CINCINNATI COLUMBUS NEW YORK

2017 DEC 26 AM 5: 30

December 20, 2017

BY EXPRESS MAIL TO POST OFFICE BOX

Federal Communications Commission Media Bureau P.O. Box 979089 St. Louis, Missouri 63197-9000

RECEIVED - FCC

DEC 2 0 2017

Federal Communications Commission Bureau / Office

Re: Station WNWR(AM) Washington, D.C. Facility ID No. 1072 1027 Application for Direct Power Measurement and Revised Station License

Dear Sir:

Transmitted herewith, in triplicate, on behalf of Global Radio, L.L.C. (Delaware), the licensee of Station WNWR(AM), Washington, D.C., is an application on FCC Form 302-AM. The application requests authority for direct measurement of power and a revised license for the Station based on the completion of the construction of new facilities for the Station, as authorized in FCC File No. BP-20161215ABM.

Also enclosed is FCC Form 159, providing for a credit card payment in the amount of \$1,505.00 for the required filing fee for a license to cover a construction permit and for the AM directional antenna system.

Finally, we are also providing a copy of this submission along with a stamped, selfaddressed envelope. We request that a stamped copy of the submission be returned to us in that envelope.

THOMPSON HINE LLP Attorneys at Law 1919 M Street, N.W. Suite 700 Washington, D.C. 20036-3537 www.ThompsonHine.com Phone 202.331.8800 Fax 202.331.8330

HOMPSON INE

57

n 42 5

Federal Communications Commission Page 2

Should there be any questions in regard hereto, please communicate with the undersigned.

Respectfully submitted,

Barry A. Friedman

Enclosures

cc: Mr. Alan Pendleton (For Public Inspection) Ms. Kay Whitfield (FCC Audio Division) Mr. Jerry Manarchuck (FCC Audio Division)

4848-2526-8045

Federal Communications Commission Washington, D. C. 20554

Approved by OMB 3060-0627 Expires 01/31/98

FOR FCC USE ONLY

vianization and a second second

FCC 302-AM

APPLICATION FOR AM

BROADCAST STATION LICENSE	FOR COMMISSION USE ONLY				
(Please read instructions before filling out form.	FILE NO. βZ	-201712	IN ACII		
		0. 11810	101.001		
SECTION I - APPLICANT FEE INFORMATION					
1. PAYOR NAME (Last, First, Middle Initial)					
Global Radio, L.L.C. (Delaware)					
MAILING ADDRESS (Line 1) (Maximum 35 characters) Suite 201					
MAILING ADDRESS (Line 2) (Maximum 35 characters) 2890 Emma Lee Street					
CITY S Falls Church	TATE OR COUNTRY (if for VA	eign address) ZIP (22042	CODE		
TELEPHONE NUMBER (include area code) C. 703-532-0400 V.	ALL LETTERS	OTHER FCC IDENTIFIER	R (If applicable)		
2. A. Is a fee submitted with this application?		20 11	/es No		
B. If No, indicate reason for fee exemption (see 47 C.F.R. Section					
		por (Plagga avalain);			
		ici (riease explain).	727/11/2		
C. If Yes, provide the following information:		6063	131614		
Enter in Column (A) the correct Fee Type Code for the service you are	applying for. Fee Type Co	des may be found in the "	Mass Media Services		
Fee Filing Guide." Column (B) lists the Fee Multiple applicable for this ap	pplication. Enter fee amour	t due in Column (C).			
(A) (B)	(C)				
FEE TYPE	FEE DUE FOR FEE	FOR F			
	COLUMN (A)				
	\$				
To be used only when you are requesting concurrent actions which result	in a requirement to list more	e than one Fee Type Code			
(A) (B)	(C)				
	\$	FOR F	CC USE ONLY		
	TOTAL AMOUNT				
ADD ALL AMOUNTS SHOWN IN COLUMN C,	REMITTED WITH TH	S FOR F	CC USE ONLY		
THIS AMOUNT SHOULD EQUAL YOUR ENCLOSED	\$				
REMITTANCE	Ť				

1. NAME OF APPLICAN	II INFORMATION			
Global Radio, L.L.C. (Delaw	vare)			
MAILING ADDRESS Suite 201, 2890 Emma Lee	Street			
CITY Falls Church		STATE VA		ZIP CODE 22042
2 This application is for				
	Commercial	Noncomm	nercial	
	AM Direc	ctional AM N	on-Directional	
Call letters	Community of License	Construction Permit File No.	Modification of Construction	Expiration Date of Last
WNWR	Philadelphia, PA	BP-20161215ABM	Permit Flie No(s).	May 3, 2020
3. Is the station n accordance with 47 C.F	ow operating pursuant .R. Section 73.1620?	to automatic program	test authority in	Yes 🖌 No
lf No, explain in an Exhi	bit.			Exhibit No. A
4. Have all the term	s, conditions, and oblig	gations set forth in the	above described	🖌 Yes 🗌 No
If No, state exceptions in	n an Exhibit.			Exhibit No.
5. Apart from the chan the grant of the under	ges already reported, ha lying construction permit	as any cause or circumsta t which would result in a	ance arisen since any statement or	Yes 🗸 No
If Yes, explain in an Ex	a in the construction perr hibit.	mit application to be now	incorrect?	Exhlbit No.
6. Has the permittee fil	led its Ownership Report	(FCC Form 323) or owne	ership	Yes No
certification in accordan	ce with 47 C.F.R. Section	n 73.3615(b)?		✓ Does not apply
If No, explain in an Exhi	bit.			Exhibit No.
7. Has an adverse find or administrative body v criminal proceeding, bro felony; mass media re another governmental u	ling been made or an ad with respect to the applic ought under the provisior elated antitrust or unfa unit; or discrimination?	lverse final action been ta ant or parties to the appli- ns of any law relating to th ir competition; frauduler	aken by any court cation in a civil or he following: any nt statements to	Yes 🖍 No
If the answer is Yes, a involved, including an ic (by dates and file num information has been required by 47 U.S.C. S of that previous submis the call letters of the st	attach as an Exhibit a fu dentification of the court of bers), and the disposition earlier disclosed in con- bection 1.65(c), the applic sion by reference to the tation regarding which the	ull disclosure of the pers or administrative body an on of the litigation. Wh nnection with another a cant need only provide: (i file number in the case he application or Section	ions and matters ad the proceeding here the requisite application or as an identification of an application, 1.65 information	Exhibit No.
		is an of the previously re		

0.00000000

1____

FCC 302-AM (Page 2) August 1995

}‡° --∕

Ŷ.

. .

8. Does the applicant, or any party to the application, have a petition on file to migrate to the expanded band (1605-1705 kHz) or a permit or license either in the existing band or expanded band that is held in combination (pursuant to the 5 year holding period allowed) with the AM facility proposed to be modified herein?

If Yes, provide particulars as an Exhibit.

The APPLICANT hereby waives any claim to the use of any particular frequency or of the electromagnetic spectrum as against the regulatory power of the United States because use of the same, whether by license or otherwise, and requests and authorization in accordance with this application. (See Section 304 of the Communications Act of 1934, as amended).

The APPLICANT acknowledges that all the statements made in this application and attached exhibits are considered material representations and that all the exhibits are a material part hereof and are incorporated herein as set out in full in

CERTIFICATION

1. By checking Yes, the applicant certifies, that, in the case of an individual applicant, he or she is not subject to a denial of federal benefits that includes FCC benefits pursuant to Section 5301 of the Anti-Drug Abuse Act of 1988, 21 U.S.C. Section 862, or, in the case of a non-individual applicant (e.g., corporation, partnership or other unincorporated association), no party to the application is subject to a denial of federal benefits that includes FCC benefits pursuant to that section. For the definition of a "party" for these purposes, see 47 C.F.R. Section 1.2002(b).

2. I certify that the statements in this application are true, complete, and correct to the best of my knowledge and belief, and are made in good faith.

Name Alan Pendleton	Signature				
Title President	Date 12/18/2017	Telephone Number 702-532-0400			

WILLFUL FALSE STATEMENTS ON THIS FORM ARE PUNISHABLE BY FINE AND/OR IMPRISONMENT (U.S. CODE, TITLE 18, SECTION 1001), AND/OR REVOCATION OF ANY STATION LICENSE OR CONSTRUCTION

FCC NOTICE TO INDIVIDUALS REQUIRED BY THE PRIVACY ACT AND THE PAPERWORK REDUCTION ACT

The solicitation of personal information requested in this application is authorized by the Communications Act of 1934, as amended. The Commission will use the information provided in this form to determine whether grant of the application is in the public interest. In reaching that determination, or for law enforcement purposes, it may become necessary to refer personal information contained in this form to another government agency. In addition, all information provided in this form will be available for public inspection. If information requested on the form is not provided, the application may be returned without action having been taken upon it or its processing may be delayed while a request is made to provide the missing information. Your response is required to obtain the requested authorization.

Public reporting burden for this collection of information is estimated to average 639 hours and 53 minutes per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the burden, can be sent to the Federal Communications Commission. Records Management Branch, Paperwork Reduction Project (3060-0627), Washington, D. C. 20554. Do NOT send completed forms to this address.

THE FOREGOING NOTICE IS REQUIRED BY THE PRIVACY ACT OF 1974, P.L. 93-579, DECEMBER 31, 1974, 5 U.S.C. 552a(e)(3), AND THE PAPERWORK REDUCTION ACT OF 1980, P.L. 96-511, DECEMBER 11, 1980, 44 U.S.C. 3507.

FCC 302-AM (Page 3) August 1995

Yes No

L_____

Exhibit No.

SECTION III - LICENSE APPLICATION ENGINEERING DATA Global Radio, L.L.C. (Delaware) PURPOSE OF AUTHORIZATION APPLIED FOR: (check one) 1 1 Station License Direct Measurement of Power 1. Facilities authorized in construction permit File No. of Construction Permit | Frequency Power in kilowatts Call Sign Hours of Operation (kHz) 1540 Day 50.0 (if applicable) Night **WNWR** BP-20161215ABM Unlimited 0.25 2. Station location State City or Town Philadelphia Pennsylvania 3. Transmitter location Street address State City or Town County (or other identification) PA Montgomery Philadelphia 7360 Ridge Avenue 4. Main studio location Street address State County City or Town (or other identification) PA Montgomery Philadelphia 7360 Ridge Avenue 5. Remote control point location (specify only if authorized directional antenna) Street address City or Town State County (or other identification) PA Montgomery Philadelphia 7360 Ridge Avenue

6.	Has type-approved stereo generating equipment been installed?		Yes	V N	0
7.	Does the sampling system meet the requirements of 47 C.F.R. Section 73.68?	\checkmark	Yes	N	0
			Not A	pplicabl	le

Attach as an Exhibit a detailed description of the sampling system as installed.

F							
8. Operating constants:							
RF common point or antenna cu modulation for night system 1.964	RF common po modulation for 32.45	RF common point or antenna current (in amperes) without modulation for day system 32.45					
Measured antenna or common p operating frequency	point resistance (i	in ohms) at	Measured ante operating frequ	enna or common Jency	point reactance (i	n ohms) at	
Night	Day		Night		Day		
70	50		-30.8		-7.7		
Antenna indications for direction	al operation						
Towers	Antenna Phase reading	a monitor g(s) in degrees	Antenna monitor sample current ratio(s)		Antenna base currents		
	Night	Day	Night	Day	Night	Day	
Tower 1 (Center)	99.4	0.0	1.340	1.000	Not Required	Not Required	
Tower 2 (Southeast)	0.0	-119.3	1.000	0.441	Not Required	Not Required	
Tower 3 (Northwest)	-106.1	141.7	0.440	0.735	Not Required	Not Required	
Manufacturer and type of anteni	na monitor: Po	otomac Instrumen	its AM-1901-3				

	Name of A	pplicant				
--	-----------	----------	--	--	--	--

17

FCC 302-AM (Page 4) August 1995

Exhibit No. See Statement E

SECTION III - Page 2

permit?

9. Description of antenna system ((f directional antenna is used, the information requested below should be given for each element of the array. Use separate sheets if necessary.)

Type Radiator	Overall height in meters of radiator above base insulator, or above base, if grounded.	Overall height in meters above ground (without obstruction lighting)	Overall height in meters above ground (include obstruction lighting)	If antenna is either top loaded or sectionalized, describe fully in an Exhibit.
uniform cross section	44.2 (all)	T1=45.8, T2=45.3, T3=45.4	T1=45.8, T2=45.3, T3=45.4	Exhibit No. See Statement E
Excitation	Series	Shunt		

Geographic coordinates to nearest second. For directional antenna give coordinates of center of array. For single vertical radiator give tower location.

North Latitude 40	0	02	T	46	u	West Longitude 75	0	14	ı	09	W

If not fully described above, attach as an Exhibit further details and dimensions including any other antenna mounted on tower and associated isolation circuits.

Exhibit No. See Statement E

Exhibit No.

See Statement E

Also, if necessary for a complete description, attach as an Exhibit a sketch of the details and dimensions of ground system.

10. In what respect, if any, does the apparatus constructed differ from that described in the application for construction permit or in the

Constructed facility does not differ from that described in the CP application

11. Give reasons for the change in antenna or common point resistance.

No change in authorized Daytime common point resistance.

New construction for Nighttime system - new common point resistance

I certify that I represent the applicant in the capacity indicated below and that I have examined the foregoing statement of technical information and that it is true to the best of my knowledge and belief.

Name (Please Print or Type)	Signature (check appropriate box below)
Garrison C. Cavell	AP THE
Address (include ZIP Code)	Date
Cavell, Mertz & Associates, Inc.	December 15, 2017
7724 Donegan Drive	Telephone No. (Include Area Code)
Manassas, VA 20109	(703) 392-9090

Technical Director			Registered Professional Engineer
Chief Operator)	\checkmark	Technical Consultant
Other (specify)			

FCC 302-AM (Page 5) August 1995

EXHIBIT A

The instant application requests a license to cover for a directional AM station. Pursuant to Section 73.1620(a)(4), an application for a license to cover, on FCC Form 302-AM, must be filed at least 10 days "prior to the date on which [the permittee] desires to commence program test operations."

Statement E

Attachment to FCC Form 302-AM for WNWR APPLICATION FOR DIRECT POWER MEASUREMENT AND REVISED STATION LICENSE (Method of Moments Proof-of-Performance)

Supporting FCC Construction Permit BP-20161215ABM

WNWR Philadelphia, Pennsylvania - Facility ID 1027 Global Radio, L.L.C. (Delaware)

> Prepared by Garrison C. Cavell CAVELL, MERTZ & ASSOCIATES, INC. DECEMBER 15, 2017

Introduction and Summary

This Statement has been prepared on behalf of *Global Radio*, *L.L.C. (Delaware)*, ("*Global Radio*"), licensee of radio station WNWR, Philadelphia, Pennsylvania. WNWR is presently authorized to operate during daytime-hours on a frequency of 1540 kHz with a nominal operating power of 50,000 Watts using a directional antenna system (see FCC File Number BMML-20120724AFT.) *Global Radio* also holds a Construction Permit (FCC File Number BP-20161215ABM) authorizing the addition of nighttime operation for WNWR at 250 Watts using the same physical antenna tower array as is employed for the daytime operation.

The installation of the additional RF phasing and coupling systems necessary to operate with the authorized new nighttime facilities has now been completed and the nighttime system operating parameters have been achieved using the results of Method-of-Moments ("MoM") analysis as permitted by Section 73.151(c) of the FCC Rules.

The WNWR antenna array is eligible for licensing under the Commission's MoM Rules in that the antenna system consists of series fed, base insulated towers, using a conventional buried-wire ground system. Further, a MoM Proof-of-Performance has been previously used for this Station as the basis for a 2012 grant of its present daytime license (following completion of certain antenna and ground system improvements),

As is demonstrated in the following, the new nighttime directional antenna system has been adjusted to produce antenna monitor parameters that are within +/- 5 percent in ratio and +/- 3 degrees in phase of the MoM modeled values. Additionally, the operating power of the nighttime antenna system was determined and adjusted per the requirements of FCC Rule Sections 73.51 and 73.54(b). Finally, the authorized daytime array remains in adjustment and in full compliance with the FCC's Rules. This Exhibit and the FCC Form 302-AM demonstrate that the WNWR antenna system is adjusted in accordance with pertinent FCC Rules and policies, as well as the terms and conditions of its Construction Permit ("CP").

