Federal Communications Commission Washington, D. C. 20554

s.

Approved by OMB 3060-0627 Expires 01/31/98

FOR FCC USE ONLY

FCC 302-AM

APPLICATION FOR AM

BROADCAST STATION LICENSE

(Please read instructions before filling out form.

FOR COMMISSION USE ONLY FILE NO. BMML-20131126BYZ

SECTION I - APPLICANT FEE INFORMATION			
1. PAYOR NAME (Last, First, Middle Initial)			·
Entercom Communications Corp.			
MAILING ADDRESS (Line 1) (Maximum 35 characters) 401 E. City Avenue			2
MAILING ADDRESS (Line 2) (Maximum 35 characters) Suite 809			·
CITY Bala Cynwyd	STATE OR COUNTRY (if fo PA	reign address)	ZIP CODE 19004
TELEPHONE NUMBER (include area code) (610) 660-5610	CALL LETTERS WMFS(AM)	OTHER FCC IDE 34374	NTIFIER (If applicable)
2. A. Is a fee submitted with this application?			✓ Yes No
B. If No, indicate reason for fee exemption (see 47 C.F.R. Section			0 Devi
Governmental Entity Noncommercial educ	cational licensee	her (Please explain):
C. If Yes, provide the following information:			
Enter in Column (A) the correct Fee Type Code for the service you a Fee Filing Guide." Column (B) lists the Fee Multiple applicable for this	are applying for. Fee Type Co	odes may be found i	in the "Mass Media Services
			<i>.</i>
(A) (B)	(C)		
FEE TYPE FEE MULTIPLE	FEE DUE FOR FEI TYPE CODE IN		FOR FCC USE ONLY
M M R 0 0 0 1	\$ 635		
To be used only when you are requesting concurrent actions which res	sult in a requirement to list mor	e than one Fee Typ	e Code.
(A) (B)	(C)		
M O R 0 0 1	\$ 730		
ADD ALL AMOUNTS SHOWN IN COLUMN C.	TOTAL AMOUNT REMITTED WITH TH	IS	FOR FCC USE ONLY
AND ENTER THE TOTAL HERE.	APPLICATION \$ 1 265		
REMITTANCE.	φ 1,305		

SECTION II - APPLICAN	TINFORMATION					
1. NAME OF APPLICANT Entercom License, LLC						
MAILING ADDRESS 401 E. City Avenue, Suite 80	09					
CITY Bala Cynwyd			STATE PA		ZIP CODE 19004	
2. This application is for:						
		[Noncomm	nercial		
	AM Direc	ctional		on-Directional		
Call letters	Community of License	Construct	ion Permit File No.	Modification of Construction	Expiration Date of	Last
WMFS(AM)	Memphis, TN	BP-201	01022AAH	Permit File No(s).	March 9, 2014	nit
3. Is the station no	ow operating pursuant	to autor	matic program	test authority in	Yes 🗸	No
accordance with 47 C.F.	.R. Section 73.1620?				Exhibit No.	
If No, explain in an Exhil	bit.				See Engineering Statement	
4 Have all the terms	s conditions and oblig	ations s	at forth in the	abova described	V Yes	No
construction permit beer	n fully met?	au0113 30		above described		NO
If No, state exceptions in	n an Exhibit.				Exhibit No.	
5. Apart from the chang the grant of the underly	ges already reported, ha ying construction permit	s any cai which w	use or circumsta vould result in a	ance arisen since any statement or	Yes 🗸	No
representation contained	in the construction perm	nit applic	ation to be now	incorrect?	Exhibit No.	
If Yes, explain in an Exh	nibit.					
6. Has the permittee file	ed its Ownership Report	(FCC Fo	rm 323) or owne	ership	Yes	No
certification in accordance	ce with 47 C.F.R. Section	73.3615	5(b)?		✓ Does not a	apply
If No, evolain in an Evbit						арріу
	JIL.				Exhibit No.	
7. Has an adverse finding been made or an adverse final action been taken by any court or administrative body with respect to the applicant or parties to the application in a civil or criminal proceeding, brought under the provisions of any law relating to the following: any felony; mass media related antitrust or unfair competition; fraudulent statements to another governmental unit; or discrimination?						
f the answer is Yes, attach as an Exhibit a full disclosure of the persons and matters nvolved, including an identification of the court or administrative body and the proceeding by dates and file numbers), and the disposition of the litigation. Where the requisite nformation has been earlier disclosed in connection with another application or as required by 47 U.S.C. Section 1.65(c), the applicant need only provide: (i) an identification of that previous submission by reference to the file number in the case of an application, he call letters of the station regarding which the application or Section 1.65 information was filed, and the date of filing; and (ii) the disposition of the previously reported matter.						

8. Does the applicant, or any party to the application, have a petition on file to migrate to the expanded band (1605-1705 kHz) or a permit or license either in the existing band or expanded band that is held in combination (pursuant to the 5 year holding period allowed) with the AM facility proposed to be modified herein?

If Yes, provide particulars as an Exhibit.

The APPLICANT hereby waives any claim to the use of any particular frequency or of the electromagnetic spectrum as against the regulatory power of the United States because use of the same, whether by license or otherwise, and requests and authorization in accordance with this application. (See Section 304 of the Communications Act of 1934, as amended).

The APPLICANT acknowledges that all the statements made in this application and attached exhibits are considered material representations and that all the exhibits are a material part hereof and are incorporated herein as set out in full in

CERTIFICATION

1. By checking Yes, the applicant certifies, that, in the case of an individual applicant, he or she is not subject to a denial of federal benefits that includes FCC benefits pursuant to Section 5301 of the Anti-Drug Abuse Act of 1988, 21 U.S.C. Section 862, or, in the case of a non-individual applicant (e.g., corporation, partnership or other unincorporated association), no party to the application is subject to a denial of federal benefits that includes FCC benefits pursuant to that section. For the definition of a "party" for these purposes, see 47 C.F.R. Section 1.2002(b).

2. I certify that the statements in this application are true, complete, and correct to the best of my knowledge and belief, and are made in good faith.

Name	Signature	1
Andrew P. Sutor, IV	11 Canto	figure .
Title Senior VP/General Counsel	Date 11/25/2013	Telephone Number 610-660-5610

WILLFUL FALSE STATEMENTS ON THIS FORM ARE PUNISHABLE BY FINE AND/OR IMPRISONMENT (U.S. CODE, TITLE 18, SECTION 1001), AND/OR REVOCATION OF ANY STATION LICENSE OR CONSTRUCTION

FCC NOTICE TO INDIVIDUALS REQUIRED BY THE PRIVACY ACT AND THE PAPERWORK REDUCTION ACT

The solicitation of personal information requested in this application is authorized by the Communications Act of 1934, as amended. The Commission will use the information provided in this form to determine whether grant of the application is in the public interest. In reaching that determination, or for law enforcement purposes, it may become necessary to refer personal information contained in this form to another government agency. In addition, all information provided in this form will be available for public inspection. If information requested on the form is not provided, the application may be returned without action having been taken upon it or its processing may be delayed while a request is made to provide the missing information. Your response is required to obtain the requested authorization.

Public reporting burden for this collection of information is estimated to average 639 hours and 53 minutes per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the burden, can be sent to the Federal Communications Commission, Records Management Branch, Paperwork Reduction Project (3060-0627), Washington, D. C. 20554. Do NOT send completed forms to this address.

THE FOREGOING NOTICE IS REQUIRED BY THE PRIVACY ACT OF 1974, P.L. 93-579, DECEMBER 31, 1974, 5 U.S.C. 552a(e)(3), AND THE PAPERWORK REDUCTION ACT OF 1980, P.L. 96-511, DECEMBER 11, 1980, 44 U.S.C. 3507.

Exhibit	No.	

✓ Yes		No
-------	--	----

SECTION III - LICENSE APPLICATION ENGINEERING DATA

Name of Applicant

Entercom License, LLC.

