DEC 2 1 2017

171221 2089.966001

READ INSTRUCTIONS CAREFULI BEFORE PROCEEDING	FEDERAL COMM	NUNICATIONS COMMIS		Approved by OMI 3060.058 Page No_1 of
(1) LOCKBOX #				SPECIAL USE ONLY
979089				FCC USE ONLY
	SECTION	- PAYER INFORMAT	ON	
(2) PAYER NAME (if paying by credit (UNT PAID (U.S. Dollars and cents)
Leighton Enterprises, Inc	• • • •		\$1,505.00	
(4) STREET ADDRESS LINE NO.1 619 West St. Germain Str	reat			
(5) STREET ADDRESS LINE NO. 2	eel			
(5) BIREEN NODRESS EINE NO. 2				
(6) CITY			(7) STATE	(8) ZIP CODE
St. Cloud			MN	56301
(9) DAYTIME TELEPHONE NUMBER	(include area code)	(10) COUNTRY	CODE (if not in U.S	S.A.)
3202511450				
	FCC REGISTRAT	ION NUMBER (FRN) R		
(11) PAYER (FRN)		(12) FCC USE	ONLY	
0004974358				
COMPLETE SEC	IF MORE THAN ONE APPLICAN TION BELOW FOR EACH SERVIC			
(13) APPLICANT NAME	AND BLEVN FOR EACH SERVIC	ALL IT MORE BUARS A	NE NEEDED, USE	CONTINUATION SHEET
Leighton Radio Holdings	, Inc.			
(14) STREET ADDRESS LINE NO.1				
619 West St. Germain Str	eet			
(15) STREET ADDRESS LINE NO. 2				
(16) CITY			(17) STATE	(18) ZIP CODE
St. Cloud			MN	56301
(19) DAYTIME TELEPHONE NUMBE	R (include area code)	(20) COUNTRY	CODE (if not in U.S	5.A.)
3202511450		~ ~		
(21) ADDE LCANTE (FDND	FCC REGISTRAT	ION NUMBER (FRN) R	-	
(21) APPLICANT (FRN) 0024470627		(22) FCC USE	ONLY	
	ECTION C FOR EACH SERVICE,			
(23A) CALL SIGN/OTHER ID	(24A) PAYMENT TYPE C	CODE		UANTITY
KBRF	MMR	5) 811 14 14 14 14 14 14 14 14 14 14 14 14 1	1	
(26A) FEE DUE FOR (PTC)	(27A) TOTAL FEE		FCC U	SEONLY
\$700.00		\$700.00		
(28A) FCC CODE I		(29A) FCC CODE 2		
21400				
(23B) CALL SIGN/OTHER ID KBRF	(24B) PAYMENT TYPE C MOR	CODE	(25B) QI	UANTITY
(26B) FEE DUE FOR (PTC)	(27B) TOTAL FEE			SEONLY
\$805.00	(2/D) TOTAL FEE	\$805.00	10.000 M (0.000 M (0.000 M (0.000)	OF ONE L
(28B)FCC CODE I 21400		(29B) FCC CODE 2		
21400				
CODTIELCATION CTATION (NOT		ND-CERTIFICATION		
CERTIFICATION STATEMENT	a a certify under penalty of perjury	that the foregoing and su	oporting information	is true and correct to
the best of my knowledge, information an	id benei.		/	
SIGNATURE	4 Aug		DATE 12/14	3/2017
	~)		/	/
	SECTION E - CREDIT	CARD PAYMENT INF	ORMATION	
/	MASTERCARD VISA_	AMEX	_ DISCOVER	
ACCOUNT NUMBER				
	8		JA DATE	
I hereby authorize the FCC to charge my	credit card for the service(s)/authorizati	ion herein described.		
SIGNATURE			DATE	
	SEE DUDLIC DUDDEN ON			

256353

SEE PUBLIC BURDEN ON REVERSE

FCC FORM 159

FEBRUARY 2003

Approved by OMB 3060-0627 Expires 01/31/98

FOR FCC USE ONLY

FCC	302-AM	
-----	--------	--

APPLICATION FOR AM

BROADCAST STATION LICENSE

(Please read instructions before filling out form.

FOR COMMISSION USE ONLY FILE NO BAMAL- 2017/221AFK

SECTION I - APPLICANT FEE INFORMATION						
1. PAYOR NAME (Last, First, Middle Initial)						
Leighton Radio Holdings, Inc.						
MAILING ADDRESS (Line 1) (Maximum 35 characters) 619 West St. Germain Street						
MAILING ADDRESS (Line 2) (Maximum 35 characters)						
CITY St. Cloud	STATE OR COUNTRY (if fo	reign address) ZIP CODE 56301				
TELEPHONE NUMBER (include area code) 3202511450	CALL LETTERS KBRF	OTHER FCC IDENTIFIER (If applicable) 21400				
2. A. Is a fee submitted with this application?		Ves No				
B. If No, indicate reason for fee exemption (see 47 C.F.R. Section						
Governmental Entity						
C. If Yes, provide the following information:						
Enter in Column (A) the correct Fee Type Code for the service you are applying for. Fee Type Codes may be found in the "Mass Media Services						
Fee Filing Guide." Column (B) lists the Fee Multiple applicable for this application. Enter fee amount due in Column (C).						
(A) (B)	(C)					
FEE TYPE FEE MULTIPLE	FEE DUE FOR FEE TYPE CODE IN	E FOR FCC USE ONLY				
	COLUMN (A)					
M M R 0 0 1	\$ 700					
To be used only when you are requesting concurrent actions which result in a requirement to list more than one Fee Type Code.						
(A) (B)	(C)					
M O R 0 0 0 1	\$ <u>805</u>	FOR FCC USE ONLY				
	TOTAL AMOUNT					
ADD ALL AMOUNTS SHOWN IN COLUMN C,		IS FOR FCC USE ONLY				
AND ENTER THE TOTAL HERE. THIS AMOUNT SHOULD EQUAL YOUR ENCLOSED	\$ 1505					
REMITTANCE.						

FCC 302-AM August 1995

SECTION II - APPLICAN	IT INFORMATION				
1. NAME OF APPLICANT Leighton Radio Holdings	s, Inc.		-		
MAILING ADDRESS 619 West St. Germain S	Street				
CITY St. Cloud			STATE MN		ZIP CODE 56301
2. This application is for:	Commercial	tional	Noncomm	nercial Ion-Directional	
Call letters KBRF	Community of License Fergus Falls MN		tion Permit File No. 171127ACH	Modification of Construction Permit File No(s).	Expiration Date of Las Construction Permit Pending
3. Is the station n accordance with 47 C.F If No, explain in an Exh		to auto	matic program	test authority in	Exhibit No.
4. Have all the term construction permit bee	s, conditions, and oblig n fully met?	ations s	et forth in the	above described	└ Yes ✓ N
If No, state exceptions in an Exhibit.					
the grant of the under	iges already reported, ha lying construction permit d in the construction perr chibit.	t which w	would result in a	any statement or	Yes ✓ N Exhibit No.
	led its Ownership Report ice with 47 C.F.R. Section		,	ership	Yes N ✓ Does not app
If No, explain in an Exhi	ibit.				Exhibit No.
or administrative body w criminal proceeding, bro	ling been made or an ad- with respect to the applica ought under the provision elated antitrust or unfa unit; or discrimination?	ant or pa Is of any	rties to the appli law relating to t	cation in a civil or he following: any	Yes 🖌 N
nvolved, including an ic	attach as an Exhibit a fu dentification of the court o bers), and the dispositio	or admini	strative body an	nd the proceeding	Exhibit No.

(by dates and file numbers), and the disposition of the litigation. Where the requisite information has been earlier disclosed in connection with another application or as required by 47 U.S.C. Section 1.65(c), the applicant need only provide: (i) an identification of that previous submission by reference to the file number in the case of an application, the call letters of the station regarding which the application or Section 1.65 information was filed, and the date of filing; and (ii) the disposition of the previously reported matter.

FCC 302-AM (Page 2) August 1995 8. Does the applicant, or any party to the application, have a petition on file to migrate to the expanded band (1605-1705 kHz) or a permit or license either in the existing band or expanded band that is held in combination (pursuant to the 5 year holding period allowed) with the AM facility proposed to be modified herein?

If Yes, provide particulars as an Exhibit.

The APPLICANT hereby waives any claim to the use of any particular frequency or of the electromagnetic spectrum as against the regulatory power of the United States because use of the same, whether by license or otherwise, and requests and authorization in accordance with this application. (See Section 304 of the Communications Act of 1934, as amended).

The APPLICANT acknowledges that all the statements made in this application and attached exhibits are considered material representations and that all the exhibits are a material part hereof and are incorporated herein as set out in full in

CERTIFICATION

1. By checking Yes, the applicant certifies, that, in the case of an individual applicant, he or she is not subject to a denial of federal benefits that includes FCC benefits pursuant to Section 5301 of the Anti-Drug Abuse Act of 1988, 21 U.S.C. Section 862, or, in the case of a non-individual applicant (e.g., corporation, partnership or other unincorporated association), no party to the application is subject to a denial of federal benefits that includes FCC benefits pursuant to that section. For the definition of a "party" for these purposes, see 47 C.F.R. Section 1.2002(b).

