ν.			I	2017		
Federal Communications Commission Washington, D. C. 20554	Approved by 306 Expires 01	0-0627	FOR FCC USE			
FCC 302-AM			ONLY	~	4	51
APPLICATION FOR AN	Л	L		2000	· · · ·	7/2
BROADCAST STATION LIC	ENSE	Г	FOR COMMISSIO	ON USE ONLY	45	/
(Please read instructions before filling ou	ut form.	L	FILE NO. BM	mi-ac	130718	AHZ
SECTION I - APPLICANT FEE INFORMATION						
1. PAYOR NAME (Last, First, Middle Initial)						×.
Bonneville International Corporation						
MAILING ADDRESS (Line 1) (Maximum 35 character 55 North 300 West, 2nd Floor	rs)					
MAILING ADDRESS (Line 2) (Maximum 35 character	rs)					
		OTATE O		roign address)	ZIP CODE	
CITY Salt Lake City		UT	R COUNTRY (if for	eigit auuress)	84101	
TELEPHONE NUMBER (include area code) 8015755874		CALL LET	TERS	OTHER FCC IDE FIN 52515	ENTIFIER (If applical	ble)
2. A. Is a fee submitted with this application?					✓ Yes	No
B. If No, indicate reason for fee exemption (see 47	C.F.R. Section					
Governmental Entity	commercial educ	cational licer	nsee 🚺 Ot	ther (Please explai	n):	
C. If Yes, provide the following information:						
Enter in Column (A) the correct Fee Type Code for the Fee Filing Guide." Column (B) lists the Fee Multiple a	he service you applicable for th	are applying is applicatio	i for. Fee Type Co n. Enter fee amoui	odes may be found nt due in Column ((in the "Mass Media C).	Services
(A) (B)			(C)			
FEE TYPE FEE MULTI	PLE	F	FEE DUE FOR FEE	Ξ	FOR FCC USE ON	ILY
		0	COLUMN (A)			
) 1	\$6	35.00			
To be used only when you are requesting concurrent a	actions which re	sult in a req	uirement to list mor	e than one Fee Ty	pe Code.	
(A) (B)			(C)		FOR FCC USE ON	
M O R 0 0 0) 1	\$	730.00			
	I	L				
			TOTAL AMOUNT			
ADD ALL AMOUNTS SHOWN IN COLUMN C,		RE	MITTED WITH TH	IS	FOR FCC USE ON	ILY
AND ENTER THE TOTAL HERE. THIS AMOUNT SHOULD EQUAL YOUR ENCLOSED	D	\$ 1	,365.00			
REMITTANCE.			,			

7

SON

SECTION II - APPLICAN	T INFORMATION						
1. NAME OF APPLICANT Bonneville International Corporation							
MAILING ADDRESS 55 North 300 West, 2nd Floo	pr						
CITY Salt Lake City			STATE UT		ZIP CODE 84101		
2. This application is for: Commercial AM Directional AM Non-Directional							
Call letters	Community of License	Construct	ion Permit File No.	Modification of Construction Permit File No(s).	Expiration Date of Las Construction Permit	st	
KTAR	Phoenix, AZ	N/A		N/A	N/A		
3. Is the station no accordance with 47 C.F If No, explain in an Exhi		to autor	natic program	test authority in	N/A Exhibit No.	40	
4. Have all the terms construction permit been	above described	│ Yes │ r N/A Exhibit No.	10				
If No, state exceptions in	n an Exhibit.						
 5. Apart from the changes already reported, has any cause or circumstance arisen since the grant of the underlying construction permit which would result in any statement or representation contained in the construction permit application to be now incorrect? If Yes, explain in an Exhibit. 							
6. Has the permittee filed its Ownership Report (FCC Form 323) or ownership certification in accordance with 47 C.F.R. Section 73.3615(b)?If No, explain in an Exhibit.					Yes r ✓ Does not app Exhibit No.	4o oly	
7. Has an adverse finding been made or an adverse final action been taken by any court or administrative body with respect to the applicant or parties to the application in a civil or criminal proceeding, brought under the provisions of any law relating to the following: any felony; mass media related antitrust or unfair competition; fraudulent statements to another governmental unit; or discrimination?							
If the answer is Yes, attach as an Exhibit a full disclosure of the persons and matters involved, including an identification of the court or administrative body and the proceeding (by dates and file numbers), and the disposition of the litigation. Where the requisite information has been earlier disclosed in connection with another application or as required by 47 U.S.C. Section 1.65(c), the applicant need only provide: (i) an identification of that previous submission by reference to the file number in the case of an application, the call letters of the station regarding which the application or Section 1.65 information was filed, and the date of filing; and (ii) the disposition of the previously reported matter.							

FCC 302-AM (Page 2) August 1995

-ş 0

8. Does the applicant, or any party to the application, have a petition on file to migrate to the expanded band (1605-1705 kHz) or a permit or license either in the existing band or expanded band that is held in combination (pursuant to the 5 year holding period allowed) with the AM facility proposed to be modified herein?

If Yes, provide particulars as an Exhibit.

The APPLICANT hereby waives any claim to the use of any particular frequency or of the electromagnetic spectrum as against the regulatory power of the United States because use of the same, whether by license or otherwise, and requests and authorization in accordance with this application. (See Section 304 of the Communications Act of 1934, as amended).

The APPLICANT acknowledges that all the statements made in this application and attached exhibits are considered material representations and that all the exhibits are a material part hereof and are incorporated herein as set out in full in

CERTIFICATION

1. By checking Yes, the applicant certifies, that, in the case of an individual applicant, he or she is not subject to a denial of federal benefits that includes FCC benefits pursuant to Section 5301 of the Anti-Drug Abuse Act of 1988, 21 U.S.C. Section 862, or, in the case of a non-individual applicant (e.g., corporation, partnership or other unincorporated association), no party to the application is subject to a denial of federal benefits that includes FCC benefits pursuant to that section. For the definition of a "party" for these purposes, see 47 C.F.R. Section 1.2002(b).

2. I certify that the statements in this application are true, complete, and correct to the best of my knowledge and belief, and are made in good faith.

Name	Signature .
Michael Dowdle	lumle ~-
Title	Date Telephone Number
Vice President and General Counsel	7/16/13 801/575-5874

WILLFUL FALSE STATEMENTS ON THIS FORM ARE PUNISHABLE BY FINE AND/OR IMPRISONMENT (U.S. CODE, TITLE 18, SECTION 1001), AND/OR REVOCATION OF ANY STATION LICENSE OR CONSTRUCTION

FCC NOTICE TO INDIVIDUALS REQUIRED BY THE PRIVACY ACT AND THE PAPERWORK REDUCTION ACT

The solicitation of personal information requested in this application is authorized by the Communications Act of 1934, as amended. The Commission will use the information provided in this form to determine whether grant of the application is in the public interest. In reaching that determination, or for law enforcement purposes, it may become necessary to refer personal information contained in this form to another government agency. In addition, all information provided in this form will be available for public inspection. If information requested on the form is not provided, the application may be returned without action having been taken upon it or its processing may be delayed while a request is made to provide the missing information. Your response is required to obtain the requested authorization.

Public reporting burden for this collection of information is estimated to average 639 hours and 53 minutes per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the burden, can be sent to the Federal Communications Commission, Records Management Branch, Paperwork Reduction Project (3060-0627), Washington, D. C. 20554. Do NOT send completed forms to this address.

THE FOREGOING NOTICE IS REQUIRED BY THE PRIVACY ACT OF 1974, P.L. 93-579, DECEMBER 31, 1974, 5 U.S.C. 552a(e)(3), AND THE PAPERWORK REDUCTION ACT OF 1980, P.L. 96-511, DECEMBER 11, 1980, 44 U.S.C. 3507.

Exhibit	No.	

BENJAMIN F. DAWSON III, PE THOMAS M. ECKELS, PE STEPHEN S. LOCKWOOD, PE DAVID J. PINION, PE ERIK C. SWANSON, PE

Thomas S. Gorton, PE Michael H. Mehigan, PE HATFIELD & DAWSON CONSULTING ELECTRICAL ENGINEERS 9500 GREENWOOD AVE. N. SEATTLE, WASHINGTON 98103

TELEPHONE (206) 783-9151 FACSIMILE (206) 789-9834 E-MAIL hatdaw@hatdaw.com

> JAMES B. HATFIELD, PE CONSULTANT

Maury L. Hatfield, PE (1942-2009) Paul W. Leonard, PE (1925-2011)

ENGINEERING REPORT:

APPLICATION FOR LICENSE and Direct Power Measurement

RADIO STATION KTAR-AM Phoenix, AZ 620 kHz, 5.0 kW, DA-N Facility ID #52515

July, 2013

APPLICATION FOR LICENSE and Direct Power Measurement

RADIO STATION KTAR-AM Phoenix, AZ 620 kHz, 5.0 kW, DA-N Facility ID #52515

Purpose of Application

Item 1	Tower Impedance Measurements and Verification of Method of Moments Model
Item 2	Derivation of Operating Parameters for Directional Antenna
Item 3	Method of Moments Model Details for Towers Driven Individually
Item 4	Method of Moments Model Details for Directional Antenna
Item 5	Array Geometry
Item 6	Sampling System Measurements, Sample Device Description, Antenna Monitor Data
Item 7	Reference Field Strength Measurements
Item 8	Direct Measurement of Power
Item 9	Stability Analysis of Self-Supporting Tower Model
Item 10	Method of Moments Model Details for Stability Analysis
Item 11	Self-Supporting Tower Physical Details
·	
Appendix A	License BS-99 (Most Recent Complete License Document)

Appendix B FCC Form 302-AM

WILKINSON) BARKER KNAUER

2300 N STREET, NW SUITE 700 WASHINGTON, DC 20037 TEL 202.783.4141 FAX 202.783.5851 WWW.Wbklaw.com

July 17, 2013

<u>VIA OVERNIGHT DELIVERY</u> Federal Communications Commission c/o U.S. Bank - Government Lockbox #979089 SL-MO-C2-GL 1005 Convention Plaza St. Louis, MO 63101

Attention: FCC Government Lockbox

Re: Lockbox No. 979089 FCC 302-AM License Application for KTAR(AM), Phoenix, Arizona (FIN 52515) Fee Codes: MMR and MOR; Total Fee Amount: \$1,365.00

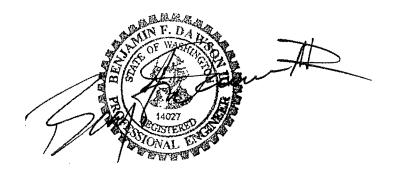
Dear Sir/Madam,

Bonneville International Corporation (FRN 0006165955), licensee of KTAR(AM), Phoenix, Arizona (FIN 52515), by its counsel, hereby submits in triplicate an FCC 302-AM application for a moment method license for KTAR(AM).

Enclosed is a check made payable to the Federal Communications Commission in the total amount of \$1,365.00 to cover the requisite filing fees, along with a Form 159 (FCC Remittance Advice).