Status of Licensed Daytime Operation

The daytime tuning units that were put in place during the 2012 system renovation were constructed using internal "partitions" in anticipation of adding another station or mode of operation. As such the process of adding and adjusting the RF component for the new WNWR nighttime system was not expected to have a material impact on the WNWR daytime mode of operation. Nevertheless, "before" and "after" daytime antenna monitor operating parameters and base current indications were observed, and checks of the daytime common point resistance, reactance, and common point current were accomplished. No material changes were noted.

Basis for 2017 Nighttime Proof-of-Performance

As part of the antenna plant re-checking process, the open-circuit "self" impedance of each tower was also measured and compared against the "baseline" impedance measurement gathered in 2012 for the daytime MoM proof. The results are tabulated below.

Tower	2017 Mea Open Circ	isured uit-Self	2012 Measured Open Circuit-Self
1 (C)	60.22 +j 1	11.85 Ω	61.10 +j 107.10 Ω
2 (SE)	63.23 +j 1	05.91 Ω	65.10 +j 100.40 Ω
3 (NW)	65.92 +j 1	04.48 Ω	62.60 +j 101.50 Ω

As shown below, the measured day array open-circuit-self impedances (taken in the winter of 2012) are within the FCC Rule¹ tolerance of plus or minus two Ohms and four percent of the values observed in the summer 2017 re-measurement. Conversely, the 2017 readings are within the tolerance window of the 2012 readings. This shows excellent stability over the seasons and intervening years.

	2017 Lov	017 Lower Limit 2017 Upper Limit		per Limit	2012 Lov	ver Limit	2012 Upper Limit		
	Resistance	Reactance	Resistance	Reactance	Resistance	Reactance	Resistance	Reactance	
	55.81 Ω	105.38 Ω	64.63 Ω	118.32 Ω	56.66 Q	100.82 0	65.54.0	112.20 0	
	58.70 Ω	99.67 Ω	67.76 Ω	112,15 Q	60 50 0	04.38.0	60.70 0	115,58 52	
	61.28 Ω	98.30 Q	70.56.0	110.66.0	5º 10 0	94.38 22	09.70 12	106.42 Ω	
1		20100 11	10.50 32	110.00 32	20.10 12	95.44 <u>Ω</u>	67.10Ω	107.56 Ω	

Given the above results, it was concluded (and informally confirmed with FCC staff) that a reanalysis (reproofing) of the WNWR daytime array is not necessary since the daytime open-circuit impedances remain within their FCC's prescribed impedance tolerances.² Accordingly, the licensed daytime array is not being reproofed at this time.

A question had arisen as to which set of Open-Circuit-Self measurements (2012 or 2017) would be preferred for use in the new nighttime MoM analysis. After some discussion, it was informally recommended by FCC staff that the 2017 WNWR nighttime Proof-of-Performance, employing the most recent (2017) open-circuit-self impedance measurements for the purposes of MiniNEC model convergence be submitted, rather than the 2012 data. Accordingly, the 2017 measurements are used herein.

 $^{^{2}}$ The WNWR sample system, which serves both operating modes, is being recertified as part of this Proof since the sampling devices are being replaced as part of the addition of the nighttime mode. Further, while not required, a fresh set of Daytime mode Reference Point field strength readings will be supplied in this Proof document (along with the required new nighttime mode Reference Point readings).

tance

¹ FCC Rule Section 73.151(c)(2)(ii)

Antenna and Ground System Description

The existing WNWR daytime antenna system consists of three, uniform cross-section, guyed, base insulated, series excited steel towers³. Each tower uses 21 foot (6.4 meter) lengths of guy wire to provide approximately 8.3 electrical degrees of top-loading. The nighttime CP specified the use of this existing antenna array; no tower or top-loading changes were required.

The WNWR ground system consists of 120 equally spaced #10 soft-drawn, copper radial wires buried into the ground and arrayed every 3° around each tower, to a length of 160 feet (48.8 meters), except where truncated at the nearest property boundary or where shortened and bonded to transverse copper straps located at points midway between towers. An additional 120 radials, each 50 feet (15.2 meters) in length, are interspersed between the primary radials around each tower.⁴ No changes were required or made to this existing system as a result of the construction of the nighttime CP facility.

MoM Modeling Process

٩.,

FCC Rule Section 73.151(c) permits the use of computer modeling techniques ("Method of Moments" or "MoM" modeling) as a means of verifying AM radio station directional antenna performance for certain "qualified" antenna systems. The WNWR directional antenna array is "qualified" for such an analysis since it consists of series fed, base insulated (top loaded) towers, using a conventional, buried-wire, ground system. (The WNWR 2012 Proof-of-Performance for the licensed WNWR daytime operation used a MoM based Proof.)

Accordingly, the WNWR nighttime antenna system under discussion herein was evaluated using a MoM analysis; the particular program employed for this purpose was *Expert MININEC Broadcast Professional*⁵, which is a PC compatible version of the Numerical Electromagnetics Code (NEC) family of analytical tools. This program uses the electric field integral equation for thin wires and the magnetic field integral equation for closed, conducting surfaces. The antennas can be modeled as a series of wires in free space or above a ground plane environment, as is the case with broadcast antennas.

⁵ The version of software used was Version 14.5, published by *EM Scientific Inc.*

³ The height above the base insulator of each tower is 145 feet (44.2 m) or 81.7 degrees at the WNWR frequency. No new or modified antenna structure registration is required due to the modest tower height. Information on overall structure height (inclusive of base pier and insulator) is included on the attached FCC Form 302-AM.

⁴ Additionally, each tuning unit support pad is topped with extruded copper mesh which is tied into the base ground system via copper straps. Each tuning unit is also securely bonded to the ground system through copper straps.

The procedure for conducting a broadcast MoM proof first involves making impedance measurements at each of the towers to serve as benchmarks for calibrating the findings of the MoM calculations. An initial model of the characteristics of each individual tower is developed (the "self" condition), and then model tower characteristics (height and width) are then adjusted, while consideration is made of the stray reactances found in the antenna base environment using circuit analysis methods. In this manner, the modeled impedance is "converged" to the measured values, thus establishing a calibrated mathematical version of the antennas. Then, using the calibrated antenna model for all towers, the theoretical field parameters are introduced into the software to synthesize the pattern for the Station in each directional mode of operation. Required base currents and driving point impedance conditions are then derived along with a set of antenna monitor parameters for the modeled array. These parameters are used as "targets" by the field engineer or technician to achieve the authorized pattern by adjusting the RF phasing and coupling system to the modeled values. The following text describes the specific approach taken in the modeling and adjustment of this particular directional antenna system.

Tower Impedance Measurements for use in Converging the WNWR Method of Moments Model

Before the model was run for the nighttime analysis, impedance measurements were taken at each of the WNWR tower bases using a precision, calibrated measurement system consisting of a *Hewlett-Packard* model 8753C network analyzer in conjunction with a *Tunwall Radio* directional coupler system and an *Electronic Navigation Industries* (ENI) Model 310 L RF amplifier. Analyzer calibration was field verified prior to each measurement using the procedures specified in the manufacturer's instruction manual and using precision calibration standards. After calibration of the measurement system, impedance measurements were made at each tower at the location of the final output jacks⁶ ("J-plugs") within the respective Antenna Tuning Units ("ATUs"). As each tower was being measured, all the other tower bases were "open circuited" at the same impedance measurement locations. This J-Plug reference point at each ATU is located immediately adjacent to the sampling transformer of the antenna monitor system at the output of the ATU system enclosure.

At each ATU enclosure, it was confirmed that the tower RF current passes directly from that point, through heavy conductors, through the tuning unit enclosure bowl insulator, and on to the tower attachment point above the base insulators, without any intervening adjustable shunt components following the sampling transformers. A fixed value static drain choke is in place for each tower as is the base insulator, so an assumed value for these reactances, as well as other stray reactances encountered in the base region, was employed for the "base circuit"

⁶ This point is referred to in this report as the tower "reference point", since it is the location where the sampling system toroidal current transformers ("TCTs") are also installed and from which antenna monitor (current) samples are taken.

calculations for each tower. The installed static-drain chokes exhibit very high reactances at the WNWR frequency⁷, and hence do not require particular consideration in this analysis. Nevertheless, their effects were included in the "base circuit" strays analysis for completeness. As is shown in the following pages, the measured impedances at the tower TCT reference points materially agree with converged modeled expectations.

Tower Base Environment (Base Circuit Analysis) Calculations

After the base impedance measurements were harvested, tower base environment circuit calculations were performed both manually and by using the "WCAP" network analysis program software⁸ provided by *Westberg Consulting*. These calculations were used throughout the proof process to relate the MoM modeled impedances⁹ to the ATU output measurement (reference) points. As shown on the following pages, the Open Circuit Reactance found at each tower was calculated for the assumed base conditions for all towers. This value was then used in the MoM model as a "lumped load" at ground level for the open circuited ("OC") MoM individual model "self" (individual tower) case. Using these assumed lumped loads, base environment, and MoM analysis, initial values were derived and the model converged for each tower.

A schematic of the assumed circuit, along with a summary of results and a tabulation of WCAP calculated values, is provided in the following page. Values for the various shunt stray reactances for base insulators and static drain chokes, are based upon manufacturer supplied information, and are included below the representative schematic along with the realized "lumped load" value. In each of the WCAP tabulations, as illustrated by the representative schematic, "Node 2" represents the ATU output "reference point" (TCT location). "Node 3" represents the tower feed-point. "Node 0" represents ground potential. In the Open Circuit "Tower Self" analysis tabulations for each tower, the calculated ATU output impedances appear under the "TO IMPEDANCE" columns, following the "phantom" 1 ohm resistors (R $_{1-2}$). This phantom resistor is included in series with the drive current sources (I₀₋₁) to provide defined calculation points in the software. The tower feed-point impedances from the MoM model are represented by "complex loads" from "Node 3" to ground (R₃₋₀).

⁹ The MoM model was run for each tower starting with the physical array geometry, element heights, element radii and other as-built antenna information. This "starting point" model for each tower was then converged by adjusting element heights and radii as generally described in the above and in following sections to achieve the final model.

⁷ At the WNWR frequency, these chokes actually exhibit capacitive rather than inductive reactance.

⁸ The WCAP software performs nodal analysis calculations, similar to the well-known "SPICE" circuit analysis software.

As shown, the modeled and measured base impedances at the ATU output jacks (with the other towers open circuited at their ATU output jacks) agree with each other within +/- 2 ohms and +/- 4 percent for resistance and reactance, as required under the Commission's MoM Rules.

Representative Open Circuit Tower Base Environment Schematic for all WNWR Towers

Summary of Completed Open Circuit Analysis of WNWR Tower Base Environment

Tower Number and Relative Location	Tower Feed Inductance	Tower Feed Reactance	MiniNEC Modeled <u>Complex Load</u> <u>Impedance</u>	WCAP <u>Reference Point*</u> Z _{ATU} Modeled	2017 <u>Reference Point*</u> Z _{ATU} Measured
Tower 1 (C)	1.087 µH	10.52 Ω	57.604 +j 99.647 Ω	60.34 +j 111.823 Ω	60.22 +j 111.85 Ω
Tower 2 (SE)	1.291 μH	12.49 Ω	62.657 +j 92.070 Ω	63.34 +j 105.827 Ω	63.23 +j 105.91 Ω
Tower 3 (NW)	1.677 μH	16.23 Ω	63.143 +j 87.224 Ω	65.83 +j 104.503 Ω	65.92 +j 104.48 Ω

Notes:

* - At ATU Output Jack J-Plug (TCT Location); Designated as ATU "Reference Point"

Static Drain Choke Reactance at 1540 kHz: -11,600 Ω (8.909 pF)

Base Insulator Reactance at 1540 kHz: - 7381.95 $\Omega~~(\sim 14~pF)$

Lumped Load Assumption at 1540 kHz: - 4511 Ω (Base Insulator and Static Drain Choke)

Circuit Analysis Used for Each Tower to Verify Method of Moments Model

WCAP Tower Base Open Circuit "Self" Analysis - WNWR Tower 1 (C)

W	CAP OU	TPU	JT AT FR	EQU	JENCY: 1.	540	Mł	łz			WNV	VR 1	Tower	1 (Cei	nter)
N	ODE VC	DLT.	AGES												
	Node:	1	127.5400) 女	61.2549°	V									
	Node:	2	127.0621	女	61.6503°	V									
	Node:	3	117.7964	<u></u>	59.2203°	V									
	WCA	AP P	ART		CURRE	NT	IN			CUR	RENI	ΓOU	Т		
	WCA	P P	ART]	BRANCH	VO]	LTA	AGE		BRA	NCH	CUI	RREN	Т	
R	3→0	57.	60400000		117.80 2	4	59	.220°	V	1.0	2 4	-0).748°	 A	
· C	3→0	0.	00001400		117.80 z	¢.	59	.220°	V	0.0	24	149).220°	А	
L	2→3	1.	08700000		10.62 z	¢.	89	.705°	V	1.0	1 女	-0).295°	А	
C	2→0	0.	00000891		127.06 z	¢.	61	.650°	V	0.0	1 4	151	.650°	А	
R	1→2	1.0	00000000		1.00 z	¢	0	.000°	V	1.0) 女	0	0.000°	А	
	V	VCA	P PART		FROM	M II	MP	EDAN	CE	то	IMP	EDA	NCF		
R	3→0		57.60400	0000	57.60	+	i	9	9.647	0	00 -	- i		000	
С	3→0		0.0000	1400	0.00	_	i	738	1 955	0	00 -	'J ⊢i	0.0	000	
L	2→3		1.08700	0000	59.19	+	i	11	1 060	59	19 -	'J ⊢i	100.4	542	
С	2→0		0.00000	0891	0.00	-	i	1160	0 333	0	00 -	- i	0.0	000	
R	1 →2		1.00000	0000	61.34	+	j	11	1.823	60.	34 -	- j	111.8	823	
							U	Γ	Measu	red: 60).22	+j	111.8	85	
									Differei	nce: 0	.12	Ū	0.02	7	
W	CAP PA	RT		VSW	R										
wc	AP INP	UT	DATA:				/								
	1.5400	0.0	00010000	1			1	Cert	er Treguen	ov – 1,54 MHz					
								rice Cri	inencà la cr	pr iekoz or natios					
R	57.604	0000	00 3	0	99.64700	000		1.0	1	Reference Point					
C	0.000	014(00 3	0				-[Phantom	2 2 2	² Tower Fee	<u>ه</u> ط س			eled
L	1.087	0000	00 2	3	0.00000	000	Constanting of the local division of the loc	↑	I Ω Resist	or T	Reactance	Ť		Comple	ex Load ver)
	0.000	0089	<i>₹</i> 1 2	0				1		*		-	-	-	
K	1.000	0000		2	0.00000	000				Static Drain Choke	1	Base Insula	tor		
1	1.000	0000	0 0	1	0.00000	000				Note: At this freque Static Drain Ch Capacitive Rea	ncy, this oke Exhibes curres				JI
							1								

CAVELL MERTZ & Associates, Inc.

t.

