Federal Communications Commission Washington, D. C. 20554

Approved by OMB 3060-0627 Expires 01/31/98

FOR FCC USE ONLY		
USE		

FCC 302-AM APPLICATION FOR AM BROADCAST STATION LICENSE

(Please read instructions before filling out form.

FOR COMMISSION USE ONLY
FILE NO. 6 MML-2012/805 AGW

SECTION I - APPLICANT FEE INFORMATION							
1. PAYOR NAME (Last, First, Middle Initial)							
CARLOS A. DUHARTE							
MAILING ADDRESS (Line 1) (Maximum 35 characters) KZSF 1370-AM							
MAILING ADDRESS (Line 2) (Maximum 35 characters) 2347 BERING DRIVE							
SAN JOSE	STATE OR COUNTRY (if for CA	eign address)	ZIP CODE 95131				
TELEPHONE NUMBER (include area code) 4085467201	CALL LETTERS KZSF	OTHER FCC IDE	NTIFIER (If applicable)				
2. A. Is a fee submitted with this application?			✓ Yes No				
B. If No, indicate reason for fee exemption (see 47 C.F.R. Section							
Governmental Entity Noncommercial educati	tional licensee Ot	ner (Please explain):				
C. If Yes, provide the following information:							
Enter in Column (A) the correct Fee Type Code for the service you are	e applying for. Fee Type Co	des may be found	in the "Mass Media Services				
Fee Filing Guide." Column (B) lists the Fee Multiple applicable for this a	application. Enter fee amour	t due in Column (C).				
(A) (B)	(C)						
FEE TYPE FEE MULTIPLE	FEE DUE FOR FEE		FOR FCC USE ONLY				
M M R 0 0 0 1	COLUMN (A)						
M M R 0 0 0 1	\$ 635.00						
To be used only when you are requesting concurrent actions which resul	It in a requirement to list more	e than one Fee Typ	e Code.				
(A) (B)	(C)						
M O R 0 0 0 1	\$ 730.00		FOR FCC USE ONLY				
	TOTAL AMOUNT						
ADD ALL AMOUNTS SHOWN IN COLUMN C, AND ENTER THE TOTAL HERE.	REMITTED WITH THI APPLICATION	S	FOR FCC USE ONLY				
THIS AMOUNT SHOULD EQUAL YOUR ENCLOSED	\$ 1365.00						
REMITTANCE.							

SECTION II - APPLICAN	TINFORMATION							
1. NAME OF APPLICANT CARLOS A. DUI			***************************************	A CONTRACTOR OF THE STREET OF				
MAILING ADDRESS KZSF 1370-AM,	MAILING ADDRESS KZSF 1370-AM, 2347 BERING DRIVE							
CITY SAN JOSE			STATE CA		ZIP CODE 95131			
2. This application is for:	Commercial AM Direc	[ctional	Noncomm	nercial on-Directional				
Call letters	Community of License	Construct	ion Permit File No.	Modification of Construction Permit File No(s).	Expiration Date of Last Construction Permit	t		
KZSF	SAN JOSE, CA	N/A	4	N/A	N/A			
3. Is the station no accordance with 47 C.F. If No, explain in an Exhi		to autor	matic program	test authority in	Exhibit No. see Exh. 4	o		
4. Have all the terms construction permit been	Yes No.	0						
If No, state exceptions in	n an Exhibit.				4			
the grant of the underl	ges already reported, ha ying construction permit d in the construction pern	which v	vould result in a	any statement or	Yes V No	0		
If Yes, explain in an Exl	·	••			Exhibit No. see Exh. 4			
	ed its Ownership Report ce with 47 C.F.R. Section			ership	Yes No	0		
					✓ Does not appl	ly		
If No, explain in an Exhil	bit.				Exhibit No.			
7. Has an adverse finding been made or an adverse final action been taken by any court or administrative body with respect to the applicant or parties to the application in a civil or criminal proceeding, brought under the provisions of any law relating to the following: any felony; mass media related antitrust or unfair competition; fraudulent statements to another governmental unit; or discrimination?								
If the answer is Yes, a involved, including an id (by dates and file numbinformation has been required by 47 U.S.C. So of that previous submiss the call letters of the stawas filed, and the date of	Exhibit No.							