2. I certify that the statements in this application are true, complete, and correct to the best of my knowledge and belief, and are made in good faith.

	6	\square
Name	Signature	
John Sowada	1 John /	Jounda
Title	Date	Telephone Number
President	11/28/2017	3202511450

WILLFUL FALSE STATEMENTS ON THIS FORM ARE PUNISHABLE BY FINE AND/OR IMPRISONMENT (U.S. CODE, TITLE 18, SECTION 1001), AND/OR REVOCATION OF ANY STATION LICENSE OR CONSTRUCTION

FCC NOTICE TO INDIVIDUALS REQUIRED BY THE PRIVACY ACT AND THE PAPERWORK REDUCTION ACT

The solicitation of personal information requested in this application is authorized by the Communications Act of 1934, as amended. The Commission will use the information provided in this form to determine whether grant of the application is in the public interest. In reaching that determination, or for law enforcement purposes, it may become necessary to refer personal information contained in this form to another government agency. In addition, all information provided in this form will be available for public inspection. If information requested on the form is not provided, the application may be returned without action having been taken upon it or its processing may be delayed while a request is made to provide the missing information. Your response is required to obtain the requested authorization.

Public reporting burden for this collection of information is estimated to average 639 hours and 53 minutes per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the burden, can be sent to the Federal Communications Commission, Records Management Branch, Paperwork Reduction Project (3060-0627), Washington, D. C. 20554. Do NOT send completed forms to this address.

THE FOREGOING NOTICE IS REQUIRED BY THE PRIVACY ACT OF 1974, P.L. 93-579, DECEMBER 31, 1974, 5 U.S.C. 552a(e)(3), AND THE PAPERWORK REDUCTION ACT OF 1980, P.L. 96-511, DECEMBER 11, 1980, 44 U.S.C. 3507.

No Yes

No

Exhibit No.

	10/1 112	AJACH
--	----------	-------

SECTION III - LICENSE APPLICATION ENGINEERING DATA Name of Applicant

LEIGHTON RADIO HOLDINGS, INC.

PURPOSE OF AUTHORIZATION APPLIED FOR: (check one)

✓	Station License Direct Measurement of Power Moment Method Proof					
1. Facilities auth	orized in construction permit					
Call Sign	File No. of Construction Permit	Frequency	Hours of Operation	Power in	kilowatts	
KBRF	(if applicable) BP-20171127ACH	(kHz) 1250 kHz	UNLIMITED	Night 5.0 kW	Day 2.2 kW	
2. Station location						
State			City or Town			
Minnesota Fergus Falls						
3. Transmitter lo	cation					
State	County		City or Town	Street address (or other identification) 1613 Hwy 210 East		
Minnesota	esota Otter Tail		Fergus Falls			
4. Main studio location						
State	tate County		City or Town	Street address		
Minnesota			Fergus Falls	(or other identification) 728 Western Avenue		
5. Remote contro	ol point location (specify only if au	thorized direction	al antenna)			
State	County		City or Town	Street address		
Minnesota			Fergus Falls	(or other identifica 728 Western Aver		
6. Has type-appr	oved stereo generating equipment	nt been installed?			es 🗸 No	

ю.	Has type-approved stereo generating equipment been installed?		res	NO NO
7.	Does the sampling system meet the requirements of 47 C.F.R. Section 73.68?	1	Yes	No
			Not A	pplicable

Attach as an Exhibit a detailed description of the sampling system as installed.

8. Operating constants:						
RF common point or antenna current (in amperes) without modulation for night system 6.89 Amperes			RF common point or antenna current (in amperes) without modulation for day system 3.30 Amperes) without
Measured antenna or common point resistance (in ohms) at operating frequency Night Day			Measured ante operating frequencies Night		point reactance (in Day	n ohms) at
50.0 Ohms	460 Ohms		+j 0.0 Ohms		+j 412.5 Ohms	
Antenna indications for direction	nal operation					
Towers	Antenna monitor Phase reading(s) in degrees		Antenna monitor sample current ratio(s)		Antenna base currents	
the second s	Night	Day	Night	Day	Night	Day
T1 (C)	24.6°	N/A	0.744	N/A	N/A	N/A
T2 (NW)	-20.2°	N/A	0.933	N/A	N/A	N/A
T3 (SE)	0.0°	N/A	1.000	N/A	N/A	N/A
Manufacturer and type of anten	na monitor: Pot	tomac Instrumen	ts AM-19 (204)	•		

Exhibit No. 3.10

SECTION III - Page 2

56343

30171221AFK

Exhibit No. 2.10

Exhibit No.

See report

9. Description of antenna system ((f directional antenna is used, the information requested below should be given for each element of the array. Use separate sheets if necessary.)

Type Radiator Guyed uniform cross- section steel towers mounted on concrete base	Overall height in meters of radiator above base insulator, or above base, if grounded.	Overall height in meters above ground (without obstruction lighting) T1=102.0M T3=86.9M	Overall height in meters above ground (include obstruction lighting) T1=103.6M T3=88.4M	If antenna is either top loaded or sectionalized, describe fully in an Exhibit.			
piers and insulators	T1=101,T2=97.3,T3=85.9	T2=98.4M	T2=100.0M	Exhibit No. N/A			
Excitation Series Shunt ASR T1=1024482 ASR T3=1024481 ASR T2=1024483							
Geographic coordinates to nearest second. For directional antenna give coordinates of center of array. For single vertical radiator give tower location. North Latitude Day = $46-16-24.3$ West Longitude Day = $96-02-43.5$							
tower location. North Latitude Day = 46-16-24.3 West Longitude Day = 96-02-43.5							
North Latitude 46	° 16 ′ 2	7.0 Night West Longitue	^{de} 96 ^o 02	46.0 Night			

If not fully described above, attach as an Exhibit further details and dimensions including any other antenna mounted on tower and associated isolation circuits.

Also, if necessary for a complete description, attach as an Exhibit a sketch of the details and dimensions of ground system.

10. In what respect, if any, does the apparatus constructed differ from that described in the application for construction permit or in the

All sample loops and lines above the base insulators of each tower have been removed.

Antenna for translator K253BK (Construction Permit BPFT-20160729ACS) has been added to Tower 1(C)

11. Give reasons for the change in antenna or common point resistance.

Removal of sample loops and lines resulted in daytime antenna resistance change to 460 +j 412.5 ohms.

Night commom point impedance was maintained at 50 ±j 0 ohms.

I certify that I represent the applicant in the capacity indicated below and that I have examined the foregoing statement of technical information and that it is true to the best of my knowledge and belief.

Name (Please Print or Type) Richard P. Grzebik	Signature (check appropriate box below) Richard P Zogebik
Address (include ZIP Code) Munn-Reese	Date November 27, 2017
P.O. Box 220	Telephone No. (Include Area Code)
Coldwater, MI 49036	(517) 278-7339

permit?

Technical Director

Registered Professional Engineer

Chief Operator

Technical Consultant

Other (specify)

FCC 302-AM (Page 5) August 1995 Leighton Radio Holdings, Inc. AM Station KBRF, Fergus Falls MN FCC Form 302-AM November 2017 Exhibit 1

Responses to Section II, Items 3 and 4

The station is not operating pursuant to Program Test Authority, but is operating pursuant to the terms of its license and Special Temporary Authority granted in FCC File No. BSTA-20170913ABG. The purposes of this application are (1) to operate pursuant to method-of-moments measurements, and (2) to correct the licensed geographic coordinates. A companion application for construction permit to correct the licensed geographic coordinates is on file in FCC File No. BP-20171127ACH.

MOMENT OF METHOD ANTENNA PROOF OF PERFORMANCE

KBRF(AM) - Fergus Falls, MN

1250 kHz - Facility ID # 21400

November 2017

COPYRIGHT 2017

Table of Contents

Certification of Engineers

Discussion of Report

Exhibit 1.10 – Moment Method Modeling Summary Exhibit 1.11 – Tower 1 (C) Model Exhibit 1.12 – Tower 2 (NW) Model Exhibit 1.13 – Tower 3 (SE) Model

Exhibit 1.20 - Day Non-Directional Impedance Measurement

Exhibit 1.30 – Moment Method Night Pattern Parameter Sheet

Exhibit 1.31 – Night Pattern Synthesis

Exhibit 1.32 – Night Pattern Summary

Exhibit 2.10 – Vertical Plan Tower 1(C)

Exhibit 3.10 – Sample System Verification

Exhibit 4.10 – Night Field Strength Measurement Reference Points

9. Description of antenna system ((f directional antenna is used, the information requested below should be given for each element of the array. Use separate sheets if necessary.)

Type Radiator Guyed uniform cross- section steel towers mounted on concrete base piers and insulators	Overall height in me radiator above base insulator, or above l grounded. T1=101,T2=97.3,T) Dase, if		(without hting) T3=86.9M	above gro obstructio	eight in meters und (include n lighting) 6M T3=88.4M 0M	If antenna is loaded or sec describe full Exhibit. Exhibit	ctionalized, y in an
Excitation	Series	[Shunt	ASR T1=1 ASR T2=1		ASR T3=1024	4481	
Geographic coordinates	to nearest second. F	or direct	ional antenna d	nive coordinate	es of center	of array For sind	ale vertical rac	avin roteit
							gie vertical rac	nator give
tower location. N	orth Latitude Day	= 46-16	5-24.3 West	Longitude	Day = 96-	-02-43.5		
North Latitude	0 1		Night	West Longitud	de	0	I	Night
If not fully described ab	ove, attach as an Exl	hibit furth	er details and	dimensions in	cluding any	/ other	Exhibit No.	

antenna mounted on tower and associated isolation circuits.

