

### ATTORNEYS AND COUNSELORS AT LAW

8280 Greensboro Drive Seventh Floor McLean, VA 22102 3807 Phone: 703-761-5000 Fax: 703-761-5023 www.GG-Law.com 2014 FEB -4 A b: 03

AUDIE OF

Robert B. Adams†
Carol L. Browne^\*\*
A. Wray Fitch III
James A. Gammon\*
George R. Grange II
Stephen S. Kao
Stephen H. King
Nancy Oliver LeSourd
Kenneth E. Liu
Justina Uram Mubangu\*\*

Timothy R. Obitts W. Franklin Pugh, P.L.C. ‡ Patrick D. Purtill Daniel D. Smith, P.C. ‡ Ashley L. Tuite Scott J. Ward

\* Co-Founder, 1934-2011
\*\* Not Admitted to VA
^ Semor Counsel
† Of Counsel—McLean
† Of Counsel—Leesburg

January 31, 2014

Marlene H. Dortch, Secretary Federal Communications Commission Office of the Secretary 445 12<sup>th</sup> Street, SW Room TW-A325 Washington, DC 20554

ATTN: Audio Division, Media Bureau

Re: Advanced Modulation Broadcasting, LLC

KDCO(AM), Golden, CO (Facility ID No. 161314)

FCC Form 302-AM, License to Cover

File No.: BMP-20130219AAQ

--VIA HAND DELIVERY--

Accepted/Files

JAN 3 1 2014

Federal Communications Commission Office of the Secretary

Dear Ms. Dortch:

Enclosed for filing please find an original and two copies of FCC Form 302-AM license application, submitted on behalf of Advanced Modulation Broadcasting, LLC, for broadcast station KDCO(AM), Golden, CO. Form 159 will be electronically submitted with payment.

Please direct any questions to the undersigned.

Respectfully submitted,

ADVANCED MODULATION BROADCASTING, LLC

A. Wray Hitch III

Enclosures (as stated)

cc: Vic Michael (via email with enclosures)

| SECTION II - APPLICAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | IT INFORMATION                                                                                                                                                                                                                           |                                                                              |                                                                                                    |                                                                                                                     |                                                        |           |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-----------|--|
| NAME OF APPLICANT     Advanced Modulation Broad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | casting, LLC                                                                                                                                                                                                                             |                                                                              |                                                                                                    |                                                                                                                     |                                                        |           |  |
| MAILING ADDRESS<br>87 Jasper Lake Road                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                          |                                                                              |                                                                                                    |                                                                                                                     |                                                        |           |  |
| CITY Loveland, CO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                          | ye ye a da                                     | STATE Colora                                                                                       | ido                                                                                                                 | ZIP CODE<br>80537                                      |           |  |
| 2. This application is for:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Commercial  AM Direct                                                                                                                                                                                                                    | ctional                                                                      | Noncomn                                                                                            | nercial<br>Ion-Directional                                                                                          |                                                        |           |  |
| Call letters KDCO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Community of License GOLDEN                                                                                                                                                                                                              |                                                                              | tion Permit File No.<br>0100216ABH                                                                 | Modification of Construction<br>Permit File No(s).<br>BMP-20130219AAQ                                               | Expiration Date of Last Construction Permit 02/02/2014 | st        |  |
| Is the station in accordance with 47 C.F.  If No, explain in an Exh.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                          | to auto                                                                      | matic program                                                                                      | test authority in                                                                                                   | Yes ✓ Exhibit No.                                      | No        |  |
| Have all the term construction permit bee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ns, conditions, and obligen fully met?                                                                                                                                                                                                   | gations s                                                                    | et forth in the                                                                                    | above described                                                                                                     | ✓ Yes Exhibit No.                                      | No        |  |
| If No, state exceptions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | in an Exhibit.                                                                                                                                                                                                                           |                                                                              |                                                                                                    |                                                                                                                     |                                                        |           |  |
| 5. Apart from the changes already reported, has any cause or circumstance arisen since the grant of the underlying construction permit which would result in any statement or representation contained in the construction permit application to be now incorrect?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                          |                                                                              |                                                                                                    |                                                                                                                     |                                                        |           |  |
| If Yes, explain in an Ex                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | khibit.                                                                                                                                                                                                                                  |                                                                              |                                                                                                    |                                                                                                                     | - Andrews                                              |           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | iled its Ownership Report<br>nce with 47 C.F.R. Section                                                                                                                                                                                  |                                                                              |                                                                                                    | ership                                                                                                              | ✓ Yes ☐ Does not ap                                    | No<br>plv |  |
| If No, explain in an Exh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ibit.                                                                                                                                                                                                                                    |                                                                              |                                                                                                    |                                                                                                                     | Exhibit No.                                            | P-7       |  |
| or administrative body criminal proceeding, br                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ding been made or an ac<br>with respect to the applic<br>ought under the provisio<br>related antitrust or unfa<br>unit; or discrimination?                                                                                               | ant or pa                                                                    | arties to the appl<br>law relating to                                                              | ication in a civil or<br>the following: any                                                                         | Yes 🗸                                                  | No        |  |
| involved, including an including an including and information has been required by 47 U.S.C. Softhat previous submits the call letters of the significant including an includi | attach as an Exhibit a f<br>dentification of the court<br>nbers), and the dispositi<br>earlier disclosed in co<br>Section 1.65(c), the appli<br>ssion by reference to the<br>station regarding which t<br>of filing; and (ii) the dispo- | or admin<br>ion of the<br>onnection<br>cant need<br>if file num<br>he applic | istrative body and litigation. We with another donly provide: where in the case cation or Section. | nd the proceeding here the requisite application or as (i) an identification of an application, in 1.65 information | Exhibit No.                                            |           |  |

| 8. Does the applicant, or any party to the application, have a the expanded band (1605-1705 kHz) or a permit or license expanded band that is held in combination (pursuant to the 5 with the AM facility proposed to be modified herein?                                                                                                                                                                                               | either in the existing band                                                                                              | l or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| If Yes, provide particulars as an Exhibit.                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                          | Exhibit No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                          | Names and the second se |
| The APPLICANT hereby waives any claim to the use of any against the regulatory power of the United States because requests and authorization in accordance with this application amended).                                                                                                                                                                                                                                              | e use of the same, whet                                                                                                  | her by license or otherwise, and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| The APPLICANT acknowledges that all the statements material representations and that all the exhibits are a material                                                                                                                                                                                                                                                                                                                    |                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CERTIFIC                                                                                                                                                                                                                                                                                                                                                                                                                                | CATION                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1. By checking Yes, the applicant certifies, that, in the case or she is not subject to a denial of federal benefits that included to Section 5301 of the Anti-Drug Abuse Act of 1988, 21 U. case of a non-individual applicant (e.g., corporation, partners association), no party to the application is subject to a definctudes FCC benefits pursuant to that section. For the definition purposes, see 47 C.F.R. Section 1.2002(b). | udes FCC benefits pursua<br>S.C. Section 862, or, in the<br>ship or other unincorporate<br>thial of federal benefits the | ant<br>he<br>ed<br>at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 2. I certify that the statements in this application are true, co and are made in good faith.                                                                                                                                                                                                                                                                                                                                           | emplete, and correct to the                                                                                              | best of my knowledge and belief,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Victor A Michael, Jr.                                                                                                                                                                                                                                                                                                                                                                                                                   | Signature                                                                                                                | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Title Sole Member                                                                                                                                                                                                                                                                                                                                                                                                                       | Date 01/31/2014                                                                                                          | Telephone Number 970-669-9200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

# WILLFUL FALSE STATEMENTS ON THIS FORM ARE PUNISHABLE BY FINE AND/OR IMPRISONMENT (U.S. CODE, TITLE 18, SECTION 1001), AND/OR REVOCATION OF ANY STATION LICENSE OR CONSTRUCTION

FCC NOTICE TO INDIVIDUALS REQUIRED BY THE PRIVACY ACT AND THE PAPERWORK REDUCTION ACT

The solicitation of personal information requested in this application is authorized by the Communications Act of 1934, as amended. The Commission will use the information provided in this form to determine whether grant of the application is in the public interest. In reaching that determination, or for law enforcement purposes, it may become necessary to refer personal information contained in this form to another government agency. In addition, all information provided in this form will be available for public inspection. If information requested on the form is not provided, the application may be returned without action having been taken upon it or its processing may be delayed while a request is made to provide the missing information. Your response is required to obtain the requested authorization.

Public reporting burden for this collection of information is estimated to average 639 hours and 53 minutes per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the burden, can be sent to the Federal Communications Commission, Records Management Branch, Paperwork Reduction Project (3060-0627), Washington, D. C. 20554. Do NOT send completed forms to this address.

THE FOREGOING NOTICE IS REQUIRED BY THE PRIVACY ACT OF 1974, P.L. 93-579, DECEMBER 31, 1974, 5 U.S.C. 552a(e)(3), AND THE PAPERWORK REDUCTION ACT OF 1980, P.L. 96-511, DECEMBER 11, 1980, 44 U.S.C. 3507.

EXHBIT 1 KDCO GOLDEN, CO ADVANCED MODULATION BROADCASTING, LLC FCC FORM 302-AM JANUARY 2014

Automatic Program Test Authority has not yet commenced due to the Special Operating Conditions or Restrictions #2 as listed on the Construction Permit (BMP-20130219AAQ). It states: "The permittee must submit a proof of performance as set forth in either Section 73.151(a) or 73.151(c) of the rules before program test are authorized".

KDCO will begin Program Tests as soon as it is authorized to do so.