WCAP Tower Base Open Circuit "Self" Analysis – WNWR Tower 2 (SE)

WO	CAP OL	JTPU	T AT FR	EQU	JENCY:	1.540	M	Hz	W	'NWI	R Towe	r 2 (So	utheast)
N	ODE VO	OLTA	GES										
]	Node:	1	123.8491	x	58 7030)° ∖	r						
1	Node:	2	123.3326	×	59 1000	, .)∘ V	7						
נ	Node:	3	112.6637	×	55 8358	v v	r						
				-	55.0550	, .							
	WC	AP PA	ART		CURR	ENT	IN		CURR	ENT (OUT		
	WCA	P PA	RT	_]	BRANCH	I VO	LT.	AGE	BRAN	CH (CURRE	NT	
R	3→0	60.6	5700000		112.66	4	55	5.836° V	1.02	女	-0.787	∕° A	
С	3→0	0.0	0001400		112.66	4	55	5.836° V	0.02	4	145.836	° A	
L	2→3	1.2	9100000		12.61	ム	89	9.690° V	1.01	¥	-0.310	° A	
С	2→0	0.0	0000891		123.33	4	59	9.100° V	0.01	Ą	149.100	° A	
R	1→2	1.0	0000000		1.00	 女	(0.000° V	1.00	¥	0.000	° A	
		WCA	P PART		FRO	OM I	MP	EDANCE	το ι	MPE	DANCI	F.	
R	3→0		60.65700	0000	60.6	6 +	i	92.070	0.00) +	i	<u> </u>	,
С	3→0		0.00001	400	0.0	0 -	i	7381.955	0.00) +	j i i	0.000	
L	2→3		1.29100	0000	62.1	9 +	i	105.207	62.19) +	i 9	2 715	
С	2→0		0.00000)891	0.0	0 -	i	11600.333	0.00) +	i	0.000	
R	1→2		1.00000	0000	64.3	4 +	j	105.827	63.34	1 +	i 10:	5.827	
	×						-	Measured:	63.2	23 +	i 10	5.91	
								Difference:	0.1	1	0	083	
W	CAP PA	ART	,	VSW	R			55			0	,	
WC	AP INP	ת דעזי	ΑΤΑ·				/						
	1.5400	0.00	0010000	1			-	Charles a calacteria i	l ≈ 6002				
								Frequency Garope - 3	o kHy				
R	60.657	70000	0 3	0	92.070	0000		Reference	Point				
С	0.000	00140	0 3	0				- Phaetom	~ ² T	ower Feed			- Internet
L	1.291	10000	0 2	3	0.000	0000		1 Ω.Resistor	Ť	Reactance	1ª	₹ com	plex Load
С	0.000	00089	1 2	0				L.	<u> </u>		<u> </u>	•	
R	1.000	00000	0 1	2	0.000	0000		_	Static Drain Choke		Base		
Ι	1.000	00000	0 0	1	0.000	0000		Note: 7	I this frequency, th talic Drain Choke Is	nis Huibets	mawator		
							1		apatitive Associance)			

WCAP Tower Base Open Circuit "Self" Analysis - WNWR Tower 3 (NW)

WCAP OUTPUT AT FRE	EQUENCY: 1.540 MHz	WNWR Tower 3 (Northwest)
NODE VOLTAGES		
Node: 1 124.0450	∡ 57.4013° V	
Node: 2 123,5091	∡ 57.7921° V	
Node: 3 109.9472	4 53.2804° V	
WCAP PART	CURRENT IN	CURRENT OUT
WCAP PART	BRANCH VOLTAGE	BRANCH CURRENT
R 3→0 63.14300000	109.95 4 53.280° V	1.02 <u>4</u> -0.818° A
C 3→0 0.00001400	109.95 ∡ 53.280° V	0.01 ∡ 143.280° A
L 2→3 1.67700000	16.37 ∡ 89.678° V	1.01 ∡ -0.322° A
C 2→0 0.00000891	123.51 ∡ 57.792° V	0.01 ∡ 147.792° A
R 1→2 1.0000000	1.00 ≰ 0.000° V	1.00 ∡ 0.000° A
WCAP PART	FROM IMPEDANCE	TO IMPEDANCE
$\begin{array}{ccc} R & 3 \rightarrow 0 & 63.143000 \\ \hline \end{array}$	300 63.14 + j 87.224	0.00 + j 0.000
$C \rightarrow 0 \qquad 0.000014$	400 0.00 - j 7381.955	0.00 + j 0.000
$L 2 \rightarrow 3 \qquad 1.677000$	000 64.66 + j 103.934	64.66 + j 87.707
$C \xrightarrow{2 \to 0} 0.000008$	891 0.00 - j 11600.333	0.00 + j 0.000
$\mathbf{R} 1 \rightarrow 2 \qquad 1.000000$	000 66.83 + j 104.503	65.83 + j 104.503
	Measur	red: 65.92 +j 104.48
	Differen	nce: 0.09 0.002
WCAPPARI V	/SWR	
WCAP INPUT DATA:		
1.5400 0.00010000	1 Center Dequenci	cy 1.54 Mu2
	i requesto plano	ρ
R 63.14300000 3	0 87.22400000 Re	Reference Point
C 0.00001400 3	0	2 Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z
L 1.67700000 2	3 0.0000000 Г 1 Ω Resistor	or To Reactance To S Complex Load
C 0.00000891 2	0 프	<u>↓</u> <u>↓</u> <u>↓</u>
R 1.00000000 1	2 0.0000000	Static Drain Base Clooke Insulator
1 1.00000000 0	1 0.00000000	Note: At this frequency, this Static Dran Cloke (shibts Capation Restance)

ž

Details of MoM "Open Circuit" Modeling - for Towers Driven Individually

In the underlying MoM modeling used in the preceding (WCAP) circuit analysis, each tower is considered individually, with the companion towers present in the model with "loaded" bases. "Open Circuit Self" ("OC") analysis calculations are initially made based upon the actual physical characteristics of the array. Then modeled data is then "converged" with the "as-measured" data for each tower by applying corrections to the tower dimensions to compensate for velocity of propagation, assumed stray base reactances, and other less readily quantified "real world" effects¹⁰. The results of this modeling work yields the "modeled complex load impedances" shown in preceding circuit analysis. Copies of the resulting model program outputs for each tower follow this section of this report.

To construct the model in the MiniNEC program environment, all aspects of the radiating portions of the antenna system radiators are considered and entered into the program in mathematical terms the software can use. In this case, the WNWR towers are identical, eighteen inch face, uniform cross-section, guywire top-loaded, guyed towers, so given the relatively slender diameters of the involved towers, the accepted practice of using a single thick "wire" approach to represent each tower was selected, as opposed to developing a lattice or wire-frame model for each tower. The effective radius for the tower "wire" was calculated in the usual manner, and the top and bottom wire end points of each of the tower wires were specified in electrical degrees rather than meters for convenience. As the data were entered, no wire end caps were employed and a perfect ground environment was assumed.

The horizontal plane geometry data used in this analysis were taken from the licensed theoretical directional antenna specifications for WNWR, as discussed earlier in this report. Distances between elements were specified in electrical degrees, while azimuths - with respect to the center reference tower, Tower 1 (C) - are specified in degrees relative to True North. The guy wire top loading was laid out in the model in the same fashion, physical wire lengths, and relative orientations as is physically used at the site, including the "bridle" that connects the distal ends of the top load wires

¹⁰ For instance, the proximity of the tuning units to the towers, varying tuning unit size (especially the larger units for a higher power system at higher frequency arrays), their orientation with respect to the tower, differing lengths of feed line to the towers, and even differences in ground elevation at the tower base and the "lay of the land", all have an influence on the modeling outcome.

together.

With respect to model and FCC constraints, since the WNWR towers are "physically" 81.7 electrical degrees high at 1540 kHz, for the purposes of this analysis, the towers were modeled using 10 segments per tower. As such, the segment length is 8.2 degrees, which satisfies the Commission's §73.151(c)(1)(iii) requirement that no less than one segment be used for each 10 electrical degrees of the tower's physical height. The guy wire top loading was modeled as physically constructed. Given the short lengths of the wires (each 21 feet), 2 segments were used per wire, which also satisfies the Commission's segment number per 10 degree requirement.

After the initial setup of antenna array information in the model, the individual towers were studied iteratively with all other towers open circuited with appropriate lumped loads applied, while tower wire characteristics were adjusted (in height and radius) until the modeled resistance approximately matched the measured resistance. For simplicity, no changes were made in the relative top loading as the model was adjusted - the top loading "hat" system moved as an intact unit as the tower heights were adjusted. Final adjustments to converge the model reactances with the measured reactances were made through the introduction of the WCAP circuit model, shown in the preceding pages, which allowed an approximation of the series stray reactances found in the tower base environment. The model assumption included loads at ground level having the reactances that were calculated for them using the base circuit models for the open circuited towers of the array. The same stray reactances as were used in the 2012 daytime proof were again used in this (2017) nighttime proof since nothing has changed in the base environment since the last analysis.

Each tower's adjusted modeled height relative to its physical height falls within the required range of 75 to 125 percent. Each modeled tower radius fell within the required range of 80 percent to 150 percent of the radius of a circle having a circumference equal to the sum of the widths of the tower sides. A summary of this portion of the model input data is provided below:

Tower	Physical Height (at 1540 kHz)	Modeled Height	Modeled % of Height	Radiator Physical Equivalent Radius	Modeled Radius	Modeled % of Radius
1– Center	81.7° electrical	80.991°	99.13%	0.2180 m	0.2784 m	127.71%
2 – Southeast	81.7° electrical	84.793°	103.79%	0.2180 m	0.2210 m	101.38%
3 – Northwest	81.7° electrical	87.972°	107.68%	0.2180 m	0.2815 m	129.13%

Model Evaluation

The WNWR MiniNEC model was checked using the program's "problem definition evaluation" function in the course of undertaking the analysis. No segment warnings or errors were reported with respect to the towers and no model violations occurred. However, "junction radius ratio" warnings were given for the top loading wires, but this result was similarly observed in the previously granted WNWR 2012 MoM Proof. These warnings are due to the differences in radius between the "top-loading wires" and the equivalent radius "wires" representing the towers in the model. In this instance, the warnings are of no concern for the following reason.

This version of the MiniNec program has guidelines that consider a junction radius ratio of over 100 to constitute an error, while a warning is given for a ratio between 10 and 100 *as a cautionary measure*. The program instructions state that "*for best results the ratio of the radii of wires at a junction should be less than 10. However, Expert MININEC has shown reasonable results to ratios of 100.*" In this instance, the ratios in this model range from approximately 22 to 28. Inasmuch as the ratio is well below 100, this is comfortably within the confidence range of the software, and is verified by the fact that the impedance measurements easily match the model. It is therefore concluded that this model and the analysis is valid and satisfies the guidelines.

Other Model Considerations - Environmental Factors

The WNWR site is proximal to numerous other towers located in the Roxborough antenna farm, as has been noted in prior *Global Radio* submissions to the FCC. Accordingly, particular consideration had been given to these unrelated structures in the MoM Proof-of-Performance filed for WNWR in 2012¹¹. After FCC staff review, a revised station license was subsequently granted based upon the techniques employed that Proof (see FCC File Number BMML-20120724AFT). The established 2012 "simplified approach" is again being used for this 2017 nighttime Proof and analysis because no material changes have occurred in the nearby environment, as demonstrated by a satisfactory comparison of the present (2017) "open-circuit self" base impedance measurements to the 2012 measurements (detailed in an earlier section of this report). Thus the use or this previously approved approach is justified.

¹¹ In 2012, an analysis was conducted to determine whether inclusion of the nearby towers in the WNWR model was necessary. After informal discussions with FCC staff, comparative MiniNEC models were run to determine the "with" and "without" adjoining tower impact on the WNWR individual open-circuit-self" base impedance values. It was found that the influence of these "other towers" did not disturb the open circuit-self base impedances of the WNWR towers to such an extent that the results fell out of the FCC's "impedance tolerance window" nor did the added impact of these other towers adversely affect the convergence. Hence, the neighboring structures were ignored for the purposes of converging the individual towers in the 2012 analysis. This conclusion and approach was accepted by FCC staff at the time and a license was subsequently granted on this basis.

MoM Model Details for Towers Driven Individually – <u>WNWR Tower 1(C)</u> OC Self - (Sheet 1 of 4)

GEOME Envir	TRY:	Wire coordi t: perfect	nates in ground	degrees; other	dimensio	ns in meters
wire	caps	Distance	Angle	Z	rad	ius seas
1	none	0	0	0	.2784	10
		0	0	80.991		
2	none	0	0	80.991	.01	2
		11.837	17.	72.691		
3	none	0	0	80.991	.01	2
		11.837	137.	72.691		
4	none	0	0	80.991	.01	2
		11.837	257.	72.691		
5	none	11.837	17.	72.691	.01	2
		11.837	137.	72.691		
6	none	11.837	137.	72.691	.01	2
		11.837	257.	72.691		
7	none	11.837	257.	72.691	.01	2
		11.837	17.	72.691		
8	none	107.	129.8	0	.221	10
		107.	129.8	84.793		
9	none	107.	129.8	84.793	.01	2
		104.21	125.511	76.493		
10	none	107.	129.8	84.793	.01	2
		115.377	130.325	76.493		
11	none	107.	129.8	84.793	.01	2
		102.119	134.427	76.493		
12	none	104.21	125.511	76.493	.01	2
		115.377	130.325	76.493		
13	none	115.377	130.325	76.493	.01	2
		102.119	134.427	76.493		
14	none	102.119	134.427	76.493	.01	2
		104.21	125.511	76.493		
15	none	74.5	324.9	0	.2815	10
		74.5	324.9	87.972		
16	none	74.5	324.9	87.972	.01	2
		79.962	329.677	79.672		
17	none	74.5	324.9	87.972	.01	2
		66.151	325.905	79.672		
18	none	74.5	324.9	87.972	.01	2
1.0		78.068	319.152	79.672		
19	none	79.962	329.677	79.672	.01	2
20		66.151	325.905	79.672	0.1	
20	none	00.151	325.905	79.672	.01	2
01		78.068	319,152	79.672	01	
Ζ⊥	none	70.000	319.152	19.012	.01	2
		79.962	329.077	19.672		
Numbe	er of	wires	= 21	cur	rent node	s = 75
			minimu	m	max	imum
Indiv	ridual	wires	wire .	value	wire	value
segme	ent le	ngth	9	5.89762	5	10.2511
radiu	IS		2	.01	15	.2815

Post.

MoM Model Details for Towers Driven Individually - <u>WNWR Tower 1(C)</u> OC Self - (Sheet 2 of 4)

ELECT no. 1 Sourc Lumpe	RICAL DESCR frequency lowest 1.54 es s d loads load node 1 1 2 26 3 51	SUPTION step 0 source node 1 1 resista (ohms) 0 0 0	Free no. c steps 1 e sector 1 ance rea (of 0 -4, -4,	<pre>guencies (of segmen s minimu .01638 c magnitu 1. actance mms) 511. 511.</pre>	MHz) t lengt 23 de induc (mH) 0 0 0	th (wavelen maximum .0284754 phase 0 stance cap (uF 0 0 0 0	gths) type voltage acitance passive) circuit 0 0 0 0
IMPED	ANCE norm	alization	= 50				
freq (MHz) sourc	resist (ohms) $e = \frac{(ohms)}{1; nod}$	react (ohms) le 1, secto	imped (ohms)	phase (deg)	VSWR	S11 dB	S12 dB
1.54	57.604	99.647	115.1	60.	5.2782	-3.3315	-2.7112
CURREI coord	NT rms Freq inates in de	quency = 1. egrees	54 MHz Inpı	it power =	.002174	09 watts Ef	ficiency = 100. %
no	x	Y	7.	(amps)	phase (deg)	real (ampg)	1maginary
GND	0	0	0	(amps) 6.14E-03	(deg)	(amps)	(amps)
2	õ	õ	8.0991	6.66E-03	297.3	3.05E-03	-5.92E-03
3	0	0	16.1982	6.88E-03	295.8	2.99E-03	-6.19E-03
4	0	0	24.2973	6.92E-03	294.7	2.89E-03	-6.29E-03
5	0	0	32.3964	6.82E-03	293.8	2.75E-03	-6.24E-03
.6	0	0	40.4955	6.58E-03	293.1	2.58E-03	-6.05E-03
7	0	0	48.5946	6.21E-03	292.5	2.38E-03	-5.74E-03
8	0	0	56.6937	5.75E-03	292.1	2.16E-03	-5.33E-03
9	0	0	64.7928	5.23E-03	291.8	1.94E-03	-4.86E-03
10	0	0	72.8919	4.83E-03	291.6	1.78E-03	-4.49E-03
END	0	0	80.991	4.41E-03	291.7	1.63E-03	-4.09E-03
2J1	0	0	80.991	1.47E-03	291.7	5.42E-04	-1.36E-03
12	5.65989	-1.7304	76.841	1.21E-03	291.9	4.51E-04	-1.12E-03
END	11.3198	-3.4608	72.691	9.23E-04	292.	3.46E-04	-8.56E-04
2J1	0	0	80.991	1.47E-03	291.7	5.44E-04	-1.36E-03
14	-4.32852	-4.03641	76.841	1.21E-03	292.	4.54E-04	-1.12E-03
END OT1	-8.65703	-8.07282	72.691	9.25E-04	292.2	3.5E-04	-8.56E-04
201	U 1 20105		80.991	1.47E-03	291.7	5.42E-04	-1.36E-03
10 TND	-1.3313/	J. / 6681	76.841	1.21E-03	291.9	4.51E-04	-1.12E-03
2.72	-2.002/4 11 2100	TT.2330	12.091 72 601	9.24E-04	292.	3.46E-04	-8.5/E-04
18	1 33137	-3.4000 -5 76601	72.091 72 601	4.01E-04	291.9 174 0	1.72E-04	-4.28E-04
END	-8 65704	-8 07282	72.091 72 601	2.IIE-00	112 2	-2.U9E-06	2.13E-U/
2,13	-8 65703	-8 07282	72.091	4.03E-04	112.Z	-1./5E-04	4.20L-U4
203	-5.65989	1.7304	72 691	1 68E-06	292.2	1 66F-06	-4.205-04 2 /1F-07
END	-2.66275	11.5336	72.691	4.61E-04	111.9	-1.72E-04	4.28E-04
2J4	-2.66274	11.5336	72.691	4.63E-04	292.2	1.75E-04	-4.28E-04
24	4.32852	4.03641	72.691	5.58E-07	317.2	4.09E-07	-3.79E-07
END	11.3198	-3.4608	72.691	4.62E-04	112.1	-1.74E-04	4.28E-04