It is respectfully requested that you stamp the receive date on the enclosed copy marked "Stamp and Return" and return it to us for our files. Any questions regarding this matter should be directed to the undersigned.

WILK	INSON BARKER KNAUER, LLP
	1 al
By:	1 - e l
	Patricia M. Chuh


Encl.

Purpose of Application

This engineering exhibit supports an application for a "moment method license" for the presently authorized and unmodified antenna radiation pattern of radio station KTAR, Phoenix, AZ. KTAR is authorized per license to operate on 620 kHz with a power of 5.0 kW day and night, employing a directional antenna for the nighttime operation.

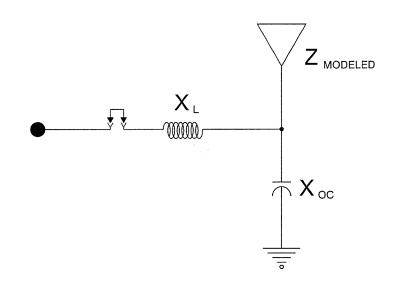
The antenna towers and ground system are unmodified from their long-established conditions and adjustments of the antenna parameters were made in accordance with the terms of the license and specifications provided for the previous licensing of the station. Information is provided herein demonstrating that the directional antenna parameters for the pattern authorized by the station license have been determined in accordance with the requirements of section 73.151(c) of the FCC Rules. The system has been adjusted to produce antenna monitor parameters within +/- 5 percent in ratio and +/- 3 degrees in phase of the modeled values, as required by the Rules. Measurements described in this report were made by Gary Smith, Director of Engineering for Bonneville Phoenix.

Benjamin F. Dawson III, P.E.

July 12, 2013

2

Hatfield & Dawson Consulting Engineers


Item 1

Analysis of Tower Impedance Measurements to Verify Method of Moments Model - KTAR

Tower impedance measurements were made at the locations of the sample system current transformers using an Agilent 4395A network analyzer in a calibrated measurement system. The other towers were open circuited at the same point where impedance measurements were made (the "reference points") for each of the measurements.

Circuit calculations were performed to relate the method of moments modeled impedances at the tower feed points to those at the current sample device locations as shown in the table. The base conditions shown for each tower, which includes the stray capacitances, were used in the moment method model as a load at ground level for the open circuited case. The lighting and static drain chokes used have such high impedances at this frequency that they have not been included in the models.

In addition to the page showing the schematic of the assumed circuit and tabulation of calculated values, a page with the result of calculations using the NETBW circuit analysis program is shown. These calculations show the impedance transformations and phase shifts between the tower base values produced by the MININEC moment method model and the location of the current sample devices used to produce the antenna monitor input signals.

	XL	x _{oc}	Z MODELED	Z ATU MODELED	Z ATU MEASURED
TWR #1 WITH TWR #2 OPEN CIRCUITED	+j21.9	-j1200	33.615 -j14.3	32.8 +j6.90	32.53 +j6.85
TWR #1 WITH TWR #2 GROUNDED	+j21.9	-j1200	34.98 -j14.1	34.14 +j6.98	33.575 +j6.98

	x	x _{oc}	Z MODELED	Z ATU MODELED	Z ATU MEASURED
TWR #2 WITH TWR #1 GROUNDED	+j5.75	-j1200	16.932 -j66.75	15.19 +j57.7	15.183 -j57.68
TWR #2 WITH TWR #1 OPEN CIRCUITED	+j5.75	-j1200	15.19 -j64.8	13.67 -j55.9	14.203 -j55.59

HATFIELD & DAWSON

ANALYSIS OF TOWER IMPEDANCE MEASUREMENTS TO VERIFY METHOD OF MOMENTS MODEL

CONSULTING ENGINEERS

RADIO STATION KTAR

PHOENIX, AZ

06/2013

NETBW CALCULATION OF IMPEDANCE AT ATU OUTPUT (SAMPLE DEVICE/IMPEDANCE MEASUREMENT LOCATION) AS MODIFIED BY BASE CAPACITANCE AND FEED PIPE SERIES INDUCTANCE

FOR MODELING PARAMETER CALCULATION

TOWER #1	(S)	WITH	TOWER	2	OPEN	CIRCUITED	AND	LOADED	WITH	-J1200
FREQUENCY		I	LOAD			LOAD		INPUT		INPUT
(KHZ)		RESI	ESTANCI	Ξ	REA	ACTANCE	RES	SISTANCH	Ξ	REACTANCE
620		33.	.615		-14	1.259	32	2.80501		6.900285
-1.58574	6									

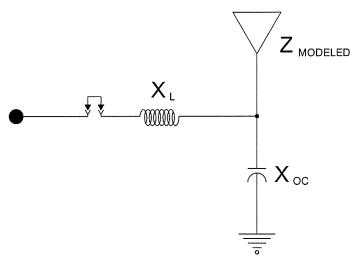
TOWER #1 (S) WITH TOWER 2 SHORT CIRCUITED

FREQUENCY	LOAD	LOAD	INPUT	INPUT
(KHZ)	RESISTANCE	REACTANCE	RESISTANCE	REACTANCE
620	34.981	-14.1	34.14487	6.979958
-1.650366				

TOWER #2 (N) WITH TOWER 1 OPEN CIRCUITED AND LOADED WITH -J1200

FREQUENCY	LOAD	LOAD	INPUT	INPUT
(KHZ)	RESISTANCE	REACTANCE	RESISTANCE	REACTANCE
620	15.186	-64.803	13.66777	-55.89688
-0.6878953				

TOWER #2 (N) WITH TOWER 1 SHORT CIRCUITED


FREQUENCY	LOAD	LOAD	INPUT	INPUT
(KHZ)	RESISTANCE	REACTANCE	RESISTANCE	REACTANCE
620	16.932	-66.747	15.19194	-57.68305
-0.7657996				

Item 2 Derivation of Operating Parameters for Directional Antenna - KTAR

The method of moments model of the array, following verification with the measured individual open circuited base impedances, was used for directional antenna calculations. Calculations were made to determine the complex voltage values for sources located at ground level at the base of each tower of the array to produce current moment sums for the towers that, when normalized, equated to the theoretical field parameters of the authorized directional antenna patterns. With these voltage sources, the tower currents and phases were calculated. 14 and 15 segments were used for towers in the moment method model. The currents and voltages at the tower bases (segments 1, and 15) were used to calculate the currents at the sample device locations by Kirchoff's law, using the analysis program NETBW.

Tower	Modeled Current Pulse	Base Current Magnitude	Base Current Phase	Antenna Monitor Sample Ratio	Antenna Monitor Sample Phase
1 S	1	11.0889	10.5	1.0	0
2 N	15	8.95317	82.9	0.828	70.8

	TOWER	X _L (Ω)	X _{oc} (Ω)	INPUT Z	LOAD Z	CURRENT PHASE DELTA	
	TWR #1	+j21.9	-j1200	36.53 -j8.1	38.385 -j29.565	-1.788	
	TWR #2	+j5.75	-j1200	3.16 -j52.5	3.493 -j61.23	-0.159	
Bob Allen, H&D	6/21/20	13 3:10 PM	KTAR CI	RCUIT MDM TAE	BLES.dwg		
Bob Allen, H&D HATFIELD		13 3:10 PM	KTAR CI	RCUIT MOM TAE	LES.dwg		

NETBW CALCULATION OF IMPEDANCE AT ATU OUTPUT (SAMPLE DEVICE LOCATION) AS MODIFIED BY BASE CAPACITANCE AND FEED PIPE SERIES INDUCTANCE

FOR DIRECTIONAL OPERATION PARAMETER CALCULATION

<u>TOWER #1 (S)</u>

FREQUENCY	LOAD	LOAD	INPUT	INPUT
(KHZ)	RESISTANCE	REACTANCE	RESISTANCE	REACTANCE
620	38.385	-29.565	36.52565	-8.094378
-1.7881				

TOWER #2 (N)

FREQUENCY	LOAD	LOAD	INPUT	INPUT
(KHZ)	RESISTANCE	REACTANCE	RESISTANCE	REACTANCE
620	3.493	-61.23	3.162053	-52.51618
-0.1586814				

Item 3 Method of Moments Model Details for Towers Driven Individually - KTAR

The array of towers was modeled using MININEC. Because the towers are tapered, selfsupporting structures, five wires were used to represent each tower. The top and bottom wire end points were specified using the theoretical directional antenna specifications in electrical degrees. The towers were modeled using 2 wire segments for the bottom (base region) wire of the taller tower and 3 segments for the upper wires on the taller tower and for the shorter tower, with the wire radii calculated to be identical to the average radius for each wire. The towers are physically 90.8 and 68.1 degrees in electrical height, 400 and 300 feet respectively.^{*} The taller tower was modeled with a correction of 0.5% and the shorter tower with a correction of 6.0%. The maximum and minimum segment lengths are 9.123 and 4.81 electrical degrees respectively.

Each tower's modeled height relative to its physical height falls within the required range of 75 to 125 percent and each modeled radius falls within the required range of 80 percent to 150 percent of the radius of a circle having a circumference equal to the sum of the widths of the tower sides.

Tower #	Physical Height (degrees)	Modeled Height (degrees)	Modeled Percentage of Height	Modeled Radius (feet)	Percent of Equivalent Radius
1 SW	90.77	91.22	100.5	See Drawing	100.0
2 NE	68.08	72.16	106.0	Item 11	100.0

The following pages show the details of the method of moments models for the individually driven towers.

^{*}Note that the station's authorizations show the correct physical heights for the towers, but electrical heights which are truncated to the nearest 0.1 degree rather than properly rounded.

