.000	+/-0	0.999	-0.1
5	1.000	-0.1	0.998	+0.3