| Name of Applicar                                                                                                                                                                                                                                                                          | nt                        | LICATION ENGI                     |                    |                                      |                 |                                            |              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-----------------------------------|--------------------|--------------------------------------|-----------------|--------------------------------------------|--------------|
|                                                                                                                                                                                                                                                                                           |                           | ULATION B                         |                    | STING, L.L.                          | .C.             |                                            |              |
| PURPOSE OF A                                                                                                                                                                                                                                                                              | UTHORIZATIO               | ON APPLIED FOR                    | : (check one)      |                                      |                 |                                            |              |
| <b>√</b> §                                                                                                                                                                                                                                                                                | Station License           | e                                 | Direct Me          | asurement of Pov                     | ver             |                                            |              |
| 1. Facilities author                                                                                                                                                                                                                                                                      | orized in const           | ruction permit                    |                    |                                      |                 |                                            |              |
| Call Sign                                                                                                                                                                                                                                                                                 |                           | onstruction Permit                | Frequency          | Hours of Opera                       | ation           |                                            | kilowatts    |
| KDCO                                                                                                                                                                                                                                                                                      | (if applicable) BMP201302 | 19AAQ                             | (kHz)<br>1550      | UNLIMITED                            | )               | Night<br>0.35                              | Day<br>0.99  |
| 2. Station locatio                                                                                                                                                                                                                                                                        | n                         |                                   |                    |                                      |                 |                                            |              |
| State                                                                                                                                                                                                                                                                                     |                           |                                   |                    | City or Town                         |                 |                                            |              |
| COLORA                                                                                                                                                                                                                                                                                    | ADO                       |                                   |                    | Golden                               |                 |                                            |              |
| 3. Transmitter loc                                                                                                                                                                                                                                                                        | cation                    |                                   |                    |                                      |                 |                                            |              |
| State                                                                                                                                                                                                                                                                                     | County                    |                                   | ¥1                 | City or Town                         |                 | Street address                             |              |
| CO                                                                                                                                                                                                                                                                                        | Jefferso                  | on                                |                    | Golden                               |                 | (or other identification                   | ation)       |
| 4. Main studio loc                                                                                                                                                                                                                                                                        | ration                    | •                                 |                    | Coldon                               |                 | ,                                          |              |
| State                                                                                                                                                                                                                                                                                     | County                    |                                   |                    | City or Town                         |                 | Street address                             |              |
| CO                                                                                                                                                                                                                                                                                        | County                    |                                   |                    | Oity of Town                         |                 | (or other identifica<br>TBD                | ation)       |
| 5. Remote contro                                                                                                                                                                                                                                                                          | ol point location         | n (specify only if au             | ıthorized directio | nal antenna)                         |                 |                                            |              |
| State                                                                                                                                                                                                                                                                                     | County                    | <u> </u>                          |                    | City or Town                         |                 | Street address<br>(or other identification | ation)       |
| 6. Has type-approved stereo generating equipment been installed?  7. Does the sampling system meet the requirements of 47 C.F.R. Section 73.68?  Yes V No  No  Not Applicable  Attach as an Exhibit a detailed description of the sampling system as installed.  Exhibit No. see eng stmt |                           |                                   |                    |                                      |                 |                                            |              |
| 8. Operating cons                                                                                                                                                                                                                                                                         | or antenna cu             | ırrent (in amperes)               | without            | RF common po                         | oint or antenna | current (in ampere                         | s) without   |
| modulation for nig 2.75A                                                                                                                                                                                                                                                                  | ht system                 |                                   |                    | modulation for 4.59A                 |                 |                                            | *            |
| Measured antenna<br>operating frequence<br>Night 50                                                                                                                                                                                                                                       |                           | point resistance (in<br>Day<br>47 | ohms) at           | Measured ante operating freque Night |                 | point reactance (i<br>Day<br>+j26          | ,            |
| Antenna indication                                                                                                                                                                                                                                                                        | ns for direction          | al operation                      |                    |                                      |                 |                                            |              |
| Tower                                                                                                                                                                                                                                                                                     | s                         | Antenna i<br>Phase reading(       |                    | Antenna mor<br>current i             |                 | Antenna ba                                 | ase currents |
|                                                                                                                                                                                                                                                                                           |                           | Night                             | Day                | Night                                | Day             | Night                                      | Day          |
| 1(W)                                                                                                                                                                                                                                                                                      |                           | 0.0 ref<br>+22.0                  |                    | 1.000 ref<br>0.773                   |                 |                                            |              |
| 2(E)                                                                                                                                                                                                                                                                                      |                           | +22.0                             |                    | 0.770                                |                 |                                            |              |
|                                                                                                                                                                                                                                                                                           |                           |                                   |                    |                                      |                 |                                            |              |
|                                                                                                                                                                                                                                                                                           |                           |                                   |                    |                                      |                 |                                            |              |
| Monufactures                                                                                                                                                                                                                                                                              | tuno ef e                 | a manita                          |                    |                                      |                 |                                            |              |
| Manufacturer and                                                                                                                                                                                                                                                                          | type or antenr            | ia monitor: PO                    | TOMAC INST         | RUMENTS AN                           | M19 type 204    |                                            |              |

## SECTION III - Page 2

9. Description of antenna system ((f directional antenna is used, the information requested below should be given for each element of the array. Use separate sheets if necessary.)

| Type Radiator                                    | Overall height in meters of radiator above base insulator, or above base, if grounded.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | above ground (without above ground (include |               | If antenna is either top loaded or sectionalized, describe fully in an Exhibit. |                             |
|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|---------------|---------------------------------------------------------------------------------|-----------------------------|
| GUYED TOWER                                      | SEE ENG STMT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SEE ENG                                     | STMT          | SEE ENG STMT                                                                    | Exhibit No.                 |
| Excitation                                       | Series                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Shunt                                       |               |                                                                                 |                             |
| Geographic coordinate tower location.            | es to nearest second. For direc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | tional antenna                              | give coordina | tes of center of array. For si                                                  | ngle vertical radiator give |
| North Latitude 39                                | ° 53 . 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1 "                                         | West Longit   | <sup>ude</sup> 105 ° 14                                                         | 20                          |
| 이 사람이 사용 병원에 위한 회사에 가장 사람들이 있다면 하는 것이 없는데 없어 없다. | bove, attach as an Exhibit furtl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                             | dimensions i  | ncluding any other                                                              | Exhibit No.                 |
|                                                  | a complete description, attac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                             | bit a sketch  | of the details, and                                                             | Exhibit No.                 |
|                                                  | any, does the apparatus const                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ructed differ fro                           | m that descri | bed in the application for cor                                                  | nstruction permit or in the |
| permit?                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |               |                                                                                 |                             |
|                                                  | int the applicant in the capacity is true to the best of my knowle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                             |               | have examined the foregoin                                                      | ng statement of technical   |
| Name (Please Print or                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |               | eck appropriate box below)                                                      |                             |
| Timothy C. Cu                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |               | The CCutfoi                                                                     | ed                          |
| Address (include ZIP C                           | code) ENGINEERING CO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                             | Date 01/30/2  | 7                                                                               |                             |
| 965 S. IRVING                                    | e a secono e terrollo de del colo del c | 7                                           |               | . (Include Area Code)                                                           |                             |
| DENVER, CO                                       | 80219                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                             | 303-93        | 7-1900                                                                          |                             |
| Technical Directo                                | nc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ·                                           | Register      | ed Professional Engineer                                                        |                             |
| Chief Operator                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             | Technica      | al Consultant                                                                   |                             |
| Other (specify)                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |               |                                                                                 |                             |

FCC 302-AM (Page 5) August 1995

## EXHIBIT E-1

# APPLICATION FOR LICENSE INFORMATION RADIO STATION KDCO GOLDEN, COLORADO

Advanced Modulation Broadcasting, LLC
January 30, 2014

1550 kHz 0.99 kW-D/0.35 kW-N DA-N

## EXECUTIVE SUMMARY

This engineering exhibit supports an application for license for the new nighttime directional antenna system of radio station KDCO in Brighton, Colorado (FCC FID No. 161314) pursuant to the recently enacted AM technical rules permitting moment-method modeling of eligible AM directional arrays.

KDCO is a new station authorized to operate on 1550 kHz with non-directional antenna daytime and a power of 0.99kW and directional antenna nighttime with a power of 0.35kW BMP 20130219AAQ. The instant application requests license and program test authority based on Method of Moments certification of the facility.

Information is provided herein showing that the directional antenna parameters the daytime pattern authorized by the FCC have been determined in accordance with the requirements of 47 C.F.R.  $\S73.151(c)$ . The system has been preset to values computed to produce antenna monitor parameters within  $\pm 5$  percent in ratio and  $\pm 3$  degrees in phase of the modeled values, as required by the Rules. A station license is requested herewith specifying the nighttime operating parameters.

## Analysis of Tower Impedance Measurements to Verify Method of Moments Model

Tower base impedance measurements were made at the final J-plugs within the Antenna Tuning Units (ATUs) using a Delta OIB-1 operating impedance bridge. The other tower was open-circuited at the same point where the impedance measurements were made for them. The static drain chokes at the ATU outputs are located on the ATU side of the antenna sample and are disconnected from all towers when the J-plugs are removed for measurements. This arrangement left only the short feed tubing between the ATU outputs and the tower base in series in the impedance measurements.

ACSModel (MININEC 3.1 core) was used to model the KDCO array.

A lumped load with a reactance of -j10,000 Ohms was modeled at the base of the other tower to simulate an open circuit at each tower base.

The tower heights were adjusted in the model in order to achieve calibration of the model with the measured base impedances. All modeled tower heights were within 75 to 125 percent of the physical tower height as required by the FCC Rules.

The modeled radius for each tower was near the physical radius of the tower as determined by the formula  $3T/2\pi$ , where T is the tower face width in meters. The KDCO radiators are uniform cross-section triangular towers and have face widths of 0.4256 meters resulting in an apparent radius of 0.2032 meter. The tower's radius was modeled at 0.2033 meter for tower 1 and 0.3040 meter for tower 2 within the allowable range of modeled radius to best fit the tower measured impedance characteristic.

Each tower is fed with a short length of large-diameter copper tubing that exhibits a small amount of series inductive reactance. This tubing connects to each tower immediately above the base insulator.

The two towers had slightly different impedances likely due to a 1 ft difference in the tower base pier height and a very short ground lead from the tower base from the ATU for tower 1. The ground contour around the base of the tower is also slightly different. This results in a higher measured base resistance than the other tower. The ATU is also lower and situated very close to the tower base, resulting in a lower series inductance. The model calibration process was able to compensate for these differences well within the allowable tolerances specified in the rules.

A circuit model was constructed for each tower using the assumed series feed tubing and shunt base region reactances. This model was used with the Westberg Circuit Analysis Program (WCAP) to determine the effects of these reactances on the ATU output impedance at each tower. In each of the WCAP tabulations, node 2 represents the ATU output reference point and node 3 represents the tower base. Node 0 represents ground potential. The ATU output impedances can be found in the "TO NODE IMPEDANCE" column of each WCAP tabulation, following the phantom 1.0 ohm resistor inserted in the model to provide a calculation point for the impedance. The complex base impedance of each tower from the moment method model is represented in each case by the complex load from node 3 to ground. A value of 80 pF was assumed for the base insulator, and this appears in the WCAP

tabulation from node 3 to ground as 0.001 (microfarads) due to rounding. The WCAP circuit model tabulation immediately follows the model for each tower.

§73.151(c)(1)(vii) permits the use of a lumped series inductance of 10 uH or less between the output port of each antenna tuning unit and the associated tower. In each case, the value of lumped series inductance was below this 10 uH limit.

The modeled and measured impedances at the ATU output J-plugs with the other tower open-circuited at their ATU output J-plugs agree within  $\pm 2$  ohms and  $\pm 4$  percent as required by the FCC rules.