PURPOSE OF AUTHORIZATION APPLIED FOR: (check one)

X s	tation License
-----	----------------

Direct Measurement of Power

1. Facilities authorized in construction permit						
Call Sign	File No. of Construction Permit Frequency		Hours of Operation	Power in kilowatts		
WMFS	(if applicable) BP-20101022AAH	(kHz) 680 kHz	UNLIMITED	Night 5.0	Day 8.0	
2. Station location	n				•.	
State			City or Town			
TENNESSI	2E		MEMPHIS			
3. Transmitter lo	cation					
State	County		City or Town	Street address		
TN	SHELBY		MEMPHIS	3627 BENJESTOWN RD		
4. Main studio lo	cation					
State	County		City or Town	Street address		
TN	SHELBY		MEMPHIS	1835 Moriah Woods Blvd		3lvd
5. Remote control point location (specify only if authorized directional antenna)						
State	County		City or Town	Street address	ation)	
TN	SHELBY	······	MEMPHIS	1835 Moriah W		lvd

6. Has type-approved stereo generating equipment been installed?	Yes X No			
7. Does the sampling system meet the requirements of 47 C.F.R. Section 73.68?	X Yes No			
	Not Applicable			
Attach as an Exhibit a detailed description of the sampling system as installed.	Exhibit No.			

SEE ENGINEERING REPORT

8. Operating constants:				,		
RF common point or antenna current (in amperes) without modulation for night system			RF common point or antenna current (in amperes) without modulation for day system			
10	.39 Amps			12.	65 Amps	
Measured antenna or common operating frequency	point resistance (ir	i ohms) at	Measured ante operating frequ	nna or common p lency	ooint reactance (ir	ohms) at
Night	Day		Night		Day	
50.0	50.0		+/-j0.	0	+/-j0.	. 0
Antenna indications for direction	nal operation					
Antenna monitor Towers Phase reading(s) in degrees		Antenna monitor sample current ratio(s)		Antenna base currents		
	Night	Day	Night	Day	Night	Day
TOWER #1 WEST	76.0°		0.910			
TOWER #2 SOUTH	0.00		1.000			
TOWER #3 EAST	-14.5°		0.920			
TOWER #4 NORTH	76.3°		0.948			
Manufacturer and type of antenna monitor: Potomac Instruments AM-1901						

SECTION III - Page 2

9. Description of antenna system ((f directional antenna is used, the information requested below should be given for each element of the array. Use separate sheets if necessary.)

Type Radiator UNIFORM CROSS SECTION GUYED TOWERS	Overall height in meters of radiator above base insulator, or above base, if grounded.	Overall height in meters above ground (without obstruction lighting)	Overall height in meters above ground (include obstruction lighting)	If antenna is either top loaded or sectionalized, describe fully in an Exhibit.
	ENG RPT	ENG RPT	ENG RPT	Exhibit No. ENG RPT
Excitation	X Series	Shunt		

Excitation

Series

Shunt

Geographic coordinates to nearest second. For directional antenna give coordinates of center of array. For single vertical radiator give tower location.

North Latitude	35	13'	22 "	West Longitude	90 ⁰	02	37

If not fully described above, attach as an Exhibit further details and dimensions including any other antenna mounted on tower and associated isolation circuits.

Also, if necessary for a complete description, attach as an Exhibit a sketch of the details and dimensions of ground system.

10. In what respect, if any, does the apparatus constructed differ from that described in the application for construction permit or in the permit?

11. Give reasons for the change in antenna or common point resistance.

I certify that I represent the applicant in the capacity indicated below and that I have examined the foregoing statement of technical information and that it is true to the best of my knowledge and belief.

Name (Please Print or Type) STEPHEN S. LOCKWOOD, P.E.	Signature (check appropriate box below)		
Address (include ZIP Code) HATFIELD & DAWSON CONSULTING ENGINEERS	Date 21 Nov 2013		
SEATTLE, WA 98103	Telephone No. (Include Area Code) 206 783 9151		
Technical Director	X Registered Professional Engineer		

Chief	Operator
-------	----------

Technical Consultant

Exhibit No.

Exhibit No.

Other (specify)

FCC 302-AM (Page 5) August 1995

BENJAMIN F. DAWSON III, PE THOMAS M. ECKELS, PE STEPHEN S. LOCKWOOD, PE DAVID J. PINION, PE ERIK C. SWANSON, PE

THOMAS S. GORTON, PE MICHAEL H. MEHIGAN, PE HATFIELD & DAWSON CONSULTING ELECTRICAL ENGINEERS 9500 GREENWOOD AVE. N. SEATTLE, WASHINGTON 98103

TELEPHONE (206) 783-9151 FACSIMILE (206) 789-9834 E-MAIL hatdaw@hatdaw.com

> JAMES B. HATFIELD, PE CONSULTANT

Maury L. Hatfield, PE (1942-2009) Paul W. Leonard, PE (1925-2011)

Engineering Report:

APPLICATION FOR STATION LICENSE

Proof of Performance

WMFS, 680 kHz

8 kW Daytime 5 kW Nighttime DAN

Facility ID 34374

Memphis, Tennessee

Entercom License, LLC.

November 2013

Table of Contents

Purpose of Application

- **ITEM 1 Tower Impedance Measurements and Model Verification**
- **ITEM 2 Derivation of Operating Parameters for Directional Antenna**
- **ITEM 3 Moment Method Model for Towers Driven Individually**
- **ITEM 4 Moment Method Model for Directional Array**
- **ITEM 5 Sampling System Measurements**

ITEM 6 - Reference Field Strength Measurements

ITEM 7 - Direct Measurement of Power

ITEM 8 - Antenna Monitor and Sampling System ITEM 9 - Survey

Appendix A - FCC Form 302

Purpose of Application

This Engineering Report is part of an application for Station License by Entercom License, LLC., licensee of WMFS-AM, Memphis, TN.

Background

WMFS employs a non-directional daytime antenna and a four tower nighttime directional antenna array. The daytime power is 8 kW and the nighttime power is 5 kW.

Information is provided herein demonstrating that the directional antenna parameters for the permitted pattern have been determined in accordance with the requirements of section §73.151(c) of the Commission's Rules. The system has been adjusted to produce antenna monitor parameters within ± 5 % of ratio and ± 3° of phase of the modeled values, as required by the Rules.

The field strength measurements used in this report were taken by Entercom's Technical Director for Memphis Mr. Mike Schwartz, in September 2013.

Stephen S. Lockwood, P.E.

21 November 2013

ITEM 1 - Tower Impedance Measurements and Model Verification

Tower Base Impedance measurements were made at the reference point at the output of each of the Antenna Tuning Units (ATUs). These measurements were made using an HP 8751A Network Analyzer in a calibrated measurement system. The other towers within the array were in the open circuit condition (at the reference point).

Standard electrical circuit calculations were used to relate the measured impedance (Z_{ATU} _{Measured}) to the moment method base modeled impedance ($Z_{Modeled}$). X_L and X_C are assumed stray base capacitance and lead inductance for each tower. The measured reactance (X_{SD}) for the static drain coils are included in this model. The non-directional tower's base model includes reactance for: sample loop isolation coil, Austin transformer, FM antenna isolation coupler, and two tower lighting isolation chokes. The non-directional tower is not used in the directional array. This tower is de-tuned using a variable capacitor at the base. There is a sample loop on this tower at 1/3 of the tower height and the base termination reactance is tuned for minimum current when the system is in the directional antenna mode.

The modeled ($Z_{ATU Modeled}$) and measured ($Z_{ATU Measured}$) base impedance at each ATU output with the other towers open circuited at their ATU outputs agree within ± 2 ohms and ± 4 % for resistance and reactance.

WMFS (AM) 680kHz

MEMPHIS, TN

10/2013

Bob Allen, H&D

HATFIELD & DAWSON CONSULTING ENGINEERS

TOWER $|X_{SD}(\Omega)|$

TWR #1 +j7000

TWR #2 +j8100

+j6500

+j8900

TWR #3

TWR #4

 $X_{L}(\Omega)$

+j35

+j26

+j29

+j41

PDF FILE: WMFS MOM TABLE.pdf

XL

 MMM

SD

 $Z_{MODELED}(\Omega)$

75.3 +j100.3

71.8 +j103.3

74.4 +j100.7

82.6 +j107.4

 $Z_{\text{ATU MEASURED}}(\Omega)$

74.0 +j134.3

76.9 +j130.1

80.0 +j131.0

77.8 +j151.0

10/22/2013 1:52 PM

WMFS CIRCUIT MOM TABLE.dwg

Z MODELED

 $\uparrow X_{oc}$

 $Z_{ATU MODELED}(\Omega)$

74.9 +j134.2

77.2 +j130.5

80.3 +j130.5

81.6 +j147.2

 $X_{oc}(\Omega)$

-j6000

-j2000

-j1750

-j10000

ITEM 2 - Derivation of Operating Parameters for Directional Antenna

Pspice, an analog circuit simulator computer program, was used to model the circuit conditions around the tower bases to derive the antenna monitor parameters. This program calculates the voltages and currents of a circuit under a variety of different excitation circumstances, such as DC, AC, and in time using nodal and mesh analysis applications of Kirchhoff's laws (among other features). The current at the sample toroidal current transformer location was calculated using the tower base currents calculated by the moment method model and the base region circuit model. The 1999 Orcad version of this program was used for this simulation.