Also, if necessary for a complete description, attach as an Exhibit a sketch of the details and dimensions of ground system.

10. In what respect, if any, does the apparatus constructed differ from that described in the application for construction permit or in the permit?

Exhibit No.

11. Give reasons for the change in antenna or common point resistance.

I certify that I represent the applicant in the capacity indicated below and that I have examined the foregoing statement of technical information and that it is true to the best of my knowledge and belief.

Name (Please Print or Type)	Signature (check appropriate box below) Ruchand P Zngebuk
Address (include ZIP Code)	Date
	Telephone No. (Include Area Code)
Technical Director	Registered Professional Engineer
Chief Operator	Technical Consultant
Other (specify)	
FCC 302-AM (Page 5) August 1995	

CERTIFICATION OF ENGINEERS

The firm of Munn-Reese, Broadcast Engineering Consultants, with offices at 385 Airport Drive, Coldwater, Michigan, has been retained for the purpose of preparing the technical data forming this report.

Some of the data utilized in this report was taken from the FCC Secondary Database and data on file. While this information is believed accurate, errors or omissions in the database and file data are possible. This firm may not be held liable for damages as a result of such data errors or omissions. Other data utilized in this report is based on field measurements and/or observations made by the undersigned, or others under the supervision of the undersigned.

The report has been prepared by properly trained electronics specialists under the direction of the undersigned whose qualifications are a matter of record before the Federal Communications Commission.

I declare under penalty of the laws of perjury that the contents of this report are true and accurate to the best of my knowledge and belief.

November 15, 2017

Richard Grzebik, Staff Engineer

By

Donald J. Baad, Stoff Engineer

MUNN-REESE 385 Airport Drive, PO Box 220 Coldwater, Michigan 49036 Telephone: 517-278-7339

By

Edmond R. Trombley, Staff Engineer

Bv

Bruce Bellamy, Owner/Engineer

Discussion of Report

The firm of Munn-Reese was retained to prepare an Antenna Proof of Performance under the Moment Method rules as found in §73.151(c), due to the addition of an antenna for translator K253BK on the KBRF directional array. This report supplies technical support for relicensing the existing night directional array of KBRF, Fergus Falls, MN, under the Moment Method rules. KBRF, Facility ID # 21400, currently operates under the authority of File No. BL-19970206AB. KBRF is authorized to operate with a daytime non-directional power of 5.0 kW, and a nighttime power of 2.2 kW using a three tower directional array. Tower 3 (South) is used for the daytime operation. The daytime antenna resistance was re-measured as shown in **Exhibit 1.20**.

Self-impedance measurements were made at each tower with the other towers "floating" in an open circuit configuration as set forth in §73.151(c)(1). Measurements were made using an HP 8753C Network Analyzer with the Tunwall Radio Directional Couplers designed for AM measurements. The measurements were made at the bowl insulator of each ATU. This ATU output jack was opened to "float" the unused towers. The results of these measurements are shown in *Exhibit 1.10*, along with the dimensions of the individual towers.

The base insulators were assumed to have a capacitance of 25 pf. At 1250 kHz this is represented in the model by a lumped reactance of -j5093 ohms. It should be noted that Tower 1(C) supports an STL antenna and an FM translator antenna for the K253BK Construction Permit BPFT-20160729ACS. The feedlines cross the Tower 1 base insulator by means of Kintronic isolation transformers. Kintronic Labs estimates the AM shunt capacity of each unit to be 75 pf. At 1250 kHz, this reactance would be -j1697.7 ohms each. When combined with the base insulator at Tower 1, the total lumped shunt reactance is -j727.6 ohms.

Individual printouts from Mininec Broadcast Professional, Version 14.5, are shown for the modeling of each tower in *Exhibits* 1.11 - 1.13. The base impedance predicted by the Mininec software was adjusted by first combining the predicted base impedance with the assumed parallel shunt reactance and then adding the assumed series reactance to represent the series path between the ATU bowl insulator and the base of the tower. The resulting impedance was then combined with the measured impedance of each lighting choke. The results of these calculations are shown in the "Combined with Choke at Measurement Point" columns of *Exhibit* 1.10. The circuit diagram and formulas used to calculate these adjusted values are shown at the end of the exhibit.

The predicted self impedance values were calibrated by altering the tower dimensions of the model within the limitations described in \$73.151(c)(1)(i)-(ix). The "Model Check" portion of *Exhibit 1.10* confirms that each adjusted model is within the dimensional limitations. These cells are conditionally formatted to show green when the dimensions are within the limits and red when the limits are exceeded. The model for each tower was adjusted until the base resistance and reactance predicted by the moment method

Discussion of Report

software, adjusted for the assumed series and shunt reactances, matched the measured data within the ± 2 ohms and ± 4 percent specified in §73.151(c)(2)(ii).

The modeled tower parameters were used, along with the theoretical field parameters, to generate predicted drive points and base parameters using the moment method software as specified in §73.151(c)(2)(i). The computed data is shown in *Exhibit 1.30* for the night pattern. The predicted base voltage and phase were adjusted to reflect the presence of the assumed shunt and series reactances at each tower. These adjusted values are shown in *Exhibit 1.30*. The calculated sample voltages were normalized to produce the "Night Pattern" "Operating Parameters" shown in the upper right portion of the parameter sheet. Supporting exhibits consisting of the array synthesis for night pattern are shown in *Exhibit 1.31*. An array summary night pattern has also been included in *Exhibit 1.32*.

Since both the KBRF non-directional daytime and directional nighttime pattern have been previously licensed and since no changes are proposed in the night-time theoretical pattern, a surveyor's certification of the array geometry is not required. This was clarified in Public Notice, DA 09-2340, released October 29, 2009.

No changes were made to the existing ground system. The ground system consists of 120 equally spaced buried copper wires, 60 meters in length except where shortened and bonded to a transverse strap between towers.

Exhibit 2.10 is a vertical plan showing the addition of the K253BK FM translator antenna on Tower 1(C), and the existing STL receive antenna.

Exhibit 3.10 shows the details of the sample system. The sample lines are Andrew LDF2-50A cable. This cable is listed with a velocity factor of 0.88. The original tower mounted sample loops and sample lines were removed from the tower before modeling, and Kintronic VSU-1 voltage samples were mounted on the exterior of each ATU. The voltage samples were then connected to the center conductor of each tower's ATU bowl insulator. The existing sample system was designed for equal sample line lengths at the sample loops. Due to the unequal tower heights and mounting height differences of each sample loop, sample lines were not equal in length at the output of the sample line isocouplers. So when field engineers measured the open circuit phase delay of these lines in accordance with §73.151(c)(2)(i), they found the "Maximum Deviation" between the longest and shortest lines was 26°, which fails to meet the requirements of the moment method rules. Therefore, tower 3 line was trimmed and towers 1 & 2 had sample line jumpers added until the maximum deviation was 0.15° between the three towers, which is within the required specification. The details are shown in the "Initial Measurement" and "Final Measurement" sections of the exhibit. The "Maximum Deviation" cells have been conditionally formatted to indicate the acceptability of the listed value.

Discussion of Report

The impedance of each line was also measured using the procedure described in \$73.151(c)(2)(i). Good agreement was found, and the measured values, shown in *Exhibit 3.10*, are well within the two ohm tolerance.

The Kintronics voltage sample units were compared side by side before mounting to each tower ATU using the network analyzer. The measured results are shown in *Exhibit 3.10*. The magnitudes and phases were within the ± 2 percent specified by the manufacturer.

As a final step, the impedance of each sample line was again measured from the antenna monitor end with the voltage sample unit attached at the ATU end. The results are also shown in *Exhibit 3.10*.

The nighttime array was tuned by the field engineers to the parameters generated by the moment method modeling software. Impedance matching at the antenna tuning units and phasor was adjusted where appropriate. Under File No. BL-19970206AB, the KBRF nighttime array used Tower 1 as the reference tower. Under this Method of Moment proof, we are using Tower 3 as the reference tower, in order for the Potomac Instruments AM-19 (204) Antenna Monitor to be within operating range of its ratio metering.

The licensed common point impedance for the night pattern has been maintained at 50 ohms resistance and 0 ohms reactance.

§73.151(c)(3) calls for the establishment of field strength measurement reference points on each of the specified monitoring point radials and the major lobe. These are shown for the night pattern in *Exhibit 4.10*. Each point includes the measured field strength value, the distance (in km) from the array, the NAD27 geographic coordinates and a brief description of the location.

The modeling of the arrays was performed by Donald J. Baad, Staff Engineer and Bruce Bellamy, Owner/Engineer with this office. Field work was performed by and under the direction of Richard P. Grzebik and Edmond R. Trombley, Staff Engineers with this office. Field strength measurement reference points were located and measured by Mr. Grzebik and Mr. Trombley. Jim Offerdahl, Contract Engineer for KBRF, also assisted Mr. Grzebik and Mr. Trombley with the various aspects of the array.