Table 1 – Analysis of Tower Impedance Measurements to Verify Moment Method Model

|       |                   |                  |             | Series | Shunt | Phys.  | Model  | %     |
|-------|-------------------|------------------|-------------|--------|-------|--------|--------|-------|
|       | Z <sub>BASE</sub> | Z <sub>ATU</sub> | $Z_{ATU}$   | L      | C     | Height | Height | Phys. |
| Twr.  | (Modeled)         | (Modeled)        | (Measured)  | (uH)   | pF    | (deg.) | (deg.) | Heigh |
|       | 1                 |                  |             |        |       |        |        | l t   |
| 1     | 43.1+j19.2        | 44.5+j26.3       | 47.0 +j26.3 | 0.87   | 80    | 85.0   | 89.5   | 105.3 |
| (M.D. |                   |                  |             |        |       |        |        |       |
| (W)   |                   |                  |             |        |       |        |        |       |
| 2     | 42.3 –j18.9       | 43.6+j32.5       | 44.0 +j32.5 | 1.53   | 80    | 85.0   | 89.5   | 105.3 |
| 2     | 42.5 J10.5        | 45.01352.5       | 44.0 1J32.3 | 1.55   | 00    | 05.0   | 67.5   | 103.3 |
| (E)   |                   |                  |             |        |       |        |        |       |

## \*\*\*\*\*\*\*\*\*\*

# ACSModel (MININEC 3.1 Core)

kdco mom west tower 1 calibration run

Frequency = 1.550 MHz Wavelength = 193.41936 Meters

No. of Wires: 2

| Wire No. 1                  | Coordinates<br>Y     | Z            | Radius | End<br>Connection | No. of |
|-----------------------------|----------------------|--------------|--------|-------------------|--------|
| Segments                    |                      |              |        |                   |        |
| 0                           | 0                    | 0            |        | -1                |        |
| 0                           | 0                    | 48.0862      | 0.304  | 0                 | 20     |
| Wire No. 2<br>X<br>Segments | Coordinates<br>Y     | Z            | Radius | End<br>Connection | No. of |
| -22.15771<br>-22.15771      | 105.1459<br>105.1459 | 0<br>48.0862 | 0.2033 | -2<br>0           | 20     |

## \*\*\*\* ANTENNA GEOMETRY \*\*\*\*

| Wire No. | 1 | Coordinates |          |        | Conne | ection | Pulse |
|----------|---|-------------|----------|--------|-------|--------|-------|
| X        |   | Y           | Z        | Radius | End1  | End2   | No.   |
| 0        |   | 0           | 0        | 0.304  | - 1   | 1      | 1     |
| 0        |   | 0           | 2.40431  | 0.304  | 1     | 1      | 2     |
| 0        |   | 0           | 4.80862  | 0.304  | 1     | 1      | 3     |
| 0        |   | 0           | 7.21293  | 0.304  | 1     | 1      | 4     |
| 0        |   | 0           | 9.61724  | 0.304  | 1     | 1      | 5     |
| 0        |   | 0           | 12.02155 | 0.304  | 1     | 1      | 6     |
| 0        |   | 0           | 14.42586 | 0.304  | 1     | 1      | 7     |
| 0        |   | 0           | 16.83017 | 0.304  | 1     | 1      | 8     |
| 0        |   | 0           | 19.23448 | 0.304  | 1     | 1      | 9     |
| 0        |   | 0           | 21.63879 | 0.304  | 1     | 1      | 10    |
| 0        |   | 0           | 24.0431  | 0.304  | 1     | 1      | 11    |
| 0        |   | 0           | 26.44741 | 0.304  | 1     | 1      | 12    |
| 0        |   | 0           | 28.85172 | 0.304  | 1     | 1      | 13    |
| 0        |   | 0           | 31.25603 | 0.304  | 1     | 1      | 14    |
| 0        |   | 0           | 33.66034 | 0.304  | 1     | 1      | 15    |
| 0        |   | 0           | 36.06465 | 0.304  | 1     | 1      | 16    |
| 0        |   | 0           | 38.46896 | 0.304  | 1     | 1      | 17    |
| 0        |   | 0           | 40.87327 | 0.304  | 1     | 1      | 18    |
| 0        |   | 0           | 43.27758 | 0.304  | 1     | 1      | 19    |
| 0        |   | . 0         | 45.68189 | 0.304  | 1     | 0      | 20    |
|          |   |             |          |        |       |        |       |

| Wire No. 2 | Coordinates |          |        | Conn | ection | Pulse |
|------------|-------------|----------|--------|------|--------|-------|
| X          | Y           | Z        | Radius | End1 | End2   | No.   |
| -22.15771  | 105.1459    | 0        | 0.2033 | -2   | 2      | 21    |
| -22.15771  | 105.1459    | 2.40431  | 0.2033 | 2    | 2      | 22    |
| -22.15771  | 105.1459    | 4.80862  | 0.2033 | 2    | 2      | 23    |
| -22.15771  | 105.1459    | 7.21293  | 0.2033 | 2    | 2      | 24    |
| -22.15771  | 105.1459    | 9.61724  | 0.2033 | 2    | 2      | 25    |
| -22.15771  | 105.1459    | 12.02155 | 0.2033 | 2    | 2      | 26    |
| -22.15771  | 105.1459    | 14.42586 | 0.2033 | 2    | 2      | 27    |
| -22.15771  | 105.1459    | 16.83017 | 0.2033 | 2    | 2      | 28    |
| -22.15771  | 105.1459    | 19.23448 | 0.2033 | 2    | 2      | 29    |
| -22.15771  | 105.1459    | 21.63879 | 0.2033 | 2    | 2      | 30    |
| -22.15771  | 105.1459    | 24.0431  | 0.2033 | 2    | 2      | 31    |
| -22.15771  | 105.1459    | 26.44741 | 0.2033 | 2    | 2      | 32    |
| -22.15771  | 105.1459    | 28.85172 | 0.2033 | 2    | 2      | 33    |
| -22.15771  | 105.1459    | 31.25603 | 0.2033 | 2    | 2      | 34    |
| -22.15771  | 105.1459    | 33.66034 | 0.2033 | 2    | 2      | 35    |
| -22.15771  | 105.1459    | 36.06465 | 0.2033 | 2    | 2      | 36    |
| -22.15771  | 105.1459    | 38.46896 | 0.2033 | 2    | 2      | 37    |
| -22.15771  | 105.1459    | 40.87327 | 0.2033 | 2    | 2      | 38    |
| -22.15771  | 105.1459    | 43.27758 | 0.2033 | 2    | 2      | 39    |
| -22.15771  | 105.1459    | 45.68189 | 0.2033 | 2    | 0      | 40    |

Sources: 1

Pulse No., Voltage Magnitude, Phase (Degrees): 1, 1000.0, 0.0

Number of Loads: 1

Pulse No., Resistance, Reactance: 21 , 0 ,-10000

Pulse 1 Voltage = (1000.0, 0.0j)

Current = (19.3785, -8.6361j)Impedance = (43.053, 19.187j)

Power = 9689.23 Watts

#### WESTBERG CIRCUIT ANALYSIS PROGRAM

#### FILE NAME = kdco-1.cir

| I  | 1.0000  | 0 | 1 | .0000   | .0000 | .0000 |
|----|---------|---|---|---------|-------|-------|
| R  | 1.0000  | 1 | 2 | .0000   | .0000 | .0000 |
| L  | .8700   | 2 | 3 | .0000   | .0000 | .0000 |
| C  | .0001   | 3 | 0 | .0000   | .0000 | .0000 |
| R  | 43.0530 | 3 | 0 | 19.1870 | .0000 | .0000 |
| EX | .0000   | 0 | 0 | .0000   | .0000 | .0000 |
|    |         |   |   |         |       |       |

### FREQ = 1.550

| NO   | DE  |   | VOLT MAG | VOLT PH | ASE     |        |         |            |           |            |           |
|------|-----|---|----------|---------|---------|--------|---------|------------|-----------|------------|-----------|
| 1    |     |   | 52.5213  | 30.02   | 58      |        |         |            |           |            |           |
| 2    |     |   | 51.6579  | 30.58   | 08      |        |         |            |           |            |           |
| 3    |     |   | 47.9059  | 21.82   | 26      |        |         |            |           |            |           |
|      |     |   |          | BRANCH  | VOLTAGE | BRANCH | CURRENT | FROM NODE  | IMPEDANCE | TO NODE IM | PEDANCE   |
|      |     |   |          | MAG     | PHASE   | MAG    | PHASE   | RESISTANCE | REACTANCE | RESISTANCE | REACTANCE |
| VSWR |     |   |          |         |         |        |         |            |           |            |           |
| R    | 1-  | 2 | 1.000    | 1.00    | .000    | 1.00   | .000    | 45.47      | 26.28     | 44.47      | 26.28     |
| L    | 2 - | 3 | .870     | 8.47    | 90.000  | 1.00   | .000    | 44.47      | 26.28     | 44.47      | 17.81     |
| C    | 3 - | 0 | .000     | 47.91   | 21.823  | .04    | 111.823 | .00        | -1140.90  | .00        | .00       |
| R    | 3 - | 0 | 43.053   | 47.91   | 21.823  | 1.02   | -2.198  | 43.05      | 19.19     | .00        | .00       |
|      |     |   |          |         |         |        |         |            |           |            |           |

Copy of file KDCO-1.CIR

1.550 0. 1 I 1 0 1 R 1.000 1 2 L 0.87 2 3 C .00008 3 0 R 43.053 3 0 +19.187 EX

## \*\*\*\*\*\*\*\*\*\*\*

## ACSModel

## (MININEC 3.1 Core)

kdco

mom east tower 2
calibration run

Frequency = 1.550 MHz Wavelength = 193.41936 Meters

No. of Wires: 2

| Wire No. 1<br>X | Coordinates<br>Y | Z       | Radius | End<br>Connection | No. of |
|-----------------|------------------|---------|--------|-------------------|--------|
|                 | ī                | 4       | Radius | Connection        |        |
| Segments        |                  |         |        |                   |        |
| 0               | 0                | 0       |        | -1                |        |
| 0               | 0                | 48.0862 | 0.304  | 0                 | 20     |
| Wire No. 2      | Coordinates      |         |        | End               | No. of |
| X               | Y                | Z       | Radius | Connection        |        |
| Segments        |                  |         |        |                   |        |
| -22.15771       | 105.1459         | 0       |        | -2                |        |
| -22.15771       | 105.1459         | 48.0862 | 0.2033 | 0                 | 20     |