	•	The state of the s	
8. Does the applicant, or any party to the application, the expanded band (1605-1705 kHz) or a permit or lic expanded band that is held in combination (pursuant to with the AM facility proposed to be modified herein?	ense either in the existing	band or	
If Yes, provide particulars as an Exhibit.		Exhibit No.	
		The state of the s	
The APPLICANT hereby waives any claim to the use against the regulatory power of the United States be requests and authorization in accordance with this appliamended).	ecause use of the same,	whether by license or otherwise, ar	าด
The APPLICANT acknowledges that all the statement material representations and that all the exhibits are a n	ts made in this application naterial part hereof and are	and attached exhibits are considered in a set out in full	ed in
CEI	RTIFICATION		
1. By checking Yes, the applicant certifies, that, in the or she is not subject to a denial of federal benefits that to Section 5301 of the Anti-Drug Abuse Act of 1988, case of a non-individual applicant (e.g., corporation, prassociation), no party to the application is subject to includes FCC benefits pursuant to that section. For the purposes, see 47 C.F.R. Section 1.2002(b).	at includes FCC benefits p 21 U.S.C. Section 862, or artnership or other unincor a denial of federal bene	ursuant , in the porated fits that	
I certify that the statements in this application are true and are made in good faith,	ue, complete, and correct t	o the best of my knowledge and belief	4
Name CARLOS DUHARTE	Signature (3 Envil	
		Telephone Number	Morr
Fille	Date	relebrate ransmer	

WILLFUL FALSE STATEMENTS ON THIS FORM ARE PUNISHABLE BY FINE AND/OR IMPRISONMENT (U.S. CODE, TITLE 18, SECTION 1001), AND/OR REVOCATION OF ANY STATION LICENSE OR CONSTRUCTION

FCC NOTICE TO INDIVIDUALS REQUIRED BY THE PRIVACY ACT AND THE PAPERWORK REDUCTION ACT

The solicitation of personal information requested in this application is authorized by the Communications Act of 1934, as amended. The Commission will use the information provided in this form to determine whether grant of the application is in the public interest. In reaching that determination, or for law enforcement purposes, it may become necessary to refer personal information contained in this form to another government agency. In addition, all information provided in this form will be available for public inspection. If information requested on the form is not provided, the application may be returned without action having been taken upon it or its processing may be delayed while a request is made to provide the missing information. Your response is required to obtain the requested authorization.

Public reporting burden for this collection of information is estimated to average 639 hours and 53 minutes per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the burden, can be sent to the Federal Communications Commission, Records Management Branch, Paperwork Reduction Project (3060-0627), Weshington, D. C. 20554. Do NOT send completed forms to this address.

THE FOREGOING NOTICE IS REQUIRED BY THE PRIVACY ACT OF 1974, P.L. 93-579, DECEMBER 31, 1974, 5 U.S.C. 552a(e)(3), AND THE PAPERWORK REDUCTION ACT OF 1980, P.L. 96-511, DECEMBER 11, 1980, 44 U.S.C. 3507.