Nighttime Currents From MiniNEC

C:\AM\WMFS\MNEC\WMFS Z Model 2013 DA 09-23-2013 07:47:30

CURRE	ENT rms						
Frequ	lency	= 680 KHz					
Input	z power	= 5,000. watts					
Effic	ciency	= 96.04 %					
coord	linates	in degrees					
curre	ent			mag	phase	real	imaginary
no.	Х	Y	Z	(amps)	(deg)	(amps)	(amps)
GND	0	0	0	4.72479	87.2	.232498	4.71907
2	0	0	4.83333	4.88124	86.8	.268758	4.87383
3	0	0	9.66667	4.94116	86.7	.288345	4.93274
4	0	0	14.5	4.95775	86.5	.302808	4.94849
5	0	0	19.3333	4.93597	86.4	.313166	4.92602
6	0	0	24.1667	4.87846	86.2	.319899	4.86796
7	0	0	29.	4.78685	86.1	.323232	4.77592
8	0	0	33.8333	4.66237	86.	.323294	4.65114
9	0	0	38.6667	4.5062	85.9	.32017	4.49481
10	0	0	43.5	4.31953	85.8	.313924	4.30811
11	0	0	48.3333	4.10358	85.7	.304612	4.09226
12	0	0	53.1667	3.85967	85.7	.29229	3.84858
13	0	0	58.	3.58914	85.6	.277013	3.57843
14	0	0	62.8333	3.2934	85.5	.258839	3.28321
15	0	0	67.6667	2.97382	85.4	.237826	2.96429
16	0	0	72.5	2.63172	85.3	.214024	2.623
17	0	0	77.3333	2.26819	85.3	.187472	2.26043
18	0	0	82.1667	1.88387	85.2	.158172	1.87722
19	0	0	87.	1.47844	85.1	.126042	1.47306
20	0	0	91.8333	1.0492	85.	.0907911	1.04526
21	0	0	96.6667	.58834	85.	.0516747	.586066
END	0	0	101.5	0	0	0	0
GND	-95.0	22 -31.7939	0	5.32129	9.5	5.24803	.879959

23	-95.022	-31.7939	4.83333	5 54896	65	5 51299	630838
24	-95.022	-31.7939	9.66667	5.65216	4.9	5 63157	482026
25	-95.022	-31.7939	14.5	5.7027	3.6	5 69157	356069
26	-95.022	-31.7939	19.3333	5 70643	2 5	5 70112	246199
27	-95.022	-31,7939	24.1667	5 66631	1 5	5 66434	1/0302
28	-95.022	-31,7939	29.	5 58399	7	5 58362	.149302
29	-95.022	-31,7939	33,8333	5 46073	359 9	5 46072	- 0104508
30	-95.022	-31,7939	38.6667	5 29771	359.2	5 29719	- 0744032
31	-95.022	-31,7939	43 5	5 09617	358 6	5 09456	- 129101
32	-95.022	-31.7939	48 3333	4 85742	358	1' 85/38	- 171703
33	-95.022	-31.7939	53 1667	4 58288	357 4	4.57828	- 205320
34	-95.022	-31 7939	58	4 27411	356 9	4.26796	- 220127
35	-95.022	-31 7939	62 8333	3 93271	356 5	3 02510	- 242220
36	-95.022	-31 7939	67 6667	3 56032	356	3 55168	- 243232
37	-95.022	-31,7939	72 5	3 15847	355 6	3 1/011	- 242902
38	-95.022	-31 7939	77 3333	2 72848	355 2	2 71888	- 220742
39	-95.022	-31 7939	82 1667	2 27115	354 8	2.71000	- 205407
40	-95.022	-31,7939	87	1 78609	354.0	1 7777	- 172944
41	-95.022	-31,7939	91 8333	1 27004	354 1	1 2633	- 130666
42	-95.022	-31.7939	96.6667	713559	353.1	709313	- 0777238
END	-95.022	-31.7939	101 5	0	0	0	0777238
GND	-33,1413	-216.579	0	4 89934	354 7	4 87803	- 456545
44	-33.1413	-216.579	4.83333	5,11386	351 3	5 055	- 77366
45	-33,1413	-216.579	9.66667	5,21311	349 5	5 12527	- 952975
46	-33.1413	-216.579	14.5	5.26373	348	5 14869	-1 09447
47	-33.1413	-216.579	19.3333	5.27095	346.8	5 13089	-1 20698
48	-33.1413	-216.579	24.1667	5.2374	345.7	5.07486	-1 29469
49	-33.1413	-216.579	29.	5.16455	344.7	4,98237	-1.35959
50	-33.1413	-216.579	33.8333	5.05348	343.9	4.85487	-1.40284
51	-33.1413	-216.579	38.6667	4.90527	343.1	4.69366	-1.42522
52	-33.1413	-216.579	43.5	4.72099	342.4	4.50005	-1.42734
53	-33.1413	-216.579	48.3333	4.50187	341.8	4.27544	-1.40977
54	-33.1413	-216.579	53.1667	4.24921	341.1	4.02125	-1.37306
55	-33.1413	-216.579	58.	3.96444	340.6	3.73902	-1.31776
56	-33.1413	-216.579	62.8333	3.64905	340.1	3.43029	-1.24446
57	-33.1413	-216.579	67.6667	3.30455	339.6	3.0966	-1.15374
58	-33.1413	-216.579	72.5	2.93241	339.1	2.73944	-1.04618
59	-33.1413	-216.579	77.3333	2.53386	338.7	2.36005	922279
60	-33.1413	-216.579	82.1667	2.10963	338.2	1.9592	78235
61	-33.1413	-216.579	87.	1.65941	337.8	1.53668	626281
62	-33.1413	-216.579	91.8333	1.18017	337.4	1.08982	452879
63	-33.1413	-216.579	96.6667	.663175	337.	.610667	258626
END	-33.1413	-216.579	101.5	0	0	0	0
GND	61.8109	-184.733	0	4.91215	87.5	.21626	4.90739
65	61.8109	-184.733	4.90952	5.15692	87.3	.238451	5.1514
66	61.8109	-184.733	9.81905	5.26682	87.3	.250102	5.26088
67	61.8109	-184.733	14.7286	5.32234	87.2	.258274	5.31606
68	61.8109	-184.733	19.6381	5.33095	87.2	.263593	5.32443
69	61.8109	-184.733	24.5476	5.29645	87.1	.266354	5.28975
70	61.8109	-184.733	29.4571	5.22103	87.1	.266693	5.21421