## \*\*\*\* ANTENNA GEOMETRY \*\*\*\*

| X       Y       Z       Radius       End1       End2       No.         0       0       0       0.304       -1       1       1         0       0       0       0.304       1       1       2         0       0       4.80862       0.304       1       1       3         0       0       7.21293       0.304       1       1       4         0       0       9.61724       0.304       1       1       5         0       0       12.02155       0.304       1       1       6         0       0       14.42586       0.304       1       1       7         0       0       16.83017       0.304       1       1       9         0       0       19.23448       0.304       1       1       9         0       0       21.63879       0.304       1       1       10         0       0       24.0431       0.304       1       1       11         0       0       28.85172       0.304       1       1       14         0       0       33.66034       0.304       1                                                                                                          | Wire No. | 1 Coordinates |          |        | Conn | ection | Pulse |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------------|----------|--------|------|--------|-------|
| 0       0       2.40431       0.304       1       1       2         0       0       4.80862       0.304       1       1       3         0       0       7.21293       0.304       1       1       4         0       0       9.61724       0.304       1       1       5         0       0       12.02155       0.304       1       1       6         0       0       14.42586       0.304       1       1       7         0       0       16.83017       0.304       1       1       8         0       0       19.23448       0.304       1       1       9         0       0       21.63879       0.304       1       1       10         0       0       24.0431       0.304       1       1       11         0       0       26.44741       0.304       1       1       13         0       0       31.25603       0.304       1       1       14         0       0       36.06465       0.304       1       1       16         0       0       38.46896       0.304 <td< td=""><td>X</td><td>Y</td><td>Z</td><td>Radius</td><td>End1</td><td>End2</td><td>No.</td></td<> | X        | Y             | Z        | Radius | End1 | End2   | No.   |
| 0       0       4.80862       0.304       1       1       3         0       0       7.21293       0.304       1       1       4         0       0       9.61724       0.304       1       1       5         0       0       12.02155       0.304       1       1       6         0       0       14.42586       0.304       1       1       7         0       0       16.83017       0.304       1       1       8         0       0       19.23448       0.304       1       1       9         0       0       21.63879       0.304       1       1       10         0       0       24.0431       0.304       1       1       11         0       0       26.44741       0.304       1       1       12         0       0       28.85172       0.304       1       1       14         0       0       33.66034       0.304       1       1       15         0       0       36.06465       0.304       1       1       17         0       0       40.87327       0.304       <                                                                                            | 0        | 0             | 0        | 0.304  | -1   | 1      | 1     |
| 0       0       7.21293       0.304       1       1       4         0       0       9.61724       0.304       1       1       5         0       0       12.02155       0.304       1       1       6         0       0       14.42586       0.304       1       1       7         0       0       16.83017       0.304       1       1       8         0       0       19.23448       0.304       1       1       9         0       0       21.63879       0.304       1       1       10         0       0       24.0431       0.304       1       1       11         0       0       26.44741       0.304       1       1       12         0       0       28.85172       0.304       1       1       14         0       0       31.25603       0.304       1       1       15         0       0       36.06465       0.304       1       1       16         0       0       38.46896       0.304       1       1       17         0       0       40.87327       0.304                                                                                                  | 0        | 0             | 2.40431  | 0.304  | 1    | 1      | 2     |
| 0       0       9.61724       0.304       1       1       5         0       0       12.02155       0.304       1       1       6         0       0       14.42586       0.304       1       1       7         0       0       16.83017       0.304       1       1       8         0       0       19.23448       0.304       1       1       9         0       0       21.63879       0.304       1       1       10         0       0       24.0431       0.304       1       1       11         0       0       26.44741       0.304       1       1       12         0       0       28.85172       0.304       1       1       14         0       0       31.25603       0.304       1       1       15         0       0       36.06465       0.304       1       1       16         0       0       38.46896       0.304       1       1       17         0       0       40.87327       0.304       1       1       18         0       0       43.27758       0.304                                                                                                | 0        | 0             | 4.80862  | 0.304  | 1    | 1      | 3     |
| 0       0       12.02155       0.304       1       1       6         0       0       14.42586       0.304       1       1       7         0       0       16.83017       0.304       1       1       8         0       0       19.23448       0.304       1       1       9         0       0       21.63879       0.304       1       1       10         0       0       24.0431       0.304       1       1       11         0       0       26.44741       0.304       1       1       12         0       0       28.85172       0.304       1       1       13         0       0       31.25603       0.304       1       1       14         0       0       33.66034       0.304       1       1       15         0       0       36.06465       0.304       1       1       17         0       0       40.87327       0.304       1       1       18         0       0       43.27758       0.304       1       1       19                                                                                                                                           | 0        | 0             | 7.21293  | 0.304  | 1    | 1      | 4     |
| 0       0       14.42586       0.304       1       1       7         0       0       16.83017       0.304       1       1       8         0       0       19.23448       0.304       1       1       9         0       0       21.63879       0.304       1       1       10         0       0       24.0431       0.304       1       1       11         0       0       26.44741       0.304       1       1       12         0       0       28.85172       0.304       1       1       13         0       0       31.25603       0.304       1       1       14         0       0       33.66034       0.304       1       1       15         0       0       36.06465       0.304       1       1       16         0       0       40.87327       0.304       1       1       18         0       0       43.27758       0.304       1       1       19                                                                                                                                                                                                                | 0        | 0             | 9.61724  | 0.304  | 1    | 1      | 5     |
| 0       0       16.83017       0.304       1       1       8         0       0       19.23448       0.304       1       1       9         0       0       21.63879       0.304       1       1       10         0       0       24.0431       0.304       1       1       11         0       0       26.44741       0.304       1       1       12         0       0       28.85172       0.304       1       1       13         0       0       31.25603       0.304       1       1       14         0       0       33.66034       0.304       1       1       15         0       0       36.06465       0.304       1       1       16         0       0       40.87327       0.304       1       1       18         0       0       43.27758       0.304       1       1       19                                                                                                                                                                                                                                                                                     | 0        | 0             | 12.02155 | 0.304  | 1    | 1      | 6     |
| 0       0       19.23448       0.304       1       1       9         0       0       21.63879       0.304       1       1       10         0       0       24.0431       0.304       1       1       11         0       0       26.44741       0.304       1       1       12         0       0       28.85172       0.304       1       1       13         0       0       31.25603       0.304       1       1       14         0       0       33.66034       0.304       1       1       15         0       0       36.06465       0.304       1       1       16         0       0       38.46896       0.304       1       1       17         0       0       40.87327       0.304       1       1       18         0       0       43.27758       0.304       1       1       19                                                                                                                                                                                                                                                                                    | 0        | 0             | 14.42586 | 0.304  | 1    | 1      | 7     |
| 0       0       21.63879       0.304       1       1       10         0       0       24.0431       0.304       1       1       11         0       0       26.44741       0.304       1       1       12         0       0       28.85172       0.304       1       1       13         0       0       31.25603       0.304       1       1       14         0       0       33.66034       0.304       1       1       15         0       0       36.06465       0.304       1       1       16         0       0       38.46896       0.304       1       1       17         0       0       40.87327       0.304       1       1       18         0       0       43.27758       0.304       1       1       19                                                                                                                                                                                                                                                                                                                                                         | 0        | 0             | 16.83017 | 0.304  | 1    | 1      | 8     |
| 0       0       24.0431       0.304       1       1       11         0       0       26.44741       0.304       1       1       12         0       0       28.85172       0.304       1       1       13         0       0       31.25603       0.304       1       1       14         0       0       33.66034       0.304       1       1       15         0       0       36.06465       0.304       1       1       16         0       0       38.46896       0.304       1       1       17         0       0       40.87327       0.304       1       1       18         0       0       43.27758       0.304       1       1       19                                                                                                                                                                                                                                                                                                                                                                                                                               | 0        | 0             | 19.23448 | 0.304  | 1    | 1      | 9     |
| 0       0       26.44741       0.304       1       1       12         0       0       28.85172       0.304       1       1       13         0       0       31.25603       0.304       1       1       14         0       0       33.66034       0.304       1       1       15         0       0       36.06465       0.304       1       1       16         0       0       38.46896       0.304       1       1       17         0       0       40.87327       0.304       1       1       18         0       0       43.27758       0.304       1       1       19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0        | 0             | 21.63879 | 0.304  | 1    | 1      | 10    |
| 0       0       28.85172       0.304       1       1       13         0       0       31.25603       0.304       1       1       14         0       0       33.66034       0.304       1       1       15         0       0       36.06465       0.304       1       1       16         0       0       38.46896       0.304       1       1       17         0       0       40.87327       0.304       1       1       18         0       0       43.27758       0.304       1       1       19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0        | 0             | 24.0431  | 0.304  | 1    | 1      | 11    |
| 0       0       31.25603       0.304       1       1       14         0       0       33.66034       0.304       1       1       15         0       0       36.06465       0.304       1       1       16         0       0       38.46896       0.304       1       1       17         0       0       40.87327       0.304       1       1       18         0       0       43.27758       0.304       1       1       19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0        | 0             | 26.44741 | 0.304  | 1    | 1      | 12    |
| 0       0       33.66034       0.304       1       1       15         0       0       36.06465       0.304       1       1       16         0       0       38.46896       0.304       1       1       17         0       0       40.87327       0.304       1       1       18         0       0       43.27758       0.304       1       1       19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0        | 0             | 28.85172 | 0.304  | 1    | 1      | 13    |
| 0       0       36.06465       0.304       1       1       16         0       0       38.46896       0.304       1       1       17         0       0       40.87327       0.304       1       1       18         0       0       43.27758       0.304       1       1       19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0        | 0             | 31.25603 | 0.304  | 1    | 1      | 14    |
| 0       0       38.46896       0.304       1       1       17         0       0       40.87327       0.304       1       1       18         0       0       43.27758       0.304       1       1       19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0        | 0             | 33.66034 | 0.304  | 1    | 1      | 15    |
| 0       0       40.87327       0.304       1       1       18         0       0       43.27758       0.304       1       1       19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0        | 0             | 36.06465 | 0.304  | 1    | 1      | 16    |
| 0 0 43.27758 0.304 1 1 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0        | 0             | 38.46896 | 0.304  | 1    | 1      | 17    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0        | 0             | 40.87327 | 0.304  | 1    | 1      | 18    |
| 0 0 45.68189 0.304 1 0 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0        | 0             | 43.27758 | 0.304  | 1    | 1      | 19    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0        | 0             | 45.68189 | 0.304  | 1    | 0      | 20    |

| Wire No.  | 2 | Coordinates |         |          | Conne | ection | Pulse |
|-----------|---|-------------|---------|----------|-------|--------|-------|
| X         |   | Y           | Z       | Radius   | End1  | End2   | No.   |
| -22.15771 |   | 105.1459    | 0       | 0.2033   | -2    | 2      | 21    |
| -22.15771 |   | 105.1459    | 2.40431 | 0.2033   | 2     | 2      | 22    |
| -22.15771 |   | 105.1459    | 4.80862 | 0.2033   | 2     | 2      | 23    |
| -22.15771 |   | 105.1459    | 7.21293 | 0.2033   | 2     | 2      | 24    |
| -22.15771 |   | 105.1459    | 9.61724 | 0.2033   | 2     | 2      | 25    |
| -22.15771 |   | 105.1459    | 12.0215 | 0.2033   | 2     | 2      | 26    |
| -22.15771 |   | 105.1459    | 14.4258 | 0.2033   | 2     | 2      | 27    |
| -22.15771 |   | 105.1459    | 16.8301 | 7 0.2033 | 2     | 2      | 28    |
| -22.15771 |   | 105.1459    | 19.2344 | 8 0.2033 | 2     | 2      | 29    |
| -22.15771 |   | 105.1459    | 21.6387 | 0.2033   | 2     | 2      | 30    |
| -22.15771 |   | 105.1459    | 24.0431 | 0.2033   | 2     | 2      | 31    |
| -22.15771 |   | 105.1459    | 26.4474 | 0.2033   | 2     | 2      | 32    |
| -22.15771 |   | 105.1459    | 28.8517 | 0.2033   | 2     | 2      | 33    |
| -22.15771 |   | 105.1459    | 31.2560 | 0.2033   | 2     | 2      | 34    |
| -22.15771 |   | 105.1459    | 33.6603 | 0.2033   | 2     | 2      | 35    |
| -22.15771 |   | 105.1459    | 36.0646 | 0.2033   | 2     | 2      | 36    |
| -22.15771 |   | 105.1459    | 38.4689 | 0.2033   | 2     | 2      | 37    |
| -22.15771 |   | 105.1459    | 40.8732 | 0.2033   | 2     | 2      | 38    |
| -22.15771 |   | 105.1459    | 43.2775 | 0.2033   | 2     | 2      | 39    |
| -22.15771 |   | 105.1459    | 45.6818 | 0.2033   | 2     | 0      | 40    |