v							
SECTION III - L Name of Applica		LICATION ENGI	NEERING DAT	Α	·		11/7
KZSF Licens	se Co.						
PURPOSE OF A	UTHORIZATION	ON APPLIED FOR	: (check one)	to to the second			
X s	Station License	•	X Direct Me	asurement of Pov	wer		
1. Facilities auth	orized in cons	truction permit					
Call Sign		onstruction Permit		Hours of Oper	ation	Power in	kilowatts
KZSF	(if applicable)		(kHz) 1370	unlimited	i	Night 5.0	Day 5.0
2. Station location	n						
State				City or Town			
Califor	nia			San Jose			
3. Transmitter lo	cation						<u> </u>
State	County			City or Town		Street address	
CA		a Clara		San Jose		(or other identifica	
4. Main studio lo		- CIUIU		ban bose		501 Wooster	St.
4. Main studio io State	County			City or Town		Street address	
CA					(or other identificati		
		a Clara	- Al			2347 Bering	Drive
		n (specify only if au	unorizea airectio			Street address	
State	County	G 3		City or Town		(or other identification	· ·
CA	Sant	a Clara		San Jose		2347 Bering	Drive
6. Has type-approved stereo generating equipment been installed? 7. Does the sampling system meet the requirements of 47 C.F.R. Section 73.68? X Yes No Not Applicable Attach as an Exhibit a detailed description of the sampling system as installed. Exhibit No. Eng. Rpt.							es No Not Applicable bit No.
3. Operating con	stants:		***	T55	-1-1		~\
RF common point modulation for nig	ıht system	rrent (in amperes)	without	RF common point or antenna current (in amperes) without modulation for day system 10.4			
Measured antenno perating frequen Night		ooint resistance (in Day	ohms) at	Measured ante operating frequency Night		n point reactance (i Day	n ohms) at
50.0		50.0		+/-j0		+/-j0)
Antenna indicatio	ns for direction						
Tower	rs	Antenna Phase reading(Antenna mo current	nitor sample ratio(s)	Antenna ba	ase currents
		Night	Day	Night	Day	Night	Day
1 C		ref	ref	1.0	1.0	not	not
2 E		71.3	71.3	0.395	0.395	required	required
3 N 4 W		-79.5	-79.5 -109.1	0.305	0.305		-
4 W		- 109.1	-109.1	0.033	0.033		

Potomac Instruments AM-1901

Manufacturer and type of antenna monitor:

SECTION III - Page 2

9.	Descri	ption of anteni	na system ((t	fdirectional	antenna is used	d, the infor	mation requi	ested below	should be give	en for eac	h element of
he	e array.	Use separate	sheets if ne	cessary.)							

Type Radiator uniform cross section guyed towers	Overall height in meters of radiator above base insulator, or above base, if grounded.	Overall heigh above ground obstruction lig	d (without	Overall height in meters above ground (include obstruction lighting)	If antenna is either top loaded or sectionalized, describe fully in an Exhibit.
* see item 11	59.4	60),4	60.4 (no lighting	Exhibit No. DNA
Excitation	X Series	Shunt			
Geographic coordinates tower location.	to nearest second. For direct	ional antenna	give coordinate	es of center of array. For sir	ngle vertical radiator give
North Latitude 37	0 21	28	West Longitud	de 0 52	2 17
	ove, attach as an Exhibit further and associated isolation ci		dimensions in	cluding any other	Exhibit No. dna
Also, if necessary for a dimensions of ground sys	complete description, attac stem.	h as an Exhi	bit a sketch o	the details and	Exhibit No. on file
10. In what respect, if ar permit?	ny, does the apparatus constr	ucted differ fro	m that describe	ed in the application for con	struction permit or in the
No change f	rom originally lice	nsed syste	∍m		
11. Give reasons for the	change in antenna or commo	n point resista	nce.		
No change -	rebuild following	destruction	on of site	by fire	
	5674, 1215676, 1215 or marking require		579		
	the applicant in the capacity rue to the best of my knowled			ave examined the foregoing	g statement of technical
Name (Please Print or Ty	pe)	Is	ignature chec	k appropriate box below)	
Benj. F. Dawson	•		1 The	ly Rem	
Address (include ZIP Cod	le)	[ate		
	son Consulting Engir	eers	Septem	ber 28, 2012	
9500 Greenwood Seattle, WA 983		Т	elephone No. (Include Area Code)	
				206: 7	83/ 9151
Technical Director		x	Registered	Professional Engineer	
Chief Operator			Technical (Consultant	
X Other (specify) Co	nsulting Engineer				

KZSF, SAN JOSE, CALIFORNIA FACILITY ID 68841

FORM 302-AM

EXHIBIT 4

The answer to Question 4 in Section II is "not applicable," because there is no construction permit involved. Rather, this is an application for a direct measurement of power necessitated by the accidental destruction of, and the need to rebuild, the station's facilities.