I

MoM Model Details for Towers Driven Individually – WNWR Tower 1(C) OC Self - (Sheet 3 of 4)

curren	t			mag	phase	real	imaginary
no.	X	Y	Z	(amps)	(deg)	(amps)	(amps)
GND	-68.4917	-82.2063	0	4.97E-05	149.1	-4.27E-05	2.56E-05
27	-68.4917	-82.2063	8.4793	2.4E-04	149.1	-2.06E-04	1.23E-04
28	-68.4917	-82.2063	16.9586	3.52E-04	149.1	-3.02E-04	1.81E-04
29	-68.4917	-82.2063	25.4379	4.31E-04	149.1	-3.7E-04	2.21E-04
30	-68.4917	-82.2063	33.9172	4.81E-04	149.2	-4.13E-04	2.46E-04
31	-68.4917	-82.2063	42.3965	5.04E-04	149.2	-4.33E-04	2.58E-04
32	-68.4917	-82.2063	50.8758	5.03E-04	149.2	-4.32E-04	2.57E-04
33	-68.4917	-82.2063	59.3551	4.78E-04	149.3	-4.11E-04	2.44E-04
34	-68.4917	-82.2063	67.8344	4.35E-04	149.3	-3.75E-04	2.22E-04
35	-68.4917	-82.2063	76.3137	3.91E-04	149.4	-3.37E-04	1.99E-04
END	-68.4917	-82.2063	84.793	3.41E-04	149.4	-2.93E-04	1.74E-04
2J8	-68.4917	-82.2063	84.793	1.17E-04	152.6	-1.04E-04	5.41E-05
37	-64.5116	-83.5169	80.643	9.36E-05	153.6	-8.38E-05	4.17E-05
END	-60.5314	-84.8274	76.493	6.86E-05	155.9	-6.26E-05	2.8E-05
2J8	-68.4917	-82.2063	84.793	1.1E-04	140.6	-8.48E-05	6.97E-05
39	-71.5774	-85.0841	80.643	8.74E-05	137.5	-6.44E-05	5.9E-05
END	-74.6631	-87.9618	76.493	6.55E-05	131.	-4.3E-05	4.94E-05
2J8	-68.4917	-82,2063	84.793	1.15E-04	154.5	-1.04E-04	4.97E-05
41	-69.9875	-77.567	80.643	8.81E-05	156.6	-8.08E-05	3.5E-05
END	-71.4833	-72.9276	76.493	6.01E-05	161.7	-5.71E-05	1.89E-05
2J9	-60.5314	-84.8274	76.493	3.2E-05	172.9	-3.18E-05	3.98E-06
43	-67.5972	-86.3946	76.493	1.25E-05	237.4	-6.73E-06	-1.05E-05
END	-74.6631	-87.9618	76.493	2.88E-05	310.4	1.87E-05	-2.19E-05
2J10	-74.6631	-87.9618	76.493	3.67E-05	131.5	-2.43E-05	2.75E-05
46	-73.0732	-80.4447	76.493	1.5E-05	76.9	3.39E-06	1.46E-05
END	-71.4833	-72.9276	76.493	3.13E-05	355.2	3.12E-05	-2.6E-06
2J11	-71.4833	-72.9276	76.493	3.06E-05	147.8	-2.59E-05	1.63E-05
49	-66.0073	-78.8775	76.493	5.33E-06	302.9	2.9E-06	-4.48E-06
END	-60.5314	-84.8274	76.493	3.91E-05	322.1	3.09E-05	-2.41E-05

3

5

MoM Model Details for Towers Driven Individually – WNWR Tower 1(C) OC Self - (Sheet 4 of 4)

curren	t			mag	phase	real	imaginary
no.	x	Y	Z	(amps)	(deg)	(amps)	(amps)
GND	60.9522	42.8379	0	6.42E-05	177.4	-6.41E-05	2.92E - 0.6
52	60.9522	42.8379	8.7972	3.39E-04	177.5	-3.39E-04	1.5E-05
53	60.9522	42.8379	17.5944	4.96E-04	177.6	-4.96E-04	2.09E - 0.5
54	60.9522	42.8379	26.3916	6.05E-04	177.7	-6.04E-04	2.38E-05
55	60.9522	42.8379	35.1888	6.71E-04	177.9	-6.71E-04	2.41E-05
56	60.9522	42.8379	43.986	6.99E-04	178.2	-6.99E-04	2.21E-05
57	60.9522	42.8379	52.7832	6.91E-04	178.5	-6.9E-04	1.84E-05
58	60.9522	42.8379	61.5804	6.49E-04	178.8	-6.49E-04	1.37E - 0.5
59	60.9522	42.8379	70.3776	5.79E-04	179.1	-5.79E-04	9.02E-06
60	60.9522	42.8379	79.1748	5.07E-04	179.3	-5.07E-04	5.94E-06
END	60.9522	42.8379	87.972	4.29E-04	179.3	-4.29E-04	5.27E-06
2J15	60.9522	42.8379	87.972	1.39E-04	174.4	-1.38E-04	1.37E-05
62	64.9874	41.6043	83.822	1.08E-04	172.	-1.07E-04	1.5E-05
END	69.0226	40.3708	79.672	7.65E-05	166.5	-7.44E-05	1.78E-05
2J15	60.9522	42.8379	87.972	1.52E-04	186.7	-1.51E-04	-1.77E-05
64	57.8662	39.96	83.822	1.21E-04	189.3	-1.19E-04	-1.96E-05
END	54.7803	37.0821	79.672	8.83E-05	196.7	-8.45E-05	-2.54E-05
2J15	60.9522	42.8379	87.972	1.41E-04	176.2	-1.4E-04	9.32E-06
66	60.0033	46.9493	83.822	1.1E-04	174.7	-1.09E-04	1.02E-05
END	59.0544	51.0607	79.672	7.72E-05	171.1	-7.63E-05	1.19E-05
2J16	69.0226	40.3708	79.672	4.16E-05	151.9	-3.67E-05	1.96E-05
68	61.9015	38.7264	79.672	2.08E-05	84.2	2.09E-06	2.07E-05
END	54.7803	37.0821	79.672	4.48E-05	18.9	4.24E-05	1.45E-05
2J17	54.7803	37.0821	79.672	4.35E-05	194.5	-4.21E-05	-1.09E-05
71	56.9173	44.0714	79.672	1.79E-05	264.9	-1.6E-06	-1.78E-05
END	59.0544	51.0607	79.672	4.18E-05	333.8	3.75E-05	-1.84E-05
2J18	59.0544	51.0607	79.672	3.93E-05	189.6	-3.88E-05	-6.53E-06
74	64.0385	45.7157	79.672	2.88E-06	260.4	-4.81E-07	-2.84E-06
END	69.0226	40.3708	79.672	3.77E-05	2.6	3.77E-05	1.74E-06

MoM Model Details for Towers Driven Individually - <u>WNWR Tower 2(SE)</u> OC Self - (Sheet 1 of 4)

GEOME Envir	TRY:	Wire coord nt: perfect	inates i ground	n degrees;	other	dimensi	ons in me	eters
wire	caps	B Distance	Angl	e Z		ra	dius	seqs
1	none	0	0	0		.2784	1	.0
		0	0	80.	991			
2	none	0	0	80.	991	.01	2	
		11.837	17.	72.	691			
3	none	0	0	80.	991	.01	2	
		11.837	137.	72.	691			
4	none	0	0	80.	991	.01	2	
-		11.837	257.	72.	691			
5	none	11.837	1/.	72.	691	.01	2	
C		11.83/	137.	72.	691	0.1		
0	none	11 027	137.	12.	691 601	.01	2	
7	2020	11 027	257.	12.	691 601	0.1	0	
/	none	11 037	207.	12.	691 601	.01	2	
8	none	107	120 0	72.	691	0.01	1	0
0	none	107.	129.0	84	703	. 221	T	0
9	none	107	129.0	84.	793	01	2	
5	110110	104 21	125 51	1 76	193	.01	2	
10	none	107.	129.8	84	793	01	2	
		115.377	130.32	5 76	493	.01	2	
11	none	107.	129.8	84.	793	01	2	
		102.119	134.42	7 76.	493	.01	2	
12	none	104.21	125.51	1 76.	493	. 01	2	
		115.377	130.32	5 76.	493		-	
13	none	115.377	130.32	5 76.	493	.01	2	
		102.119	134.42	7 76.	493			
14	none	102.119	134.42	7 76.	493	.01	2	
		104.21	125.51	1 76.	493			
15	none	74.5	324.9	0		.2815	1	0
		74.5	324.9	87.	972			
16	none	74.5	324.9	87.	972	.01	2	
		79.962	329.67	7 79.	672			
17	none	74.5	324.9	87.	972	.01	2	
1.0		66.151	325.90	5 79.	672			
Τ8	none	74.5	324.9	87.	972	.01	2	
1.0		18.068	319.15	2 79.	672	~ ~		
т9	none	19.902	329.67	/ /9.	672	.01	2	
20	nono	66 151	325.90	5 79.	672	01	0	
20	none	78 068	310 15	J 79. 2 70	672	.01	2	
21	none	78 068	319.15	2 19. 2 70	672	01	2	
e 1	110110	79.962	329.67	7 79	672	.01	2	
		10.002	525.07	1 15.	072			
Numbe	r of v	wires	= 21		cur	rent nod	es = 75	
			minimum			maximu	n	
Indiv	idual	wires	wire	value		wire v	alue	
segmen	nt ler	ngth	9	5.89762		5 1	0.2511	
radiu	S		2	.01		15 .	2815	

MoM Model Details for Towers Driven Individually - <u>WNWR Tower 2(SE)</u> OC Self - (Sheet 2 of 4)

ELECTR	ICAL DESCR	IPTION	Fre no.	quencies (of segmen	(MHz) nt lengt	h (wavelen	gths)
no. 1 1 1	owest .54	step 0	step 1	s minimu .01638	im 323	maximum .0284754	
Source	s s	ource node 1 26	secto 1	r magnitu 1.	ıde	phase 0	type voltage
Lumped	loads load node 1 1 2 26 3 51	resista (ohms) 0 0 0	nce re (o -4 0 -4	actance hms) ,511. ,511.	induc (mH) 0 0 0	tance cap (uF 0 0 0	acitance passive) circuit 0 0 0
IMPEDA freq (MHz) source	NCE norm resist (ohms) = 1; nod	alization react (ohms) e 26, sect	= 50. imped (ohms) or 1	phase (deg)	VSWR	S11 dB	S12 dB
1.54	60.657	92.07	110.25	56.6	4.6158	-3.8241	-2.3252
CURREN: coordin	I rms Freq nates in de	uency = 1.9 grees	54 MHz Inp	ut power =	.002494	93 watts Ei	fficiency = 100. %
curren	t		_	mag	phase	real	imaginary
no.	x	Y	Z	(amps)	(deg)	(amps)	(amps)
GND	0	0	0	5.2E-05	152.5	-4.61E-05	2.4E-05
2	0	0	8.0991	2.64E-04	152.5	-2.34E-04	1.22E-04
3	0	0	16.1982	3.86E-04	152.5	-3.43E-04	1.78E-04
4	0	0	24.2973	4.74E-04	152.5	-4.2E-04	2.18E-04
5	0 .	0	32.3964	5.32E-04	152.6	-4.72E-04	2.45E-04
6	0	0	40.4955	5.64E-04	152.6	-5.01E-04	2.59E-04
7	U	0	48.5946	5.71E-04	152.7	-5.07E-04	2.62E-04
8	0	U	56.6937	5.56E-04	152.7	-4.94E-04	2.55E-04
9	U	U	64.7928	5.24E-04	152.7	-4.66E-04	2.4E-04
10	0	0	72.8919	4.91E-04	152.7	-4.36E-04	2.25E-04
END OT1	0	0	80.991	4.44E-04	152.7	-3.95E-04	2.03E-04
201		U 1 7204	80.991 76 041	1.45E-04	149.	-1.25E-04	/.49E-05
T T T T T T T T T T T T T T T T T T T	J. JJ J J J J J J J J J J J J J J J J J	-1./304	70.041 72 601	1.1/E-U4 9 91E-05	14/./	-9.09E-05	0.201-U0 5.151-05
2.T1	TT. 2720	0	12.091 80 991	0.916-03 1 57F-04	161 1	-1.2/E-US	5.10E-05
14	-4 32852	-4 03641	76 841	1 288-04	163 0	-1 238-04	3.54E-05
END	-8.65703	-8.07282	72 691	9 795-05	170 6	-9 66E-05	1_6E-05
2J1	0	0	80.991	1.44E - 04	147 4	-1.22E-04	7.76E-05
16	-1.33137	5.76681	76.841	1.16E-04	145.6	-9.58E-05	6.56E-05
END	-2.66274	11.5336	72.691	8.9E-05	141.4	-6.96E-05	5.55E-05
2J2	11.3198	-3.4608	72.691	5.05E-05	128.7	-3.16E-05	3.94E-05
18	1.33137	-5.76681	72.691	2.09E-05	67.2	8.08E-06	1.92E-05
END	-8.65704	-8.07282	72.691	4.87E-05	348.8	4.78E-05	-9.43E-06
2J3	-8.65703	-8.07282	72.691	4.92E-05	172.3	-4.88E-05	6.61E-06
21	-5.65989	1.7304	72.691	2.31E-05	246.7	-9.13E-06	-2.12E-05
END	-2.66275	11.5336	72.691	5.01E-05	307.6	3.05E-05	-3.97E-05
2J4	-2.66274	11.5336	72.691	4.21E-05	158.	-3.9E-05	1.58E-05
24	4.32852	4.03641	72.691	2.51E-06	5 64.8	1.07E-06	2.27E-06
END	11.3198	-3.4608	72.691	4.29E-05	343.6	4.11E-05	-1.21E-05