TOWER #1 DRIVEN WITH TOWER #2 LOADED WITH -J1200

C:\Expert MBPro V.14\ktar5wire7 06-20-2013 12:10:07

KTARtest4

GEOMETRY Dimensions in feet Environment: perfect ground

wire 1	caps Di none O	Istance	Angle O	Z O	radius 13.153	segs 2
2	0 none 0		0 0	80.4 80.4	9.772	3
3	0 none 0		0 0	160.8 160.8	7.254	3
4	0 none 0		0	241.2 241.2	4.736	3
5	0 none 0		0	321.6 321.6	2.532	3
6	0 none 79		0 27.	402. 0	9.457	3
7	none 79		27. 27.	63.6 63.6	7.569	3
8	none 79		27. 27.	127.2	5.68	3
9	none 79		27. 27.	190.8 190.8	3.791	3
10	none 79	93. 93. 93.	27. 27. 27.	254.4 254.4 318.	2.218	3
Numbe	r of wir cur	res rrent nodes	= 10 = 29			
segme		ch 9 us ratio 6	minimum ire value 9 21.2 5 2.241 10 2.218		maximum vire value 1 40.2 5 10.5845 1 13.153	
Frequ no.	RICAL DE encies (frequenc lowest .62		no. o steps 1		ength (wavele maximum .025339	L
Sourc sourc 1	es e node 1		nagnitude 590.242	phase 340.5	type voltage	
Lumpe load 1	d loads node 15	resistance (ohms) O	reactance (ohms) -1,200.	e inductar (mH) O	nce capacita (uF) 0	nce passive circuit 0

C:\Expert MBPro V.14\ktar5wire7 06-20-2013 12:10:07 IMPEDANCE normalization = 50. react freq imped phase VSWR S11 S12 resist (ohms) dB dB (MHz) (ohms) (ohms) (deg) 1; node 1, sector 1 source = 1.6884 -11.833 -.29453 33.615 -14.259 36.514 337. .62 C:\Expert MBPro V.14\ktar5wire7 06-20-2013 12:10:07 CURRENT rms Frequency = .62 MHzInput power = 5,000. watts Efficiency = 100. % coordinates in feet phase real imaginary current mag no. Х Y Ζ (amps) (deg) (amps) (amps) 3.5 .741405 12.1959 12,1734 0 0 GND 0 40.2 11.6015 357.8 11.5931 -.440208 0 0 2 80.4 10.9644 355.8 10.9352 -.799684 END 0 0 -.799684 10.9352 0 80.4 10.9644 355.8 2J1 0 -.94221 0 107.2 10.5031 354.9 10.4608 4 0 0 9.90077 353.9 9.84546 -1.04506 5 Ω 134. 160.8 9.13308 353.1 9.06609 -1.10416 0 0 END 0 160.8 9.13308 353.1 9.06609 -1.10416 2J2 0 8.34517 -1.1135 187.6 8.41913 352.4 7 0 0 214.4 7.55768 351.7 7.47934 -1.085370 8 0 0 241.2 6.52035 351.1 6.44134 -1.012 END 0 241.2 6.52035 351.1 6.44134 -1.012 2J3 0 0 -.924796 5.64972 350.6 5.57351 10 0 0 268. -.798955 0 294.8 4.63168 350.1 4.56225 11 0 3.44138 349.5 3.384 -.62583 0 0 321.6 END 3.44138 349.5 3.384 -.62583 2J4 0 0 321.6 0 348.4 2.50659 349.1 2.46159 -.47282 13 0 -.277924 1.41954 1.39207 14 0 0 375.2 348.7 Ω 0 402. 0 0 END 0 0 .0946757 148. -.0803019 .0501506 706.568 -360.014 0 GND .323648 706.568 -360.014 21.2 148. -.274469 .171507 16 .198482 -.317219 706.568 -360.014 42.4 .374196 148. 17 .222852 .419566 147.9 -.355489 END 706.568 -360.014 63.6 .419566 -.355489 .222852 147.9 706.568 -360.014 63.6 2J6 .440718 147.9 -.373199 706.568 -360.014 84.8 .234424 19 20 706.568 -360.014 106. .45012 147.8 -.380892 .239852 -.377483 127.2 147.7 .238439 END 706.568 -360.014 .446482 147.7 -.377483 .238439 706.568 127.2 -360.014 .446482 2J7 706.568 .433318 147.6 -.366056 -360.014 148.4 .231878 22 .219468 -360.014 169.6 .409143 147.6 -.345299 23 706.568 -.313282 .199928 706.568 -360.014 190.8 .371641 147.5 END .199928 2J8 706.568 -360.014 190.8 .371641 147.5 -.313282 -.281367 .180186 .334117 147.4 -360.014 25 706.568 212. -360.014 .285115 -.239815 .154206 706.568 233.2 147.3 26 -.186654 END 706.568 -360.014 254.4 .222229 147.1 .120607 .120607 147.1 -.186654 2J9 706.568 -360.014 254.4 .222229 -.139692 .0906312 706.568 -360.014 275.6 .166517 147. 28

29	706.568	-360.014	296.8	.0976542	146.9	0818071	.0533286
END	706.568	-360.014	318.	0	0	0	0

TOWER #1 DRIVEN WITH TOWER #2 BASE SHORTED TO GROUND

C:\Expert MBPro V.14\ktar5wire7 06-20-2013 13:31:33

KTARtest4

GEOMETRY Dimensions in feet Environment: perfect ground

wire	caps	Distance	Angle	Z	radius	segs
1	none	0	0	0	13.153	2
		0	0	80.4		
2	none	0	0	80.4	9.772	3
		0	0	160.8		
3	none	0	0	160.8	7.254	3
		0	0	241.2		
4	none	0	0	241.2	4.736	3
		0	0	321.6		
5	none	0	0	321.6	2.532	3
		0	0	402.		
6	none	793.	27.	0	9.457	3
		793.	27.	63.6		
7	none	793.	27.	63.6	7.569	3
		793.	27.	127.2		
8	none	793.	27.	127.2	5.68	3
		793.	27.	190.8		
9	none	793.	27.	190.8	3.791	3
		793.	27.	254.4		
10	none	793.	27.	254.4	2.218	3
		793.	27.	318.		

Number of wires = 10 current nodes = 29

	minimum			imum
Individual wires	wire	value	wire	value
segment length	9	21.2	1	40.2
segment/radius ratio	6	2.24173	5	10.5845
radius	10	2.218	1	13.153

	TRICAL DESCRI	PTION			
Frequ	uencies (MHz)				
	frequency		no. of	segment length	
no.	lowest	step	steps	minimum	maximum
1	.62	0	1	.0133632	.0253397

Sources

source node sector magnitude phase type 340.5 690.242 voltage 1 1 1 C:\Expert MBPro V.14\ktar5wire7 06-20-2013 13:31:33 IMPEDANCE normalization = 50. phase VSWR S11 S12 react imped resist freq (MHz) (ohms) (ohms) (ohms) (deg) dB dB source = 1; node 1, sector 1 338. 1.6286 -12.427 -.25576 34.981 -14.1 37.716 .62 C:\Expert MBPro V.14\ktar5wire7 06-20-2013 13:31:33 CURRENT rms = .62 MHzFrequency Input power = 5,000. watts Efficiency = 100. % coordinates in feet current mag imaginary phase real Ζ (amps) (deg) (amps) (amps) no. Х Υ 11.9446 11.9556 2.5 .511781 GND 0 0 0 356.6 11.3826 11.3622 -.681394 40.2 2 0 0 10.7627 354.5 10.7129 -1.03471 0 80.4 END 0 2J1 0 0 80.4 10.7627 354.5 10.7129 -1.03471 107.2 353.5 10.2459 -1.17051 4 0 0 10.3126 9.64134 0 9.72371 352.5 -1.26303 134. 5 0 160.8 0 0 8.9721 351.6 8.8763 -1.30764 END 160.8 8.9721 351.6 8.8763 -1.30764 2J2 0 0 0 187.6 8.27242 350.9 8.1692 -1.30269 7 0 350.3 8 0 0 214.4 7.42756 7.32048 -1.256646.40942 241.2 349.6 6.30339 -1.16101 0 END 0 6.40942 349.6 6.30339 -1.16101 0 241.2 2J3 0 10 0 0 268. 5.55449 349.1 5.45344 -1.05469 4.55437 348.5 4.46333 -.906097 0 0 294.8 11 3.3101 -.70595 0 0 321.6 3.38454 348. END 0 0 321.6 3.38454 348. 3.3101 -.70595 2J4 -.531446 2.4655 347.6 2.40754 13 0 0 348.4 -.311285 0 375.2 1.39646 347.1 1.36133 14 0 Ω END 0 0 402. Ω Ω 0 1.7636 134.5 -1.23713 1.2569 706.568 -360.014 GND 0 -360.014 1.75361 134.5 -1.23006 1.24983 706.568 21.2 16 706.568 17 -360.014 42.4 1.72361 134.5 -1.20885 1.22861 -1.17164 1.19138 706.568 -360.014 63.6 1.67097 134.5 END 134.5 -1.17164 1.19138 706.568 -360.014 1.67097 2J6 63.6 1.6097 -1.12836 -360.014 134.5 1.14801 19 706.568 84.8 1.52728 106. 134.5 -1.07017 1.08965 20 706.568 -360.014 134.5 -.99434 706.568 -360.014 127.2 1.4198 1.01347 END -.99434 1.4198 134.5 1.01347 2J7 706.568 -360.014 127.2 -.922011 .940681 134.4 706.568 148.4 1.31719 -360.014 22 706.568 -360.014 169.6 1.19216 134.4 -.833971 .851896 23 .743585 END 706.568 -360.014 190.8 1.0398 134.3 -.726822 .743585 706.568 -360.014 190.8 1.0398 134.3 -.726822 2J8 .650083 134.3 -.634569 .908452 25 706.568 -360.014 212. .753585 134.3 -.525952 .53969 706.568 -360.014 233.2 26

END 2J19	706.568	-360.014 -360.014				398056 398056	.409268
239	706.568	-360.014				29196	.300696
29	706.568	-360.014	296.8	.240733	134.1	167522	.172884
END	706.568	-360.014	318.	0	0	0	0

TOWER #2 DRIVEN WITH TOWER #1 LOADED WITH -J1200

C:\Expert MBPro V.14\ktar5wire7 06-20-2013 13:28:32

KTARtest4

GEOMETRY Dimensions in feet Environment: perfect ground

wire 1	caps none	Distance 0	Angle 0	Z 0	radius 13.153	segs 2
2	none	0	0	80.4 80.4 160.8	9.772	3
3	none	0	0	160.8	7.254	3
4	none	0	0 0	241.2 321.6	4.736	3
5	none	0 0	0 0	321.6 402.	2.532	3
6	none	793. 793.	27. 27.	0 63.6	9.457	3
7	none	793. 793.	27. 27.	63.6 127.2	7.569	3
8	none	793. 793.	27. 27.	127.2 190.8	5.68	3
9	none	793. 793.	27. 27.	190.8 254.4	3.791	3
10	none	793. 793.	27. 27.	254.4 318.	2.218	3

Number of wires = 10 current nodes = 29

	mini	mum	maximum		
Individual wires	wire	value	wire	value	
segment length	9	21.2	1	40.2	
segment/radius ratio	6	2.24173	5	10.5845	
radius	10	2.218	1	13.153	

	TRICAL DESCRI	PTION					
Frequ	lencies (MHz)						
-	frequency		no.	of	segment	length	(wavelengths)
no.	lowest	step	step	S	minimum		maximum
1	.62	0	1		.0133632	2	.0253397