71	61.8109	-184.733	34.3667	5.10626	87.	.264687	5.0994
72	61.8109	-184.733	39.2762	4.95358	87.	.260387	4.94674
73	61.8109	-184.733	44.1857	4.76437	86.9	.253832	4,7576
74	61.8109	-184.733	49.0952	4.54004	86.9	.245056	4.53342
75	61.8109	-184.733	54.0048	4.2821	86.9	.234092	4.2757
76	61.8109	-184.733	58.9143	3.99212	86.8	.220977	3.986
77	61.8109	-184.733	63.8238	3.67172	86.8	.205748	3.66595
78	61.8109	-184.733	68.7333	3.32249	86.7	.18844	3.31714
79	61.8109	-184.733	73.6429	2.94601	86.7	.16909	2.94115
80	61.8109	-184.733	78.5524	2.54356	86.7	.14772	2.53926
81	61.8109	-184.733	83.4619	2.11595	86.6	.124324	2.1123
82	61.8109	-184.733	88.3714	1.66292	86.6	.0988351	1.65998
83	61.8109	-184.733	93.281	1.1815	86.6	.0710275	1.17936
84	61.8109	-184.733	98.1905	.662967	86.5	.0403162	.66174
END	61.8109	-184.733	103.1	0	0	0	0
GND	-23.1209	-107.85	0	1.98893	77.1	.442435	1,93909
86	-23.1209	-107.85	4.81613	1.60077	77.1	.357741	1.56028
87	-23.1209	-107.85	9.63226	1.36084	77.	.30533	1.32614
88	-23.1209	-107.85	14.4484	1.14939	77.	.25908	1.11981
89	-23.1209	-107.85	19.2645	.956093	76.9	.216736	.931203
90	-23.1209	-107.85	24,0807	.776305	76.8	.177284	.755791
91	-23.1209	-107.85	28.8968	.608098	76.7	.140299	.591692
92	-23.1209	-107.85	33.7129	.450625	76.4	.105591	.43808
93	-23.1209	-107.85	38.529	.303593	76.1	.0730915	.294663
94	-23.1209	-107.85	43.3452	.166993	75.2	.0427888	.161418
95	-23.1209	-107.85	48.1613	.0411785	69.1	.0147022	.0384645
96	-23.1209	-107.85	52.9774	.0748463	261.4	0111337	0740136
97	-23.1209	-107.85	57.7936	.179195	258.8	0346789	175807
98	-23.1209	-107.85	62.6097	.272507	258.2	055893	266713
99	-23.1209	-107.85	67.4258	.354517	257.8	0747391	346549
100	-23.1209	-107.85	72.2419	.425066	257.6	0911857	41517
101	-23.1209	-107.85	77.0581	.484044	257.4	105204	472473
102	-23.1209	-107.85	81.8742	.531393	257.3	116774	518403
103	-23.1209	-107.85	86.6903	.567102	257.2	125878	552955
104	-23.1209	-107.85	91.5065	.591217	257.	132503	576178
105	-23.1209	-107.85	96.3226	.603829	256.9	136638	588167
106	-23.1209	-107.85	101.139	.605079	256.8	138272	589068
107	-23.1209	-107.85	105.955	.595147	256.7	137394	579071
108	-23.1209	-107.85	110.771	.574249	256.5	13399	558399
109	-23.1209	-107.85	115.587	.542621	256.4	128037	527299
110	-23,1209	-107.85	120.403	.500501	256.2	119502	486026
111	-23.1209	-107.85	125.219	.448096	256.	108333	434804
112	-23.1209	-107.85	130.036	.385522	255.8	0944419	373775
113	-23.1209	-107.85	134.852	.312674	255.6	0776707	302873
114	-23.1209	-107.85	139.668	.228886	255.4	0577028	221493
115	-23.1209	-107.85	144.484	.132269	255.2	0338816	127856
END	-23.1209	-107.85	149.3	0	0	0	0

Input							
## WME .OPT I .AC LI	FS NI JIST IN 1	GHTTIME NOPAGE N 680kHz 6	TOWER 1 NODE NOMC 580kHz	BASE M D	ODEL		
IIN rs rsl	1 1 1	0 0 2	AC 50 .0	2 10.27).0ohms)01ohms	028 -36.57	,	
LSD RCSD	2 3	3 0	10 .0	538.4uH)01ohms			
L3 C1	2 4	4 0	8. 39	2uH PpF			
LL RL	4 5	5 0	12 9.	2.6uH lohms			
.PRINI .PRINI ##.PRC .END	C AC C AC DBE	VM(2,0) IM(RS1)	VP(2,0) IP(RS1)	VM(4,0 IM(RL)) VP(4,0) IP(RL)		
Output	FREQ 6.80	0E+05	IM(RS1) 4.837E+0	IP)0 8.	(RS1) 722E+01	IM(RL) 4.820E+00	IP(RL) 8.720E+01

Input

## WM .OPT .AC L	FS NIGH LIST NO IN 1 68	TTIME TOW PAGE NODE 0kHz 680k	ER 2 BAS NOMOD Hz	SE MODEL		
IIN rs rsl	1 1 1	0 0 2	AC 17 50.00 .001c	7.32119 225.0 ohms ohms	085	
LSD RCSD	2 3	3 0	1895. .001c	.8uH Dhms		
L3 C1	2 4	4 0	6.1uH 117pH	I		
LL RL	4 5	5 0	15.5u 81.6c	1H Dhms		
.PRIN .PRIN ##.PRC .END	F AC VM F AC IM DBE	(2,0) VP((RS1) IP(2,0) VM(RS1) IM((4,0) VP(4,0) (RL) IP(RL)		
Output	FREQ 6.800E	IM(+05 5.3	RS1) 18E+00	IP(RS1) 1.121E+01	IM(RL) 5.434E+00	IP(RL) 9.400E+00

Input

## WMF .OPT L .AC LI	S NIGHTTI IST NOPAG N 1 680kH	ME TOWER E NODE NO z 680kHz	3 BASE MOD	MODEL		
IIN rs	1 1	0 0	AC 16.9 50.00hm	5269 -150.5 s	587	
rs1	1	2	.001ohm	S		
LSD	2	3	1521.3u	Н		
RCSD	3	0	.001ohm	S		
L3	2	4	6.8uH			
C1	4	0	133.7pF			
LL	4	5	15.7uH			
RL	5	0	91.60hm	S		
.PRINT .PRINT ##.PRO .END	AC VM(2, AC IM(RS) BE	0) VP(2,0 1) IP(RS]) VM(4,) IM(RL	0) VP(4,0)) IP(RL)		
Output						
	FREQ	IM(RS1) I	P(RS1)	IM(RL)	IP(RL)
	6.800E+05	4.890E	+00 -3	.244E+00	5.004E+00	-5.500E+00

Input

## WMFS .OPT LIS .AC LIN	NIGHTTIME TOWER 3T NOPAGE NODE N 1 680kHz 680kHz	. 4 BASE MODEL OMOD
IIN	1 0	AC 13.07195 -26.79
rs rs1	1 0 1 2	.001ohms
LSD	2 3	2083.luH
RCSD	3 0	.001ohms
L3	2 4	9.6uH
C1	4 0	23.4pF
LL	4 5	18.3uH
RL	5 0	3.4ohms
.PRINT A .PRINT A ##.PROBE .END	C VM(2,0) VP(2, C IM(RS1) IP(RS	0) VM(4,0) VP(4,0) 1) IM(RL) IP(RL)
Output		

FREQ	IM(RS1)	IP(RS1)	IM(RL)	IP(RL)
6.800E+05	5.039E+00	8.750E+01	5.011E+00	8.750E+01

Calculated Antenna Monitor Parameters

Nighttime

	Modeled	Sample Calculated a	e Current at TCT (Amps)	Antenna Monitor Parameters		
	Current Puise	Magnitude	Phase (°)	Ratio	Phase (°)	
Tower 1 West	Node 1	4.837	87.2°	0.910	76.0°	
Tower 2 South	Node 22	5.318	11.3°	1.000	0.0°	
Tower 3 East	Node 43	4.890	-3.0°	0.920	-14.5°	
Tower 4 North	Node 64	5.039	87.5°	0.948	76.3°	

ITEM 3- Moment Method Model for Tower Driven Individually

Expert MININEC Broadcast Professional Version 14.0 was used to model the WMFS array. The antenna model was adjusted to match the measured matrix impedances. The wire coordinates used are in electrical degrees and wire radius is in meters. Tower #4 has an 1/4 wave isolation section for an FM antenna. Tower #5 is used for the non-directional operation and has two FM stations mounted on the structure. The following adjusted parameters were used for the model:

- on towers #1, #2, and #3 electrical height on towers was adjusted to 102% of the physical height (from 99.5° to 101.5°) and on tower #4 the antenna electrical height was adjusted to 103.6% of the physical height (from 99.5° to 103.1°)
- tower #5 electrical height is the same as the physical height (149.3°)
- all five towers were modeled at 100.0% of the equivalent radius of each tower: All towers have a face width 48" and an equivalent radius of 58 cm
- 21 segments per antenna element (4.7° per segment) were used for tower #1, #2, #3, and #4. 31 segments were used for tower #5 (4.8° per segment)

West Tower #1 Model

C:\AM\WMFS\MNEC\WMFS Z Model 2013 Matrix 10-22-2013 13:13:39

WMFS

GEOMETRY Wire coordinates in degrees; other dimensions in meters Environment: perfect ground

wire	caps	Distance	Angle	Z	radius	seas
1	none	0	0	0	.58	21
		0	0	101.5		
2	none	100.2	161.5	0	.58	21
		100.2	161.5	101.5		
3	none	219.1	98.7	0	.58	21
		219.1	98.7	101.5		
4	none	194.8	71.5	0	.58	21
		194.8	71.5	103.1		
5	none	110.3	102.1	0	.58	31
		110.3	102.1	149.3		