MoM Model Details for Towers Driven Individually - <u>WNWR Tower 2(SE)</u> OC Self - (Sheet 3 of 4)

current mag phase real imaginar
no. X Y Z (amps) (deg) (amps) (amps)
GND -68.4917 -82.2063 0 6.41E-03 303.4 3.53E-03 -5.36E-0
27 -68.4917 -82.2063 8.4793 6.87E-03 300.6 3.5E-03 -5.91E-0
28 -68.4917 -82.2063 16.9586 7.04E-03 299.1 3.42E-03 -6.15E-0
29 -68.4917 -82.2063 25.4379 7.02E-03 297.9 3.28E-03 -6.2E-03
30 -68.4917 -82.2063 33.9172 6.83E-03 296.9 3.1E-03 -6.09E-0
31 -68.4917 -82.2063 42.3965 6.49E-03 296.2 2.86E-03 -5.83E-0
32 -68.4917 -82.2063 50.8758 6.01E-03 295.5 2.59E-03 -5.42E-0
33 -68.4917 -82.2063 59.3551 5.41E-03 295. 2.29E-03 -4.9E-03
34 -68.4917 -82.2063 67.8344 4.73E-03 294.6 1.97E-03 -4.3E-03
35 -68.4917 -82.2063 76.3137 4.17E-03 294.4 1.72E-03 -3.8E-03
LND -68.4917 -82.2063 84.793 3.66E-03 294.5 1.51E-03 -3.33E-0
2J8 -68.4917 -82.2063 84.793 1.24E-03 294.5 5.13E-04 -1.13E-0
37 -64.5116 -83.5169 80.643 1.E-03 294.7 4.2E-04 -9.12E-0
IND -60.5314 -84.8274 76.493 7.42E-04 294.9 3.12E-04 -6.73E-0
2J8 -68.4917 -82.2063 84.793 1.22E-03 294.4 5.06E-04 -1.11E-0
39 -71.5774 -85.0841 80.643 9.92E-04 294.6 4.14E-04 -9.02E-0
IND -74.6631 -87.9618 76.493 7.31E-04 294.8 3.06E-04 -6.63E-0
2J8 -68.4917 -82.2063 84.793 1.2E-03 294.5 4.97E-04 -1.09E-0
41 -69.9875 -77.567 80.643 9.3E-04 294.8 3.9E-04 -8.45E-0
IND -71.4833 -72.9276 76.493 6.36E-04 295. 2.69E-04 -5.77E-0
2J9 -60.5314 -84.8274 76.493 3.26E-04 295. 1.37E-04 -2.95E-0
43 -67.5972 -86.3946 76.493 1.13E-06 325. 9.26E-07 -6.47E-0
2ND -74.6631 -87.9618 76.493 3.25E-04 114.8 -1.36E-04 2.95E-04
2J10 -74.6631 -87.9618 76.493 4.06E-04 294.7 1.7E-04 -3.69E-0
46 -73.0732 -80.4447 76.493 5.11E-05 293.8 2.06E-05 -4.68E-0
2ND -71.4833 -72.9276 76.493 3.11E-04 1151.32E-04 2.82E-04
2J11 -71.4833 -72.9276 76.493 3.25E-04 294.9 1.37E-04 -2.95E-0
49 -66.0073 -78.8775 76.493 5.13E-05 114.4 -2.12E-05 4.67E-05
IND -60.5314 -84.8274 76.493 4.16E-04 114.8 -1.74E-04 3.78E-04
49 -66.0073 -78.8775 76.493 5.13E-05 114.4 -2.12E-05 4.67 ND -60.5314 -84.8274 76.493 4.16E-04 114.8 -1.74E-04 3.78

X

MoM Model Details for Towers Driven Individually - <u>WNWR Tower 2(SE)</u> OC Self - (Sheet 4 of 4)

1							
curre	nt			mag	phase	real	imaginary
no.	x	Y	Z	(amps)	(deg)	(amps)	(amps)
GND	60.9522	42.8379	0	4.37E-05	81.5	6.45E-06	4.32E-05
52	60.9522	42.8379	8.7972	2.31E-04	81.5	3.43E-05	2.29E-04
53	60.9522	42.8379	17.5944	3.39E-04	81.4	5.1E-05	3.35E-04
54	60.9522	42.8379	26.3916	4.14E-04	81.2	6.32E-05	4.09E-04
55	60.9522	42.8379	35.1888	4.61E-04	81.1	7.14E-05	4.55E-04
56	60.9522	42.8379	43.986	4.82E-04	81.	7.57E-05	4.76E-04
57	60.9522	42.8379	52.7832	4.78E-04	80.8	7.62E-05	4.71E-04
58	60.9522	42.8379	61.5804	4.5E-04	80.7	7.29E-05	4.45E-04
59	60.9522	42.8379	70.3776	4.04E-04	80.6	6.61E-05	3.98E-04
60	60.9522	42.8379	79.1748	3.54E-04	80.5	5.84E-05	3.49E-04
END	60.9522	42.8379	87.972	2.99E-04	80.6	4.9E-05	2.95E-04
2J15	60.9522	42.8379	87.972	9.89E-05	75.8	2.42E-05	9.59E-05
62	64.9874	41.6043	83.822	7.72E-05	74.4	2.07E-05	7.44E-05
END	69.0226	40.3708	79.672	5.47E-05	71.2	1.76E-05	5.18E-05
2J15	60.9522	42.8379	87.972	1.03E-04	89.9	2.37E-07	1.03E-04
64	57.8662	39.96	83.822	8.11E-05	92.9	-4.06E-06	8.1E-05
END	54.7803	37.0821	79.672	5.8E-05	99.3	-9.35E-06	5.72E-05
2J15	60.9522	42.8379	87.972	9.92E-05	75.6	2.46E-05	9.61E-05
66	60.0033	46.9493	83.822	7.75E-05	74.2	2.11E-05	7.45E-05
END	59.0544	51.0607	79.672	5.51E-05	70.9	1.8E-05	5.21E-05
2J16	69.0226	40.3708	79.672	2.98E-05	60.3	1.48E-05	2.59E-05
68	61.9015	38.7264	79.672	1.07E-05	355.2	1.06E-05	-8.89E-07
END	54.7803	37.0821	79.672	2.9E-05	279.2	4.66E-06	-2.87E-05
2J17	54.7803	37.0821	79.672	2.89E-05	99.3	-4.69E-06	2.85E-05
71	56.9173	44.0714	79.672	1.07E-05	175.7	-1.07E-05	8.03E-07
END	59.0544	51.0607	79.672	2.98E-05	240.1	-1.48E-05	-2.58E-05
2J18	59.0544	51.0607	79.672	2.64E-05	83.2	3.15E-06	2.62E-05
74	64.0385	45.7157	79.672	2.2E-07	52.1	1.35E-07	1.74E-07
TINT	69 0226	40 3708	70 672	2 61 - 05	262 7	-2 075 06	

MoM Model Details for Towers Driven Individually - WNWR Tower 3(NW) OC Self-(Sheet 1 of 4)

GEOME Envir	TRY: conmen	Wire coordina t: perfect g	ates in degree round	s; other dim	ensions in me [.]	ters
wire	caps	Distance	Angle	Z	radius	seas
1	none	0	0	0	.3255	10
		0	0	81.98		
2	none	0	0	81.98	.01	2
-		11.837	17.	73.68		
3	none	0	0	81.98	.01	2
		11.837	137.	73.68		
4	none	0	0	81.98	.01	2
-		11.837	257.	73.68		
5	none	11.837	17.	73.68	.01	2
C		11.837	137.	73.68		
6	none	11.837	137.	73.68	.01	2
7		11.837	257.	73.68		
/	none	11.837	257.	73.68	.01	2
0	nono	11.837	17.	/3.68		
0	none	107.	129.8	0	.2961	10
٥	nono	107.	129.8	86.75	0.7	
9	none	107.	125.8	86.75	.01	2
10	none	104.21	123.511	78.45	0.1	2
τU	none	115 377	120.225	86./5 70 /F	.01	2
11	none	107	120.325	70.45	01	0
<u> </u>	none	102 119	134 427	70 15	.01	2
12	none	104 21	125 511	78.45	0.1	0
		115.377	130.325	78 45	.01	Z
13	none	115.377	130.325	78 45	01	2
		102.119	134.427	78.45	.01	2
14	none	102.119	134.427	78.45	01	2
		104.21	125.511	78.45	.01	2
15	none	74.5	324.9	0	2517	10
		74.5	324.9	86.37	.2017	10
16	none	74.5	324.9	86.37	.01	2
		79.962	329.677	78.09		2
17	none	74.5	324.9	86.37	.01	2
		66.151	325.905	78.09		-
18	none	74.5	324.9	86.37	.01	2
		78.068	319.152	78.09	2	
19	none	79.962	329.677	78.09	.01	2
		66.151	325.905	78.09		
20	none	66.151	325.905	78.09	.01	2
		78.068	319.152	78.09		
21	none	78.068	319.152	78.09	.01	2
		79.962	329.677	78.09		
Number	r of w	vires	= 21	current	nodes = 75	
T		5.000 ·	minimum		maximum	
Indivi	Idual	wires w	ire value	W	<u>ire</u> value	
segmer	nt ler	igth	9 5.89762	2	5 10.2511	
Taurus	5		2 .01		1 .3255	

MoM Model Details for Towers Driven Individually - <u>WNWR Tower 3(NW)</u> OC Self-(Sheet 2 of 4)

ELECTRICAL DESCRIPTION Frequencies (MHz) frequency no. of segment length (wavelengths)									
no.	lowest	step	step	s minim	ium	maximu	m		
	1.54	0	1	.0163	823	.02847	54		
Source	es s	source node 1 51	e secto 1	r magnit 1.	ude	phase 0		type voltage	
Lumpeo	d loads load node	resista	ance re	actance	induc	tance c	apacitar	nce passive	
	1 1	0	- 4	,511.	0	0	ur,	0	
	2 26	0	- 4	,511.	0	0		0	
	3 51	0	0		0	0		0	
IMPEDANCE normalization = 50.									
freq	resist	react	imped	phase	VSWR	S11	S12		
(MHz)	(ohms)	(ohms)	(ohms)	(deg)		dB	dB		
source	a = 1; noc 63 143	ae 51, sect 87,224	or 1 107 68	54 1	1 228	_/ 100	-2 00/	10	
1.01	<u> </u>	07.224	TO1.00	74.T	4.220	-4.100	-2.084	±0	
CURREN	IT rms Free	uencv = 1	54 MHz Inn	ut nower .	= 002722	82 watta	Efficio	nov - 100 %	
coordi	nates in de	egrees	or mis rub	ac bower.	002122	.uz wallS	FITTCI6)	ncy = 100. %	
currer	at	-		mag	phage	real	imaci		
no.	x	Y	7.	(amps)	(deg)	(amps)	imagi (ampo	lhary	
GND	0	0	0	6 88E-0	5 183 3	-6 87F-	05 - 4 02	»/ >\	
2	0	0	8 0991	3 49E-0	4 183 4	-3 /9E-	01 - 4.02	SE-05	
3	0	0	16.1982	5.11E-0	4 183 4	-5 1E-0	4 – 3 08	SE-05	
4	0	0	24.2973	6.27E-0	4 183.5	-6 26E-	1 -3 87 04 -3 87	7E-05	
5	0	0	32.3964	7.04E-0	4 183.6	-7.03E-	04 -4 48	}E−05	
6	0	0	40.4955	7.46E-0	4 183.8	-7.45E-	04 -4.92	2E-05	
7	0	0	48.5946	7.55E-0	4 183.9	-7.54E-	04 -5.19	9E-05	
8	0	0	56.6937	7.36E-0	4 184.1	-7.34E-	04 -5.26	5E-05	
9	0	0	64.7928	6.93E-0	4 184.3	-6.91E-	04 -5.16	5E-05	
10	0	0	72.8919	6.49E-0	4 184.4	-6.47E-	04 -4.94	E-05	
END	0	0	80.991	5.88E-0	4 184.3	-5.86E-	04 -4.45	5E-05	
2J1	0	0	80.991	2.04E-0	4 188.3	-2.02E-	04 -2.92	2E-05	
12	5.65989	-1.7304	76.841	1.65E-0	4 189.7	-1.63E-	04 -2.78	3E-05	
END	11.3198	-3.4608	72.691	1.26E-0	4 193.8	-1.22E-	04 -3.E-	-05	
2J1	0	0	80.991	1.85E-0	4 177.5	-1.85E-	04 7.93E	2-06	
14	-4.32852	-4.03641	76.841	1.48E-0	4 174.3	-1.47E-	04 1.46E	2-05	
END	-8.65703	-8.07282	72.691	1.14E-0	4 166.9	-1.11E-	04 2.57E	2-05	
ZUL	U 1 20107		80.991	2.01E-0	4 186.6	-2.E-04	-2.32	2E-05	
TO	-1.3313/	5./6681 11 5220	/6.841	1.63E-0	4 187.4	-1.61E-	U4 -2.1E	2-05	
2.T2	-2.002/4	TT.2330	12.091 72 601	1.24E-0	4 189.7	-1.22E-	U4 -2.09	9E-05	
18	1 33137	-5 76621	72.091 72 601	0.00E-U	5 208.4 5 260 6	-0.04E-	13 - 3.26	DE-05	
END	-8.65704	-8.07282	72.091	5.0/E-0	5 344 1	-/.JIE- 5 570-0	U/ -3.0/ 5 _1 E0	E-US	
2.13	-8.65703	-8.07282	72 691	5 58F-0	5 160 0	_5 /AF	ט דע. טאר טער מיויד	2-05 2-06	
21	-5.65989	1.7304	72.691	2.58E-0	5 87 4	1 178-0	6 2 57E	-05	
END	-2.66275	11.5336	72.691	6.73E-0	5 27.5	5.97E-0	5 3 1F-	-05	
2J4	-2.66274	11.5336	72.691	6.29E-0	5 170.7	-6.21E-	05 1.01F	-0.5	
24	4.32852	4.03641	72.691	5.03E-0	6 95.3	-4.68E-	07 5.01F	2-06	
END	11.3198	-3.4608	72.691	6.21E-0	5 357.6	6.21E-0.	5 -2.59	E-06	

MoM Model Details for Towers Driven Individually - <u>WNWR Tower 3(NW)</u> OC Self-(Sheet 3 of 4)

curre	ent			mag	phase	real	imaginary
no.	X	Y	Z	(amps)	(deg)	(amps)	(amps)
GND	-68.4917	-82.2063	0	4.48E-05	84.1	4.62E-06	4.46E-05
27	-68.4917	-82.2063	8.4793	2.16E-04	84.	2.25E-05	2.15E-04
28	-68.4917	-82.2063	16.9586	3.18E-04	83.9	3.36E-05	3.17E-04
29	-68.4917	-82.2063	25.4379	3.9E-04	83.9	4.18E-05	3.88E-04
30	-68.4917	-82.2063	33.9172	4.37E-04	83.7	4.76E-05	4.34E-04
31	-68.4917	-82.2063	42.3965	4.59E-04	83.6	5.1E-05	4.56E-04
32	-68.4917	-82.2063	50.8758	4.59E-04	83.5	5.2E-05	4.56E-04
33	-68.4917	-82.2063	59.3551	4.38E-04	83.4	5.06E-05	4.35E-04
34	-68.4917	-82.2063	67.8344	4.E-04	83.3	4.69E-05	3.97E-04
35	-68.4917	-82.2063	76.3137	3.6E-04	83.2	4.26E-05	3.58E-04
END	-68.4917	-82.2063	84.793	3.13E-04	83.3	3.67E-05	3.11E-04
2J8	-68.4917	-82.2063	84.793	1.07E-04	87.8	4.21E-06	1.07E-04
37	-64.5116	-83.5169	80.643	8.53E-05	89.2	1.24E-06	8.53E-05
END	-60.5314	-84.8274	76.493	6.23E-05	91.9	-2.05E-06	6.22E-05
2J8	-68.4917	-82.2063	84.793	1.03E-04	73.8	2.88E-05	9.9E-05
39	-71.5774	-85.0841	80.643	8.22E-05	71.1	2.66E-05	7.77E-05
END	-74.6631	-87.9618	76.493	6.16E-05	65.7	2.53E-05	5.62E-05
2J8	-68.4917	-82.2063	84.793	1.05E-04	88.	3.67E-06	1.05E-04
41	-69.9875	-77.567	80.643	7.94E-05	89.8	2.22E-07	7.94E-05
END	-71.4833	-72.9276	76.493	5.37E-05	93.8	-3.56E-06	5.36E-05
2J9	-60.5314	-84.8274	76.493	2.84E-05	106.	-7.8E-06	2.73E-05
43	-67.5972	-86.3946	76.493	1.09E-05	176.	-1.09E-05	7.66E-07
END	-74.6631	-87.9618	76.493	2.77E-05	243.4	-1.24E-05	-2.48E-05
2J10	-74.6631	-87.9618	76.493	3.39E-05	67.6	1.29E-05	3.14E-05
46	-73.0732	-80.4447	76.493	1.18E-05	17.4	1.12E-05	3.53E-06
END	-71.4833	-72.9276	76.493	2.71E-05	286.4	7.66E-06	-2.6E-05
2J11	-71.4833	-72.9276	76.493	2.79E-05	81.5	4.1E-06	2.76E-05
49	-66.0073	-78.8775	76.493	4.22E-06	257.4	-9.18E-07	-4.12E-06
END	-60.5314	-84.8274	76.493	3.54E-05	260.6	-5.76E-06	-3.5E-05
END	-60.5314	-84.8274	76.493	3.54E-05	260.6	-5.76E-06	-3.5E-C

MoM Model Details for Towers Driven Individually – <u>WNWR Tower 3(NW)</u> OC Self-(Sheet 4 of 4)

Derivation of Directional Antenna Operating Parameters

The general array model, its validity now established with the convergence to the measured individual open circuited base impedances, was then utilized as the basis for the WNWR nighttime directional antenna calculations.