Sources: 1

Pulse No., Voltage Magnitude, Phase (Degrees): 21, 1000.0, 0.0

Number of Loads: 1

Pulse No., Resistance, Reactance: 1 , 0 ,-10000

\*\*\*\*\*\* SOURCE DATA \*\*\*\*\*\*

Pulse 21 Voltage = (1000.0, 0.0j)

Current = (19.7087, -8.8281j) Impedance = (42.26, 18.929j)

Power = 9854.34 Watts

## WESTBERG CIRCUIT ANALYSIS PROGRAM

| FILE | FILE NAME = kdco-2.cir |   |   |         |       |       |  |  |  |  |  |  |
|------|------------------------|---|---|---------|-------|-------|--|--|--|--|--|--|
| I    | 1.0000                 | 0 | 1 | .0000   | .0000 | .0000 |  |  |  |  |  |  |
| R    | 1.0000                 | 1 | 2 | .0000   | .0000 | .0000 |  |  |  |  |  |  |
| L    | 1.5300                 | 2 | 3 | .0000   | .0000 | .0000 |  |  |  |  |  |  |
| C    | .0001                  | 3 | 0 | .0000   | .0000 | .0000 |  |  |  |  |  |  |
| R    | 42.2600                | 3 | 0 | 18.9290 | .0000 | .0000 |  |  |  |  |  |  |
| EX   | .0000                  | 0 | 0 | .0000   | .0000 | .0000 |  |  |  |  |  |  |

FREQ = 1.550

| NC   | DE  |   | VOLT MAG | VOLT PH | LASE    |        |         |            |           |            |           |
|------|-----|---|----------|---------|---------|--------|---------|------------|-----------|------------|-----------|
| 1    |     |   | 55.1875  | 36.28   | 45      |        |         |            |           |            |           |
| 2    |     |   | 54.3847  | 36.90   | 79      |        |         |            |           |            |           |
| 3    |     |   | 46.9726  | 22.21   | .44     |        |         |            |           |            |           |
|      |     |   |          | BRANCH  | VOLTAGE | BRANCH | CURRENT | FROM NODE  | IMPEDANCE | TO NODE IM | PEDANCE   |
|      |     |   |          | MAG     | PHASE   | MAG    | PHASE   | RESISTANCE | REACTANCE | RESISTANCE | REACTANCE |
| VSWR |     |   |          |         |         |        |         |            |           |            |           |
| R    | 1-  | 2 | 1.000    | 1.00    | .000    | 1.00   | .000    | 44.49      | 32.66     | 43.49      | 32.66     |
| L    | 2 - | 3 | 1.530    | 14.90   | 90.000  | 1.00   | .000    | 43.49      | 32.66     | 43.49      | 17.76     |
| C    | 3 - | 0 | .000     | 46.97   | 22.214  | .04    | 112.214 | .00        | -1283.51  | .00        | .00       |
| R    | 3 - | 0 | 42.260   | 46.97   | 22.214  | 1.01   | -1.914  | 42.26      | 18.93     | .00        | .00       |

Copy of file KDCO-2.cir

1.550 0. 1 1.550 0. 1 I 1 0 1 R 1.0000 1 2 L 1.53 2 3 C .00008 3 0 R 42.26 3 0 +18.929 EX

### Derivation of Operating Parameters for Nighttime Directional Antenna

Once calibrated against the measured individual open-circuited base impedances, the moment method model was utilized for nighttime directional antenna calculations. These calculations were made to determine the complex voltage source values to be applied at ground level for each tower of the array to produce the current moment sums for the towers which, when normalized to the reference tower, equate to the theoretical field parameters of the authorized directional pattern. These voltage sources were then applied in the model and the tower currents were calculated.

Twenty segments were used for each tower. The KDCO towers are base sampled, which is permitted for towers of 120 electrical degrees or less. As such, the first (ground) segment of each tower was used to determine the model operating parameters of the array.

A circuit model was constructed to determine the effect of the series feed inductance, and shunt base region capacitance on the ATU output current. The circuit model for each tower is essentially the circuit model used for model verification above using the model-predicted operating impedance for each tower. Again, this model was used with the Westberg Circuit Analysis Program (WCAP).

This effect was, as expected, minimal, and the results are tabulated in the table below along with the base operating parameters for the daytime array.

|        |      |           |         |           | -                       | WCAP                     |         |           |
|--------|------|-----------|---------|-----------|-------------------------|--------------------------|---------|-----------|
|        |      |           |         |           | WCAP                    | Phase                    |         | Antenna   |
|        |      | Current   | Base    | Current   | Current                 | Offset for               | Antenna | Monitor   |
|        |      | Magnitude | Current | Phase     | Offset for              | Unity $\acute{Q}_{BASE}$ | Monitor | Phase     |
| Twr.   | Node | (amperes) | Ratios  | (degrees) | Unity I <sub>BASE</sub> | (degrees)                | Ratio   | (degrees) |
| 1<br>W | 1    | 3.766     | 1.000   | +4.72     | 1.005                   | +1.64                    | 1.000   | 0.0       |
| 2<br>E | 21   | 2.931     | 0.778   | +26.97    | 1.010                   | +0.95                    | 0.773   | +22.0     |

## \*\*\*\*\*\*\*\*\*\*

## ACSModel

## (MININEC 3.1 Core)

\*\*\*\*\*\*\*\*\*\*

kdco mom directional parameters determinationation

Frequency = 1.550 MHz Wavelength = 193.41936 Meters

No. of Wires: 2

| Wire No. 1 | Coordinates<br>Y | ${f z}$ | Radius | End<br>Connection | No. of |
|------------|------------------|---------|--------|-------------------|--------|
| Segments   |                  |         |        |                   |        |
| 0          | 0                | 0       |        | -1                |        |
| 0          | 0                | 48.0862 | 0.304  | 0                 | 20     |
|            |                  |         |        |                   |        |
| Wire No. 2 | Coordinates      |         |        | End               | No. of |
| X          | Y                | Z       | Radius | Connection        |        |
| Segments   |                  |         |        |                   |        |
| -22.15771  | 105.1459         | 0       |        | -2                |        |
| -22.15771  | 105.1459         | 48.0862 | 0.2033 | 0                 | 20     |
|            |                  |         |        |                   |        |

## \*\*\*\* ANTENNA GEOMETRY \*\*\*\*

| Wire No. | 1 Coor | dinates  |        | Conne | ection | Pulse |
|----------|--------|----------|--------|-------|--------|-------|
| X        | Y      | Z        | Radius | End1  | End2   | No.   |
| 0        | 0      | 0        | 0.304  | -1    | 1      | 1     |
| 0        | 0      | 2.40431  | 0.304  | 1     | 1      | 2     |
| 0        | 0      | 4.80862  | 0.304  | 1     | 1      | 3     |
| 0        | 0      | 7.21293  | 0.304  | 1     | 1      | 4     |
| 0        | 0      | 9.61724  | 0.304  | 1     | 1      | 5     |
| 0        | 0      | 12.02155 | 0.304  | 1     | 1      | 6     |
| 0        | 0      | 14.42586 | 0.304  | 1     | 1      | 7     |
| 0        | 0      | 16.83017 | 0.304  | 1     | 1      | 8     |
| 0        | 0      | 19.23448 | 0.304  | 1     | 1      | 9 .   |
| 0        | 0      | 21.63879 | 0.304  | 1     | 1      | 10    |
| 0        | 0      | 24.0431  | 0.304  | 1     | 1      | 11    |
| 0        | 0      | 26.44741 | 0.304  | 1     | 1      | 12    |
| 0        | 0      | 28.85172 | 0.304  | 1     | 1      | 13    |
| 0        | 0      | 31.25603 | 0.304  | 1     | 1      | 14    |
| 0        | 0      | 33.66034 | 0.304  | 1     | 1      | 15    |
| 0        | 0      | 36.06465 | 0.304  | 1     | 1      | 16    |
| 0        | 0      | 38.46896 | 0.304  | 1     | 1      | 17    |
| 0        | 0      | 40.87327 | 0.304  | 1     | 1      | 18    |
| 0        | 0      | 43.27758 | 0.304  | 1     | 1      | 19    |
| 0        | 0      | 45.68189 | 0.304  | 1     | 0      | 20    |

| Wire No.  | 2   | Coordinates     |                |               | Conr     | ection | Pulse |
|-----------|-----|-----------------|----------------|---------------|----------|--------|-------|
| X         |     | Y               | Z              | Radius        | End1     | End2   | No.   |
| -22.15771 |     | 105.1459        | 0              | 0.2033        | -2       | 2      | 21    |
| -22.15771 |     | 105.1459        | 2.40431        | 0.2033        | 2        | 2      | 22    |
| -22.15771 |     | 105.1459        | 4.80862        | 0.2033        | 2        | 2      | 23    |
| -22.15771 |     | 105.1459        | 7.21293        | 0.2033        | 2        | 2      | 24    |
| -22.15771 |     | 105.1459        | 9.61724        | 0.2033        | 2        | 2      | 25    |
| -22,15771 |     | 105.1459        | 12.02155       | 0.2033        | 2        | 2      | 26    |
| -22.15771 |     | 105.1459        | 14.42586       | 0.2033        | 2        | 2      | 27    |
| -22.15771 |     | 105.1459        | 16.83017       | 0.2033        | 2        | 2      | 28    |
| -22.15771 |     | 105.1459        | 19.23448       | 0.2033        | 2        | 2      | 29    |
| -22.15771 |     | 105.1459        | 21.63879       | 0.2033        | 2        | 2      | 30    |
| -22.15771 |     | 105.1459        | 24.0431        | 0.2033        | 2        | 2      | 31    |
| -22.15771 |     | 105.1459        | 26.44741       | 0.2033        | 2        | 2      | 32    |
| -22.15771 |     | 105.1459        | 28.85172       | 0.2033        | 2        | 2      | 33    |
| -22.15771 |     | 105.1459        | 31.25603       | 0.2033        | 2        | 2      | 34    |
| -22.15771 |     | 105.1459        | 33.66034       | 0.2033        | 2        | 2      | 35    |
| -22.15771 |     | 105.1459        | 36.06465       | 0.2033        | 2        | 2      | 36    |
| -22.15771 |     | 105.1459        | 38.46896       | 0.2033        | 2        | 2      | 37    |
| -22.15771 |     | 105.1459        | 40.87327       | 0.2033        | 2        | 2      | 38    |
| -22.15771 |     | 105.1459        | 43.27758       | 0.2033        | 2        | 2      | 39    |
| -22.15771 |     | 105.1459        | 45.68189       | 0.2033        | 2        | 0      | 40    |
| Sources:  | 2   |                 |                |               |          |        |       |
| Pulse No. | , v | oltage Magnitue | de, Phase (Dec | rees): 1, 140 | 0.6, 16. | 3      |       |
|           |     | oltage Magnitu  |                |               |          |        |       |
|           | ,   | 5 5             | ,              |               |          |        |       |
| Number of | T.O | ada. O          |                |               |          |        |       |

Number of Loads: 0

Pulse 21 Voltage = (38.3812, 60.9403j) Current = (2.6123, 1.3293j) Impedance = (21.099, 12.591j)