Exhibit 1.10

Moment Method Modeling Description

KBRF – Fergus Falls, MN

The individual towers of the array were modeled in accordance with §73.151(c)(1). Each tower was assumed to have a capacitive reactance in parallel with the base impedance of the tower. This is shown in the accompanying tabulation as "Shunt X". A series reactance was also assumed for the path between the tower and the measurement point at the output of each ATU. This value is shown as "Series X" in the tabulation. Because of the high self-impedances of the tall towers in this array is was necessary to also include the reactance of the individual lighting chokes that are in parallel with the measurement point at the ATU bowl insulators. The individual lighting chokes were disconnected and measured. The reactance of each choke is shown as "Lighting Choke X" in the tabulation.

To determine the Mininec predicted impedance value at the measuring point, the following procedure was used. The value calculated by Mininec at the base of the tower is shown in the tabulation as "Mininec R and X". This value was first combined with the parallel "Shunt X" using the standard parallel resistance/impedance formula of the inverse of the sum of the inverses. The result is shown in the "Mininec Combined with Shunt" column of the tabulation. The result was then added to the "Series X" value and result is shown in the "Plus Series X" column. And finally, that result was combined in parallel with the measured value of the lighting choke as shown in the "Combined with Choke at Measurement Point" column using the inverse of the sum of the inverses formula. All calculations were performed using complex math in rectangular format to accurately reflect the individual resistance and reactance values.

The model was then adjusted bring the calculated "Combined with Choke at Measurement Point" values to within ± 2 ohms and $\pm 4\%$ of the actual measured self-impedances shown near the top of the tabulation. All measured self-impedances were obtained with the unused towers floating.

The actual dimensions of the individual towers are shown at the top of the tabulation. The "Model Check" section near the middle of the tabulation shows the final values that were used in the Mininec model to achieve the desired results. These values are all within the tolerances allowed in 3.151(c)(1).

Exhibit 1.10

Moment Method Modeling Data Summary Sheet

KBRF - Fergus Falls, MN

Modeling Software: Mininec Broadcast Professional - Version 14.5

Station: KBRF - Fergus Falls, MN

Freq (kHz) 1250

Self-Impedances: Measured

IVI	eas	u	eu	
		1000	222	

FCC	Орен	า	Electrical	Number	Face	Equiv
Twr #	R	x	Ht (°)	of Faces	Width (in)	Radius (m)
1 - C	317.50	-389.10	151.6°	3	24	0.291
2 - NW	758.30	-45.70	1 46 .1°	3	24	0.291
3 - SE	335.00	339.50	128.9°	3	24	0.291

Model Check

FCC	Adju	sted	Number
Twr #	Ht(°)	Radius(m)	Segments
1 - C	155.0°	0.280	20
2 - NW	155.7°	0.291	20
3 - SE	137.0°	0.240	20

FCC	Minin	ec	Shunt	Series	Lighting Choke
Twr #	R	х	х	х	х
1 - C	825.37	-235.73	-727.6	40.00	5230
2 - NW	757.98	-81.85	-5093	40.00	5300
3 - SE	337.16	277.22	-5093	65.00	5140

	Mininec Co	mbined			Combined w	ith Choke
FCC	with Sh	nunt	Plus Ser	ries X	at Measurem	ent Point
Twr #	R	х	R	X	R	x
1 - C	271.53	-410.69	271.53	-370.69	313.55	-381.44
2 - NW	718.77	-185.84	718.77	-145.84	745.52	-46.00
3 - SE	375.26	266.91	375.26	331.91	329.56	334.37

Munn-Reese

Exhibit 1.11 – Tower 1 -C Model

C:\Expert MININEC 11:58:17	Broadcast Profess:	ional\Jobs\K	BRF DAN 09-2	2-2017
KBRF - Fergus Fall	s MN - DA-N			
GEOMETRY Wire coordinates i Environment: perfe		dimensions i	n meters	
wire caps Distance	5	Z	radius	segs
1 none 0 0	0	0 155.	.28	20
2 none 120.5	319.5	0	.291	20
120.5	319.5	155.7		
3 none 160.5 160.5	149.5 149.5	0 137.	.24	20
Number of wires current	= 3 nodes = 60			
	minimum		maximum	
Individual wires	wire value		wire value	
segment length radius	3 6.85 3 .24		2 7.785 2 .291	
ELECTRICAL DESCRIP Frequencies (MHz)	TION			
frequency	no. d		length (wavel	
	step steps 0 1	s minimum .0190278		
1 1.25	0 I	.0190270	.02102	5
Sources				
source node sect	tor magnitude 1.	phase 0	type voltage	
		0	vortuge	
Lumped loads	tanga			
resis load node (ohms)		e induct (mH)	ance capacit (uF)	ance passive circuit
1 21 0	-5,093.	0	0	0
2 41 0	-5,093.	0	0	0
C:\Expert MININEC H 11:58:19	Broadcast Professi	onal\Jobs\K	BRF DAN 09-2	2-2017
IMPEDANCE				
normalization =	50.			
_	react imped	phase VS		S12
(MHz) (ohms) source = 1; node 1		(deg)	dB	dB
source i, node .	-, DUCLOT I			

Exhibit 1.11 – Tower 1 -C Model

1.25	825.37	-235.73	858.37	344.1	17.859	97376	-6.9711
C:\Exp 11:58:		EC Broadcas	t Professi	ional\Jobs	s\KBRF D	AN 09-22-	-2017
11:58: CURREN Freque Input Effici	19 Trms ency = 1. power = 2, ency = 10 .nates in c	.25 MHz ,200. watts)0. %		mag (amps) 1.63263 1.72249 2.15213 2.63021 3.08137 3.47798 3.80652 4.05897 4.23023 4.3172 4.3184 4.23384 4.06491 3.81423 3.48553 3.0834	phase (deg) 15.9 335.2 315.8 305.1 298.4 293.9 290.7 288.2 286.2 286.2 284.6 283.3	real (amps) 1.56985 1.56329 1.5437 1.5114 1.46689 1.41089 1.34426 1.26806 1.18345 1.09172 .994256 .892493 .787912 .681998 .576215 .47196	<pre>imaginary (amps) .448367723254 -1.49954 -2.1526 -2.70981 -3.17896 -3.56126 -3.8558 -4.06132 -4.17688 -4.20239 -4.13871 -3.98782 -3.75276 -3.43757 -3.04707</pre>
17 18 19 20 END	0 0 0 0 0	0 0 0 0 0	124. 131.75 139.5 147.25 155.	2.61292 2.07877 1.48353 .822337	278.2 277.5 277. 276.4	.370531 .273039 .180254 .0921351	-2.58651 -2.06076 -1.47254 817159 0
END GND 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36	91.6289 91.6289 91.6289 91.6289 91.6289 91.6289 91.6289 91.6289 91.6289 91.6289 91.6289 91.6289 91.6289 91.6289 91.6289 91.6289	78.2585 78.2585 78.2585 78.2585 78.2585 78.2585 78.2585 78.2585 78.2585 78.2585 78.2585 78.2585 78.2585 78.2585 78.2585 78.2585 78.2585 78.2585	135. 0 7.785 15.57 23.355 31.14 38.925 46.71 54.495 62.28 70.065 77.85 85.635 93.42 101.205 108.99 116.775	0 15702 83647 1.28227 1.65458 1.96926 2.2308 2.4399 2.596 2.69836 2.74644 2.74027 2.68039 2.56808 2.40523 2.19435 1.93842	59.8 59.8 59.8 59.8 59.8 59.8 59.8 59.9 59.9	.0790048 .420798 .644895 .831896 .989819 1.12097 1.22572 1.30386 1.35505 1.37906 1.3759 1.34589 1.28964 1.2081 1.10248 .97424	135697 722919 1.1083 1.43024 1.70242 1.92871 2.10967 2.24481 2.33345 2.37511 2.3698 2.31799 2.22077 2.07982 1.89729 1.67581

Exhibit 1.11 - Tower 1 -C Model

37	91.6289	78.2585	124.56	1.64063	59.8	.824933	1.41815
38	91.6289	78.2585	132.345	1.30395	59.8	.655984	1.12693
39	91.6289	78.2585	140.13	.929923	59.8	.468102	.803515
40	91.6289	78.2585	147.915	.515466	59.8	.259652	.445293
END	91.6289	78.2585	155.7	0	0	0	0
GND	-138.292	-81.4599	0	.10928	73.5	.0310404	.104778
42	-138.292	-81.4599	6.85	.513181	73.5	.145876	.492011
43	-138.292	-81.4599	13.7	.776311	73.5	.22094	.744208
44	-138.292	-81.4599	20.55	.993042	73.4	.283027	.951855
45	-138.292	-81.4599	27.4	1.17381	73.4	.335087	1.12497
46	-138.292	-81.4599	34.25	1.32215	73.4	.378094	1.26693
47	-138.292	-81.4599	41.1	1.43922	73.4	.41235	1.37888
48	-138.292	-81.4599	47.95	1.52537	73.3	.437914	1.46116
49	-138.292	-81.4599	54.8	1.58068	73.3	.454769	1.51385
50	-138.292	-81.4599	61.65	1.60526	73.2	.462894	1.53707
51	-138.292	-81.4599	68.5	1.59938	73.2	.462307	1.5311
52	-138.292	-81.4599	75.35	1.56348	73.2	.45308	1.49639
53	-138.292	-81.4599	82.2	1.49826	73.1	.435348	1.43362
54	-138.292	-81.4599	89.05	1.40469	73.1	.409315	1.34373
55	-138.292	-81.4599	95.9	1.28389	73.	.375235	1.22784
56	-138.292	-81.4599	102.75	1.13717	73.	.333403	1.0872
57	-138.292	-81.4599	109.6	.965822	72.9	.284112	.923088
58	-138.292	-81.4599	116.45	.770899	72.8	.227575	.736542
59	-138.292	-81.4599	123.3	.552497	72.8	.163715	.527684
60	-138.292	-81.4599	130.15	.307793	72.7	.0915746	.293854
END	-138.292	-81.4599	137.	0	0	0	0