Specifically, "medium wave array synthesis" MoM calculations were made for the nighttime directional mode of operation using the WNWR Construction Permit values of theoretical antenna field ratio magnitudes and phases, the array geometry, and the established converged tower heights and radii. This process yielded the complex voltage values for sources located at the base insulator for each tower, from which current moment sums are produced. These values, when normalized, equate to the theoretical field parameters for the authorized directional antenna pattern. Tower base currents and driving point impedances were then calculated for the directional pattern. (Note that within the program reports, voltages and currents not specified as "RMS" values are the corresponding "peak" values.)

This information was then used to calculate the currents at the ATU J-plug "reference points" (where the Toroidal Current Transformer derived antenna monitor samples are taken) by using the WCAP circuit modeling software, and the same base circuit environment assumptions that were derived from the single tower open-circuit measurements.

The following pages provide details of the MoM array synthesis modeling, as performed for the WNWR nighttime directional antenna along with the resulting normalized antenna monitor parameters, derived from the WCAP analysis. The designations employed in the model output data for the antenna "wire" and corresponding base node information are as follows:

Tower	Wire	Base Node
1(C)	1	1
2 (SE)	8	26
3 (NW)	15	51

The resulting normalized antenna monitor parameters, derived from the WCAP analysis, are provided after the pattern synthesis model data shown in the following pages.

MoM Model Details –Directional Antenna Array Synthesis (Sheet 1 of 7)

	MEDIUM WAVE ARRAY SVNTHESIS EDOM THESE										
Frequency	y = 1.54 MHz			SIS FRUM	FIELD RAT	TIOS					
<u>Tower</u> 1 2 3	Field Ratio <u>Magnitude</u> 1.000 0.801 0.319	Phase (deg) 0.0 -106.1 159.1									
VOLTAGES AND CURRENTS											
Source Node 1 26 51 Sum of squa Total power	Voltage <u>Magnitude</u> 195.516 222.851 45.8714 are of source curves r = 250. watts	$\frac{\text{ENTS - rms}}{\text{Current}}$ $\frac{\text{Phase (deg)}}{79.2}$ 318.2 259.2 $\text{rents} = 11.3323$	Current <u>Magnitude</u> 1.84066 1.38505 0.599812	Phase (deg) 2.5 262.2 157.5							
TOWER Admittance Y(1, 1) Y(1, 2) Y(1, 3) Y(2, 1) Y(2, 2) Y(2, 3) Y(2, 3) Y(3, 1) Y(3, 2) Y(3, 3)	Real (mhos) 0.003878850 0.003002640 0.003002770 0.003002770 0.005449950 0.000937757 0.003008270 0.000937753 0.004753310	CE MATRIX Imaginary (mhos) -0.005310520 0.000778430 0.001963260 0.000777867 -0.006813920 -0.000739506 0.001962470 -0.000739601 -0.000739601 -0.006492270		$\frac{\text{TOWER II}}{Z(1, 1)}$ $Z(1, 2)$ $Z(1, 3)$ $Z(2, 1)$ $Z(2, 2)$ $Z(2, 3)$ $Z(3, 1)$ $Z(3, 2)$ $Z(3, 3)$	MPEDANC Real (ohms) 58.2911 17.8819 39.2357 17.8873 60.7048 -19.4274 39.2438 -19.4267 63.3793	E MATRIX Imaginary (ohms) 99.7025 -31.3371 -24.6114 -31.3336 91.8907 -22.7725 -24.6042 -22.7733 87.4053					

GEOMETRY: Wire coordinates in degrees; other dimensions in meters Environment: perfect ground									
wire	caps I	Distance	Angle		Z	rad	ius	seq	s
1	none (0	0		0	.27	84	10	-
	(0	0		80.991				
2	none (0	0		80.991	.01		2	
	1	11.837	17.		72.691				
3	none (0	0		80.991	.01		2	
	1	11.837	137.		72.691				
4	none (0	0		80.991	.01		2	
	1	11.837	257.		72.691				
5	none 1	11.837	17.		72.691	.01		2	
	1	11.837	137.		72.691				
6	none 1	11.837	137.		72.691	.01		2	
_]	11.837	257.		72.691				
7	none 1	11.837	257.		72.691	.01		2	
	1	11.837	17.		72.691				
8	none 1	107.	129.8		0	.22	1	10	
]	107.	129.8		84.793				
9	none 1	107.	129.8		84.793	.01		2	
1.0	1	104.21	125.5	11	76.493				
10	none l	107.	129.8		84.793	.01		2	
	1	115.377	130.32	25	76.493				
ΤT	none l	107.	129.8		84.793	.01		2	
1.0	1	102.119	134.42	27	76.493				
ΤZ	none 1	104.21	125.5		76.493	.01		2	
10	1	115.377	130.32	25	76.493	0.1		~	
13	none 1	115.377	130.32	25	76.493	.01		2	
7 4	1	102.119	134.42	27	76.493	0.1		0	
14	none i	102.119	105 51	27	76.493	.01		2	
1 5		104.ZI 74 E	123.51	LL	76.493	0.0	1 5	1.0	
10	none ,	74.5	324.9		07 070	.28	15	10	
16	nono	74.5	324.9		87.972	0.1		0	
ΤO	none /	79.962	324.9	7	70 672	.01		2	
17	nono	79.902	324.0		19.012	. 01		0	
± /	10116	66 151	325 01	15	79 672	.01		2	
18	none 7	74.5	324 9	,0	87 972	01		2	
10		78.068	319 15	52	79.672	.01		2	
19	none 7	79.962	329.65	7	79.672	01		2	
	F	66.151	325.90)5	79.672	.01		2	
20	none 6	66.151	325.90)5	79.672	. 01		2	
-	7	78.068	319.15	52	79.672			-	
21	none 7	78.068	319.15	52	79.672	.01		2	
	5	79.962	329.67	77	79.672	.01		-	
Numbe	r of wi	ires	= 21	L		current no	odes	= 75	
Test	4		minimu	um		. max	ımum		
TUGIA	raual V	wires	wire	value		wire	value		
radiu	α πις τεπζ	9 011	2	01		J 1 E	1U.25) T T	
radiu	nt tenç s	yull	9	.01		5 15	.2815) I I)	

MoM Model Details - Directional Antenna Array Synthesis (Sheet 2 of 7)

MoM Model Details - <u>Daytime</u> Directional Antenna Array Synthesis (3 of 7)

ELECTRICAL DESCRI	ELECTRICAL DESCRIPTION - Frequencies (MHz)								
frequencyno. ofsegment length (wavelengths)no.loweststepstepsminimum11.5401.0163823.0284754									
Sources									
sourcenodesectormagnitudephasetype111276.50179.2voltage2261315.159318.2voltage351164.872259.2voltage									
IMPEDANCE – n	ormalizat	ion = 50.							
freq resist (MHz) (ohms)	react (ohms)	imped (ohms)	phase (deg)	VSWR	511 <u>dB</u>	512 <u>dB</u>			
source = 1; node	1, secto	or 1							
1.54 24.489	103.35	106.21	76.7	11.165	-1.5602	-5.2029			
source = 2; node	26, sect	or 1							
1.54 90.024	133.37	160.91	56.	6.1446	-2.8525	-3.174			
source = 3; node 51, sector 1									
1.54 -15.463	74.919	76.498	101.7	* * * *	* * * *	* * * *			

MoM Model Details - Directional Antenna Array Synthesis (Sheet 4 of 7)

CURRENT rms Frequency = 1.54 MHz Input power = 250. watts Efficiency = 100. % coordinates in degrees <u>Tower 1</u>									
$\begin{array}{c} \text{current} \\ \hline no. & \underline{X} \\ \hline GND & 0 \\ 2 & 0 \\ 3 & 0 \\ 4 & 0 \\ 5 & 0 \\ 6 & 0 \\ 7 & 0 \\ 8 & 0 \\ 9 & 0 \\ 10 & 0 \\ \hline 8 & 0 \\ 9 & 0 \\ 10 & 0 \\ \hline 8 & 0 \\ 9 & 0 \\ 10 & 0 \\ \hline 2J1 & 0 \\ 12 & 5.65989 \\ \hline END & 11.3198 \\ 2J1 & 0 \\ 14 & -4.32852 \\ \hline END & -8.65703 \\ 2J1 & 0 \\ 16 & -1.33137 \\ \hline END & -2.66274 \\ 2J2 & 11.3198 \\ 18 & 1.33137 \\ \hline END & -8.65704 \\ 2J3 & -8.65703 \\ 21 & -5.65989 \\ \hline END & -2.66274 \\ 2J4 & -2.66274 \\ 2J4 & -2.66274 \\ 24 & 4.32852 \\ \hline END & 11.3198 \\ \end{array}$	$\frac{\mathbf{Y}}{0}$ 0 0 0 0 0 0 0 0 0 0 0 0 0	Z 0 8.0991 16.1982 24.2973 32.3964 40.4955 48.5946 56.6937 64.7928 72.8919 80.991 76.841 72.691 80.991 76.841 72.691	mag (amps) 1.84047 2.0008 2.0653 2.07863 2.04663 1.97324 1.86283 1.72241 1.56781 1.4461 1.31946 .441429 .364238 .278366 .435305 .358099 .272098 .442736 .365672 .280155 .140849 4.53E-03 .136605 .135493 4.92E-03 .141164 .139037 9.25E-04 .137566	phase (deg) 2.5 1.4 .7 .3 359.9 359.6 359.3 359.1 359.3 359.1 359.3 359.1 359.3 359.6 358.9 359.1 359.3 359.6 358.6 358.6 358.6 358.6 358.6 358.6 358.6 358.6 358.2 359.1 359.2 359.5 .6 59.9 178.2 359.5 .6 59.9 178.2 358.2 2300. 180.5 358.4 353.8 178.5	real (amps) 1.83867 2.00023 2.06513 2.0786 2.04662 1.97318 1.8627 1.72221 1.56756 1.44583 1.31923 .441377 .364211 .278359 .435181 .357992 .271968 .442675 .365639 .280143 .14084 2.27E-03 136539 .135429 -3.16E-03 141158 .138986 9.19E-04 137519	imaginary (amps) .0812741 .0475114 .0263671 9.4E-03 -4.18E-03 -0220483 0220483 0220483 0220483 0220483 0220483 0220483 0220483 02204859 0281314 0276583 0244695 -6.76E-03 -4.37E-03 -2.E-03 0103944 -8.75E-03 -8.39E-03 -2.49E-03 -2.49E-03 -2.49E-03 -2.49E-03 -2.49E-03 -3.77E-03 -3.77E-03 -3.77E-03 -3.79E-03 -3.79E-03 -3.79E-03 -3.57E-03			

MoM Model Details - Directional Antenna Array Synthesis (Sheet 5 of 7)

				Towe:	<u>r 2</u>		
currer	nt			maq	phase	real	imaginary
no.	х	Y	Z	(amps)	(deg)	(amps)	(amps)
GND	-68.4917	-82.2063	0	1.38468	262.2	187444	-1.37193
27	-68.4917	-82.2063	8.4793	1.53426	258.3	312043	-1.50219
28	-68.4917	-82.2063	16.9586	1.60126	256.2	383245	-1.55472
29	-68.4917	-82.2063	25.4379	1.62045	254.6	429928	-1.56238
30	-68.4917	-82.2063	33.9172	1.59628	253.4	45552	-1.52991
31	-68.4917	-82.2063	42.3965	1.53162	252.5	461582	-1.46041
32 -	-68.4917	-82.2063	50.8758	1.42958	251.7	449341	-1.35713
33	-68.4917	-82.2063	59.3551	1.29501	251.1	420445	-1.22486
34	-68.4917	-82.2063	67.8344	1.13845	250.6	378382	-1.07373
35	-68.4917	-82.2063	76.3137	1.00592	250.4	338254	947345
END	-68.4917	-82.2063	84.793	.881376	250.4	295072	830516
208	-68.491/	-82.2063	84.793	.299234	250.8	098417	282587
רכ תואים	-60 5314	-03.0109	00.04J 76 402	.242400	251.2	0/82286	229523
2.78	-68 /917	-82 2063	70.493 81 793	.1/9100	201.0	0363934	170012
200	-71 5774	-85 08/1	80 643	23/812	249.0	- 0820376	- 220014
END	-74.6631	-87,9618	76 493	171679	249.0	- 0615834	- 160254
2,78	-68.4917	-82,2063	84.793	.291019	250 9	- 0950251	- 275068
41	-69.9875	-77.567	80.643	.225703	251.5	0717112	214007
END	-71.4833	-72.9276	76.493	.154824	252.2	0472355	147442
2J9	-60.5314	-84.8274	76.493	.0799014	253.6	0225857	0766429
43	-67.5972	-86.3946	76.493	4.13E-03	312.5	2.79E-03	-3.04E-03
END	-74.6631	-87.9618	76.493	.0762064	69.	.0273667	.071123
2J10	-74.6631	-87.9618	76.493	.0954726	249.	0342167	0891305
46	-73.0732	-80.4447	76.493	.0110712	228.7	-7.3E-03	-8.32E-03
END	-71.4833	-72.9276	76.493	.07662	73.9	.0212695	.0736086
2J11	-71.4833	-72.9276	76.493	.0782663	250.6	025966	0738334
49	-66.0073	-78.8775	76.493	.0119308	67.5	4.56E-03	.0110264
END	-60.5314	-84.8274	76.493	.0993705	70.	.0340097	.0933694
		-					

MoM Model Details - Directional Antenna Array Synthesis (Sheet 6 of 7)

				Towe:	<u>r 3</u>		
curre	nt			mag	phase	real	imaginary
no.	x	Y	Z	(amps)	(deg)	(amps)	(amps)
GND	60.9522	42.8379	0	.59951	157.5	554027	.229056
52	60.9522	42.8379	8.7972	.637082	158.3	592035	.235302
53	60.9522	42.8379	17.5944	.646371	158.7	602416	.234287
54	60.9522	42.8379	26.3916	.638262	159.1	596092	.22815
55	60.9522	42.8379	35.1888	.614429	159.3	574721	.2173
56	60.9522	42.8379	43.986	.576185	159.5	539574	.202111
57	60.9522	42.8379	52.7832	.525031	159.6	492093	.183036
58	60.9522	42.8379	61.5804	.46309	159.7	434302	.160/31
59	60.9522	42.83/9	70.3776	.394345	159.8	369975	.1364/9
END	60 9522	42.03/9	19.1/48 07 070	.330432	150 0	313698	.110202
2.T15	60 9522	42.0379	87 972	.200940	159.0	209255	.0992
62	64 9874	42.0373	83 822	0790735	159.5	- 0738935	028149
END	69 0226	40 3708	79 672	0578619	159.1	- 0540067	020149
2,715	60.9522	42.8379	87.972	.0928749	160.3	- 0874564	031259
64	57.8662	39.96	83.822	.0734175	160.4	- 0691823	.0245754
END	54.7803	37.0821	79.672	.0500395	160.7	0472136	.0165781
2J15	60.9522	42.8379	87.972	.0963434	159.8	0903889	.0333453
66	60.0033	46.9493	83.822	.0775332	159.7	0727306	.0268638
END	59.0544	51.0607	79.672	.0559721	159.7	0525055	.0193919
2J16	69.0226	40.3708	79.672	.03096	158.9	0288749	.0111699
68	61.9015	38.7264	79.672	4.18E-03	153.9	-3.75E-03	1.84E-03
END	54.7803	37.0821	79.672	.0244538	340.9	.0231082	-8.E-03
2J17	54.7803	37.0821	79.672	.0255862	160.4	0241054	8.58E-03
71	56.9173	44.0714	79.672	3.29E-03	336.5	3.02E-03	-1.31E-03
END	59.0544	51.0607	79.672	.030609	339.4	.0286511	0107715
2J18	59.0544	51.0607	79.672	.0253642	160.1	0238544	8.62E-03
74	64.0385	45.7157	79.672	9.34E-04	325.7	7.72E-04	-5.26E-04
END	69.0226	40.3708	79.672	.0269019	339.1	.0251319	-9.6E-03

7

CURRENT MOMENTS (amp-degrees) rms							
Frequency	= 1.54 MHz		Input power = 250. watts				
			vertical cur	rent moment			
Wire	Magnitude	Phase (deg)	Magnitude	Phase (deg)			
1	113.601	360	113.601	360			
2	4.00303	359.3	2.29821	179.3			
3	3.93485	358.5	2.25906	178.5			
4	4.01952	359.2	2.30767	179.2			
5	0.0636987	57.0	0	0			
6	0.0695022	227.2	0	0			
7	0.0130574	352.8	0	0			
8	89.9087	253.8	89.9087	253.8			
9	2.17255	251.1	1.52877	71.1			
10	2.11017	249.5	1.47971	69.5			
11	2.19634	251.4	1.42378	71.4			
12	0.0430689	311.8	0	0			
13	0.124429	229.4	0	0			
14	0.139106	67.6	0	0			
15	35.483	159.1	35.483	159.1			
16	0.710023	159.2	0.497871	339.2			
17	0.655727	160.4	0.459794	340.4	2.		
18	0.695618	159.7	0.487776	339.7			
19	0.0417265	152.7	0	0			
20	0.0324749	335.5	0	0			
21	9.71E-03	324.3	0	0			
Tower	Magnitude	Phase (deg)					
1	106.738	0.0					
2	85.4839	254.					
3	34.0378	159.1					
Above	Data Normalized	and Converted		<u>CP T</u>	heoretical Field	<u>l Data</u>	
Tower	Magnitude	Phase		Tower	Magnitude	Phase	
1	1.000	0.0°		1	1.000	0.0°	
2	0.801	-106.0°		2	0.801	-106.1°	
3	0.319	159.1°		3	0.319	159.1°	
				Note: Minor between the values due to	differences are con normalized data an o internal program	mmon nd theoretical rounding.	