Sources sector magnitude source node phase type 15 690.242 340.5 voltage 1 1 Lumped loads capacitance passive resistance reactance inductance circuit load node (ohms) (ohms) (mH) (uF) -1,200. 0 0 0 1 0 1 C:\Expert MBPro V.14\ktar5wire7 06-20-2013 13:28:32 IMPEDANCE normalization = 50. S12 resist react imped phase VSWR S11 freq (ohms) (ohms) (ohms) (deg) dB dB (MHz) source = 1; node 15, sector 1 .62 283.2 9.0158 -1.9348 -4.4431 15.186 -64.803 66.558 C:\Expert MBPro V.14\ktar5wire7 06-20-2013 13:28:32 CURRENT rms Frequency = .62 MHz Input power = 5,000. watts Efficiency = 100. % coordinates in feet current mag phase real imaginary (amps) 7. (deg) (amps) Х Υ (amps) no. -.0524518 -.137017 0 0 0 .146713 200.9 GND 200.9 0 0 40.2 .635921 -.594081 -.226855 2 0 80.4 .765819 200.8 -.715979 -.271761 END 0 -.715979 -.271761 2J1 0 0 80.4 .765819 200.8 -.756816 -.286051 200.7 4 0 0 107.2 .809071 .829657 -.776572 -.292005 200.6 0 134. 5 0 0 0 160.8 .824959 200.5 -.772786 -.288721 END 2J2 0 0 160.8 .824959 200.5 -.772786 -.288721 -.750932 0 0 .80106 200.4 -.278922 7 187.6 -.708728 -.26142 0 0 214.4 .755404 200.2 8 -.642031 -.234827 END 0 0 241.2 .683628 200.1 -.234827 0 0 241.2 .683628 200.1 -.642031 2J3 10 0 0 268. .612524 200. -.575737 -.209076 -.488592 -.175932 0 294.8 .519301 199.8 11 0 .399357 -.376179 199.6 -.134071 END 0 0 321.6 2J4 0 0 321.6 .399357 199.6 -.376179 -.134071 0 348.4 .297999 199.5 -.280966 -.0993039 13 0 -.0571555 .17302 199.3 -.163307 14 0 0 375.2 0 0 0 END 0 0 402. Ω 57.3 9.7998 15.2713 GND 706.568 -360.014 0 18.1452 706.568 -360.014 21.2 15.6766 55.3 8.92976 12.8847 16 8.57777 17 706.568 -360.014 42.4 14.8334 54.7 12.1017 54. 8.11391 706.568 13.7995 11.1621 -360.014 63.6 END 706.568 13.7995 54. 8.11391 11.1621 2J6 -360.014 63.6 19 706.568 -360.014 84.8 12.9207 53.5 7.68639 10.3857 106. 706.568 -360.014 11.9332 53. 7.17889 9.53235 20 6.57362 8.57905 127.2 10.808 52.5 END 706.568 -360.014 10.808 52.5 6.57362 8.57905 706.568 -360.014 127.2 2J7

20	706 560	200 014	148.4	9.83239	52.2	6.03015	7.76616
22	706.568	-360.014	148.4	9.83239	52.2	0.03015	1.10010
23	706.568	-360.014	169.6	8.72653	51.8	5.39695	6.85749
END	706.568	-360.014	190.8	7.46089	51.4	4.6541	5.83131
2J8	706.568	-360.014	190.8	7.46089	51.4	4.6541	5.83131
25	706.568	-360.014	212.	6.42246	51.1	4.03219	4.99895
26	706.568	-360.014	233.2	5.24653	50.8	3.316	4.06573
END	706.568	-360.014	254.4	3.91133	50.5	2.48962	3.01667
2J9	706.568	-360.014	254.4	3.91133	50.5	2.48962	3.01667
28	706.568	-360.014	275.6	2.83686	50.2	1.81534	2.17998
29	706.568	-360.014	296.8	1.60889	49.9	1.03534	1.2315
END	706.568	-360.014	318.	0	0	0	0

TOWER #2 DRIVEN WITH TOWER #1 BASE SHORTED TO GROUND

C:\Expert MBPro V.14\ktar5wire7 06-20-2013 13:30:12

KTARtest4

GEOMETRY Dimensions in feet Environment: perfect ground

wire	-	Distance	Angle	Z	radius	segs
1	none	0	0	0 80.4	13.153	2
2	none	•	0	80.4	9.772	3
۷.	none	0	0	160.8	5.112	0
3	none		Õ	160.8	7.254	3
		0	0	241.2		
4	none	0	0	241.2	4.736	3
		0	0	321.6		
5	none	0	0	321.6	2.532	3
		0	0	402.		<u>^</u>
6	none		27.	0	9.457	3
-		793.	27.	63.6	7 5 6 0	3
7	none	793. 793.	27. 27.	63.6 127.2	7.569	3
8	none	793.	27.	127.2	5.68	3
0	none	793.	27.	190.8	5.00	5
9	none	793.	27.	190.8	3.791	3
2		793.	27.	254.4		
10	none	793.	27.	254.4	2.218	3
		793.	27.	318.		
Numbe			= 10			
	(current nodes	= 29			
			minimum		maximum	
Indiv	idual	wires w	ire value	W	ire value	
segme			9 21.2		1 40.2	

 Individual wires
 wire
 value

 segment length
 9
 21.2
 1
 40.2

 segment/radius ratio
 6
 2.24173
 5
 10.5845

 radius
 10
 2.218
 1
 13.153

ELECTRICAL DESCRIPTION Frequencies (MHz) frequency no. of segment length (wavelengths) minimum maximum no. lowest step steps .62 0 1 .0133632 .0253397 1 Sources source node sector magnitude phase type 1 15 1 690.242 340.5 voltage C:\Expert MBPro V.14\ktar5wire7 06-20-2013 13:30:12 IMPEDANCE normalization = 50. phase VSWR S11 S12 freq resist react imped (ohms) dB dB (MHz) (ohms) (ohms) (deg) source = 1; node 15, sector 1 8.4356 -2.0691 -4.2136 284.2 .62 16.932 -66.747 68.861 C:\Expert MBPro V.14\ktar5wire7 06-20-2013 13:30:12 CURRENT rms Frequency = .62 MHz Input power = 5,000. watts Efficiency = 100. % coordinates in feet phase real imaginary current mag Ζ (amps) (deg) (amps) (amps) Х Y no. -3.24777 0 4.62943 134.6 3.29904 0 0 GND 0 0 40.2 4.56693 134.5 -3.20369 3.25473 2 134.5 -3.0591 END 0 0 80.4 4.36192 3.10938 4.36192 134.5 -3.0591 3.10938 0 80.4 2J1 0 134.5 -2.9437 2.99315 0 107.2 4.19813 0 4 -2.78607 5 0 0 134. 3.97432 134.5 2.83426 160.8 3.68084 134.5 -2.57948 2.62581 END 0 0 3.68084 134.5 -2.57948 2.62581 0 160.8 2J2 0 3.40301 -2.384030 0 187.6 134.5 2.42835 7 0 3.06361 134.5 -2.14544 2.18696 8 0 214.4 -1.8555 1.89319 END 0 0 241.2 2.65086 134.4 134.4 -1.8555 1.89319 2J3 0 0 241.2 2.65086 0 2.30184 134.4 -1.61055 1.64457 10 268. 0 134.4 -1.32268 1.35192 0 294.8 1.89134 11 0 END 0 0 321.6 1.40873 134.3 -.98459 1.00752 1.00752 134.3 -.98459 2J4 0 0 321.6 1.40873 -.718099 .73551 1.02793 134.3 0 348.4 13 0 375.2 .583291 134.3 -.407252 .417581 14 0 Ω 0 0 END 0 0 402. 0 0 9.54311 14.2909 706.568 -360.014 0 17.1843 56.3 GND 8.69094 54. 11.9563 706.568 -360.014 21.2 14.7812 16 706.568 53.3 8.34697 11.2006 13.9687 -360.014 42.4 17 706.568 -360.014 63.6 12.9772 52.5 7.89408 10.3 END 706.568 2J6 -360.014 63.6 12.9772 52.5 7.89408 10.3 7.47706 9.56267 19 706.568 -360.014 84.8 12.1388 52. 6.98236 106. 11.2007 51.4 8.75794 706.568 -360.014 20 6.39265 7.86487 -360.014 10.1352 50.9 END 706.568 127.2

2J7	706.568	-360.014	127.2	10.1352	50.9	6.39265	7.86487
22	706.568	-360.014	148.4	9.21392	50.5	5.86341	7.10751
23	706.568	-360.014	169.6	8.17185	50.1	5.24699	6.26484
END	706.568	-360.014	190.8	6.98159	49.6	4.52407	5.31746
2J8	706.568	-360.014	190.8	6.98159	49.6	4.52407	5.31746
25	706.568	-360.014	212.	6.00659	49.3	3.91903	4.55196
26	706.568	-360.014	233.2	4.90402	48.9	3.2225	3.69661
END	706.568	-360.014	254.4	3.65376	48.5	2.41902	2.7383
2J9	706.568	-360.014	254.4	3.65376	48.5	2.41902	2.7383
28	706.568	-360.014	275.6	2.64883	48.3	1.76361	1.97635
29	706.568	-360.014	296.8	1.50152	47.9	1.00569	1.11497
END	706.568	-360.014	318.	0	0	0	0

Method of Moments Model Details for Directional Antenna- KTAR

The array was modeled using MININEC with the individual tower characteristics that were verified by the respective tower impedance measurements. Calculations were made to determine the complex voltage values for sources located at ground level under each tower of the array to produce current moment sums for the towers that, when normalized, equated to the theoretical field parameters of the authorized directional antenna pattern. The following pages contain details of the method of moments model of the directional antenna pattern.

Tower	Wire	Base Node
1 SW	1	1
2 NE	6	15

MOMENT METHOD MODEL FOR DRIVEN ARRAY

ARRAY SYNTHESIS TO PRODUCE DRIVE VOLTAGES

C:\Expert MBPro V.14\ktar5wire7 06-20-2013 15:33:26

MEDIUM WAVE ARRAY SYNTHESIS FROM FIELD RATIOS

Frequency = .62 MHz

field ratio tower magnitude phase (deg) 1 1. 0 2 .55 82.