Power = 90.64 Watts

Total Power = 350.000 Watts

| Wire No. 1 :                                                                                                              |                                                                                                                                                                                                          |                                                                                                                                                     |                                                                                                                                                     |                                                                                                                                                                             |
|---------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Pulse                                                                                                                     | Real                                                                                                                                                                                                     | Imaginary                                                                                                                                           | Magnitude                                                                                                                                           | Phase                                                                                                                                                                       |
| No.                                                                                                                       | (Amps)                                                                                                                                                                                                   | (Amps)                                                                                                                                              | (Amps)                                                                                                                                              | (Degrees)                                                                                                                                                                   |
| 1                                                                                                                         | 3.7527                                                                                                                                                                                                   | 0.3102                                                                                                                                              | 3.7655                                                                                                                                              | 4.7247                                                                                                                                                                      |
| 2                                                                                                                         | 3.7699                                                                                                                                                                                                   | 0.2148                                                                                                                                              | 3.776                                                                                                                                               | 3.2618                                                                                                                                                                      |
| 3                                                                                                                         | 3.7535                                                                                                                                                                                                   | 0.1616                                                                                                                                              | 3.7569                                                                                                                                              | 2.4652                                                                                                                                                                      |
| 4                                                                                                                         | 3.7134                                                                                                                                                                                                   | 0.1168                                                                                                                                              | 3.7152                                                                                                                                              | 1.8015                                                                                                                                                                      |
| 5                                                                                                                         | 3.6507                                                                                                                                                                                                   | 0.0781                                                                                                                                              | 3.6515                                                                                                                                              | 1.2256                                                                                                                                                                      |
| 6                                                                                                                         | 3.566                                                                                                                                                                                                    | 0.0443                                                                                                                                              | 3.5663                                                                                                                                              | 0.7113                                                                                                                                                                      |
| 7                                                                                                                         | 3.4601                                                                                                                                                                                                   | 0.0147                                                                                                                                              | 3.4601                                                                                                                                              | 0.2441                                                                                                                                                                      |
| 8                                                                                                                         | 3.3334                                                                                                                                                                                                   | -0.0108                                                                                                                                             | 3.3334                                                                                                                                              | -0.1854                                                                                                                                                                     |
| 9                                                                                                                         | 3.1867                                                                                                                                                                                                   | -0.0325                                                                                                                                             | 3.1869                                                                                                                                              | -0.5838                                                                                                                                                                     |
| 10                                                                                                                        | 3.0208                                                                                                                                                                                                   | -0.0504                                                                                                                                             | 3.0212                                                                                                                                              | -0.9561                                                                                                                                                                     |
| 11                                                                                                                        | 2.8364                                                                                                                                                                                                   | -0.0647                                                                                                                                             | 2.8371                                                                                                                                              | -1.306                                                                                                                                                                      |
| 12                                                                                                                        | 2.6343                                                                                                                                                                                                   | -0.0753                                                                                                                                             | 2.6354                                                                                                                                              | -1.6367                                                                                                                                                                     |
| 13                                                                                                                        | 2.4153                                                                                                                                                                                                   | -0.0823                                                                                                                                             | 2.4167                                                                                                                                              | -1.9507                                                                                                                                                                     |
| 14                                                                                                                        | 2.1803                                                                                                                                                                                                   | -0.0857                                                                                                                                             | 2.182                                                                                                                                               | -2.2501                                                                                                                                                                     |
| 15                                                                                                                        | 1.93                                                                                                                                                                                                     | -0.0855                                                                                                                                             | 1.9319                                                                                                                                              | -2.5368                                                                                                                                                                     |
| 16                                                                                                                        | 1.6649                                                                                                                                                                                                   | -0.0818                                                                                                                                             | 1.6669                                                                                                                                              | -2.8126                                                                                                                                                                     |
| 17                                                                                                                        | 1.3852                                                                                                                                                                                                   | -0.0745                                                                                                                                             | 1.3873                                                                                                                                              | -3.0789                                                                                                                                                                     |
| 18                                                                                                                        | 1.0904                                                                                                                                                                                                   | -0.0636                                                                                                                                             | 1.0922                                                                                                                                              | -3.3375                                                                                                                                                                     |
| 19                                                                                                                        | 0.7778                                                                                                                                                                                                   | -0.0488                                                                                                                                             | 0.7793                                                                                                                                              | -3.5903                                                                                                                                                                     |
| 20                                                                                                                        | 0.4419                                                                                                                                                                                                   | -0.0297                                                                                                                                             | 0.4429                                                                                                                                              | -3.8446                                                                                                                                                                     |
| E                                                                                                                         | 0.0                                                                                                                                                                                                      | 0.0                                                                                                                                                 | 0.0                                                                                                                                                 | 0.0                                                                                                                                                                         |
| T.                                                                                                                        | 0.0                                                                                                                                                                                                      | 0.0                                                                                                                                                 | 0.0                                                                                                                                                 | 0.0                                                                                                                                                                         |
| Wire No. 2:                                                                                                               |                                                                                                                                                                                                          |                                                                                                                                                     |                                                                                                                                                     |                                                                                                                                                                             |