Exhibit 1.12 - Tower 2 - NW Model

C:\Expert MININEC Broa 12:07:31	adcast Profess:	ional\Jobs\K	BRF DAN 09-2	2-2017
KBRF - Fergus Falls MN	I – DA–N			
GEOMETRY Wire coordinates in de Environment: perfect g	=	dimensions in	n meters	
wire caps Distance	Angle	Z	radius	segs
1 none 0 0	0 0	0 155.	.28	20
2 none 120.5 120.5	319.5 319.5	0 155.7	.291	20
3 none 160.5 160.5	149.5 149.5	0 137.	.24	20
Number of wires current node	= 3 = 60			
	minimum		maximum	
Individual wires segment length radius	wire value 3 6.85 3 .24		wire value 2 7.785 2 .291	
ELECTRICAL DESCRIPTION Frequencies (MHz) frequency no. lowest step 1 1.25 0	no. c			m
Sources source node sector 1 21 1	magnitude 1.	phase 0	type voltage	
Lumped loads		*		
resistanc load node (ohms) 1 1 0 2 41 0	e reactance (ohms) -727.6 -5,093.	e inducta (mH) 0 0	ance capacit (uF) 0 0	ance passive circuit 0 0
C:\Expert MININEC Broa 12:07:32	dcast Professi	onal\Jobs\KI	BRF DAN 09-2	2-2017
<pre>IMPEDANCE normalization = 50. freq resist reac (MHz) (ohms) (ohm source = 1; node 21,</pre>	t imped s) (ohms)	phase VSW (deg)	WR S11 dB	S12 dB

Exhibit 1.12 - Tower 2 - NW Model

C:\Expert MININEC Broadcast Professional\Jobs\KBRF DAN 09-22-2017 12:07:32 CURRENT rms Frequency = 1.25 MHz Input power = 2,200. watts Efficiency = 100. $\$$ coordinates in degrees current mag phase real imaginary no. X Y Z (amps) (deg) (amps) (amps) GND 0 0 0 .675536 17.8 .643346 .206045 2 0 0 7.75 1.08346 17.8 1.03171 .330842 3 0 0 15.5 1.34676 17.8 1.028211 .412255 4 0 0 23.25 1.56097 17.9 1.48554 .479353 5 0 0 31. 1.73587 18. 1.65137 .535015 6 0 0 38.75 1.87442 18. 1.78243 .580001 7 0 0 46.5 1.97736 18.1 1.8795 .614368 8 0 0 54.25 2.0447 18.2 1.94263 .63795 9 0 0 62. 2.07642 18.3 1.97188 .65055 10 0 0 77.5 2.03366 18.4 1.92975 .642383 12 0 0 85.25 1.96097 18.5 1.8597 .62171 13 0 0 93. 1.85493 18.6 1.75851 .59028 14 0 0 100.75 1.71769 18.6 1.62775 .548512 15 0 0 108.5 1.55112 18.7 1.46936 .496954 14 0 0 100.75 1.71769 18.6 1.62775 .548512 15 0 0 108.5 1.55112 18.7 1.28544 .432624 17 0 0 124. 1.13905 18.8 1.07826 .367151 18 0 0 131.75 .898018 18.9 .849812 .290271 19 0 0 133.75 .839467 19330501 .113563
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
130093.1.8549318.61.75851.590281400100.751.7176918.61.62775.5485121500108.51.5511218.71.46936.4969541600116.251.3574618.71.28544.4362641700124.1.1390518.81.07826.3671511800131.75.89801818.9.849812.2902711900139.5.63549718.9.601194.205967
1400100.751.7176918.61.62775.5485121500108.51.5511218.71.46936.4969541600116.251.3574618.71.28544.4362641700124.1.1390518.81.07826.3671511800131.75.89801818.9.849812.2902711900139.5.63549718.9.601194.205967
1500108.51.5511218.71.46936.4969541600116.251.3574618.71.28544.4362641700124.1.1390518.81.07826.3671511800131.75.89801818.9.849812.2902711900139.5.63549718.9.601194.205967
1600116.251.3574618.71.28544.4362641700124.1.1390518.81.07826.3671511800131.75.89801818.9.849812.2902711900139.5.63549718.9.601194.205967
1700124.1.1390518.81.07826.3671511800131.75.89801818.9.849812.2902711900139.5.63549718.9.601194.205967
1800131.75.89801818.9.849812.2902711900139.5.63549718.9.601194.205967
19 0 0 139.5 .635497 18.9 .601194 .205967
END 0 0 155. 0 0 0 0
GND 91.6289 78.2585 0 1.70366 6.2 1.69381 .182915
22 91.6289 78.2585 7.785 1.92205 331.4 1.68686921282
23 91.6289 78.2585 15.57 2.34304 315.3 1.66615 -1.64735 24 91.6289 78.2585 23.355 2.78399 305.9 1.63197 -2.2555
24 91.6289 78.2585 23.355 2.78399 305.9 1.63197 -2.2555 25 91.6289 78.2585 31.14 3.19276 299.8 1.58488 -2.77162
26 91.6289 78.2585 38.925 3.54795 295.5 1.52557 -3.20321
27 91.6289 78.2585 46.71 3.83806 292.3 1.45497 -3.55159
28 91.6289 78.2585 54.495 4.05594 289.8 1.37413 -3.81607
29 91.6289 78.2585 62.28 4.19697 287.8 1.28426 -3.99565
30 91.6289 78.2585 70.065 4.25839 286.2 1.18668 -4.0897
31 91.6289 78.2585 77.85 4.23897 284.8 1.08282 -4.09834 32 91.6299 78.2585 77.85 4.123897 284.8 1.08282 -4.09834
32 91.6289 78.2585 85.635 4.13889 283.6 .97415 -4.02262 33 91.6289 78.2585 93.42 3.95966 282.6 .862196 -3.86465
33 91.6289 78.2585 93.42 3.95966 282.6 .862196 -3.86465 34 91.6289 78.2585 101.205 3.70396 281.7 .748481 -3.62755
35 91.6289 78.2585 108.99 3.3755 280.8 .634507 -3.31533
36 91.6289 78.2585 116.775 2.9788 280.1 .521711 -2.93276

Exhibit 1.12 – Tower 2 - NW Model

37 38 39 40 END	91.6289 91.6289 91.6289 91.6289 91.6289 91.6289	78.2585 78.2585 78.2585 78.2585 78.2585 78.2585	124.56 132.345 140.13 147.915 155.7	2.51877 2. 1.42497 .789103 0	279.4 278.8 278.2 277.6 0	.411415 .304742 .202424 .104274 0	-2.48494 -1.97665 -1.41052 782183 0
GND	-138.292	-81.4599	0	.0216992	275.9	2.25E-03	0215828
42	-138.292	-81.4599	6.85	.101929	275.9	.0105585	101381
43	-138.292	-81.4599	13.7	.154263	276.	.0160114	15343
44	-138.292	-81.4599	20.55	.197439	276.	.0205418	196367
45	-138.292	-81.4599	27.4	.233524	276.	.0243627	232249
46	-138.292	-81.4599	34.25	.263212	276.	.0275448	261767
47	-138.292	-81.4599	41.1	.28673	276.	.0301089	285145
48	-138.292	-81.4599	47.95	.304135	276.1	.0320581	30244
49	-138.292	-81.4599	54.8	.315433	276.1	.0333888	313661
50	-138.292	-81.4599	61.65	.320635	276.1	.0340961	318817
51	-138.292	-81.4599	68.5	.319776	276.1	.0341767	317945
52	-138.292	-81.4599	75.35	.31293	276.2	.0336295	311118
53	-138.292	-81.4599	82.2	.300221	276.2	.0324569	298462
54	-138.292	-81.4599	89.05	.281815	276.2	.0306642	280142
55	-138.292	-81.4599	95.9	.257918	276.3	.0282598	256365
56	-138.292	-81.4599	102.75	.228765	276.3	.0252528	227367
57	-138.292	-81.4599	109.6	.19459	276.4	.0216515	193381
58	-138.292	-81.4599	116.45	.155571	276.4	.0174568	154589
59	-138.292	-81.4599	123.3	.111694	276.5	.0126461	110976
60	-138.292	-81.4599	130.15	.0623448	276.6	7.13E-03	0619361
END	-138.292	-81.4599	137.	0	0	0	0

Exhibit 1.13 – Tower 3 - SE Model

.