VOLTAGES AND CURRENTS - rms source voltage current node magnitude phase (deg) magnitude phase (deg) 1 482.89 342.3 11.0889 10.5 15 549.117 356.2 8.95318 82.9 Sum of square of source currents = 406.246 Total power = 5,000. watts

TOWER ADMITT. admittance Y(1, 1) Y(1, 2) Y(2, 1) Y(2, 2)	 imaginary .00991245 .00171185 .00171175 .0140761	(mhos)
Z(1, 2)	 imaginary -14.2844 -8.06451 -8.06708 -64.8284	(ohms)

MOMENT METHOD MODEL WITH DIRECTIONAL DRIVE VOLTAGES

C:\Expert MBPro V.14\ktar5wire7 06-20-2013 15:33:48

KTARtest4

GEOMETRY Dimensions in feet Environment: perfect ground

wire	caps	Distance	Angle	Z	radius	segs
1	none	0	0	0	13.153	2
		0	0	80.4		
2	none	0	0	80.4	9.772	3
		0	0	160.8		

3	none 0		0		160.8	7.	254	3
4	0 none 0		0 0 0		241.2 241.2 321.6	4.	736	3
5	0 none 0		0		321.6 321.6 402.	2.	532	3
6	0 none 79	93. 93.	27. 27.		402. 0 63.6	9.	457	3
7	none 79		27. 27. 27.		63.6 127.2	7.	569	3
8	none 79	93.	27. 27. 27.		127.2	5.	68	3
9	none 79	93. 93. 93.	27. 27. 27.		190.8 190.8 254.4	3.	791	3
10	none 79		27. 27. 27.		254.4 254.4 318.	2.	218	3
Numbe	r of wi cui	res rrent nodes	= 1					
segme			minim vire 9 6 10	um value 21.2 2.2417 2.218	3	ma wire 1 5 1	ximum value 40.2 10.5845 13.153	
Frequ no.	RICAL DH encies frequend lowest .62			no. o steps 1	-	um	h (wavele maximum .025339	
Sourc sourc 1 2	es e node 1 15	sector 1 1	magnit 682.90 776.56	9	phase 342.3 356.2		type voltage voltage	
C:\Ex	pert MBI	Pro V.14\kt	ar5wir	e7 06-	20-2013	15:33:	48	
freq (MHz)	rmalizat res: (ohr	tion = 50. ist react ms) (ohms node 1, se	s) (o	hms)	phase (deg)	VSWR	S11 dB	S12 dB
.62	38.3				331.8	1.7037	-11.692	30462
sourc .62		node 15, s 93 -61.2			273.3	35.824	48504	-9.7603
CURRE	NT rms	Pro V.14\kt	ar5wir	e7 06-	20-2013	15:33:	48	
		= .62 MHz = 5,000. wa	atts					

Hatfield & Dawson Consulting Engineers

.

	iency = 1 linates in 1	00. % feet					
curre	ent			mag	phase	real	imaginary
no.	X	Y	Z	(amps)	(deg)	(amps)	(amps)
GND	0	ō	0	11.0889	10.5	10.9027	2.02343
2	õ	õ	40.2	10.3699	3.9	10.3455	.71207
END	õ	õ	80.4	9.74893	1.6	9.74533	.264846
2J1	õ	0	80.4	9.74893	1.6	9.74533	.264846
4	0	õ	107.2	9.31657	.4	9.31633	.0660413
5	õ	0	134.	8.76337	359.3	8.76274	104914
END	õ	0	160.8	8.06759	358.3	8.06384	246077
2J2	õ	Õ	160.8	8.06759	358.3	8.06384	246077
7	õ	Ő	187.6	7.42623	357.5	7.41896	328712
, 8	õ	Õ	214.4	6.65698	356.7	6.64576	386401
END	Õ	Õ	241.2	5.73519	355.9	5.72025	413756
2J3	Õ	Õ	241.2	5.73519	355.9	5.72025	413756
10	0	0	268.	4.96438	355.3	4.94746	409407
11	0	0	294.8	4.06561	354.7	4.04791	378916
END	0	0	321.6	3.01748	354.	3.00093	315639
2J4	0	0	321.6	3.01748	354.	3.00093	315639
13	0	0	348.4	2.1961	353.5	2.18207	247861
14	0	0	375.2	1.24267	353.	1.23345	151089
END	0	0	402.	0	0	0	0
GND	706.568	-360.014	0	8.95317	82.9	1.10277	8.885
16	706.568	-360.014	21.2	7.79515	82.5	1.02284	7.72775
17	706.568	-360.014	42.4	7.39124	82.3	.987438	7.32498
END	706.568	-360.014	63.6	6.89152	82.2	.939228	6.82722
2J6	706.568	-360.014	63.6	6.89152	82.2	.939228	6.82722
19	706.568	-360.014	84.8	6.46259	82.1	.893273	6.40056
20	706.568	-360.014	106.	5.97746	81.9	.837532	5.91849
END	706.568	-360.014	127.2	5.42152	81.8	.769925	5.36657
2J7	706.568	-360.014	127.2	5.42152	81.8	.769925	5.36657
22	706.568	-360.014	148.4	4.93745	81.8	.708435	4.88636
23	706.568	-360.014	169.6	4.3869	81.7	.636069	4.34054
END	706.568	-360.014	190.8	3.75487	81.6	.550389	3.71431
2J8	706.568	-360.014	190.8	3.75487	81.6	.550389	3.71431
25	706.568	-360.014	212.	3.235	81.5	.478104	3.19948
26	706.568	-360.014	233.2	2.64506	81.4	.39431	2.6155
END	706.568	-360.014	254.4	1.9738	81.3	.296973	1.95133
2J9	706.568	-360.014	254.4	1.9738	81.3	.296973	1.95133
28	706.568	-360.014	275.6	1.43265	81.3	.217076	1.41611
29	706.568	-360.014	296.8	.813157	81.2	.124139 0	.803626 0
END	706.568	-360.014	318.	0	0	U	U

CURRENT MOMENT VALUES GENERATED FROM MININEC MODEL OF DRIVEN ARRAY

C:\Expert MBPro V.14\ktar5wire7 06-20-2013 15:34:55

CURRENT MOMENTS (amp-feet) rms

Frequency = .62 MHz
Input power = 5,000. watts

vertical current moment

wire	magnitude	phase (deg)	magnitude	phase (deg)
1	359.609	5.1	359.609	5.1
2	311.722	359.9	311.722	359.9
3	242.398	357.1	242.398	357.1
4	154.865	355.1	154.865	355.1
5	57.1536	353.5	57.1536	353.5
6	211.173	82.5	211,173	82.5
7	169.941	82.	169.941	82.
8	127.137	81.7	127.137	81.7
9	79.9091	81.5	79.9091	81.5
10	29.5415	81.3	29.5415	81.3

Medium wave array vertical current moment (amps-feet) rms (Calculation assumes tower wires are grouped together. The first wire of each group must contain the source.)

tower	magnitude	phase	(deg)	normalized
1	1,123.07	0.0		1.0 <u>/ 0</u>
2	617.688	82.		0.55 <u>/ 82.0</u>

ltem 5 Array Geometry – KTAR

Per the provisions of the Commission's Public Notice DA 09-2340, October 29, 2009, paragraph 5, licensed stations applying to be re-licensed under the MM Docket 93-177 Rules are exempt from the requirement to submit an as-built surveyor's certification when there is no change in the theoretical patterns, as is the case in this application.

Item 6 Sampling System Measurements – KTAR

The KTAR sample system has a single solid outer conductor foam insulated coaxial cable to each tower. At each tower the coaxial cable is directly connected to the current transformer. Impedance measurements were made of the antenna monitor sampling system using an Agilent 4395A network analyzer and calibrated measurement system.

The measurements were made looking into the antenna monitor ends of the sampling lines for two conditions: with the far end open circuited for length and impedance determination, and with the current sampling device connected as in normal operation.

The following table shows the frequency closest to the carrier frequency where resonance (zero reactance corresponding with low resistance) was found. As frequencies of series resonance occur at odd multiples of 90 degrees electrical length, the sampling line length at the resonant frequency above carrier frequency, which is the closest one to the carrier frequency, was found to be 270 electrical degrees. The electrical length at carrier frequency appearing in the table below was calculated by ratioing the carrier frequency to the resonant frequency.

Tower	Sampling Line Open- Circuited Resonance (kHz)	Sampling Line Electrical Length at 620 kHz (Degrees)	620 kHz Measured Impedance with Sample Device Connected	
Tower 1 (SW)	746.0	224.40	56.0 -j 1.3	
Tower 2 (NE)	745.3	224.6	58.1 -j 2.0	

The sampling line lengths meet the requirement that they be equal in length within 1 electrical degree.

In order to determine the characteristic impedance values of the sampling lines, open-circuited measurements were made with frequencies offset to produce +/- 45 degrees of electrical length from resonance. The characteristic impedance was calculated using the following formula, where $R_1 + j X_1$ and $R_2 + j X_2$ are the measured impedances of the +45 and -45 degree offset frequencies, respectively:

			Zo = ((R12 + >	×1²) ^½ x (R2² + X2	$(2)^{\frac{1}{2}})^{\frac{1}{2}}$	
Line #	hi	gh Rhig	;h X Lo	w R	low X	Z high	Z low	Z average
	1	10.389	49.82	8.389	-52.477	50.89	53.114	52.00
	2	10.521	49,89	8.664	-53.125	50.99	53.83	52.41

The sampling line measured characteristic impedances meet the requirement that they be equal within 2 Ohms.

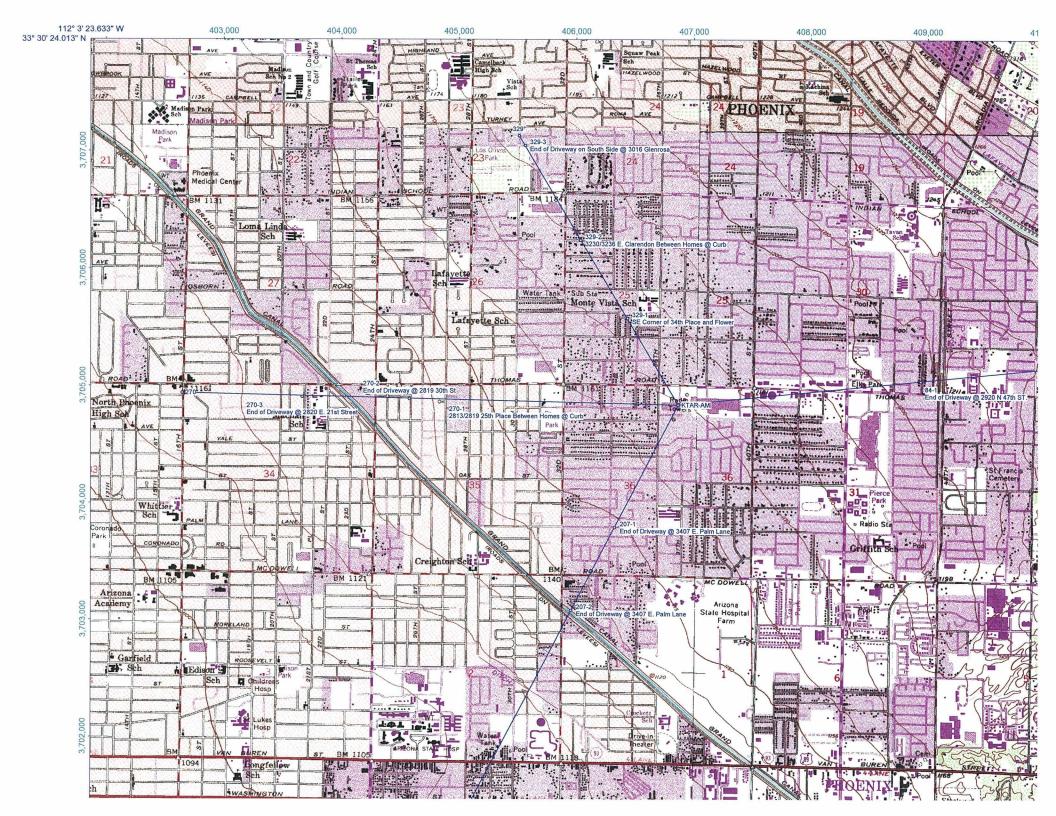
The current sample devices were calibrated by measuring their outputs with the Agilent 4395A network analyzer. The two sample devices were placed side by side monitoring the output of an amplifier used with the network analyzer terminated in a load. Their outputs were connected to the inputs of the network analyzer with equal short lengths of coaxial cable.