Number of wires = 5 current nodes = 115

Indix segme radiu	vidual w ent leng 15	ires th	mir wire 5 1	nimum value 4.8163 .58	13		max wire 4 1	(imum value 4.90952 .58		
ELECI Frequ no. 1	PRICAL D aencies frequend lowest 680.	ESCRIPTIO (KHz) Cy ste 0	p	no. o steps 1	of s s m ·	egmen inimu 01337	it length m 81	n (wavele maximum .013637	ngtł 6	ns)
Sourc	ces									
sourc 1	ce node 1	sector 1	magn 1.	nitude	ph: 0	ase		type voltage		
Lumpe	ed loads									
load 1 2 3 4	node 22 43 64 85	resistan (ohms) 0 0 0 0	ce	reactance (ohms) -2,653. -2,390.8 84,430.9 -1,231.	ē	indu (mH) 0 0 0 0	ctance	capacita (uF) 0 0 0 0	nce	passive circuit 0 0 0 0
C:\AM	1\WMFS\M	JEC\WMFS	Z Mode	el 2013 Ma	atrix	10-	22-2013	13:14:1	15	
IMPED nc	ANCE ormalizat	cion = 50								
freq (KHz)	rest (ohn)	lst rea ns) (ohi node 1.	ct ms) sector	imped (ohms)	phase (deg)	e)	VSWR	S11 dB	S12 dB	2
680.	75.3	301 100	.25	125.38	53.1		4.6231	-3.8179	-2.	3296

South Tower #2 Model

C:\AM\WMFS\MNEC\WMFS Z Model 2013 Matrix 10-22-2013 13:17:10

WMFS

GEOM	ETRY											
Wire	coord	inates	in deg	rees	; 0	ther	dir	nension	s ir	n mete	rs	
LIIVI.	Lonnen	c. perr	ect yr	Junu								
wire	caps	Distan	ce	Ang	le		2	,		rad	ius	segs
1	none	0		0			()		.58		21
2		0		0	~]	.01.5		5.0		0.1
2	none	100.2		161	.5		1	01 5		.58		21
3	none	219.1		98	. J 7		د ۲	101.0		5.8		21
U	none	219.1		98.	7		1	01.5		. 50		21
4	none	194.8		71.	5		C)		.58		21
		194.8		71.	5		1	.03.1				
5	none	110.3		102	.1		C)		.58		31
		110.3		102	.1]	.49.3				
Numbe	erofu	wires		=	5							
		current	nodes		11	5						
				min	imu	n				max	imum	
Indiv	vidual	wires	W	ire		value	9			wire	value	
segme	ent ler	ngth) 1		4.81	613			4	4.90952	
Laur	12			L		0				Т	.00	
ELECT	TRICAL	DESCRI	PTION									
Frequ	lencies	s (KHz)					-		_	_		
no	Ireque	ency	stop			no.	of	segmer	nt l	ength	(waveler	ngths)

 no. lowest
 step
 steps
 minimum
 maximum

 1
 680.
 0
 1
 .0133781
 .0136376

Sources	3				
source	node	sector	magnitude	phase	type
1	22	1	1.	0	voltage

Lumpe	d loads					
المما		resistance	reactance	inductance	capacitance	passive
τοaα	noae	(onms)	(onms)	(mH)	(uf)	cırcuit
1	1	0	-40,781.4	0	0	0
2	43	0	-2,390.8	0	0	0
3	64	0	84,430.9	0	0	0
4	85	0	-1,231.	0	0	0

C:\AM\WMFS\MNEC\WMFS Z Model 2013 Matrix 10-22-2013 13:17:10

IMPEDANCE normalization = 50. freq resist react imped phase VSWR S11 S12 (KHz) (ohms) (ohms) (deg) dB dB source = 1; node 22, sector 1 680. 71.801 103.33 125.83 55.2 4.9024 -3.5939 -2.4959

East Tower #3 Model

C:\AM\WMFS\MNEC\WMFS Z Model 2013 Matrix 10-22-2013 13:26:44

WMFS

GEOME Wire Envir	TRY coordin onment:	ates in deg perfect gr	rees; other ound	dimension	ns in met	ers			
wire 1	caps D none 0 0	istance	Angle 0 0	Z 0 101 5	ra .5	dius 8	segs 21		
2	none 1	00.2	161.5	0	.5	8	21		
3	none 2	19.1	98.7	101.5 0	.5	8	21		
4	none 1	94.8	71.5	101.5	. 5	8	21		
5	none 1 1	10.3 10.3	102.1 102.1	103.1 0 149.3	. 5	8	31		
Numbe	r of wi cu	res rrent nodes	= 5 = 115						
Indiv segme: radiu	idual w nt leng s	ires with	minimum ire valu 5 4.81 1 .58	e 613	ma: wire 4 1	ximum value 4.90952 .58			
ELECT Frequence no. 1	ELECTRICAL DESCRIPTION Frequencies (KHz) frequency no. lowest step 1 680. 0 1 .0133781 .0136376								
Source source 1	es e node 43	sector r 1 î	nagnitude 1.	phase 0		type voltage			
Lumpe	d loads	vocietore							
load 1 2 3 4	node 1 22 64 85	(ohms) 0 0 0 0	reactan (ohms) -40,781 -2,653. 84,430. -1,231.	ce inc (mF .4 0 9 0 0	l)	capacita (uF) 0 0 0 0	nce passive circuit 0 0 0 0		
C:\AM'	\WMFS\MI	NEC\WMFS Z N	Model 2013	Matrix 10)-22-2013	13:26:	44		
IMPEDA non freq (KHz) source	ANCE rmalizat res: (ohr e = 1;	tion = 50. ist react ns) (ohms) node 43, se	imped (ohms) ector 1	phase (deg)	VSWR	S11 dB	S12 dB		
680.	74.4	105 100.66	5 125.17	53.5	4.6694	-3.7788	-2.3576		

North Tower #4 Model

C:\AM\WMFS\MNEC\WMFS Z Model 2013 Matrix 10-22-2013 13:24:17

WMFS

GEOME Wire Envir	TRY coord: onment	inates in deg t: perfect gr	rees; other o ound	dimensions .	in meters
wire	caps	Distance	Angle	Z	radius
1	none	0	0	0	.58
		0	0	101.5	
2	none	100.2	161.5	0	.58
		100.2	161.5	101.5	
3	none	219.1	98.7	0	.58
		219.1	98.7	101.5	
4	none	194.8	71.5	0	.58
		194.8	71.5	103.1	
5	none	110.3	102.1	0	.58
		110.3	102.1	149.3	

segs 21 21

21

21

31

Number	of	wires	=	5	
		current	nodes		115

	mini	mum	maximum		
Individual wires	wire	value	wire	value	
segment length	5	4.81613	4	4.90952	
radius	1	.58	1	.58	

ELEC	TRICAL DESCRIP	PTION					
rrequ	lencies (KHZ)						
	frequency		no.	of	segment	length	(wavelengths)
no.	lowest	step	step	s	minimum	-	maximum
1	680.	0	1		.0133781	-	.0136376

Sourcessource nodesector magnitudephasetype16411.0voltage

Lumpe	d loads	1				
load 1	node 1	resistance (ohms) 0	reactance (ohms) -40,781.4	inductance (mH) 0	capacitance (uF) 0	passive circuit 0
2	22	0	-2,653.	0	0	0
3	43	0	-2,390.8	0	0	0
4	85	0	-1,231.	0	0	0

C:\AM\WMFS\MNEC\WMFS Z Model 2013 Matrix 10-22-2013 13:24:17

IMPEDANCE normalization = 50. freq resist react phase VSWR imped S11 S12

 (KHz)
 (ohms)
 (ohms)
 (ohm

 source =
 1;
 node
 64,
 sector
 1

 680.
 82.594
 107.38
 135.