KZSF, SAN JOSE, CALIFORNIA FACILITY ID 68841

FORM 302-AM

EXHIBIT 5

SEE EXHIBIT 4

HATFIELD & DAWSON

BENJAMIN F. DAWSON III, PE THOMAS M. ECKELS, PE STEPHEN S. LOCKWOOD, PE DAVID J. PINION, PE ERIK C. SWANSON, PE

THOMAS S. GORTON, PE MICHAEL H. MEHIGAN, PE CONSULTING ELECTRICAL ENGINEERS 9500 GREENWOOD AVE. N. SEATTLE, WASHINGTON 98103 TELEPHONE (206) 783-9151 FACSIMILE (206) 789-9834 E-MAIL hatdaw@hatdaw.com

> JAMES B. HATFIELD, PE CONSULTANT

Maury L. Hatfield, PE (1942-2009) Paul W. Leonard, PE (1925-2011)

Application for License

KZSF (AM) San Jose, CA

1370 kHz 5.0 kW Unlimited Time DA-1

KZSF License Co.

September, 2012

APPLICATION FOR LICENSE

RADIO STATION KZSF-AM San Jose, CA 1370 kHz, 5 kW Unlimited Time DA-1

Purpose of Application

Item 1	Tower Impedance Measurements and Verification of Method of Moments Model
Item 2	Derivation of Operating Parameters for Directional Antenna
Item 3	Method of Moments Model Details for Towers Driven Individually
Item 4	Method of Moments Model Details for Directional Antenna Pattern
Item 5	Post Construction Array Geometry Statement
Item 6	Sampling System Measurements
Item 7	Reference Field Strength Measurements
Item 8	Direct Measurement of Power
Item 9	Antenna Monitor and Sampling System
Item 10	Harmonic and Intermodulation Measurements
Appendix A	License BL-19950203AA
Annendiy R	FCC Form 302-AM

Purpose of Application

This engineering exhibit supports an application for license for the authorized directional antenna system for radio station KZSF, San Jose, CA. KZSF operates on 1370 kHz with a power of 5 kW, with the same directional antenna parameters for day and night operation.

The most recent complete KZSF license document is BL-19950203AA, and a copy is included in this report as Exhibit A. Note that the license document does NOT have the correct data for the antenna pattern parameters, as the towers are numbered incorrectly and the phase angles of two of them are incorrect. The FCC engineering database also has the towers incorrectly numbered, but the electrical and geometric parameters are correct. The correct parameters and numbering (to be consistent with the license of KSJX, which also uses the antenna system) are:

Towers	1(C)	2 (E)	3 (N)	4 (W)
Spacing	Ref	123.3°	82.2°	91.3°
Orientation	Ref	61.0°	341.0°	251.0°
Field Ratio	1.0	0.407	0.371	0.875
Phasing	0.0°	71.4°	-92.6°	-119.0°

These parameters are those shown in this license application data.

Information is provided herein demonstrating that the directional antenna parameters for the patterns authorized by the station license have been determined in accordance with the requirements of section 73.151(c) of the FCC Rules. The system has been adjusted to produce antenna monitor parameters within +/- 5 percent in ratio and +/- 3 degrees in phase of the modeled values, as required by the Rules.

All measurements used in this report were made by Robert Turner, Stephen Lockwood, or by the undersigned.

Benjamin F. Dawson III, P.E.