Tower #	Serial Number	Current	Phase	
1	18130	0.690	-0.2	
2	18128	0.690	-0.1	

All transformers are Delta Electronics model TCT-3.

Indicated current error zero with a manufacturer's tolerance of 4% (+/- 2%).

Indicated phase error 0.1 degree with a manufacturer's tolerance of 4 degrees (+/-2°).


The station's antenna monitor, a Potomac Instruments AM-1901, was calibrated by reference to the network analyzer.

Item 7 Reference Field Strength Measurements - KTAR

Reference field strength measurements were made along radials at the azimuths with radiation values specified on the current license and additionally on the major lobe radials for the directional pattern. The measurements were made with a Potomac Instruments model FIM-41, serial number 666. This meter has had its indications compared on all scales and at frequencies throughout the MF band with those of Potomac Instruments FIM-41 serial number 647, owned by Hatfield & Dawson, which was calibrated by the manufacturer on April 11, 2013. The indications were found to agree well within the manufacturer's rated accuracy for the instrument.

The measured field strengths, point descriptions, and measured coordinates (WGS-84) are shown on the following page.

KTAR AM Reference Points						
Radial	Point	Lat/Long	Dist	Reading	Description	
84°	1	33.48094251 -111.98010838 NAD83	2.07 kM	150 mv	End of Driveway @ 2920 N 47th ST.	
	2	33.48261898 -111.96118172 NAD83	3.8 kM	85 mv	End of Driveway at 3018 E. N 56th St. Frontage Rd.	
	3	33.48400574 -111.94574060 NAD83	5.2 kM	66 mv	End of Driveway @ 6261 E. Earll	
207°	1	33.46947371 -112.00810902 NAD83	1.1 kM	600 mv	End of Driveway @ 3407 E. Palm Lane	
	2	33.46303288 -112.01205657 NAD83	1.9 kM	350 mv	Canal North side East of 32nd St. @ Steps	
	3	33.44403418 -112.02346814 NAD83	4.3 kM	112 mv	Air Lane East of Gate 108 North Side	
270°	1	33.47913757 -112.01724087 NAD83	1.3 kM	680 mv	End of Driveway @ 2819 30th St.	
	2	33.47922224 -112.02704003 NAD83	2.28 kM	420 mv	2813/2819 25th Place Between Homes @ Curb	
	3	33.47929506 -112.03685817 NAD83	3.2 kM	320 mv	End of Driveway @ 2820 E. 21st Street	
329°	1	33.48557695 -112.00713329 NAD83	.83 kM	300 mv	SE Corner of 34th Place and Flower	
	2	33.49155890 -112.01149880 NAD83	1.6 kM	175 mv	3230/3236 E. Clarendon Between Homes @ Curb	
	3	33.49877519 -112.01665508 NAD83	2.56 kM	130 mv	End of Driveway on South Side @ 3016 Glenrosa	
	II.	Antenna Monitor Ratio .828 Pha			nt 50+j0 10.4 Amps 5,408 Watts	
Po	wer as per	47 CFR 73.51 2 (b) (1) which states shall	exceed nor	ninal by 8% fo	or station 5000 watts and under on directional antenna	

Item 8 Direct Measurement of Power - KTAR

Common point impedance measurements were made with an Agilent 4395A network analyzer in a calibrated measurement system. The measurements were made at the phasor cabinet input adjacent to the common point current meter used to determine operating power. The impedance measured at this point was adjusted to a value of 50 ohms +/- j0 for the night common point network.

Item 9 Stability Analysis of Self-Supporting Tower Model

The method of moments model of the KTAR array uses a "wedding cake" characterization of each tower to account for its vertical taper. The towers are not equal in physical height. Five wires, cascading down in radius with increasing height, were used to represent each tower. Each wire was modeled with three segments except the bottom segment on the #1 (S) taller tower, for which two segments were used.

All wire segments, when checked using the "problem definition evaluation" function of MININEC Broadcast Professional Version 14, have no errors relative to the software's specified geometry guidelines. As shown on the evaluation summary of the following page, however, "warnings" are given due to the segment length-to-radius ratio for certain of the largest radius segments. Under the guidelines, which consider a segment length-to-radius ratio under 2.0 to constitute an error, a warning is given for a ratio between 2.0 and 8.0 as a cautionary measure.

In order to evaluate the stability of the KTAR directional antenna Method of Moments model, additional models were run with the same wire lengths and radius values but with smaller and larger numbers of segments per wire. The model used for analyzing the KTAR directional antenna pattern has 14 (#1) or 15 (#2) segments per tower. Additional models were run with one less segment per wire, having a total of 9 or 10 segments per tower, and with an additional segment per wire, having a total of 19 or 20 segments per tower.

Tower 1, which is taller, has the largest bottom-wire modeled radius. The tower 1 base impedance was calculated using each of the three stability evaluation models. Tower 2 was modeled with the base grounded to compare with the base impedance measurement calculation model.

Total Segments for Towers	Minimum Segment Length to Radius Ratio	Resistance (Ohms)	Difference (Ohms)	Reactance (Ohms)	Difference (Ohms)	
19	3.36	34.657	0.324	-14.814	0.714	
29	2.24	34.981	Reference	-14.1	Reference	
39	1.68	35.072	0.091	-13.757	0.343	

The MININEC modeled base resistances and reactances remain well within the +/- 2 ohm and +/- 4 percent range required for matching measured and modeled resistance and reactance by the FCC Rules. Remaining essentially unchanged with segment lengths both smaller and greater than used in the KTAR directional antenna pattern model, the real and imaginary components indicate convergence of the results. The model is therefore valid with regard to the characteristics of the self-supporting towers of the KTAR array.

Item 10 Method of Moments Model Detail for Stability Analysis

MININEC EVALUATION FOR SEGMENTATION USED IN ANALYSIS OF ARRAY

```
C:\Expert MBPro V.14\ktar5wire7norm seg for st 06-24-2013 08:36:50
PROBLEM DEFINITION EVALUATION
maximum frequency = .62 MHz
shortest wavelength = 483.548 meters
number of wires = 10
INDIVIDUAL WIRES
segment length to wavelength ratio: No detected violations!
segment length to radius ratio:
 wire 1 - warning 3.056337
 wire 2 - warning 2.74253
 wire 3 - warning 3.694513
 wire 4 - warning 5.658784
 wire 6 - warning 2.241726
 wire 7 - warning 2.800898
 wire 8 - warning 3.732395
 wire 9 - warning 5.592191
radius to wavelength ratio:
                                No detected violations!
checking for wires in groud plane: No detected violations!
WIRE JUNCTIONS
junction segment length ratio: No detected violations!
junction radius ratio: No detected violations!
junction radius ratio:
ELECTRICAL DESCRIPTION
   No detected violations!
STABILITY ANALYSIS USING ONE LESS SEGMENT FOR EACH WIRE
C:\Expert MBPro V.14\ktar5wire7 06-20-2013 13:37:12
KTARtest4
GEOMETRY
Dimensions in feet
Environment: perfect ground
                                 Z
0
                                             radius
wire caps Distance
                      Angle
                                                           segs
                                              13.153
                                                           1
 1
     none O
                       0
          Ω
                     0
                                  80.4
                                              9.772
                                                           2
 2
     none O
                     0
                                  80.4
                                  160.8
          0
                     0
 3
     none O
                     0
                                  160.8
                                              7.254
                                                           2
          0
                     0
                                  241.2
                     0
                                               4.736
                                                           2
                                  241.2
 4
     none O
                     0
                                  321.6
          0
                     0
                                                           2
                                  321.6
                                               2.532
 5
     none O
                    0
                                   402.
          0
```

6	none 793.	27		0	9.	457	2
7	793. none 793.	27 27	•	63.6 63.6	7.	569	2
8	793. none 793.	27 27	•	127.2 127.2	5.	68	2
9	793. none 793.	27 27		190.8 190.8	3.	791	2
10	793. none 793.	27 27		254.4 254.4	2.3	218	2
	793.	27		318.			
Numbe	r of wires current	= nodes =	10 19				
- 11			nimum			ximum	
	idual wires nt length	wire 9	value 31.8		wire 1	value 80.4	
segme radiu	nt/radius ra s	tio 6 10	3.3623 2.218	59	5 1	15.8768 13.153	
	RICAL DESCRI encies (MHz)	PTION					
-	frequency		no.	-		h (wavele	
no. 1	lowest .62	step 0	step: 1	s minimu .02004		maximum .050679	
Sourc	25						
sourc	e node se	-	nitude .242	phase		type	
1	1 1			340.5		voltage	
C:\Ex	pert MBPro V	.14\ktar5	wire7 06	-20-2013	13:37:	12	
IMPED	ANCE rmalization	= 50.					
freq	resist	react	imped	phase	VSWR	S11 dB	S12 dB
(MHz) sourc	e = 1; node			(deg)			
.62	34.657	-14.814	37.69	336.9	1.6602	-12.105	27605
C:\Ex	pert MBPro V	.14\ktar5	wire7 06	-20-2013	13:37:	12	
	NT rms						
	ency = .62 power = 5,0						
Effic	iency = 100	• 00					
coord curre	inates in fe	et		mag	phase	real	imaginary
no.	Х	Y	Z	(amps)	(deg)	(amps)	(amps)
1 END		0 0	0 80.4	12.0113 10.8365	3.6 356.9	11.987 10.8209	.763579 582091
2J1	0	0	80.4	10.8365	356.9	10.8209	582091
3 END	-	0	120.6 160.8	10.0759 8.99279		10.0472 8.94826	760116 893901
2J2	0	0	160.8	8.99279	354.3	8.94826	893901
5 END		0 0	201. 241.2	7.86963 6.40277		7.81556 6.34435	920844 862904
2J3	0	0	241.2	6.40277	352.3	6.34435	862904