 (ohms) (deg) dB dB 135.47 52.4 4.8429 -3.6394 -2.4609

Center Tower #5 Model

C:\AM\WMFS\MNEC\WMFS Z Model 2013 Matrix 10-22-2013 13:29:33 WMFS GEOMETRY Wire coordinates in degrees; other dimensions in meters Environment: perfect ground wire caps Distance Angle Ζ radius seqs 1 none O 0 0 .58 21 0 0 101.5 2 none 100.2 161.5 0 .58 21 100.2 161.5 101.5 3 none 219.1 98.7 0 .58 21 219.1 98.7 101.5 4 none 194.8 71.5 0 .58 21 194.8 71.5 103.1 5 none 110.3 102.1 0 .58 31 110.3 102.1 149.3 Number of wires 5 = current nodes = 115 minimum maximum Individual wires wire value wire value segment length 4.81613 4 5 4.90952 radius 1 .58 1 .58 ELECTRICAL DESCRIPTION Frequencies (KHz) frequency no. of segment length (wavelengths) no. lowest step steps minimum maximum 1 680. 0 .0133781 1 .0136376 Sources sector magnitude phase source node type 1 85 1 1. 0 voltage Lumped loads resistance reactance inductance capacitance passive load node (ohms) (ohms) (mH) (uF) circuit -40,781.4 1 1 Ω 0 0 0 2 22 0 -2,653. 0 0 0 43 3 0 -2,390.8 0 0 0 4 64 0 84,430.9 0 0 0 C:\AM\WMFS\MNEC\WMFS Z Model 2013 Matrix 10-22-2013 13:29:33 IMPEDANCE normalization = 50. freq phase resist react imped VSWR S11 S12 (KHz) (ohms) (ohms) (ohms) (deg) dB dB source = 1; node 85, sector 1 680. 766.96 343.82 840.5 24.1 18.433 -.94337 -7.0942

ITEM 4 - Moment Method Model for Directional Array

Nighttime Summary File:

C:\AM WMFS	\WMFS`	MNEC\WN	1FS Z	Model	2013 E	DA 11-	-11-201	.3 09	9:33:26		
GEOME Wire Envir	TRY coordi onment	inates i : perfe	.n deg ect gr	rees; ound	other	dimens	ions i	.n mete	ers		
wire 1	caps none	Distanc 0	e	Angle 0	:	Z 0	-	rac .58	lius 3	seg 2	gs 1
2	none	100.2		161.5		101. 0	5	.58	3	23	1
3	none	219.1		98.7		0	5	.58	3	23	1
4	none	194.8		71.5		0 103.	1	.58	}	23	1
5	none	110.3 110.3		102.1 102.1		0 149.	3	.58	3	33	L
Numbe	r of w	vires Surrent	nodes	= 5 = 1	15						
Indiv: segmen radius	idual nt ler s	wires gth	W	minim ire 5 1	um value 4.816 .58	13		max wire 4 1	imum value 4.90952 .58		
ELECTI	RICAL	DESCRIF (KHz)	TION								
no. 1 (freque lowest 680.	ncy	step 0		no. step 1	of se s mi .0	gment nimum 133781	length	wavele maximum .013637	ngth 6	ns)
Source source 1 2 3 4	es e node 1 22 43 64	sec 1 1 1 1	tor i	magnit 370.70 806.47 802.81 554.18	ude 9 2 7	pha 167 48. 30. 175	se .6 5 8		type voltage voltage voltage voltage		
Lumpeo	d load	s							2		
load 1	node 85	resis (ohms 0	tance)	re (o 28	actanc hms) 8.1	e	induct (mH) 0	ance	capacita (uF) 0	nce	passive circuit 0
C:\AM\	\WMFS\	MNEC\WM	FSZI	Model	2013 D	A 11-	11-201	3 09	:38:25		
IMPEDA noi freq (KHz)	ANCE rmaliz re (o	ation = sist hms)	50. react (ohms)	im) (0	ped hms)	phase (deg)	VS	WR	S11 dB	S12 dB	2
source 680.	e = 1 9.	; node 0785	1, sed 53.69	ctor 1 54	.452	80.4	11	.956	-1.4564	-5.	4529

source 680.	e = 2; noo 81.595	de 22, sect 66.195	or 1 105.07	39.1	2.9836	-6.0565	-1.2375
source 680.	e = 3; noc 91.577	de 43, sect 67.164	or 1 113.57	36.3	3.033	-5.9498	-1.2732
source 680.	e = 4; noc 3.4143	de 64, sect 78.228	or 1 78.303	87.5	50.54	34377	-11.186
C:\AM\	WMFS\MNEC	\WMFS Z Moc	lel 2013 D	A 11-11-2	2013 0	9:38:25	
CURREN Freque Input Effici coordi curren no.	T rms ncy = 68 power = 5, ency = 10 nates in c t X	30 KHz ,000. watts 00. % degrees Y	Z	mag (amps)	phase (deg)	real (amps)	imaginary (amps)
GND 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 20 21 END 20 21 GND	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 4.83333 9.66667 14.5 19.3333 24.1667 29. 33.8333 38.6667 43.5 48.3333 53.1667 58. 62.8333 67.6667 72.5 77.3333 82.1667 87. 91.8333 96.6667 101.5 0	4.81992 4.97977 5.04105 5.05808 5.03596 4.97738 4.88398 4.75704 4.59776 4.40735 4.18706 3.93823 3.66223 3.36049 3.03442 2.68538 2.31445 1.92231 1.50861 1.07062 .600356 0 5.43422	87.2 86.9 86.7 86.5 86.4 86.3 86.1 86.3 85.8 85.8 85.8 85.5 85.5 85.5 85.3 85.2 85.1 85.3 85.2 85.1 85.2 85.2 85.2 85.2 85.2 85.2 85.2 85.2 85.2 85.3 85.2 85.3 85.2 85.4 85.3 85.4 85.3 85.4 85.5 85.4 85.5 85.5 85.5 85.5 85.5 85.6 85.6 85.6 85.6 85.6 85.6 85.6 85.7 85.5 85.6 85.6 85.6 85.6 85.6 85.6 85.7 85.6 85.6 85.6 85.6 85.6 85.7 85.6 85.7 85.6 85.7 85.6 85.6 85.6 85.6 85.7 85.6 85.6 85.6 85.6 85.6 85.6 85.6 85.7 85.6 85.6 85.6 85.7 85.6 85.7 85.6 85.6 85.7 85.6 85.7 85.6 85.7 85.6 85.7 85.6 85.7 85.6 85.7 85.6 85.7 85.6 85.7 85.6 85.7 85.6 85.7 85.6 85.7 85.6 85.7 85.6 85.7	.235672 .272704 .292721 .307514 .318127 .325046 .328503 .328628 .325508 .319208 .309784 .297293 .28179 .263334 .241983 .21779 .190791 .160988 .128298 .0924258 .05261 0 5.3605	4.81415 4.97229 5.03254 5.0259 4.96676 4.87292 4.74568 4.58622 4.39578 4.17559 3.92699 3.65137 3.35016 3.02476 2.67653 2.30657 1.91556 1.50315 1.06662 .598046 0 .892101
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40	-95.022 -95.022	-31.7939 -31.7939 -31.7939 -31.7939 -31.7939 -31.7939 -31.7939 -31.7939 -31.7939 -31.7939 -31.7939 -31.7939 -31.7939 -31.7939 -31.7939 -31.7939 -31.7939 -31.7939 -31.7939 -31.7939	4.83333 9.66667 14.5 19.3333 24.1667 29. 33.8333 38.6667 43.5 48.3333 53.1667 58. 62.8333 67.6667 72.5 77.3333 82.1667 87.	5.66721 5.77287 5.8247 5.82868 5.78785 5.70388 5.57808 5.41165 5.20586 4.96203 4.68165 4.36628 4.01756 3.63717 3.22668 2.78744 2.32024 1.82471	6.5 4.8 3.5 2.4 1.4 .6 359.8 359.1 358.5 357.9 357.4 356.9 356.4 356.5 355.5 355.1 354.8 354.4	5.63122 5.7524 5.81374 5.82353 5.786 5.70357 5.57806 5.41104 5.20407 4.95875 4.67673 4.35976 4.00962 3.6281 3.21688 2.7774 2.31053 1.81598	.637639 .485678 .357099 .244986 .146162 .059203 0166157 0816907 13626 180487 214508 238453 252462 256684 251271 236366 212058 178304