MoM Model Details - Directional Antenna Array Synthesis (Sheet 7 of 7)

Directional Antenna System "Antenna Monitor" Parameters

With the modeled directional antenna ground level complex voltage and current values for sources located at ground level for each tower now being derived, WCAP circuit analysis calculations¹² were run to develop the current magnitude and phase information that will be present at the ATU reference point, where the TCT sampling devices are located. Since the current transformers and sampling lines are essentially identical, the antenna monitor ratios and phases corresponding to the theoretical parameters can be calculated and normalized directly from the modeled ATU currents, as shown below. Since the nighttime CP theoretical parameters are normalized with respect to Tower 1, antenna monitor parameters can rationally be developed as follows:

Prospective Directional Antenna Monitor Operating Parameters - Normalized to Tower 1

Tower	Modeled Current Pulse	Modeled Current Magnitude at Toroid	Modeled Current Phase at Toroid	Antenna Monitor Ratio	Antenna Monitor Phase
1(C)	1	1.794523 A	2.818°	1.000	0.00°
2 (SE)	26	1.33936 A	263.379°	0.746	-99.44°
3 (NW)	51	0.58902 A	157.3°	0.328	154.48°

However, Tower 2 will be operating with the higher power level for the nighttime pattern, therefore it is more appropriate to use *Tower 2 as the Operating Parameter Reference Tower* than Tower 1. Accordingly, after normalizing to Tower 2, the Antenna Monitor (Operating Parameters) become:

Tower	Modeled Current Pulse	Modeled Current Magnitude at Toroid	Modeled Current Phase at Toroid	Antenna Monitor Ratio	Antenna Monitor Phase ¹³
1(C)	1	1.794523 A	2.818°	1.340	99.4°
2 (SE)	26	1.33936 A	263.379°	1.000	0.00°
3 (NW)	51	0.58902 A	157.3°	0.440	-106.1°

Final Directional Antenna Monitor Operating Parameters – <u>Normalized to Tower 2</u>

Accordingly, the phasing and coupling systems for the authorized nighttime pattern were adjusted such that the antenna monitor phase and ratio indications were within 5% of the ratio values, and 3° of the phase values shown above, per the requirements of §73.62(a) of the Commission's Rules. The base circuit analysis (for each tower) used to develop the above tabulation is provided in the following three pages.

¹³ Rounded to the nearest tenth of a degree.

¹² For the WCAP analysis, the same schematic diagrams and node nomenclature are employed as were described previously for the OC-self analysis. Specifically, node 2 represents the ATU TCT reference point and node 3 represents the tower feedpoint. Node 0 represents ground potential. The tower operating impedances were represented by complex loads from node 3 to ground (R_{3-0}). Please see the tabulations following this page.

Circuit Analysis Used for Each Tower to Develop Antenna Monitor Parameters

WCAP Directional Antenna Base Circuit Analysis – WNWR Tower 1 (C)

WCAP Directional Antenna Base Circuit Analysis – WNWR Tower 2 (SE)

WCAP OUTPUT AT FREQUENCY: 1.540 MHz WNWR TO	ower 2 (SE) – DA Mode
NODE VOLTAGES Node: 1 237.1297 \ddagger -39.7500° V Node: 2 236.4003 \ddagger -39.4782° V Node: 3 222.2766 \ddagger -41.8187° V $\frac{2}{10}$ Resistor $\frac{2}{10}$ Resistor $\frac{2}{10$	ree
WCAP PART BRANCH VOLTAGE BRANCH CUI	RRENT
R $3 \rightarrow 0$ 90.02400000 222.28 \measuredangle -41.819° V 1.38 \measuredangle -96 C $3 \rightarrow 0$ 0.00001400 222.28 \measuredangle -41.819° V 0.03 \measuredangle \measuredangle L $2 \rightarrow 3$ 1.29100000 16.95 \measuredangle -7.088° V 1.36 \measuredangle -96 C $2 \rightarrow 0$ 0.00000891 236.40 \measuredangle -39.478° V 0.02 \measuredangle 56 R $1 \rightarrow 2$ 1.00000000 1.34 \measuredangle -96.621° V 1.34 \measuredangle -96 WCAP PART FROM IMPEDANCE TO IMP R $3 \rightarrow 0$ 90.02400000 90.02 i 133.370 0.00 $-91.33.370$ 0.00 $-92.33.35$ 0.000 -93.35 -93.35 0.000 -93.35 -93.35 -93.35 -93.35 -93.35 -93.35 -93.35 -93.35 -93.35 -93.76 -93.76 -93.76 -93.76 -93.76 -93.76 -93.76 -93.76	Current at 97.800° A Load 48.181° A 97.088° A 50.522° A 96.621° A PEDANCE + + j 0.000 + j 134.665 + j 0.000 + j 148.267
WCAP INPUT DATA: 1.5400 0.00010000 1 R 90.02400000 3 0 133.37000000 Modeled Base Impedance C 0.00001400 3 0 1 1.29100000 2 3 0.00000000 L 1.29100000 2 3 0.00000000 C 0.00000000 1 2 0.000000000 R 1.00000000 1 2 0.00000000 Modeled Current Magnitude I 1.33936000 0 1 263.37900000 Modeled Current Magnitude	de and Phase at Toroid

WCAP Directional Antenna Base Circuit Analysis – WNWR Tower 3 (NW)

WC Mo	WCAP OUTPUT AT FREQUENCY: 1.540 MHz Mode				ИНz	WNWR Tower 3 (NW) – DA										
NC	DDE VO Node: Node: Node:	1 2 3	GES 55.2529 55.3504 45.8842	9 4 1 4 2 4	-103. -102. -100.	4771 8753 8383	1° 3°	V V V			voguetrocy vog Banges, may Stup Referei Phanom 2 D Resissor	LS4 MHZ 0 MHZ 0 C KHZ rec Point GT Static Drain Choice Static Drain Choice Static Brain Static Static Factor	² Tower F Reactar Reactar cy, this ke cohaits ance)	nce	ž F e stor	Modeled Complex Load (fower)
	<u>WCA</u>	P PAI	<u>RT</u>]	BRANC	H V	OL	TAG	E		BRAN	CH C	UR	RENT	<u>[</u>	
D	3 .0	15 /	6300000		15 88	*	1	00.83	00	V	0.60	-	157	5000	٨	Current at
	$3 \rightarrow 0$	-15.4	0001400		45.88	4 ×	-1	00.81	80	V	0.00	4 ×	-10	.300	A	Load
L	$2 \rightarrow 3$	1.6	7700000	c.	9.63		-1	12.62	21°	v	0.59	+ ∡	157	.379°	A	
C	2→0	0.0	0000891		55.35	⊥ ∡	-]	02.87	75°	v	0.00	⊥ ∡	-12	.875°	A	
R	1→2	1.0	0000000		0.59	4	1	57.30)0°	V	0.59	<u></u>	157	.300°	A	
	WC	CAP P.	ART		FF	OM	IIN	IPED	ANC	CE TO IMPEDANCE						
R	3→0	-]	15.46300	0000	-15.	46	+	j	74	.919		0.00	+	j	0.00	00
C	3→0		0.00001	400	0.	00	-	j	7381	.955		0.00	+	j	0.00	00
L	2→3		1.67700	0000	-15.	78	+	j	91	.881	-	15.78	+	j	75.65	54
C	2→0		0.00000	891	0.	00	-	j 1	1600	.333		0.00	+	j	0.00	00
R	1→2		1.00000	0000	-15.	03	+	j	92	.592	-	16.03	+	j	92.59	92
wc	C AP INP 1.5400	UT D 0.00	ATA: 010000	1												
R	-15.46	30000	0 3	0	74.91	9000	000	Mo	dele	d Bas	se Imp	edanc	e			
С	0.00	00140	0 3	0												
L	1.67	70000	0 2	3	0.00	0000	000									
С	0.00	00089	1 2	0												
R	1.00	00000	0 1	2	0.00	0000	000									
Ι	0.58	90200	0 0	1	157.30	000	000	Mo	dele	d Cu	rrent]	Magni	tude	e and	Phas	e at Toroid

CAVELL MERTZ & Associates. Inc.

1

Antenna Monitor and Sample System

The station's existing antenna monitor (a *Potomac Instruments Inc.* Model AM-1901-3, Serial Number 855), was returned to the manufacturer in order to have its calibration verified. A manufacturer's recalibration certificate (dated August 22, 2017) was issued – a copy of this certificate can be made available upon request. This monitor's calibration was also field-verified prior to initiating array tuning.

This antenna monitor is fed with the same coaxial sample lines that were installed as new equipment during the WNWR 2012 renovation project. These existing sample lines will now be used for both the day and night modes of operation.

All sampling lines are equal length, solid outer conductor, phase stabilized, "connectorized", half-inch, *Andrew Corporation* Model 42394-14VA coaxial cables. They are installed at the site under equal environmental conditions, all being buried except where they extend equally to terminating locations. The electrical length and characteristic impedance of these lines were again verified using the FCC's open-circuit methods prior to array adjustment per the Commission's MoM proof requirements. (A following section of this Statement documents the measured sample line lengths and their characteristic impedances.) Each sample line's impedance was also measured in the terminated condition, with the companion toroidal current sampling transformer devices connected. The results are included in a tabulation which follows this section.

Replacement toroidal current transformers ("TCTs") were purchased to accommodate the new nighttime operation. These *Phasetek, Inc. model* "P600-205" TCTs have "dual" sensitivity capability, making them well-suited to the difference in power levels encountered between the day and night operational modes. The characteristics of these TCTs were verified per the requirements of the FCC's Rules prior to antenna array adjustment; see the following section of this Statement regarding sample system TCT calibration.

This sampling system conforms to the provisions of Section 73.68(a) of the Commission's Rules that were in effect prior to January 1, 1986, essentially qualifying the system as an "approved" sampling system. Accordingly, if pertinent, approval of this sampling system is being requested pursuant to the FCC's Public Notice of December 9, 1985. Further, as will be demonstrated herein, the installed antenna monitor - sampling system also complies with the requirements of the newly adopted MoM Proof Rules under Section 73.151(c).

Sampling System Measurements

Impedance and length measurements were made of the antenna monitor sampling system as required by FCC Rule Section 73.151(c)(2)(i). The equipment used for these measurements consisted of a precision calibrated Hewlett-Packard model 8753C vector network analyzer, a Tunwall Radio directional coupler system, and an Electronic Navigation Industries (ENI) Model 310 L RF amplifier. The calibration of this equipment (as configured for these tests), was field verified prior to each measurement using the procedures specified in the manufacturer's instruction manual and precision calibration standards. Sample system measurements were accomplished by attaching the test equipment at the "antenna monitor ends" of the sampling lines and making observations for two test conditions - an unterminated "open circuit" condition (without the sampling lines connected to any loads or sampling devices), and then with the (TCT) sampling devices connected to the lines at their distant ends (at the tower bases). The first test condition (with unterminated sample lines) is used to establish the electrical length of each sample line. Impedance measurements are made on each sample line to find the frequency closest to the carrier frequency where the line is series resonant (a frequency where the resistance is low and the reactance is zero). The line length will be an odd multiple of 90 degrees in length at that frequency, or in this instance, 270 degrees. The line length at carrier can therefore be calculated by dividing the carrier frequency by the measured frequency, then multiplying the result by the 270 degrees. As shown in the table below, using this method, the sampling line lengths meet the Commission's requirement that they be equal in length within +/-1 electrical degree.

Sample Line for Tower	Open-Circuit Resonance Nearest to 1540 kHz	Calculated Electrical Length
1 – Center	1490.43 kHz	278.98°
2 – Southeast	1490.46 kHz	278.97°
3 – Northwest	1490.49 kHz	278.97°

For the second test condition, impedance measurements were then made at frequencies corresponding to 1/8 wavelength (45°) immediately above and below the open circuit resonant frequency closest to carrier frequency, to establish the sample line's characteristic impedance. The characteristic impedance of the sample lines can then be calculated using the following formula:

$$Zo = \sqrt{\sqrt{R_1^2 + X_1^2}} \bullet \sqrt{R_2^2 + X_2^2}$$

where $R_1 + jX_1$ and $R_2 + jX_2$ are the measured impedances at the +45 and -45 degree offset frequencies, respectively.

The data and calculation results are tabulated below. As shown, the sampling line measured characteristic impedances meet the Commission's requirement that they be equal within $\pm/-2$ ohms.

Sample Line for Tower	-45° Offset Frequency	-45° Measured Impedance	+45° Offset Frequency	+45° Measured Impedance	Characteristic Impedance
1 – Center	1242.03 kHz	3.15 -j50.37 Ω	1738.84 kHz	4.63 +j49.97 Ω	50.3 Ω
2 – Southeast	1242.05 kHz	3.18 –j50.16 Ω	1738.87 kHz	4.63 +j50.14 Ω	50.3 Ω
3 – Northwest	1242.08 kHz	3.18 –j50.09 Ω	1738.91 kHz	4.62 +j50.08 Ω	50.2 Ω

Impedance measurements were then taken at carrier frequency for each sample line with the new *Phasetek* TCTs connected to the lines. Since these TCTs are dual range devices, measurements were taken for each sensitivity range (day versus night mode) as shown below.

Sample Line for Tower	Measured Impedance With TCT Connected Day Mode	Measured Impedance with TCT Connected Night Mode
1 – Center	50.3 –j4.2 Ω	52.7 –j8.6 Ω
2 – Southeast	50.2 –j4.3 Ω	52.5 –j8.6 Ω
3 – Northwest	50.2 –j4.1 Ω	52.6 –j8.3 Ω

The relative calibration of the toroidal transformers used for the station sampling system were calibrated by measuring their outputs with a common reference signal using a *Hewlett-Packard* 8753C network analyzer in a calibrated measurement system. They were placed side-by-side with a conductor passing the reference signal passing through them and their outputs were fed into the A and B receiver inputs of the analyzer which was configured to measure the relative ratios and phases of their output voltages. The following results were found for the carrier frequency, 1540 kilohertz:

TCT for	Serial	Day	Mode	Night Mode		
Tower	<u>Number</u>	<u>Ratio</u>	Phase	<u>Ratio</u>	Phase	
1 – Center	15401	1.000 (ref)	0.0° (Ref)	1.003	+0.1°	
2 – Southeast	15402	1.001	-0.2°	1.000 (Ref)	0.0° (Ref)	
3 – Northwest	15403	1.000	-0.2°	0.999	0.0°	

Phasetek, Inc. model "P600-205" toroidal transformers are rated for absolute magnitude accuracy of $\pm 1.5\%$ and absolute phase accuracy of ± 2 degrees. As the maximum measured transformer-to-transformer variations between the three transformers were fractional amounts, they clearly provide far more accurate relative indications than could be the case assuming their rated accuracies.