| Pulse                                                                                                                     | Real                                                                                                                                                                                                     | Imaginary                                                                                                                                           | Magnitude                                                                                                                                           | Phase                                                                                                                                                                       |
|                                                                                                                           |                                                                                                                                                                                                          |                                                                                                                                                     |                                                                                                                                                     |                                                                                                                                                                             |
| No.                                                                                                                       | (Amps)                                                                                                                                                                                                   | (Amps)                                                                                                                                              | (Amps)                                                                                                                                              | (Degrees)                                                                                                                                                                   |
| No.<br>21                                                                                                                 | (Amps)<br>2.6123                                                                                                                                                                                         |                                                                                                                                                     |                                                                                                                                                     |                                                                                                                                                                             |
|                                                                                                                           |                                                                                                                                                                                                          | (Amps)                                                                                                                                              | (Amps)                                                                                                                                              | (Degrees)                                                                                                                                                                   |
| 21                                                                                                                        | 2.6123                                                                                                                                                                                                   | (Amps)<br>1.3293                                                                                                                                    | (Amps)<br>2.9311                                                                                                                                    | (Degrees)<br>26.9691                                                                                                                                                        |
| 21<br>22                                                                                                                  | 2.6123<br>2.6397                                                                                                                                                                                         | (Amps)<br>1.3293<br>1.3037                                                                                                                          | (Amps)<br>2.9311<br>2.9441                                                                                                                          | (Degrees)<br>26.9691<br>26.2838                                                                                                                                             |
| 21<br>22<br>23                                                                                                            | 2.6123<br>2.6397<br>2.6383                                                                                                                                                                               | (Amps) 1.3293 1.3037 1.2796                                                                                                                         | (Amps) 2.9311 2.9441 2.9323                                                                                                                         | (Degrees)<br>26.9691<br>26.2838<br>25.8743                                                                                                                                  |
| 21<br>22<br>23<br>24                                                                                                      | 2.6123<br>2.6397<br>2.6383<br>2.6184                                                                                                                                                                     | (Amps) 1.3293 1.3037 1.2796 1.2508                                                                                                                  | (Amps) 2.9311 2.9441 2.9323 2.9017                                                                                                                  | (Degrees) 26.9691 26.2838 25.8743 25.5332                                                                                                                                   |
| 21<br>22<br>23<br>24<br>25                                                                                                | 2.6123<br>2.6397<br>2.6383<br>2.6184<br>2.581                                                                                                                                                            | (Amps) 1.3293 1.3037 1.2796 1.2508 1.2165                                                                                                           | (Amps) 2.9311 2.9441 2.9323 2.9017 2.8533                                                                                                           | (Degrees) 26.9691 26.2838 25.8743 25.5332 25.2358                                                                                                                           |
| 21<br>22<br>23<br>24<br>25<br>26                                                                                          | 2.6123<br>2.6397<br>2.6383<br>2.6184<br>2.581<br>2.527                                                                                                                                                   | (Amps) 1.3293 1.3037 1.2796 1.2508 1.2165 1.1767                                                                                                    | (Amps) 2.9311 2.9441 2.9323 2.9017 2.8533 2.7876                                                                                                    | (Degrees) 26.9691 26.2838 25.8743 25.5332 25.2358 24.9696                                                                                                                   |
| 21<br>22<br>23<br>24<br>25<br>26<br>27                                                                                    | 2.6123<br>2.6397<br>2.6383<br>2.6184<br>2.581<br>2.527<br>2.4569                                                                                                                                         | (Amps) 1.3293 1.3037 1.2796 1.2508 1.2165 1.1767 1.1315                                                                                             | (Amps) 2.9311 2.9441 2.9323 2.9017 2.8533 2.7876 2.705                                                                                              | (Degrees) 26.9691 26.2838 25.8743 25.5332 25.2358 24.9696 24.7275                                                                                                           |
| 21<br>22<br>23<br>24<br>25<br>26<br>27<br>28                                                                              | 2.6123<br>2.6397<br>2.6383<br>2.6184<br>2.581<br>2.527<br>2.4569<br>2.3712                                                                                                                               | (Amps) 1.3293 1.3037 1.2796 1.2508 1.2165 1.1767 1.1315 1.0809                                                                                      | (Amps) 2.9311 2.9441 2.9323 2.9017 2.8533 2.7876 2.705 2.6059                                                                                       | (Degrees) 26.9691 26.2838 25.8743 25.5332 25.2358 24.9696 24.7275 24.5048                                                                                                   |
| 21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29                                                                        | 2.6123<br>2.6397<br>2.6383<br>2.6184<br>2.581<br>2.527<br>2.4569<br>2.3712<br>2.2704                                                                                                                     | (Amps) 1.3293 1.3037 1.2796 1.2508 1.2165 1.1767 1.1315 1.0809 1.025                                                                                | (Amps) 2.9311 2.9441 2.9323 2.9017 2.8533 2.7876 2.705 2.6059 2.491                                                                                 | (Degrees) 26.9691 26.2838 25.8743 25.5332 25.2358 24.9696 24.7275 24.5048 24.2982                                                                                           |
| 21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30                                                                  | 2.6123<br>2.6397<br>2.6383<br>2.6184<br>2.581<br>2.527<br>2.4569<br>2.3712<br>2.2704<br>2.1549                                                                                                           | (Amps) 1.3293 1.3037 1.2796 1.2508 1.2165 1.1767 1.1315 1.0809 1.025 0.9642                                                                         | (Amps) 2.9311 2.9441 2.9323 2.9017 2.8533 2.7876 2.705 2.6059 2.491 2.3608                                                                          | (Degrees) 26.9691 26.2838 25.8743 25.5332 25.2358 24.9696 24.7275 24.5048 24.2982 24.1052 23.9239 23.7527                                                                   |
| 21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31                                                            | 2.6123<br>2.6397<br>2.6383<br>2.6184<br>2.581<br>2.527<br>2.4569<br>2.3712<br>2.2704<br>2.1549<br>2.0255                                                                                                 | (Amps) 1.3293 1.3037 1.2796 1.2508 1.2165 1.1767 1.1315 1.0809 1.025 0.9642 0.8986                                                                  | (Amps) 2.9311 2.9441 2.9323 2.9017 2.8533 2.7876 2.705 2.6059 2.491 2.3608 2.2159                                                                   | (Degrees) 26.9691 26.2838 25.8743 25.5332 25.2358 24.9696 24.7275 24.5048 24.2982 24.1052 23.9239                                                                           |
| 21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32                                                      | 2.6123<br>2.6397<br>2.6383<br>2.6184<br>2.581<br>2.527<br>2.4569<br>2.3712<br>2.2704<br>2.1549<br>2.0255<br>1.8828                                                                                       | (Amps) 1.3293 1.3037 1.2796 1.2508 1.2165 1.1767 1.1315 1.0809 1.025 0.9642 0.8986 0.8285                                                           | (Amps) 2.9311 2.9441 2.9323 2.9017 2.8533 2.7876 2.705 2.6059 2.491 2.3608 2.2159 2.057                                                             | (Degrees) 26.9691 26.2838 25.8743 25.5332 25.2358 24.9696 24.7275 24.5048 24.2982 24.1052 23.9239 23.7527                                                                   |
| 21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33                                                | 2.6123<br>2.6397<br>2.6383<br>2.6184<br>2.581<br>2.527<br>2.4569<br>2.3712<br>2.2704<br>2.1549<br>2.0255<br>1.8828<br>1.7272                                                                             | (Amps) 1.3293 1.3037 1.2796 1.2508 1.2165 1.1767 1.1315 1.0809 1.025 0.9642 0.8986 0.8285 0.7542                                                    | (Amps) 2.9311 2.9441 2.9323 2.9017 2.8533 2.7876 2.705 2.6059 2.491 2.3608 2.2159 2.057 1.8847                                                      | (Degrees) 26.9691 26.2838 25.8743 25.5332 25.2358 24.9696 24.7275 24.5048 24.2982 24.1052 23.9239 23.7527 23.5904                                                           |
| 21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33                                                | 2.6123<br>2.6397<br>2.6383<br>2.6184<br>2.581<br>2.527<br>2.4569<br>2.3712<br>2.2704<br>2.1549<br>2.0255<br>1.8828<br>1.7272                                                                             | (Amps) 1.3293 1.3037 1.2796 1.2508 1.2165 1.1767 1.1315 1.0809 1.025 0.9642 0.8986 0.8285 0.7542 0.676                                              | (Amps) 2.9311 2.9441 2.9323 2.9017 2.8533 2.7876 2.705 2.6059 2.491 2.3608 2.2159 2.057 1.8847 1.6997                                               | (Degrees) 26.9691 26.2838 25.8743 25.5332 25.2358 24.9696 24.7275 24.5048 24.2982 24.1052 23.9239 23.7527 23.5904 23.4357                                                   |
| 21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33<br>34                                          | 2.6123<br>2.6397<br>2.6383<br>2.6184<br>2.581<br>2.527<br>2.4569<br>2.3712<br>2.2704<br>2.1549<br>2.0255<br>1.8828<br>1.7272<br>1.5594<br>1.3801                                                         | (Amps) 1.3293 1.3037 1.2796 1.2508 1.2165 1.1767 1.1315 1.0809 1.025 0.9642 0.8986 0.8285 0.7542 0.676 0.594                                        | (Amps) 2.9311 2.9441 2.9323 2.9017 2.8533 2.7876 2.705 2.6059 2.491 2.3608 2.2159 2.057 1.8847 1.6997 1.5025                                        | (Degrees) 26.9691 26.2838 25.8743 25.5332 25.2358 24.9696 24.7275 24.5048 24.2982 24.1052 23.9239 23.7527 23.5904 23.4357 23.2879                                           |
| 21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33<br>34<br>35<br>36                              | 2.6123<br>2.6397<br>2.6383<br>2.6184<br>2.581<br>2.527<br>2.4569<br>2.3712<br>2.2704<br>2.1549<br>2.0255<br>1.8828<br>1.7272<br>1.5594<br>1.3801<br>1.1895                                               | (Amps) 1.3293 1.3037 1.2796 1.2508 1.2165 1.1767 1.1315 1.0809 1.025 0.9642 0.8986 0.8285 0.7542 0.676 0.594 0.5085                                 | (Amps) 2.9311 2.9441 2.9323 2.9017 2.8533 2.7876 2.705 2.6059 2.491 2.3608 2.2159 2.057 1.8847 1.6997 1.5025 1.2937                                 | (Degrees) 26.9691 26.2838 25.8743 25.5332 25.2358 24.9696 24.7275 24.5048 24.2982 24.1052 23.9239 23.7527 23.5904 23.4357 23.2879 23.146                                    |
| 21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33<br>34<br>35<br>36<br>37                        | 2.6123<br>2.6397<br>2.6383<br>2.6184<br>2.581<br>2.527<br>2.4569<br>2.3712<br>2.2704<br>2.1549<br>2.0255<br>1.8828<br>1.7272<br>1.5594<br>1.3801<br>1.1895<br>0.988                                      | (Amps) 1.3293 1.3037 1.2796 1.2508 1.2165 1.1767 1.1315 1.0809 1.025 0.9642 0.8986 0.8285 0.7542 0.676 0.594 0.5085 0.4196                          | (Amps) 2.9311 2.9441 2.9323 2.9017 2.8533 2.7876 2.705 2.6059 2.491 2.3608 2.2159 2.057 1.8847 1.6997 1.5025 1.2937 1.0734                          | (Degrees) 26.9691 26.2838 25.8743 25.5332 25.2358 24.9696 24.7275 24.5048 24.2982 24.1052 23.9239 23.7527 23.5904 23.4357 23.2879 23.146 23.0093                            |
| 21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33<br>34<br>35<br>36<br>37                        | 2.6123<br>2.6397<br>2.6383<br>2.6184<br>2.581<br>2.527<br>2.4569<br>2.3712<br>2.2704<br>2.1549<br>2.0255<br>1.8828<br>1.7272<br>1.5594<br>1.3801<br>1.1895<br>0.988<br>0.7751                            | (Amps) 1.3293 1.3037 1.2796 1.2508 1.2165 1.1767 1.1315 1.0809 1.025 0.9642 0.8986 0.8285 0.7542 0.676 0.594 0.5085 0.4196 0.3271                   | (Amps) 2.9311 2.9441 2.9323 2.9017 2.8533 2.7876 2.705 2.6059 2.491 2.3608 2.2159 2.057 1.8847 1.6997 1.5025 1.2937 1.0734 0.8413                   | (Degrees) 26.9691 26.2838 25.8743 25.5332 25.2358 24.9696 24.7275 24.5048 24.2982 24.1052 23.9239 23.7527 23.5904 23.4357 23.2879 23.146 23.0093 22.8769                    |
| 21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33<br>34<br>35<br>36<br>37<br>38                  | 2.6123<br>2.6397<br>2.6383<br>2.6184<br>2.581<br>2.527<br>2.4569<br>2.3712<br>2.2704<br>2.1549<br>2.0255<br>1.8828<br>1.7272<br>1.5594<br>1.3801<br>1.1895<br>0.988<br>0.7751                            | (Amps) 1.3293 1.3037 1.2796 1.2508 1.2165 1.1767 1.1315 1.0809 1.025 0.9642 0.8986 0.8285 0.7542 0.676 0.594 0.5085 0.4196 0.3271 0.2304            | (Amps) 2.9311 2.9441 2.9323 2.9017 2.8533 2.7876 2.705 2.6059 2.491 2.3608 2.2159 2.057 1.8847 1.6997 1.5025 1.2937 1.0734 0.8413 0.5958            | (Degrees) 26.9691 26.2838 25.8743 25.5332 25.2358 24.9696 24.7275 24.5048 24.2982 24.1052 23.9239 23.7527 23.5904 23.4357 23.2879 23.146 23.0093 22.8769 22.748             |
| 21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33<br>34<br>35<br>36<br>37<br>38<br>39<br>40<br>E | 2.6123<br>2.6397<br>2.6383<br>2.6184<br>2.581<br>2.527<br>2.4569<br>2.3712<br>2.2704<br>2.1549<br>2.0255<br>1.8828<br>1.7272<br>1.5594<br>1.3801<br>1.1895<br>0.988<br>0.7751<br>0.5495<br>0.3066<br>0.0 | (Amps) 1.3293 1.3037 1.2796 1.2508 1.2165 1.1767 1.1315 1.0809 1.025 0.9642 0.8986 0.8285 0.7542 0.676 0.594 0.5085 0.4196 0.3271 0.2304 0.1277 0.0 | (Amps) 2.9311 2.9441 2.9323 2.9017 2.8533 2.7876 2.705 2.6059 2.491 2.3608 2.2159 2.057 1.8847 1.6997 1.5025 1.2937 1.0734 0.8413 0.5958 0.3321 0.0 | (Degrees) 26.9691 26.2838 25.8743 25.5332 25.2358 24.9696 24.7275 24.5048 24.2982 24.1052 23.9239 23.7527 23.5904 23.4357 23.2879 23.146 23.0093 22.8769 22.748 22.6199 0.0 |
| 21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33<br>34<br>35<br>36<br>37<br>38<br>39<br>40      | 2.6123<br>2.6397<br>2.6383<br>2.6184<br>2.581<br>2.527<br>2.4569<br>2.3712<br>2.2704<br>2.1549<br>2.0255<br>1.8828<br>1.7272<br>1.5594<br>1.3801<br>1.1895<br>0.988<br>0.7751<br>0.5495<br>0.3066<br>0.0 | (Amps) 1.3293 1.3037 1.2796 1.2508 1.2165 1.1767 1.1315 1.0809 1.025 0.9642 0.8986 0.8285 0.7542 0.676 0.594 0.5085 0.4196 0.3271 0.2304 0.1277     | (Amps) 2.9311 2.9441 2.9323 2.9017 2.8533 2.7876 2.705 2.6059 2.491 2.3608 2.2159 2.057 1.8847 1.6997 1.5025 1.2937 1.0734 0.8413 0.5958 0.3321 0.0 | (Degrees) 26.9691 26.2838 25.8743 25.5332 25.2358 24.9696 24.7275 24.5048 24.2982 24.1052 23.9239 23.7527 23.5904 23.4357 23.2879 23.146 23.0093 22.8769 22.748 22.6199 0.0 |