41	-95.022	-31.7939	91.8333	1.29751	354.	1.2905	134707
42	-95.022	-31.7939	96.6667	.728997	353.7	.724585	0800814
END	-95.022	-31.7939	101.5	0	0	0	0
GND	-33.1413	-216.579	0	5.00478	354.5	4.9821	475922
44	-33.1413	-216.579	4.83333	5.22437	351.2	5.16276	799972
45	-33.1413	-216.579	9.66667	5.32599	349.4	5.23446	983155
46	-33.1413	-216.579	14.5	5.37789	347.9	5.25834	-1.12763
47	-33.1413	-216.579	19.3333	5.38542	346.7	5.24014	-1.24244
48	-33.1413	-216.579	24.1667	5.35127	345.6	5.18288	-1.33186
49	-33.1413	-216.579	29.	5.27692	344.6	5.0884	-1.39791
50	-33.1413	-216.579	33.8333	5.16354	343.8	4.95816	-1.4418
51	-33.1413	-216.579	38.6667	5.01217	343.	4.79349	-1.46432
52	-33.1413	-216.579	43.5	4.82394	342.3	4.59575	-1.46611
53	-33.1413	-216.579	48.3333	4.60009	341.7	4.36635	-1.44772
54	-33.1413	-216.579	53.166/	4.34197	341.1	4.10675	-1.40974
56	-33.1413	-216.579	20.	4.05102	340.5	3.8185	-1.35272
57	-33 1413	-216.579	67 6667	3.12010	340. 330 E	3.5032	-1.2//2/
58	-33 1413	-216 579	72 5	2 99654	330	2 70766	-1.10399
59	-33 1413	-216 579	72.3	2.59004	338 6	2.79700	-1.07347
60	-33 1413	-216 579	82 1667	2.50920	338 1	2.41019	- 940254
61	-33.1413	-216.579	87	1 69573	337 7	1 56933	- 642414
62	-33.1413	-216.579	91.8333	1,20601	337.3	1,11297	- 464503
63	-33.1413	-216.579	96.6667	.677701	337.	.623639	265242
END	-33.1413	-216.579	101.5	0	0	0	0
GND	61.8109	-184.733	0	5.01074	87.5	.218642	5.00597
65	61.8109	-184.733	4.90952	5.26083	87.4	.241133	5.2553
66	61.8109	-184.733	9.81905	5.37318	87.3	.252947	5.36722
67	61.8109	-184.733	14.7286	5.42999	87.2	.261239	5.4237
68	61.8109	-184.733	19.6381	5.43894	87.2	.266646	5.4324
69	61.8109	-184.733	24.5476	5.40388	87.1	.269465	5.39715
70	61.8109	-184.733	29.4571	5.32703	87.1	.269832	5.3202
/1	61.8109	-184.733	34.3667	5.21005	87.1	.267828	5.20316
12	61.8109	-184./33	39.2762	5.05436	87.	.263501	5.04748
73	61.0109	-184.733	44.1857	4.80130	87.	.256892	4.85457
75	61 8109	-184.733	49.0952	4.03234	00.9	.248033	4.6259
76	61 8109	-184.733	58 91/3	4.30341	86 9	223705	4.30290
77	61 8109	-184 733	63 8238	3 74667	86.8	208308	3 7/088
78	61.8109	-184.733	68.7333	3.39036	86.8	.190804	3 38499
79	61.8109	-184.733	73.6429	3.00622	86.7	.171229	3.00134
80	61.8109	-184.733	78.5524	2.59557	86.7	.149603	2.59125
81	61.8109	-184.733	83.4619	2.15924	86.7	.125921	2.15557
82	61.8109	-184.733	88.3714	1.69695	86.6	.100115	1.69399
83	61.8109	-184.733	93.281	1.20569	86.6	.0719545	1.20354
84	61.8109	-184.733	98.1905	.676549	86.5	.0408465	.675315
END	61.8109	-184.733	103.1	0	0	0	0
GND	-23.1209	-107.85	0	2.02652	77.1	.451414	1.97561
86	-23.1209	-107.85	4.81613	1.63102	77.1	.363301	1.59005
87	-23.1209	-107.85	9.63226	1.38656	77.1	.308805	1.35173
88	-23.1209	-107.85	14.4484	1.1711	77.1	.260746	1.14171
89	-23.1209	-IU/.85	19.2645	.97415	//.1	.216776	.949724
9U 01	-23.1209	-107 05	24.080/	./90964	11.2	.1/5842	.//11/1
97 97	-23.1209 -23.1200	-107 05	20.0900 22 7120	.0190/1	11.2	.LJ/49/	.004121
92	-23 1209	-107.85	38 520	30000C	77 2	.IUIJ40 0670200	,44//42 301726
94	-23 1209	-107 85	43 3452	170065	77 K	0366023	166070
95	-23.1209	-107.85	48,1613	.041595	79.5	7.61E-03	0408925
96	-23.1209	-107.85	52.9774	.0760516	255.5	019013	0736366
97	-23.1209	-107.85	57.7936	.18249	256.3	0432338	177295

-23.1209	-107.85	62.6097	.277594	256.5	0650091	269875
-23.1209	-107.85	67.4258	.361169	256.5	084301	351193
-23.1209	-107.85	72.2419	.433061	256.5	101078	4211
-23.1209	-107.85	77.0581	.493162	256.5	115313	479491
-23.1209	-107.85	81.8742	.541411	256.4	126984	526309
-23.1209	-107.85	86.6903	.577803	256.4	136077	561551
-23.1209	-107.85	91.5065	.60238	256.3	142578	585264
-23.1209	-107.85	96.3226	.615239	256.2	146479	597547
-23.1209	-107.85	101.139	.616519	256.1	147771	598548
-23.1209	-107.85	105.955	.606407	256.	146445	588459
-23.1209	-107.85	110.771	.585121	255.9	142489	567507
-23.1209	-107.85	115.587	.552902	255.8	135882	535945
-23.1209	-107.85	120.403	.509991	255.6	126595	494029
-23.1209	-107.85	125.219	.4566	255.5	114573	441991
-23.1209	-107.85	130.036	.392844	255.3	0997301	379974
-23.1209	-107.85	134.852	.318618	255.1	0819045	30791
-23.1209	-107.85	139.668	.233242	254.9	0607672	225187
-23.1209	-107.85	144.484	.134788	254.7	0356352	129992
-23.1209	-107.85	149.3	0	0	0	0
	-23.1209 -23.1209 -23.1209 -23.1209 -23.1209 -23.1209 -23.1209 -23.1209 -23.1209 -23.1209 -23.1209 -23.1209 -23.1209 -23.1209 -23.1209 -23.1209 -23.1209 -23.1209 -23.1209 -23.1209	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	-23.1209 -107.85 62.6097 -23.1209 -107.85 67.4258 -23.1209 -107.85 72.2419 -23.1209 -107.85 72.2419 -23.1209 -107.85 77.0581 -23.1209 -107.85 81.8742 -23.1209 -107.85 86.6903 -23.1209 -107.85 96.3226 -23.1209 -107.85 96.3226 -23.1209 -107.85 101.139 -23.1209 -107.85 105.955 -23.1209 -107.85 110.771 -23.1209 -107.85 120.403 -23.1209 -107.85 130.036 -23.1209 -107.85 134.852 -23.1209 -107.85 139.668 -23.1209 -107.85 144.484 -23.1209 -107.85 149.3	-23.1209 -107.85 62.6097 $.277594$ -23.1209 -107.85 67.4258 $.361169$ -23.1209 -107.85 72.2419 $.433061$ -23.1209 -107.85 77.0581 $.493162$ -23.1209 -107.85 81.8742 $.541411$ -23.1209 -107.85 86.6903 $.577803$ -23.1209 -107.85 91.5065 $.60238$ -23.1209 -107.85 96.3226 $.615239$ -23.1209 -107.85 101.139 $.616519$ -23.1209 -107.85 105.955 $.606407$ -23.1209 -107.85 110.771 $.585121$ -23.1209 -107.85 120.403 $.509991$ -23.1209 -107.85 125.219 $.4566$ -23.1209 -107.85 130.036 $.392844$ -23.1209 -107.85 139.668 $.233242$ -23.1209 -107.85 139.668 $.233242$ -23.1209 -107.85 144.484 $.134788$ -23.1209 -107.85 149.3 0	-23.1209 -107.85 62.6097 $.277594$ 256.5 -23.1209 -107.85 67.4258 $.361169$ 256.5 -23.1209 -107.85 72.2419 $.433061$ 256.5 -23.1209 -107.85 77.0581 $.493162$ 256.5 -23.1209 -107.85 77.0581 $.493162$ 256.5 -23.1209 -107.85 81.8742 $.541411$ 256.4 -23.1209 -107.85 86.6903 $.577803$ 256.4 -23.1209 -107.85 91.5065 $.60238$ 256.3 -23.1209 -107.85 96.3226 $.615239$ 256.2 -23.1209 -107.85 101.139 $.616519$ 256.1 -23.1209 -107.85 105.955 $.606407$ $256.$ -23.1209 -107.85 110.771 $.585121$ 255.9 -23.1209 -107.85 120.403 $.509991$ 255.6 -23.1209 -107.85 125.219 $.4566$ 255.5 -23.1209 -107.85 130.036 $.392844$ 255.3 -23.1209 -107.85 139.668 $.233242$ 254.7 -23.1209 -107.85 144.484 $.134788$ 254.7 -23.1209 -107.85 149.3 0 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