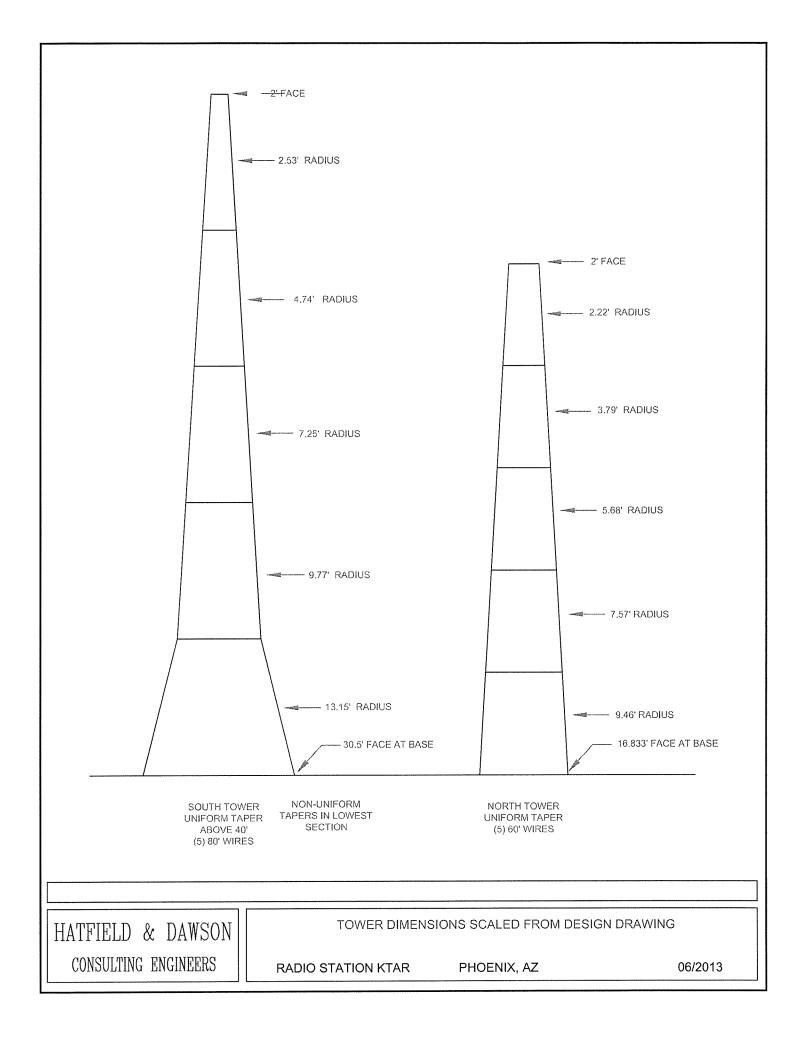
Hatfield & Dawson Consulting Engineers

7	0	0	281.4	5.04798	351.5	4.99228	747812
END	0	0	321.6	3.36478	350.7	3.32015	546174
2J4	0	0	321.6	3.36478	350.7	3.32015	546174
9	0	0	361.8	1.91691	350.	1.88796	331872
END	0	0	402.	0	0	0	0
GND	706.568	-360.014	0	1.73966	137.6	-1.28502	1.17267
11	706.568	-360.014	31.8	1.7175	137.6	-1.26853	1.15786
END	706.568	-360.014	63.6	1.64768	137.6	-1.21659	1.11119
2J6	706.568	-360.014	63.6	1.64768	137.6	-1.21659	1.11119
13	706.568	-360.014	95.4	1.54852	137.6	-1.14288	1.04486
END	706.568	-360.014	127.2	1.39846	137.5	-1.03144	.944363
2J7	706.568	-360.014	127.2	1.39846	137.5	-1.03144	.944363
15	706.568	-360.014	159.	1.23702	137.5	911701	.836079
END	706.568	-360.014	190.8	1.02223	137.4	752639	.691735
2J8	706.568	-360.014	190.8	1.02223	137.4	752639	.691735
17	706.568	-360.014	222.6	.817333	137.4	601171	.553738
END	706.568	-360.014	254.4	.558918	137.3	410555	.379255
2J9	706.568	-360.014	254.4	.558918	137.3	410555	.379255
19	706.568	-360.014	286.2	.323087	137.2	237021	.219559
END	706.568	-360.014	318.	0	0	0	0

STABILITY ANALYSIS USING AN ADDITIONAL SEGMENT FOR EACH WIRE

C:\Expert MBPro V.14\ktar5wire7 06-20-2013 15:15:57

KTARtest4


GEOMETRY Dimensions in feet Environment: perfect ground

wire	caps	Distance	Angle	Z	radius	segs
1	none	0	0	0	13.153	3
		0	0	80.4		
2	none	0	0	80.4	9.772	4
		0	0	160.8		
3	none	0	0	160.8	7.254	4
		0	0	241.2		
4	none	0	0	241.2	4.736	4
		0	0	321.6		
5	none	0	0	321.6	2.532	4
		0	0	402.		
6	none	793.	27.	0	9.457	4
		793.	27.	63.6		
7	none	793.	27.	63.6	7.569	4
		793.	27.	127.2		
8	none	793.	27.	127.2	5.68	4
		793.	27.	190.8		
9	none	793.	27.	190.8	3.791	4
		793.	27.	254.4		
10	none	793.	27.	254.4	2.218	4
		793.	27.	318.		
Numbe	rofv	wires	= 10			
		current nodes	= 39			

maximum

Individual wires wire value wire value 9 15.9 1 26.8 segment length 5 7.93839 6 1.68129 segment/radius ratio 13.153 10 2.218 1 radius ELECTRICAL DESCRIPTION Frequencies (MHz) no. of segment length (wavelengths) frequency no. lowest steps minimum maximum step .0100224 .0168932 0 1 1 .62 Sources phase type source node sector magnitude 1 1 690.242 340.5 voltage 1 C:\Expert MBPro V.14\ktar5wire7 06-20-2013 15:15:57 IMPEDANCE normalization = 50. S12 freq resist react imped phase VSWR S11 dB dB (MHz) (ohms) (ohms) (ohms) (deq) source = 1; node 1, sector 1 35.072 -13.757 37.673 338.6 1.6163 -12.558 -.24794 .62 C:\Expert MBPro V.14\ktar5wire7 06-20-2013 15:15:57 CURRENT rms = .62 MHz Frequency Input power = 5,000. watts Efficiency = 100. % coordinates in feet imaginary phase real current mag Ζ (amps) (deg) (amps) (amps) Y no. Х 0 11.9401 1.9 11.9334 .399444 GND 0 0 0 0 26.8 11.4637 356. 11.4356 -.801402 2 11.1799 354.6 11.1301 -1.05418 3 0 0 53.6 0 80.4 10.7283 353. 10.6482 -1.30851 END 0 0 80.4 10.7283 353. 10.6482 -1.30851 2J1 0 0 10.4139 352.3 10.319 -1.40275100.5 5 0 10.0137 351.5 9.90443 -1.475540 120.6 6 0 9.54004 350.8 9.41827 -1.519397 0 0 140.7 8.96305 350.1 8.83078 -1.53413END 0 0 160.8 8.96305 350.1 8.83078 -1.534132J2 0 0 160.8 8.45987 349.6 8.32188 0 180.9 -1.521769 0 7.86449 349.1 7.72318 -1.48419 10 0 0 201. 7.20125 348.6 7.05963 0 221.1 -1.4211 11 0 6.41717 348.1 6.27901 -1.32444END 0 0 241.2 348.1 6.41717 6.27901 -1.324440 241.2 2J3 0 5.79932 347.7 5.66647 -1.23418 0 261.3 13 0 0 281.4 5.08296 347.3 4.95893 -1.11605 14 0 0 301.5 4.30441 346.9 4.19272 -.974196 15 0 -.794462 3.39994 346.5 3.30581 0 0 321.6 END 3.39994 346.5 3.30581 -.794462 0 321.6 2J4 0 2.73441 346.2 2.65533 -.652877 0 341.7 17 0 1.96751 345.9 1.90796 -.480398 0 18 0 361.8 1.12574 345.5 1.09009 -.281065 19 0 0 381.9 0 0 0 END 0 0 402. 0

GND	706.568	-360.014	0	1.77306	132.9	-1.20663	1.29915
	706.568	-360.014	15.9	1.76743	132.9	-1.20207	1.29505
21							
22	706.568	-360.014	31.8	1.75051	132.9	-1.19116	1.28274
23	706.568	-360.014	47.7	1.72206	132.9	-1.17163	1.26205
END	706.568	-360.014	63.6	1.68027	132.9	-1.14296	1.23164
2J6	706.568	-360.014	63.6	1.68027	132.9	-1.14296	1.23164
25	706.568	-360.014	79.5	1.6364	132.8	-1.11288	1.19971
26	706.568	-360.014	95.4	1.58008	132.8	-1.07428	1.1587
27	706.568	-360.014	111.3	1.51238	132.8	-1.0279	1.10937
END	706.568	-360.014	127.2	1.42877	132.8	970664	1.04842
2J7	706.568	-360.014	127.2	1.42877	132.8	970664	1.04842
29	706.568	-360.014	143.1	1.35429	132.8	919716	.994099
30	706.568	-360.014	159.	1.26574	132.8	859187	.929458
31	706.568	-360.014	174.9	1.16628	132.7	791262	.856809
END	706.568	-360.014	190.8	1.04791	132.7	710499	.770265
2J8	706.568	-360.014	190.8	1.04791	132.7	710499	.770265
33	706.568	-360.014	206.7	.952292	132.7	645329	.700294
34	706.568	-360.014	222.6	.841061	132.6	569599	.618822
35	706.568	-360.014	238.5	.719145	132.6	486694	.529432
END	706.568	-360.014	254.4	.5771	132.5	390236	.425158
2J9	706.568	-360.014	254.4	.5771	132.5	390236	.425158
37	706.568	-360.014	270.3	.466452	132.5	315205	.343835
38	706.568	-360.014	286.2	.338426	132.5	228516	.249625
39	706.568	-360.014	302.1	.196255	132.4	132403	.144864
END	706.568	-360.014	318.	0	0	0	0
THUD	100.000	200.014	510.	v	U U	•	~

UNITED STATES OF AMERICA FEDERAL COMMUNICATIONS COMMISSION File No. BS-1993-A

Call Sign KTAR

Modification No.

٦

MODIFICATION OF LICENSE

AM (Class of station)

Phoenix Broadcasting, Inc. c/o Station KTAR 515 N. 6th Street St. Louis, MO 63101

Licensee: Phoenix Broadcasting, Inc.

Station location: Phoenix, AR

L

Associated Broadcast Station: K T A R

The Authority Contained in Authorization File No. BR-800602WE dated 11-17-90 granted to the Licensee listed above is hereby modified in part as follows:

The monitor point location for 207 bearing has been changed to reflect the following:

Direction of 207° True North. Exit Tower Plaza to 36th Street. Turn left (South) onto 36th Street from the Tower Plaza parking lot. Proceed west on McDowell Road to 24th Street. Turn left (South) onto 24th Street. Proceed south on 24th Street to Mohave Street. Turn right (west) onto Mohave Street. The proposed monitor point is located 640 feet from the intersection of 24th Street and Mohave. The field intensity measured at this point should not exceed 355 mV/m.

This modification of license shall be attached to and be made a part of the license of this station.

Except as herein expressly modified, the above-mentioned license, subject to all modifications heretofore granted by the Commission, is to continue in full force and effect in accordance with the terms and conditions thereof and for the period therein specified.

Dated: September 14, 1993

FEDERAL COMMUNICATIONS COMMISSION

F.C.C. - WASHINGTON, D. C.