Reference Field Strength Measurements

FCC Rule Section 73.151(c)(3) states that "Reference field strength measurement locations shall be established in directions of pattern minima and maxima" as companion information for a Method of Moments Proof-of-Performance. Accordingly, data were gathered as required by this rule section¹⁴. Operating mode, radial directions, measured field strength, measurement point distance, location description, and GPS coordinates (with datum reference) are shown in the following tables for both the daytime and nighttime patterns.

The instrumentation used for these measurements was a *Potomac Instruments, Inc.* model FIM-41, Serial Number 2181, which was last factory calibrated on June 27, 2006. Prior to commencement of measurements, this meter's calibration was checked against a *Potomac Instruments* model PI-4100, Serial Number 248, which was last factory calibrated on January 21, 2016. Mr. William Smith, an engineer employed by *Phasetek, Inc.* (the provider of the WNWR RF phasing and coupling systems) collected the reference point field strength data for WNWR.

Point	Distance (km)	Field (mV/m)	Coordinates (WGS-84 Datum)		Measurement Location Description
1	1.41	281	40° 03.381'	75° 13.535'	Opposite driveway at 800 Wise's Mill Road
2	3.43	69	40° 04.244'	75° 12.660'	Seminole at Railroad Station, 40 feet Southeast of fire hydrant
3	4.54	48	40° 04.735'	75° 12.210'	End of East Highland Avenue at fire hydrant

Reference Field Strength Measurements - 37° (Minima) Daytime

Reference Field Strength Measurements -	- 138°	(Maxima)	Daytime
--	--------	----------	---------

Point	Distance (km)	Field (mV/m)	Coordinates (WGS-84 Datum)		Measurement Location Description	
1	1.50	950	40° 02.178'	75° 13.417'	Pechin and Gates streets. At the Southeast corner	
2	3.04	328	40° 01.562'	75° 12.682'	454 Shurs Lane, on sidewalk	
3	4.59	128	40° 00.942'	75° 11.954'	At driveway, 4000 Gypsy Lane	

¹⁴ Daytime reference point measurements are also being included with this nighttime Proof-of-Performance in order to establish a uniform benchmark for these measurements for both of the WNWR patterns. Also, as permitted under FCC Rule Section 73.155(b), the opportunity was taken to replace prior daytime reference points as necessary due to access/placement concerns or general environmental suitability issues. The requirements of FCC Rule Section 73.151(c)(3) are thus satisfied.

Reference Field Strength Measurements - 235° (Minima) Daytime

Point	Distance (km)	Field (mV/m)	Coordinates (WGS-84 Datum)		Measurement Location Description	
1	2.41	50.5	40° 02.032' 75° 15.516'		1462 Hagy's Ford Road (at Hollow Road)	
2	3.13	27.2	40° 01.799'	75° 15.928'	Mailboxes 75/85/95 om Fairview Road	
3	4.54	3.5	40° 01.388'	75° 16.761'	Mill Creek Road near Old Gulph Road at gravel Lot	

Reference Field Strength Measurements – 290° (Minima) Daytime

Point	Distance (km)	Field (mV/m)	Coordinates (WGS-84 Datum)		Measurement Location Description
1	1.46	66	40° 03.027'	75° 15.094'	Opposite mailbox #230 on Port Royal Avenue
2	5.26	11.9	40° 03.737'	75° 17.612'	Philadelphia Country Club – by tree on island near lot exit
3	6.49	6.3	40° 03.946'	75° 18.432'	Merion Hill entrance off Route 23 at first drain

Reference Field Strength Measurements - 342° (Minima) Daytime

Point	Distance (km)	Field (mV/m)	Coordinates (WGS-84 Datum)		Measurement Location Description	
1	1.01	352	40° 03.290' 75° 14.345'		Small sign at Summit Avenue and Granville Road	
2	3.41	37	40° 04.527'	75° 14.853'	Eagle View Drive at mailboxes	
3	4.37	26.7	40° 05.030'	75° 15.009'	Parking lot of General Lafayette Inn	

Reference Field Strength Measurements - 139° (Maxima) Nighttime

Point	Distance (km)	Field (mV/m)	Coordinates (WGS-84 Datum)		Measurement Location Description
1	1.34	74	40° 02.227'	75° 13.516'	Pechin and Fountain Roads, at large evergreen
2	2.64	33.3	40° 01.696'	75° 12.921'	336-338 Roxborough Avenue on sidewalk
3	3.02	26.1	40° 01.554'	75° 12.721'	Freeland Avenue near Shurs Lane at lot entrance

Reference Field Strength Measurements – 274° (Minima) Nighttime

Point	Distance (km)	Field (mV/m)	Coordinates (WGS-84 Datum)		Measurement Location Description
1	1.07	4.6	40° 02.800'	75° 14.878'	Shawmont Avenue and Minerva at stop sign
2	1.55	2.89	40° 02.832'	75° 15.213'	Nixon Street at diamond sign "Share the Road"
3	4.90	0.229	40° 02.947'	75° 17.567'	Country Club Road off Route 23 at diamond sign

Reference Field Strength Measurements - 309.25° (Minima) Nighttime

Point	Distance (km)	Field (mV/m)	Coordinates (WGS-84 Datum)		Measurement Location Description
1	1.29	4.8	40° 03.222'	75° 14.819'	Mailbox 399 – Port Royal Avenue
2	4.91	1.23	40° 04.439'	75° 16.813'	River Road at curve, by black fence with #15
3	6.64	0.178	40° 05.028'	75° 17.754'	13 th Avenue, East of Fayette at gravel driveway

Reference Field Strength Measurements - 342° (Minima) Nighttime

Point	Distance (km)	Field (mV/m)	Coordinates (WGS-84 Datum)		Measurement Location Description	
1	1.01	20.9	40° 03.290' 75° 14.345'		Small sign at Summit Avenue and Granville Road	
2	3.41	1.31	40° 04.527'	75° 14.853'	Eagle View Drive at mailboxes	
3	4.37	1.27	40° 05.030'	75° 15.009'	Parking lot of General Lafayette Inn	

Direct Measurement of Power

Common point impedance measurements were made using the previously described network analyzer equipment for both the day and nighttime modes. The "as adjusted" common point impedance measurements were made at the respective phasor cabinet input jacks, adjacent to the common point current meter used to determine operating power. The results were confirmed by a Delta Operating Impedance Bridge. This data is shown below:

Operating Mode	Common Point Resistance	Common Point Reactance
Daytime	50 Ω	-7.7 Ω
Nighttime	70 Ω	-30.8 Ω

The authorized common point input power of the nominal 50 kW <u>daytime</u> directional antenna system for WNWR is 52,650 watts. This value is obtained by applying the provisions of Section 73.51(b)(2) of the Commission's Rules, whereby the authorized input power to directional antennas whose nominal powers are in excess of 5 kW are allowed to exceed the nominal power by 5.3 percent, (i.e. 50,000 Watts x 1.053 = 52,650 Watts). Accordingly, the appropriate **daytime common point current is 32.45 Amperes**, as found by the following calculation: (52,650 Watts/50 Ohms Daytime Common Point Resistance)^{1/2} = **32.45 Amperes**.

The authorized common point input power of the nominal 0.25 kW (250 Watt) <u>nighttime</u> directional antenna system is 270 Watts. This value is obtained by applying the provisions of \$73.51(b)(1) of the Commission's Rules, whereby the authorized input power to directional antennas whose nominal powers are 5 kW or less are allowed to exceed the nominal power by 8 percent, (i.e. 250 Watts x 1.08 = 270 Watts). The appropriate **nighttime common point current is 1.964 Amperes**, as found by the following calculation: (270 Watts/70 Ohms Nighttime Common Point Resistance)^{1/2} = **1.964 Amperes**.

These values are maintained by the station using Delta Ammeters at each common point location.

Survey Certification

The FCC's Public Notice ("PN") of October 29, 2009 (DA 09-2340) stated that licensed stations which are not proposing a change in the authorized theoretical patterns (or new patterns), are exempt from the array survey requirements of FCC Rule Section 73.151(c)(1)(ix). Based upon this PN, a surveyor's certification was not required or furnished for the prior (2012 daytime) WNWR MoM Proof-of-Performance.

However, Section 73.151(c)(1)(ix) of the rules requires that a station using MoM modeling to confirm an antenna pattern that is applying to license a (new) directional antenna array, must obtain a post-construction certificate from a licensed surveyor, verifying that the towers in the array have the proper spacing and orientation.

Inasmuch as the nighttime antenna system authorized in the WNWR CP (FCC File Number BP-20161215ABM) is a "new" directional antenna pattern, a surveyor's certification is technically required under the Section 73.151(c)(1)(ix). However, it is noted that in the FCC's proceeding, *In the Matter of Revitalization of the AM Radio Service*, THIRD REPORT AND ORDER (" $3^{rd} R \& O$ ") of MB Docket No. 13-249¹⁵ this requirement was negated in those instances where a new pattern is being used with an existing antenna array. Unfortunately, Office of Management and Budget ("OMB") approval of this $3^{rd} R \& O$ has not yet been received nor has the 3^{rd}

¹⁵ Adopted: September 22, 2017 Released: September 25, 2017, FCC 17-119.

R&O been published in the *Federal Register* advising the public of an effective date for this Rule change. Therefore, we have concluded that a surveyor's certification is still required.

Accordingly, a copy of the original "as-built" survey has been located in the Station's archives. A reduced copy, along with an enlarged portion of the pertinent part of the survey, is included the on following page. Using the information provided in the survey, the relative distances in feet and azimuths (referenced to true north) were compared to the relative distances and azimuths relative to true north of the array elements using the Construction Permit array geometry as baseline and the "Law of Cosines" analysis method. The following tabulation shows those distances and other information along with error determination.

· · · · · · · · · · · · · · · · · · ·	Callsign:	WNWR	Reference Tower:	1.11		
	Freq. (kHz):	1540 kHz	Feet per wavelength:	638.6825042		
Tower Pair Studied 1 (ref) 1 to 2 1 to 3	Licensed Spacing (Electrical degrees) 0.0 107.0 74.5	Licensed Azimuth (Degrees True) 0.0 129.8 324.9 Law	Measured Distance (feet) 0.0 188.4 132.6 of Cosines Anal	Measured Azimuth (Degrees True) 0.0 129.5 325.0	Tower Location Error from Licensed (Result in Feet) 0.00 1.74 0.49	Tower Location Error from Licensee (Electrical Degrees) 0.00 ° 0.98 ° 0.27 °
Tower Pair	Licensed Specification (Side "a") of Triangle	Licensed Azimuth	Included Angle A	Tower Location Error	Error in Feet	Error Gragton
tudied (ref)	(Feet)	Azimuth Difference	Converted to Radians	from licensed position (Result in Feet)	Converted to Electrical Degrees	Greater Than 1.5° ?
to 2 to 3	189.83 132.17	0.3000 °	0.005235988	0.0	0.0	N/A No - Therefore Okay
		0.1000	0.001745329	0.5	0.3	No - Therefore Okay

"As-Built" Array Geometry Summary

The "as built" tower displacements from their specified locations, as documented in the survey of the following page, are expressed in the above table in terms of feet, as well as in electrical degrees at carrier frequency. (This corresponds to space phasing differences in the far-field radiation pattern of the array.)

The results shown above are well below the +/- 3 degree operating phase range specified for antenna monitor parameters by the FCC Rules and well within the 1.5° tolerance specified in the Commission's DA 09-2340 Public Notice. As such, it has been proven that this existing antenna tower array has been constructed in accordance with the terms of its Construction Permit and the pertinent Rules and Regulations of the FCC.

WNWR Survey

Enlarged View of Array Plot

CAVELL

MERTZ & Associates, Inc.

RF Exposure Evaluation

The operation of the facility described herein will not result in the exposure of workers or the general public to levels of radio frequency radiation in excess of the limits specified in FCC Rule Section 1.1310. *Global Radio* has installed locked fences around each of the tower bases to restrict public access. The as-constructed fence distances are beyond those necessary to prevent electric and magnetic field exposure above the levels described in the Commission's Rules at the power levels specified for WNWR.

The minimum fence sizes were determined with reference to FCC OET Bulletin 65 (Edition 97-01). Interpolated values from the Supplement A tables were employed to estimate the necessary "Distance for Compliance with FCC limits" at 1540 kilohertz using a "worst case" improbable assumption of 50 kW at each tower and no top loading. This distance is 4.92 meters, (16.2 feet). Accordingly, 40 by 40 foot fences were installed around each tower, ensuring that the closest point of approach to an energized element would be approximately 5.8 meters (19 feet). Based upon the above, it is believed that the Commission's RF exposure prevention requirements are met in that the fences limit public access to areas with fields that exceed the requirements of the Rules for this directional antenna operation. Further, all fence enclosure areas are posted with RF exposure warning signs on all fence sides, RF burn warning signs are posted on the towers themselves, and the fence gates are securely chained and locked. Additionally, all metal fence metal materials are tied into the station RF ground system.

With respect to worker safety, no work will be permitted that will endanger employees or subcontractors. Access to high exposure or shock/burn areas will be controlled and supervised by knowledgeable, responsible, station personnel. If it is necessary for workers to be inside the tower base fence enclosures for extended periods of time, the station may switch to low power nondirectional operation on Tower 1 (the Central tower), thus de-activating Towers 2, and 3, or it can temporarily terminate operation entirely while work is performed within the enclosures. No one will be permitted to climb an energized tower. It is therefore submitted that the constructed facility is in full compliance with the FCC's requirements with regard to radio frequency energy exposure.

Satisfaction of CP Conditions

The WNWR Nighttime Construction Permit is subject to four Special Operating Conditions, which are discussed in the following paragraphs. All four Special Operating Conditions are being met with the filing of this License Application. Specifically:

FCC Special Operating Condition 1 requires that a ground system be installed consisting of "120 equally spaced buried copper radials, 48.8 meters in length except where truncated at property boundary or where

shortened and bonded to transverse straps between adjacent towers, plus 120 interspersed radials 15.2 meters in length, about the base of each tower." This condition has been satisfied. A ground system meeting the above requirement has been installed at this site, as was discussed in an earlier portion of this Statement.

FCC Special Operating Condition 2 requires that the Permittee submit a proof of performance as set forth in either Section 73.151(a) or 73.151(c) of the Rules before program tests are authorized. This condition has been satisfied in that a Moment Method Proof-of-Performance, as set forth in Section 73.151(c) of the Commission's Rules has been completed. It is supplied with FCC Form 302-AM in the form of this Statement. As is also required by Condition 2, this antenna system uses series-fed radiators and the associated sampling system is constructed as described in Section 73.151(c)(2)(i) of the Commission's Rules. Therefore this Special Operating Condition is satisfied. Accordingly, Program Test Authority for the newly constructed nighttime antenna mode are herein respectfully requested on behalf of *Global Radio*.

FCC Special Operating Condition 3 requires that the Permittee install a type-accepted transmitter. Typeaccepted transmitters (Harris and Broadcast Electronics) have been acquired and are properly installed at the authorized transmitter site, satisfying this Special Operating Condition.

FCC Special Operating Condition 4 requires that the Permittee be responsible for satisfying all reasonable complaints of blanketing interference within the 1 V/m contour as required by Section 73.88 of the Commission's Rules. While instances of such interference is not expected given the low power level authorized under the nighttime CP, *Global Radio* acknowledges its responsibility under this Rule and has Station personnel prepared and available to respond appropriately.

Certification

These application materials have been prepared on behalf of *Global Radio* by the undersigned or under his direction and are true and correct to the best of his knowledge and belief. Mr. Cavell's qualifications are a matter of record before the FCC.

Respectfully submitted,

Garrison C. Cavell December 15, 2017 Cavell, Mertz & Associates, Inc. 7724 Donegan Drive, Manassas, Virginia 20109 703.392.9090; Facsimile 703.392.9559 E-Mail: gcavell@cavellmertz.com