C:\AM\WMFS\MNEC\WMFS Z Model 2013 DA 11-11-2013 09:33:36

CURRENT MOMENTS (amp-degrees) rms

Frequency = 680 KHz Input power = 5,000. watts

			vertical cur	crent moment
wire	magnitude	phase (deg)	magnitude	phase (deg)
1	623.053	86.	623.053	86.
2	729.563	359.9	729.563	359.9
3	675.036	343.9	675.036	343.9
4	692.294	87.	692.294	87.
5	1.45257	166.7	1.45257	166.7

Medium wave array vertical current moment (amps-degrees) rms (Calculation assumes tower wires are grouped together. The first wire of each group must contain the source.)

tower	magnitude	phase	(deg)
1	623.053	86.	-
2	729.563	359.9	
3	675.036	343.9	
4	692.294	87.	
5	1.45257	166.7	

ITEM 5 - Sampling System Measurements

Measurements were made using an HP 8751A network analyzer, an ENI 403LA amplifier and custom manufactured directional couplers in a calibrated measurement system. The sample lines were found to be series resonant (an odd multiple of 90° which is an impedance zero - very low resistance and zero reactance) around 662 kHz which indicates the line is 450° in electrical length at this frequency. The characteristic impedance was calculated using the following formula, where $R_1 \pm jX_1$ and $R_2 \pm X_2$ are the measured impedances at the -45° and +45° offset frequencies:

$$Z_0 = \sqrt{\sqrt{R_1^2 + X_1^2} \cdot \sqrt{R_2^2 + X_2^2}}$$

The measured open circuit sample line impedances and characteristic impedance calculations are shown below:

	Resonance Frequency (kHz)	-45° Offset (405°) Frequency (kHz)	-45° Offset Impedance (R ₁ ±jX ₁) (Ohms)	+45° Offset 495° Frequency (kHz)	+45° Offset Impedance (R ₂ ± jX ₂) (Ohms)	Characteristic Impedance (Z _ø)
Sample Line 1 (West Tower)	662.357	596.121	13.1 - j 48.8	728.593	16.3 + j 48.3	50.8 ohms
Sample Line 2 (South Tower)	663.272	596.945	12.9 - j 48.4	729.599	16.2 + j 47.9	50.3 ohms
Sample Line 3 (East Tower)	662.544	596.290	13.0 - j 48.6	728.798	16.4 + j 48.3	50.7 ohms
Sample Line 4 (North Tower)	662.837	596.553	13.0 - j 48.5	729.121	16.4 + j 48.0	50.5 ohms

Lines from ATUs to Transmitter Building

The sample line	e lengths calculate	ed from the	measurements above are	э:
-----------------	---------------------	-------------	------------------------	----

Length in Electrical Degrees at 680 kHz	Length from ATU to Transmitter Building	Measured Impedance (Z _s) With TCT Attached
Sample Line 1	462.0°.	51.5 - j 3.7ohms
Sample Line 2	461.4°	50.8 - j 3.8 ohms
Sample Line 2	461.9°	51.0 - j 4.0 ohms
Sample Line 3	461.7°	50.5 - j 4.0 ohms

ITEM 6 - Reference Field Strength Measurements

All Coordinates are WGS84

Radial	Coordinates	Coordinates	Distance	Field Strength	Description
20 Degrees	35 16 58.2	90 01 00.5	7.13 km	13 mV/m	.1 Mile from 1420 Fite Rd Driveway at Bellsouth Marker
20 Degrees	35 19 11.3	90 00 01.7	11.5 km	3.5 mV/m	1890 Campbell Road at Driveway
20 Degrees	35 21 09.1	89 59 09.9	15.37 km	3.1 mV/m	2329 Woodstock Cuba Road at Driveway
49 Degrees	35 16 17.3	89 58 25.7	8.35 km	14 mV/m	2695 Fite Road Lucite International In front of Parking Lot
49 Degrees	35 17 37.5	89 56 38.7	12.03 km	5.4 mV/m	3605 Lucy Road at Driveway
49 Degrees	35 19 19.9	89 54 09.1	16.9 km	4.7 mV/m	Corner Baker and Hallbrook at 4815 Hallbrook
90.5 Degrees	35 13 18	89 59 37	4.55 km	20 mV/m	Corner Overton Crossing and Pueblo at 2100 Pueblo
90.5 Degrees	35 13 21	89 55 35.1	10.65 km	8.2 mV/m	3558 Monessen Drive at Driveway
90.5 Degrees	35 13 18.6	89 52 47.6	14.9 km	4.8 mV/m	Corner Pine Oak and Sugartree at 5503 Pine Oak
150 Degrees	35 10 02	90 00 14.3	7.13km	110 mV/m	1058 Avalon Road at Driveway
150 Degrees	35 08 20.9	89 59 06.6	10.7 km	80 mV/m	100 N Edgewood Drive at Driveway
150 Degrees	36 06 29.1	89 57 45.8	14.7 km	35 mV/m	Corner Park and Carson at Fire Hydrant
225 Degrees	35 09 12.5	90 07 45	10.9km	2.8 mV/m	On Petro Road across street from SpeedCo Truck Co.
225 Degrees	35 08 57.7	90 08 00.8	11.5 km	2.2 mV/m	South 55 Service road in Parking lot across Exit 4 sign
225 Degrees	35 08 36.3	90 8 25.7	12.5 km	3.2 mV/m	On Concrete Shoulder 400' from E Polk Rd on Martin Luther King Drive
271 Degrees	35 13 27.8	90 06 48.4	5.6 km	13 mV/m	.2 mile North of Marion Road on Gammon Road
271 Degrees	35 13 30	90 11 31.4	13.5 km	5.1 mV/m	623 N. Delta Street at Driveway
271 Degrees	35 13 30.5	90.11.56.3	14.1 km	3.5 mV/m	761 Cypress Road at Driveway
318 Degrees	35 14 03.1	90 03 22.9	1.72 km	59 mV/m	Old Cuba Benjestown Road .5 mile Past Billion Road
318 Degrees	35 19 26.9	90 09 16.9	15.14 km	3.4 mV/m	On Sulcer Road .3 miles from Old River Road Turnoff
318 Degrees	35 20 32.9	90 10 36.3	18 km	2.8 mV/m	On Sully-Carter Road .5 miles from Old River Road Turnoff

Mike Schwartz Technical Director - ENTERCOM MEMPHIS

ITEM 7 - Direct Measurement of Power

Common point impedance measurements were made using an HP 8751A network analyzer in a calibrated measurement system. The measurements were made at the phasor cabinet input adjacent to the common point current meter that is used to determine operation power. The impedance measured at this point was adjusted to a value of $50 \pm j0$ for the directional antenna system.

ITEM 8 - Antenna Monitor and Sampling System

The sample system installed consists of Delta Electronics TCT-3 toroidal current transformers (TCT) installed inside the tuning houses at the base of each tower. All three TCTs have been compared with each other on the bench using the antenna monitor and found to be in good working order and within manufacturer's specifications. The TCTs are connected to a Potomac Instruments 1901 antenna monitor by equal lengths of 3/8 inch Andrew heliax coaxial cable. This cable has a foam dielectric, and solid copper inner and outer conductors. These lines were verified to have equal lengths within 1°. All excess cable is in the transmitter building antic. The antenna monitor was tested with a signal generator, a Tee connector and equal lengths of cable. The two signals were fed into the reference and sample inputs and the monitor was found to be in good working order and within manufacturer's specifications. There is no change to the ground system. The description contained in the current station license remains accurate.