C:\Expert MININEC Broadcast Professional\Jobs\KBRF DAN 09-22-2017 12:13:37									
KBRF – Fergus Falls	s MN - DA-N								
GEOMETRY Wire coordinates in Environment: perfec		imensions in me [.]	ters						
wire caps Distance 1 none 0	e Angle O		adius 28	segs 20					
2 none 120.5	0 319.5	155.	291	20					
120.5 3 none 160.5 160.5	319.5 149.5 149.5	155.7	24	20					
Number of wires current r	= 3 nodes = 60								
minimummaximumIndividual wireswirevaluesegment length36.852radius3.242.291									
	TION no. o: step steps 0 1								
Sources source node sect 1 41 1	tor magnitude 1.	phase 0	type voltage						
Lumped loads									
resist load node (ohms) 1 1 0 2 21 0		inductance (mH) O O	capacita: (uF) 0 0	nce passive circuit 0 0					
C:\Expert MININEC E 12:13:38	Broadcast Professio	onal\Jobs\KBRF I	DAN 09-22	-2017					
<pre>IMPEDANCE normalization = 50. freq resist react imped phase VSWR S11 S12 (MHz) (ohms) (ohms) (deg) dB dB source = 1; node 41, sector 1</pre>									

Exhibit 1.13 – Tower 3 - SE Model

1.25	337.16	277.22	436.49	39.4	11.362	-1.5329	-5.2667
C:\Exr	pert MININE	C Broadcas	t Professi	onal\Jobs	KBRF D	AN 09-22-	2017
12:13:		biolacus				III 09 22	2017
CURREN							
Freque		25 MHz					
-	power = $2,$ lency = 10	200. watts 10. %					
	inates in d						
currer				mag	phase	real	imaginary
no.	Х	Y	Z	(amps)	(deg)	(amps)	(amps)
GND	0	0	0	.650648	341.5	.617187	205967
2	0	0	7.75	1.04354	341.6	.989936	330162
3	0	0	15.5	1.29714	341.6	1.23067	40991
4	0	0	23.25	1.50346	341.6	1.42666	474367
5	0	0	31.	1.67192	341.6	1.58684	526564
6 7	0 0	0 0	38.75 46.5	1.80542	341.7	1.71393 1.80854	567464
8	0	0	40.5 54.25	1.90464 1.96966	341.7 341.8	1.87074	597361 61635
9	0	õ	62.	2.00042	341.8	1.90044	624499
10	0	0	69.75	1.99706	341.9	1.89774	621938
11	0	0	77.5	1.96002	341.9	1.86304	608886
12	0	0	85.25	1.89009	341.9	1.79706	585674
13	0	0	93.	1.78845	342.	1.70089	552748
14	0	0	100.75	1.65665	342.	1.57598	510667
15	0	0	108.5	1.49655	342.1	1.42407	460077
16 17	0	0	116.25	1.31026		1.24716	401702
18	0 0	0 0	124. 131.75	1.09998 .867687		1.04731 .826392	336284 264495
19	0	0	139.5	.614409		.58535	186719
20	0	0	147.25	.338103	342.4	.322218	102417
END	0	0	155.	0	0	0	0
GND	91.6289	78.2585	0	.0300305	226.	0208533	0216095
22	91.6289	78.2585	7.785	.159989	226.1	111025	115195
23	91.6289	78.2585	15.57	.245285	226.1		17678
24	91.6289	78.2585	23.355	.316548	226.2	219168	228404
25	91.6289	78.2585	31.14	.376815	226.3	260522	272245
26 27	91.6289 91.6289	78.2585 78.2585	38.925 46.71	.426943 .467064	226.3 226.4	294707	308915
28	91.6289	78.2585	40.71 54.495	.487084	226.4	321824 341821	338494 360886
29	91.6289	78.2585	62.28	.516818	226.7	354619	37596
30	91.6289	78.2585	70.065	.526202	226.8	360181	383612
31	91.6289	78.2585	77.85	.525215	226.9	358547	383791
32	91.6289	78.2585	85.635	.513961	227.1	349836	376525
33	91.6289	78.2585	93.42	.492668	227.3	33427	361919
34	91.6289	78.2585	101.205	.461687	227.5	312158	340165
35	91.6289	78.2585	108.99	.421479	227.7	283895	311525
36	91.6289	78.2585	116.775	.372592	227.9	249939	276325

Exhibit 1.13 – Tower 3 - SE Model

37 38 39 40	91.6289 91.6289 91.6289 91.6289	78.2585 78.2585 78.2585 78.2585 78.2585	124.56 132.345 140.13 147.915	.315616 .251084 .179258 .0994895	228.1 228.3 228.6 228.9	210783 166887 118534 0654183	234912 187596 134473 0749573
END	91.6289	78.2585	155.7	0	0	0	0
GND	-138.292	-81.4599	0	2.55443	320.6	1.97312	-1.62232
42	-138.292	-81.4599	6.85	3.12251	309.	1.96604	-2.42586
43	-138.292	-81.4599	13.7	3.52193	303.5	1.94486	-2.93624
44	-138.292	-81.4599	20.55	3.84988	299.7	1.90986	-3.34276
45	-138.292	-81.4599	27.4	4.11215	296.9	1.86142	-3.66673
46	-138.292	-81.4599	34.25	4.30971	294.7	1.80009	-3.91577
47	-138.292	-81.4599	41.1	4.44218	292.9	1.72659	-4.0929
48	-138.292	-81.4599	47.95	4.50912	291.4	1.64175	-4.19962
49	-138.292	-81.4599	54.8	4.51048	290.1	1.54652	-4.23706
50	-138.292	-81.4599	61.65	4.44675	288.9	1.44198	-4.20646
51	-138.292	-81.4599	68.5	4.31905	287.9	1.32928	-4.10941
52	-138.292	-81.4599	75.35	4.12918	287.	1.20966	-3.94802
53	-138.292	-81.4599	82.2	3.87953	286.2	1.0844	-3.7249
54	-138.292	-81.4599	89.05	3.57311	285.5	.954812	-3.44317
55	-138.292	-81.4599	95.9	3.21333	284.8	.822209	-3.10636
56	-138.292	-81.4599	102.75	2.8039	284.2	.687851	-2.71822
57	-138.292	-81.4599	109.6	2.34851	283.6	.552896	-2.2825
58	-138.292	-81.4599	116.45	1.85013	283.1	.418266	-1.80223
59	-138.292	-81.4599	123.3	1.30954	282.5	.284372	-1.27829
60	-138.292	-81.4599	130.15	.720742	282.	.150268	704903
END	-138.292	-81.4599	137.	0	0	0	0

Exhibit 1.20 – Day Non-Directional Impedance Measurement

KBRF – Fergus Falls, MN

Measured Daytime Tower 3 Impedance = 460 + j 412.5 Ohms

Daytime Power of 5.0 kW.

Base current of 3.30 Amperes

Daytime Tower 3 measurement was performed by Mr. Edmond Trombley of Munn-Reese, using a Delta OIB-3 operating impedance bridge, S/N 572.

Exhibit 1.30

Moment Method Night Parameter Discussion

KBRF – Fergus Falls, MN

The nighttime operating parameters were derived using the data developed in the individual tower models. Mininec calculated the driving point impedance, voltage and current at the base of each tower in the array using the "Field Parameters" shown in the "Night Pattern" section of the accompanying parameter sheet. In order to obtain the antenna monitor operating parameters, this data was modified to reflect the effect of the reactance values used in the modeling of each tower.

The Mininec calculated values of driving point impedance, base voltage and base current are shown in the "**Mininec Model Data**" section of the parameter sheet. The base voltage and base current are shown in polar coordinates taken from the Mininec printouts. However, these values were converted to rectangular coordinates for use in the calculations using complex numbers. Also shown in this section are the shunt and series X values from the tower modelling data. All calculations were performed using the complex number functions of Excel 2016.

The derivations of the sample voltages are shown in the "Computation of Operating **Parameters**" section of the parameter sheet. The current in the shunt reactance ("Shunt X Current") was calculated using Ohms Law (I = E / Z). This current was then added to the Mininec base current as shown in the "Total Current" column. The total current was then used to calculate the voltage across the series reactance (E = I x Z) and can be found in the "Series X Voltage" column. This voltage was added to the Mininec base voltage to calculate the "Sample Voltage" shown in the last column.

These values were then converted back to polar coordinates as shown in the "Sample Voltage" column near the top of the parameter sheet in the "Night Pattern" section. The polar values were then normalized to the highest voltage tower to obtain the antenna monitor operating parameters shown in the "Operating Parameters" column in the top row of the parameter sheet.