| Twr. | Ratio | Phase |
|------|-------|-------|
| 1    | 1.000 | 0.0   |
| 2    | 0.778 | 22.2  |

#### WESTBERG CIRCUIT ANALYSIS PROGRAM

### FILE NAME = kdco-ln.cir

| I  | 3.7500  | 0 | 1 | 5.9200 | .0000 | .0000 |
|----|---------|---|---|--------|-------|-------|
| R  | 1.0000  | 1 | 2 | .0000  | .0000 | .0000 |
| L  | .8700   | 2 | 3 | .0000  | .0000 | .0000 |
| C  | .0001   | 3 | 0 | .0000  | .0000 | .0000 |
| R  | 36.5840 | 3 | 0 | 7.4780 | .0000 | .0000 |
| EX | .0000   | 0 | 0 | .0000  | .0000 | .0000 |

#### FREQ = 1.550

| NO   | DE  |   | VOLT MAG | VOLT PH | IASE    |        |         |            |           |            |           |
|------|-----|---|----------|---------|---------|--------|---------|------------|-----------|------------|-----------|
| 1    |     |   | 153.0530 | 27.38   | 37      |        |         |            |           |            |           |
| 2    | ?   |   | 149.5694 | 27.90   | 94      |        |         |            |           |            |           |
| 3    | 3   |   | 140.7895 | 15.83   | 02      |        |         |            |           |            |           |
|      |     |   |          | BRANCH  | VOLTAGE | BRANCH | CURRENT | FROM NODE  | IMPEDANCE | TO NODE IM | PEDANCE   |
|      |     |   |          | MAG     | PHASE   | MAG    | PHASE   | RESISTANCE | REACTANCE | RESISTANCE | REACTANCE |
| VSWR |     |   |          |         |         |        |         |            |           |            |           |
| R    | 1-  | 2 | 1.000    | 3.75    | 5.920   | 3.75   | 5.920   | 37.98      | 14.93     | 36.98      | 14.93     |
| L    | 2 - | 3 | .870     | 31.77   | 95.920  | 3.75   | 5.920   | 36.98      | 14.93     | 36.98      | 6.46      |
| C    | 3 - | 0 | .000     | 140.79  | 15.830  | .11    | 105.830 | .00        | -1283.51  | .00        | .00       |
| R    | 3 - | 0 | 36.584   | 140.79  | 15.830  | 3.77   | 4.278   | 36.58      | 7.48      | .00        | .00       |

## Copy of file KDCO-ln.cir

1.550 0. 1 I 3.75 0 1 +5.92 R 1.000 1 2 L 0.87 2 3 C .00008 3 0 R 36.584 3 0 +7.478 EX

#### WESTBERG CIRCUIT ANALYSIS PROGRAM

#### FILE NAME = kdco-2n.cir

| I  | 2.9000  | 0 | 1 | 27.9200 | .0000 | .0000 |
|----|---------|---|---|---------|-------|-------|
| R  | 1.0000  | 1 | 2 | .0000   | .0000 | .0000 |
| L  | 1.5300  | 2 | 3 | .0000   | .0000 | .0000 |
| C  | .0001   | 3 | 0 | .0000   | .0000 | .0000 |
| R  | 21.0990 | 3 | 0 | 12.5910 | .0000 | .0000 |
| EX | .0000   | 0 | 0 | .0000   | .0000 | .0000 |

#### FREQ = 1.550

|   |     |   |        |        | NODE    | VOLT MAG | VOL     | T PHASE     |           |            |           |
|---|-----|---|--------|--------|---------|----------|---------|-------------|-----------|------------|-----------|
|   |     |   |        |        | 1       | 102.5266 |         | 78.3669     |           |            |           |
|   |     |   |        |        | 2       | 100.7048 |         | 79.6392     |           |            |           |
|   |     |   |        |        | 3       | 71.9500  | !       | 57.7959     |           |            |           |
|   |     |   |        | BRANCE | VOLTAGE | BRANCH   | CURREN' | r FROM NODE | IMPEDANCE | TO NODE I  | MPEDANCE  |
|   |     |   |        | MAG    | PHASE   | MAG      | PHASE   | RESISTANCE  | REACTANCE | RESISTANCE | REACTANCE |
|   |     |   |        |        |         | VSWR     |         |             |           |            |           |
| R | 1-  | 2 | 1.000  | 2.90   | 27.920  | 2.90     | 27.920  | 22.51       | 27.26     | 21.51      | 27.26     |
| L | 2 - | 3 | 1.530  | 43.21  | 117.920 | 2.90     | 27.920  | 21.51       | 27.26     | 21.51      | 12.36     |
| C | 3 - | 0 | .000   | 71.95  | 57.796  | .06      | 147.796 | .00         | -1283.51  | .00        | .00       |
| R | 3 - | 0 | 21.099 | 71.95  | 57.796  | 2.93     | 26.969  | 21.10       | 12.59     | .00        | .00       |

### Copy of file KDCO-2N.CIR

1.550 0. 1 I 2.90 0 1 27.92 R 1.0000 1 2 L 1.53 2 3 C .00008 3 0 R 21.099 3 0 +12.591

## Summary of Post Construction Certified Array Geometry

With respect to Question 9, Section III, Page 2 of the attached Form 302-AM, the tower information is as follows:

| Tower | Height above   | Height above ground | Overall height |
|-------|----------------|---------------------|----------------|
| No.   | base insulator | w/o obst. lighting  | above ground   |
|       | (meters)       | (meters)            | (meters)       |
| 1     | 45.7           | 46.0                | 46.0           |
| 2     | 45.7           | 46.0                | 46.0           |

All towers are uniform cross-section, steel, guyed vertical radiators.

The tower relative distances provided in feet on the Certified Survey drawing attached hereto were converted to electrical degrees at 1550 kHz and used along with the survey tower azimuths relative to True North to calculate the X-Y coordinates of each tower with reference to the reference tower (#2). Likewise, the distances in electrical degrees and azimuths with reference to True North specified in the theoretical directional antenna pattern array geometry were used to calculate the X-Y coordinates of the specified tower locations. The differences in X and Y for the surveyor-measured and the specified coordinates of each tower were calculated, and each difference was used as a side of a right triangle. The square root of the sum of the squares of the sides was calculated to determine the positional error of each tower in electrical degrees.

Below is a tabulation showing those distances and other data that is relevant to their determination.

| Twr. | Specified Array Geometry |           | Post-Construction<br>Certification |           | Distance From<br>Specified Base<br>Location |
|------|--------------------------|-----------|------------------------------------|-----------|---------------------------------------------|
|      | Spacing                  | Azimuth   | Spacing                            | Azimuth   |                                             |
|      | (degrees)                | (deg. T.) | (degrees)                          | (deg. T.) | (deg.)                                      |
| 1    | 200                      | 101.9     | 200.0                              | 101.9     | 0.0                                         |
| (W)  |                          |           |                                    |           |                                             |
| 2    | 0                        | 0         | 0                                  | 0         | 0                                           |
| (E)  |                          |           |                                    |           |                                             |

The as-built tower displacements from their specified locations expressed in electrical degrees at 1550 kHz, which corresponds to space phasing differences in the far-field radiation pattern of the array, are well below the  $\pm 3$  degree operating phase range specified for antenna monitor parameters by the FCC.

## Sampling System

The sampling system consists of Delta Electronics TCT-3 current transformers installed at the output of each antenna tuning unit, immediately adjacent to the final J-plug. Samples from the current transformers are fed to the antenna monitor via equal lengths of 1/4-inch foam-dielectric coaxial transmission lines. The antenna monitor is a Potomac Instruments AM19 Type 204.

Impedance measurements were made of the antenna sampling system using an Agilent E5061A network analyzer. The measurements were made looking into the antenna monitor ends of the sample lines with the tower ends of the sample lines open-circuited.

The table below shows the frequencies above and below the carrier frequency where resonance, defined as zero reactance corresponding with low resistance, was found. As the length of distortionless transmission line is 180 electrical degrees at the difference frequency between adjacent frequencies of resonance, and frequencies of resonance occur at odd multiples of 90 degrees electrical length, the sample line length at the resonant frequency above carrier frequency, which is the closest one to the carrier frequency, was found to be 90 electrical degrees. The electrical length at carrier frequency appearing in the table below was calculated by ratioing the frequencies.

|      | Sample Line    | Sample Line    | Sample Line       |  |
|------|----------------|----------------|-------------------|--|
|      | Open-Circuited | Open-Circuited | Calculated        |  |
|      | Resonance      | Resonance      | Electrical Length |  |
|      | Below 1550 kHz | Above 1550 kHz | At 1550 kHz       |  |
| Twr. | (kHz)          | (kHz)          | (deg.)            |  |
| 1    | 1004.5         | 3004.3         | 138.9             |  |
| 1    | 1004.5         | 3004.3         | 130.7             |  |
| 2    | 1000.5         | 3046.2         | 139.4             |  |

Because the electrical lengths were determined to be 0.5 degrees different, the sample lines meet the requirement in the Rules that they be equal in length within one electrical degree.

To determine the characteristic impedance values of the sample lines, open-circuited measurements were made with frequencies offset to produce  $\pm$  45 degrees of electrical length from resonance.

The characteristic impedance was calculated using the following formula, where  $R_1 + j X_1$  and  $R_2 + j X_2$  are the measured impedances at the +45 and -45 degree offset frequencies, respectively:

$$Z_{O} = ((R_{1}^{2} + X_{1}^{2})^{1/2} \times (R_{2}^{2} + X_{2}^{2})^{1/2})^{1/2}$$

|      | + 45 Deg. | +45 Deg.   | - 45 Deg. | -45 Deg.   | Calculated     |
|------|-----------|------------|-----------|------------|----------------|
|      | Offset    | Measured   | Offset    | Measured   | Characteristic |
|      | Frequenc  | Impedance  | Frequenc  | Impedance  | Impedance      |
| Twr. | у         | (ohms)     | У         | (ohms)     | (ohms)         |
|      | (kHz)     |            | (kHz)     |            |                |
| 1    | 1506.8    | 13.3+j48.2 | 502.3     | 8.6 –j49.8 | 50.2           |
| 2    | 1500.8    | 1.5 +j49.9 | 500.3     | 5.7 –j49.8 | 50.0           |

The sample line measured characteristic impedances meet the requirement that they be equal within 2 ohms.

The calibration of the Delta TCT-3 current transformers was verified by removing them all from the ATUs and installing them on a test jig so that each was located very close to the adjacent transformer (spacing of less than two inches). Short transmission lines of equal length were connected between the outputs of all four current transformers and the inputs of the antenna monitor. The Potomac AM19 antenna monitor was calibrated using the internal calibration function. A single source of RF current on the carrier frequency was fed through a conductor passing through all of the current transformers, and the differential phases and ratios were noted on the antenna monitor as follows:

|      |       | Phase  |
|------|-------|--------|
| Twr. | Ratio | (deg.) |
| 1    | 1.003 | 0.0    |
| 2    | Ref.  | Ref.   |

The requirement that the sample current transformers are accurate to within the manufacturer's specification ( $\pm 2\%$  ratio and  $\pm 2$  degrees phase) has thus been demonstrated.

The impedance of each of the sample lines was measured with the sample current transformers attached. These impedances are tabulated below:

|      | R      | X      |
|------|--------|--------|
| Twr. | (ohms) | (ohms) |
| 1    | 50.8   | -j1.2  |
| 2    | 51.0   | -j1.1  |

Page 17 of 19

## Direct Measurement of Power

Common point impedance measurements were made using a Delta OIB-1A common point bridge installed in the common point bus of the phasing and coupling system. The resistance value was adjusted to 50 ohms and the reactance value was adjusted to zero.

The base impedance for nondirectional operation on tower 1 (W) was measured using a Delta OIB-1A operating impedance bridge and from the measured impedance of 47 +j26.3 is computed as 4.59Amps for 990 Watts

## Appendix A

Certified Post-Construction Array Geometry Survey

## Appendix B

## Reference Field Strength Measurements

The reference field strength measurements will be supplied shortly after the grant of program test authority. There was not enough time after calculation of the operating parameters to fine adjust the phasing system and make the reference measurements.