FCC Form 359 February 1990

JDS:yl

FCC Fo	1000					
y ossidari Y	FEDERAL COMML	TATES OF AMER INICATIONS COM		File No.:	BR - 80	Ю602WE
* 1	MODI STANDARD BROADO)N LICENSE	Call Sign:	КТ	AR
mad	Subject to the provisions of the Communications Act e thereunder, and further subject to conditions set forth			ties, and Co	mmissio	n Rules
	PHOENIX BROA	DCASTING,	INC.			
for t	ereby authorized to use and operate the radio transmitti the term ending 3 a.m. Local Time OCTOBER 1, 1	.983		r the purpos	ie of broa	Idcasting
	licensee shall use and operate said apparatus only in	accordance with	the following terms:			
	On a frequency of 620 kHz. With nominal power of 5 kilo watts nighttime and	5 1410	ts daytime,			
,	with antenna input power of 5.4 kilowatts of antenna nighttime	directional	COMMON POINT	current resistance	10.2 52	amperes ohms
1	and antenna input power of 5 kilo watts non antenna daytime	directional		current resistance	11.7	amp ere s ohms
3. F	Iours of operation: UNLIMITED:					
	Average hours of sunrise and sunset: Jan. 7:30am to 5:45pm; Feb. 7:15am to					
	Mar. 6:45am to 6:30pm; Apr. 6:00am to May 5:30am to 7:15pm; June 5:15am to					
	July 5:30am to 7:45pm; Aug. 5:45am to		· · _			
	Sep. 6:15am to 6:30pm; Oct. 6:30am to					
	Nov. 7:00am to 5:30pm; Dec. 7:30am to					
1	MOUNTAIN STANDARD TIME (NON-ADVANCED)	-				
4. 1	With the station located at: PHOENIX, ARIZONA					
5.	With the main studio located at: 301 West Osborn					
6	Phoenix, Arizona	1				
0.	Remote control point: 301 West Osborn Rd.,					
7.	Phoenix, Arizona Transmitter location:	North Latitude		28 44		
••		West Longitud	112 0	00'06	11	

3659 Thomas Road, Phoeniz, Arizona

8. Obstruction marking specifications in accordance with the following paragraphs of FCC Form 715: 1, 3, 12 & 21.

9. Transmitter(s): TYPE ACCEPTED

÷ .

10. Conditions:

The Commission reserves the right during said license period of terminating this license or making effective any changes or modification of this license which may be necessary to comply with any decision of the Commission rendered as a result of any hearing held under the rules of the Commission prior to the commencement of this license period or any decision rendered as a result of any such hearing which has been designated but not held, prior to the commencement of this license period.

been designated but not held, prior to the commencement of this license period. This license is issued on the licensee's representation that the statements contained in licensee's application are true and that the undertakings therein contained so far as they are consistent herewith, will be carried out in good faith. The licensee shall, during the term of this license, render such broadcasting service as will serve public interest, convenience, or necessity to the full extent of the privileges herein conferred.

This license shall not vest in the licensee any right to operate the station nor any right in the use of the frequency designated in the license beyond the term hereof, nor in any other manner than authorized herein. Neither the license nor the right granted hereunder shall be assigned or otherwise transferred in violation of the Communications Act of 1934. This license is subject to the right of use or control by the Government of the United States conferred by Section 606 of the Communications Act of 1934.

I/This license consists of this page and pages -

Dated. November 17, 1980

cjb

FEDERAL COMMUNICATIONS COMMISSION

. -

• •

. ...

-77

 April 1973
 File No.: BR-800602WE
 Call Sign: K T A R
 Date: 11-17-80

 1. DESCRIPTION OF DIRECTIONAL ANTENNA SYSTEM
 DA

 No. and Type of Elements:
 Two (2) tapered, self supporting, series excited vertical

FCC Form 353-A

Height above Insulators:#1 (S) - 400' (90.7°)#2 (N) - 300' (68°)Overall Height:" 404'" 304'Spacing and Orientation:Spaced 793' (180°) on a line bearing 27° True.

Non-Directional Antenna: Ground System consists of #1 (S) tower with #2 (N) tower floating 240 equally spaced, buried copper radials about each tower alternately 200' and 400' in length. Radials between towers terminate midway on a 4" copper strap. #2(N) tower has a 48' x 48' ground screen and the #1 (S) tower has a 96' ground screen.

2. THEORETICAL SPECIFICATIONS	<u>#1(S)</u>	<u>#2(N)</u>
Phasing:	00	+82 ⁰
Field Ratio:	1.0	0.55
3. OPERATING SPECIFICATIONS Phase Indication*:	00	76 ⁰
Antenna Base Current Ratio:	1.00	1.00
Current Ratio:	1.00	1.00

'As indicated by Potomac Instruments AM-19(204) antenna monitor.

BR-800602WE

Field intensity measuring equipment shall be available at all times and the field intensity at each of the monitoring points shall be measured at least once every thirty days and an appropriate record kept of all measurements so made.

DESCRIPTION OF AND FIELD HITFMSITY AT MONITORING POINTS:

Direction of 84° true North. From the transmitter, proceed east 3.25 miles on Thomas Road to N 61st Place. Turn left onto N. 61st Place. The messaring point is located 200 feet north of Thomas Road and 75 feet West of N. 61st Place. The field intensity measured at this point should not exceed 47.7 my/m.

Direction of 207° true North. From the transmitter, proceed south 1.0 mile on 36th Street to McDowell Road. Turn right onto McDowell and proceed west 0.5 mile. Turn south onto 32nd Street and proceed 0.3 mile to East Moreland Street. The measuring point is located on the sidewalk north of 3138 E. Moreland Street. The field intensity measured at this point should not exceed 325 mv/m.

Direction of 329[°] true North. From the transmitter, proceed wast on Themas Road for 0.5 miles. Turn morth onto 32nd Street, and proceed 1.2 miles to Glewrosa Avenue. Turn left onto Glemrosa Avenue and proceed 0.1 mile. Turn morth onto 31st Place and proceed 0.05 miles. Turn left onto Glemrosa Avenue and proceed 0.1 mile. Turn left onto 31st Street. Proceed south to Heatherbras Street and turn west to 3030 East Heatherbrae. The field intensity measured at this point should not exceed <u>95 mv/m</u>.

DURING OPERATEION BY REMOTE CONTROL:

Remote indications of antenna base current for each tower, and common point current shall be read and entered in the operating log at least once each half-hour. The indications at the transmitter, of the common point current, base currents, phase monitor sample loop currents and phase indiactions shall be read and entered in the operating log once each day. These readings must be made within two hours after the commencement of operation with the directional antenna by remote control.

- 3 -

SECTION III - LICENSE APPLICATION ENGINEERING DATA

Name of Applicant

BONNEVILLE INTERNATIONAL CORPORATION

PURPOSE OF AUTHORIZATION APPLIED FOR: (check one)

x	Station	License
	otation	21001130

X Direct Measurement of Power

1. Facilities auth	orized in construction permit					
Call Sign	File No. of Construction Permit	Frequency	Hours of Operation	Power in kilowatts		
L C	(if applicable)	(kHz)		Night	Day	
KTAR	NOT APPLICABLE	620	UNLIMITED	5.0	5.0	
2. Station locatio	n					
State			City or Town			
Arizona			Phoenix			
3. Transmitter lo	cation					
State	County		City or Town	Street address (or other identification)		
AZ	Maricopa		Phoenix	3659 Thomas Rd.		
4. Main studio lo	cation					
State	County		City or Town	Street address (or other identification	ation)	
AZ	Maricopa		Phoenix	Phoenix 7740 N. 16th Suite 200		
5. Remote contro	ol point location (specify only if a	uthorized direction	al antenna)			
State	County		City or Town	Street address (or other identification)	ation)	
AZ	Maricopa		Phoenix 7740 N. 16th Suite 200			
6. Has type-approved stereo generating equipment been installed?						
7 Does the sampling system meet the requirements of 47 C F R Section 73.68?						

7. Does the sampling system meet the requirements of 47 C.F.R. Section 73.68?

Attach as an Exhibit a detailed description of the sampling system as installed.

8. Operating constants:							
RF common point or antenna cu modulation for night system		RF common point or antenna current (in amperes) without modulation for day system					
10.39 Measured antenna or common point resistance (in ohms) at operating frequency			operating free	tenna or common	point reactance (in	n ohms) at	
Night	Day		Night		Day		
50	+/	jO	50 +/-j0				
Antenna indications for direction	al operation			-			
Towers	Antenna monitor Phase reading(s) in degrees		Antenna monitor sample current ratio(s)		Antenna base currents		
	Night	Day	Night	Day	Night	Day	
1 (S)	0	does not	1.0	does not	not	does not	
2 (N)	70.8	apply	0.828	apply	required	apply	
]		
Manufacturer and type of antenr	Manufacturer and type of antenna monitor: Potomac Instruments AM-1901						

Not Applicable

Exhibit No.

Eng. Rpt.

SECTION III - Page 2

9. Description of antenna system ((f directional antenna is used, the information requested below should be given for each element of the array. Use separate sheets if necessary.)

Type Radiator two tapered self supporting series excited vertical towers	Overall height in meters of radiator above base insulator, or above base, if grounded.	Overall height in meters above ground (without obstruction lighting)	Overall height in meters above ground (include obstruction lighting)	If antenna is either top loaded or sectionalized, describe fully in an Exhibit.
	see below	see below	see below	Exhibit No. dna

Excitation

Geographic coordinates to nearest second. For directional antenna give coordinates of center of array. For single vertical radiator give tower location.

Shunt

North Latitude	0 33	28	44	West Longitude	0 112	00	06

If not fully described above, attach as an Exhibit further details and dimensions including any other antenna mounted on tower and associated isolation circuits.

Exhibit No. dna

Also, if necessary for a complete description, attach as an Exhibit a sketch of the details and dimensions of ground system.

Exhibit No. no change

10. In what respect, if any, does the apparatus constructed differ from that described in the application for construction permit or in the permit?

Tower #1 Reg. 1001096 121.9 M radiator ht., 123.1 M overall ht with and without lights Tower #2 Reg. 1001095 91.44 M radiator ht., 92,7 M overall ht with and without lights

11. Give reasons for the change in antenna or common point resistance.

Series

No change Day current read at same location as night common point current per 73.54(a)

I certify that I represent the applicant in the capacity indicated below and that I have examined the foregoing statement of technical information and that it is true to the best of my knowledge and belief.

Name (Please Print or Type) Benj. F. Dawson III, P.E.	Signature (check appropriate box pelow)
Address (include ZIP Code) Hatfield & Dawson Consulting Engineers 9500 Greenwood Avenue North Seattle, WA 98103 USA	Date July 12, 2013 Telephone No. (Include Area Code)
	206 783 9151
Technical Director	X Registered Professional Engineer
Chief Operator	Technical Consultant
X Other (specify) Consulting Engineer	

FCC 302-AM (Page 5) August 1995