Exhibit 1.30

Moment Method Night Pattern Parameter Sheet

KBRF - Fergus Falls, MN

Modeling Software: Mininec Broadcast Professional - Version 14.5

Station: KBRF - Fergus Falls, MN

Freq (kHz) 1250

Night Pattern

Field Parameters			Sample \	/oltage	Operating Parameters		
Twr	Ratio	Phase	Mag	Phs	Ratio	Phase	
1 - C	1.000	0.0°	601.99	77.3	0.744	24 .6°	
2 - NW	0.923	-39.5°	754.63	32.6	0.933	-20.2°	
3 - SE	1.008	-24.2°	808.94	52.7	1.000	0.0°	

Mininec Model Data

Drive Point		Base Voltage		Base Current		Shunt	Series	
Twr	R	Х	Mag	Phs	Mag	Phs	х	х
1 - C	272.23	330.10	590.826	74	1.38085	23.5	-727.6	40
2 - NW	679.73	49.62	756.023	29.2	1.1093	25	-5093	40
3 - SE	274.88	312.24	729.155	47.4	1.75279	358.7	-5093	65

Computation of Operating Parameters

Shunt X Current		Total Current		Series X Voltage		Sample Voltage		
Twr	Real	Img	Real	Img	Real	Img	Real	Img
1 - C	-0.78056	0.22382	0.48576	0.77444	-30.977	19.430	131.88	587.37
2 - NW	-0.07242	0.12958	0.93295	0.59839	-23.936	37.318	636.01	406.15
3 - SE	-0.10539	0.09691	1.64695	0.05714	-3.714	107.052	489.83	643.78

Munn-Reese

Exhibit 1.31 – Night Pattern Synthesis

C:\Expert MININEC Broadcast Professional\Jobs\KBRF DAN 09-22-2017 12:21:38 MEDIUM WAVE ARRAY SYNTHESIS FROM FIELD RATIOS Frequency = 1.25 MHz field ratio tower magnitude phase (deg) 1 1. 0 .923 2 -39.53 1.008 -24.2VOLTAGES AND CURRENTS - rms source voltage current node magnitude phase (deg) magnitude phase (deg) 1 590.826 74. 1.38085 23.5 21 756.023 29.2 1.1093 25. 41 729.155 47.4 1.75279 358.7 Sum of square of source currents = 12.4191 Total power = 2,200. watts TOWER ADMITTANCE MATRIX admittance real (mhos) imaginary (mhos) Y(1, 1)-.000240282 .00132677 Y(1, 2).000535027 -.000298174 Y(1, 3) .000254024 -.000606391 Y(2, 1) .000535026 -.000298175 Y(2, 2) .00128576 -7.802E-05 Y(2, 3) -.000330183 -6.4612E-05 Y(3, 1) .000254054 -.000606397 Y(3, 2) -.000330183 -6.4621E-05 Y(3, 3).00152998 -.00150086 TOWER IMPEDANCE MATRIX impedance real (ohms) imaginary (ohms) Z(1, 1) 892.822 -215.601 Z(1, 2)-423.741 291.368 Z(1, 3)-302.161 138.237 Z(2, 1)-423.74 291.368 Z(2, 2) 946.111 -158.85Z(2, 3) 189.782 -24.4793Z(3, 1)-302.149 138.244 Z(3, 2) 189.777 -24.4826Z(3, 3) 422.101 274.089

Exhibit 1.32 – Night Pattern Summary

	C:\Expert MININEC Broadcast Professional\Jobs\KBRF DAN 09-22-2017 12:23:32									
KBRF	KBRF - Fergus Falls MN - DA-N									
Wire	GEOMETRY Wire coordinates in degrees; other dimensions in meters Environment: perfect ground									
wire 1	caps none	Distance 0 0	Angle O O		Z O 155.	rad. .28		segs 20		
2	none	120.5 120.5	0 319.5 319.5		155. 0 155.7	.29	1	20		
3	none	160.5	149.5 149.5		0 137.	.24		20		
Numbe	Number of wires = 3 current nodes = 60									
	ridual ent ler Is		minim wire 3 3	um value 6.85 .24		max wire 2 2	imum value 7.785 .291			
Frequ no.	ELECTRICAL DESCRIPTION Frequencies (MHz) frequency no. of segment length (wavelengths) no. lowest step steps minimum maximum 1 1.25 0 1 .0190278 .021625									
Sourc sourc 1 2 3	es e node 1 21 41	e secto 1 1 1	r magnit 835.55 1,069. 1,031.	4 18	phase 74. 29.2 47.4	,	type voltage voltage voltage			

Exhibit 1.32 – Night Pattern Summary

C:\Expert MININEC Broadcast Professional\Jobs\KBRF DAN 09-22-2017 12:23:35 IMPEDANCE normalization = 50. resist imped phase freq react VSWR S11 S12 (MHz) (ohms) (ohms) (ohms) (deg) dB dB source = 1; node 1, sector 1 1.25 272.23 330.1 427.87 50.5 13.56 -1.2834-5.92 source = 2; node 21, sector 1 1.25 679.73 49.615 681.54 4.2 13.667 -1.2733-5.94963; node 41, sector 1 source = 1.25 274.88 312.24 416. 48.6 12.694 -1.3713 -5.6742 C:\Expert MININEC Broadcast Professional\Jobs\KBRF DAN 09-22-2017 12:23:35 CURRENT rms Frequency = 1.25 MHz Input power = 2,200. watts Efficiency = 100. % coordinates in degrees current mag phase real imaginary no. Х Y Ζ (amps) (deg) (amps) (amps) 0 GND 0 0 1.38085 23.5 1.26586 .55167 2 0 0 7.75 13.4 1.73507 1.78385 .414328 3 0 0 15.5 2.05773 8.9 2.03272 .31986 0 4 0 23.25 2.28166 6. 2.26935 .236726 5 0 0 31. 2.46181 3.8 2.45649 .161766 6 0 0 38.75 2.1 2.59956 2.59786 .0941104 7 0 0 46.5 2.69487 .7 2.69466 .0336673 8 0 0 54.25 2.74743 359.6 2.74736 -.0193895 9 0 0 62. 2.75713 358.7 2.75637 -.0648131 2.72427 10 0 0 69.75 357.8 2.72234 -.102372 11 0 0 77.5 2.64961 357.1 2.64632 -.131895 0 12 0 85.25 2.53444 356.5 2.5298 -.153295 0 13 0 356. 93. 2.38054 2.37471 -.166579 355.5 14 0 0 100.75 2.1902 2.18344 -.17185415 0 0 108.5 1.96606 355.1 1.95876 -.169321 0 16 0 116.25 1.71112 354.7 1.70369 -.15926817 0 0 1.42839 354.3 124. 1.42131 -.142042 18 0 0 131.75 1.12061 354. 1.11438 -.118004 .784444 19 0 0 139.5 .789299 353.6 -.087407 0 0 20 147.25 .432045 353.3 .429135 -.05006 END 0 0 155. 0 0 0 0

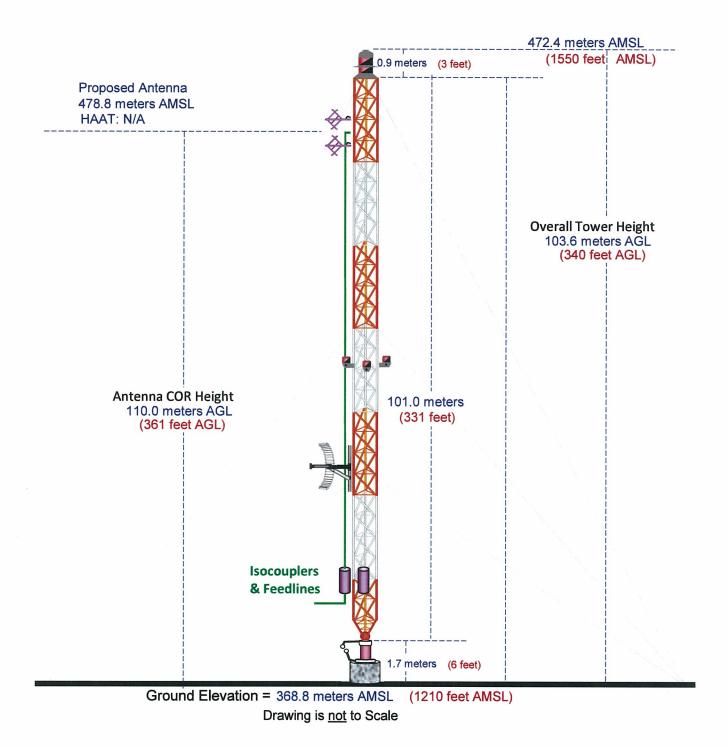
Exhibit 1.32 – Night Pattern Summary

GND 22 23 24 25 26 27 28	91.6289 91.6289 91.6289 91.6289 91.6289 91.6289 91.6289 91.6289 91.6289	78.2585 78.2585 78.2585 78.2585 78.2585 78.2585 78.2585 78.2585 78.2585	0 7.785 15.57 23.355 31.14 38.925 46.71 54.495	1.10929 1.31782 1.57868 1.83544 2.06757 2.26567 2.42418 2.53944	25. 355.9 342.8 334.7 329.3 325.4 322.4 320.1	1.00534 1.31449 1.50801 1.65994 1.77794 1.86457 1.92071 1.9468	.468855 0937533 467048 783221 -1.05534 -1.28711 -1.47902 -1.63056
29 30	91.6289 91.6289	78.2585 78.2585	62.28 70.065	2.60909 2.63169	318.1 316.6	1.94326 1.91065	-1.741 -1.80976
31 32	91.6289 91.6289	78.2585 78.2585	77.85 85.635	2.60675 2.5345	315.2 314.	1.84983 1.76193	-1.83664 -1.8219
33 34	91.6289 91.6289	78.2585 78.2585	93.42 101.205	2.41598 2.25287	313. 312.1	1.6484 1.51097	-1.76628 -1.67104
35 36	91.6289 91.6289	78.2585 78.2585	108.99 116.775	2.04746 1.80246	311.3 310.6	1.35162 1.17247	-1.53792 -1.36901
37	91.6289	78.2585	124.56	1.52084	309.9	.975702	-1.16661
38 39	91.6289 91.6289	78.2585 78.2585	132.345 140.13	1.20532 .85731	309.3 308.7	.763231 .536142	93288 668978
40 END	91.6289 91.6289	78.2585 78.2585	147.915 155.7	.474012 0	308.2 0	.292863 0	372718 0
GND 42	-138.292 -138.292	-81.4599 -81.4599	0 6.85	1.75279 2.1722	358.7	1.75235 2.13546	0394312 397844
42	-138.292	-81.4599	13.7	2.45337	349.4 345.1	2.13546	631156
44	-138.292	-81.4599	20.55	2.67912	342.1	2.54953	823158
45	-138.292	-81.4599	27.4	2.85659	339.9	2.68207	983155
46	-138.292	-81.4599	34.25	2.98795	338.1	2.77237	-1.11435
47	-138.292	-81.4599	41.1	3.07373	336.7	2.82218	-1.21784
48	-138.292	-81.4599	47.95	3.1142	335.4	2.83262	-1.29404
49	-138.292	-81.4599	54.8	3.10965	334.4	2.80464	-1.3431
50	-138.292	-81.4599	61.65	3.06069	333.5	2.73934	-1.36523
51	-138.292	-81.4599	68.5	2.9683	332.7	2.63801	-1.36077
52	-138.292	-81.4599	75.35	2.83384	332.	2.50223	-1.33023
53	-138.292	-81.4599	82.2	2.65908	331.4	2.33383	-1.27435
54	-138.292	-81.4599	89.05	2.44614	330.8	2.13491	-1.19406
55	-138.292	-81.4599	95.9	2.19742	330.2	1.90774	-1.0905
56 57	-138.292 -138.292	-81.4599 -81.4599	102.75	1.91549	329.8	1.65471	964905
58	-138.292	-81.4599 -81.4599	109.6 116.45	1.60288 1.26165	329.3 328.9	1.37812 1.07984	818541 652458
59	-138.292	-81.4599	123.3	.892279	328.9	.760374	466898
60	-138.292	-81.4599	130.15	.490724	328.1	.416397	25966
END	-138.292	-81.4599	137.	0	0	0	0

Exhibit 2.10 - Tower 1 (C) Vertical Plan of Antenna System

THE SITE IS LOCATED AT 1613 Hwy 210 E;

THE CITY OF FERGUS FALLS ; OTTER TAIL COUNTY; MINNEASOTA.


Antenna Structure Registration No.

1024482

 Latitude (D M S)
 Longitude (D M S)

 NAD 27 datum values: 46-16-27.3 N 96-02-47.3 W

 NAD 83 datum values: 46-16-27.4 N 96-02-46.1 W

Munn–Reese Broadcast Engineering Consultants Coldwater, MI 49036

Exhibit 3.10 Sample System Verification

KBRF - Fergus Falls, MN

Carrier Freq (kHz)

Sample Line

	Manufacturer Andrew	Model LDF2-50	Velocity Factor (0.xx) 0.88	Design Length (feet) 630	Full Wave Freq (kHz) 1373.9	3/8 line
Theoretical Calculatio	ns					
		90°	270°	450°	630°	
Resonant F	requency (kHz)	343.5	1030.4	1717.3	2404.3	
Distance fro	m Carrier (kHz)	-906.5	-219.6	467.3	1154.3	

Initial Measurements (Before Trimming Line Lengths)

1250

	Sample Lines	Selected Resonance (Electrical °)	Measured Freq at Resonance (MHz)	Line Length at Carrier Freq (Electrical °)	Maximum Deviation	No Smoothing	averaging on
	Twr 1 C	270°	1.57965	213.7°	25.98721085		
,	Twr 2 N	270°	1.5504	217.7°			
	Twr 3 S	270°	1.40835	239.6°			

9/18/2017

Final Measurements (After Trimming Line Lengths) Measurement Date: 9/20/2017

weasurement Date.	5/20/2017					
Sample Lines	Selected Resonance (Electrical °)	Measured Freq at Resonance (MHz)	Line Length at Carrier Freq (Electrical °)	Maximum Deviation	No Smoothing	averaging on
Twr 1	270°	1.25425	269.1°	0.150093293		
Twr 2	270°	1.25495	268.9°			
Twr 3	270°	1.25469	269.0°			

Sample Line Impedance Measurements Measurement Date: 9/20/2017

Sample Lines	+45° Frequency (MHz)	Measured Resistance	Measured Reactance	Line Impedance	Geometric Mean Impedance	Maximum Deviation
Twr 1	1.46329	7.71	49.68	50.27	50.15	0.44
Twr 2	1.46411	7.64	49.59	50.18	50.05	
Twr 3	1.46381	7.74	50.15	50.74	50.49	

Sample Lines	-45° Frequency (MHz)	Measured Resistance	Measured Reactance	Line Impedance
Twr 1	1.04521	5.21	-49.76	50.03
Twr 2	1.04579	5.16	-49.65	49.92
Twr 3	1.04558	5.19	-49.96	50.23

Sampling Devices

Measurement Date:	9/18/201	7			
Location	Manufacturer	Model	Serial Number	Magnitude	Phase
Twr 1	Kintronics	VSU-1	051517-01	1.000	0.000
Twr 2	Kintronics	VSU-1	051517-02	0.996	-0.56
Twr 3	Kintronics	VSU-1	051517-03	0.993	-0.240

Sample Line Measurements with Sampling Devices Attached Measurement Date: 9/20/2017

weasurement Date.	9/20/2017				
Sample Line	Frequency (MHz)	Measured Resistance	Measured Reactance	Impedance Magnitude	
Twr 1	1250	366.7	-369.5	520.58	w//volt sample & output J plug pulled
Twr 2	1250	319.4	-357.6	479.47	
Twr 3	1250	303.5	-356.9	468.50	

Exhibit 4.10 - KBRF Fergus Falls, MN Night Field Strength Measurement Reference Points

25

T		1	ĸ	BRF(AM) - Fergus	Falls, MN 1250 kHz
			Night	Directional Patto	rn - September 23, 2017
			Nigrit	Directional Patter	- September 23, 2017
Radial:	0.0°				FIM-41 s/n 1149 - Calibrated 5/4/2016
		Distance	N	AD27	
Point #	mV/m	km	North Latitude	West Longitude	Description
1	58.0	2.50	46-17-48	96-02-46	SE corner of E. Fir Ave. & E. Hills Dr.
2	54.0	2.75	46-17-56	96-02-46	S of Traile 32 in culdusack (Lakeview Estates)
3	34.0	3.88	46-18-33	96-02-46	On CR-111 N of large barn
Radial:	53.0°				
Radiai:	53.0	Distance	N	AD27	FIM-41 s/n 1149 - Calibrated 5/4/2016
Point #	mV/m	km			Description
1	205.0	2.82	46-17-22	West Longitude 96-01-00	Description In front of 22475 226th Ave.
2	195.0	3.29	46-17-22	96-00-42	W of 22837 226th Ave.
3	140.0	3.62	46-17-37	96-00-42	On 230th Ave. near Telco box 98E12S3
J	140.0	3.02	40-17-57	90-00-30	On 23001 AVE. Near Telco Dox 962 1283
Radial:	110.0°				FIM-41 s/n 1149 - Calibrated 5/4/2016
		Distance	N/	D27	
Point #	mV/m	km	North Latitude	West Longitude	Description
1	41.0	4.70	46-15-35	95-59-19	On CR33 near field driveway
2	27.0	7.04	46-15-09	95-57-36	On CR124 in curve near fiber cable marker
3	12.0	9.93	46-14-37	95-55-29	On 270th Ave. next to Rosvold Lake
Radial:	181.0°				FIM-41 s/n 1149 - Calibrated 5/4/2016
Tuana.	101.0	Distance	NA	D27	1 W-41 3/11 1143 - Calibrated 3/4/2010
Point #	mV/m	km		West Longitude	Description
1	41.0	2.87	46-14-54	96-02-48	W side of US59BR S of Pebble Lake Golf Dr.
2	15.0	6.34	46-13-02	96-02-51	On 175th St. 0.15 miles E of 25
3	10.0	7.14	46-12-36	96-02-52	On 170th St. on curve 0.18 miles E of 25
Radial:	238.0°	Distance	NA	D97	FIM-41 s/n 1149 - Calibrated 5/4/2016
Point #	mV/m	Distance km		D27 West Longitude	Description
1	195.0	3.27	46-15-31	96-04-56	Description On S Oak St. near end of road
2	130.0	5.16	46-15-51	96-04-56	On Wendell Rd. 0.2 miles N of Dayton Lake Rd.
3	115.0	5.76	46-14-58	96-06-34	On Dayton Lake Rd. near property line 0.3 miles W of Wendell Rd
Radial:	293.0°				FIM-41 s/n 1149 - Calibrated 5/4/2016
		Distance		D27	
Point #	mV/m	km		West Longitude	Description
1	36.0	2.91	46-17-04	96-04-52	S of N Oak St. & W Cavour Ave. Int.
2	31.0	3.27	46-17-08	96-05-07	Front of 632 W Summit Ave.
3	26.0	3.51	46-17-11	96-05-18	W of N First Ave. & S Linden St. Int.