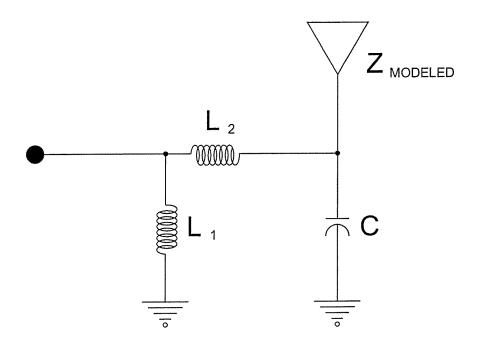
Item 1

Analysis of Tower Impedance Measurements to Verify Method of Moments Model - KZSF

Tower base impedance measurements were made at the locations of the outputs of the antenna coupling units using a Hewlett Packard 8751A network analyzer in a calibrated measurement system. The other towers were open circuited at the same point where impedance measurements were made (the "reference points") for each of the measurements.

Circuit calculations were performed to relate the method of moments modeled impedances at the tower base feed points to those at the measurement locations as shown in the following table. The base conditions shown for each tower, which includes the stray capacitances were used in the moment method model as a load at ground level for the open circuited case. The towers each have a lighting choke used as a static drain inductor.

In addition to the page showing the schematic of the assumed circuit and tabulation of calculated values, a page showing the results of calculations using the NETBW circuit analysis program is included. These calculations show the impedance transformations and phase shifts between the tower base values produced by MININEC and the location of the current sample devices used to produce the antenna monitor input signals.


The following table shows the allowable range of modeled impedance values.

KZSF Tower Measurement Matrix

Tower #	R open	Hi Limit	Lo Limit	X open	Hi Limit	Lo Limit
1	67.10	71.78	62.42	148.00	155.92	140.08
2	79.20	84.37	74.03	159.30	167.67	150.93
3	73.95	78.91	68.99	138.40	145.94	130.86
4	81.60	86.86	76.34	150.00	158.00	142.00

NETBW CALCULATION OF TOWER IMPEDANCE MEASUREMENTS TO VERIFY METHOD OF MOMENTS MODEL

Tower #1 C				
FREQUENCY (KHZ) 1370 6499855	LOAD RESISTANCE 65.423	LOAD REACTANCE 107.33	INPUT RESISTANCE 67.26281	INPUT REACTANCE 147.4029
Tower #2 E				
FREQUENCY (KHZ) 1370 7659962	LOAD RESISTANCE 76.996	LOAD REACTANCE 112.14	INPUT RESISTANCE 79.16642	INPUT REACTANCE 158.8123
Tower #3 N				
FREQUENCY (KHZ) 1370 7064364	LOAD RESISTANCE 71.112	LOAD REACTANCE 113.37	INPUT RESISTANCE 73.50812	INPUT REACTANCE 138.9715
Tower #4 W				
FREQUENCY (KHZ) 1370 7807848	LOAD RESISTANCE 78.468	LOAD REACTANCE 121.96	INPUT RESISTANCE 81.31525	INPUT REACTANCE 149.5965

TOWER	L _I Z	L ₂ Z	СZ	MODEL Z	INPUT Z	MEAS Z
#1 C	+j8850	+j40	-j3537	65.42 +j107.33	67.26 +j147.40	67.1 +j148.0
#2 E	+j8850	+j47	-j3537	77.00 +j112.14	79.17 +j158.81	79.2 +j159.3
#3 N	+j8850	+j25	-j3537	71.11 +j113.37	73.51 +j138.97	73.95 +j138.4
#4 W	+j8850	+j27	-j3537	78.47 +j121.96	81.32 +j149.60	81.6 +j150.0

L₁ INCLUDES STRAY CAPACITANCE AND LIGHTING CHOKE USED AS STATIC DRAIN

 $\mathbf{L}_{2}^{}$ INCLUDES HOOKUP REACTANCE AND SERIES FILTER STRAY INDUCTANCE

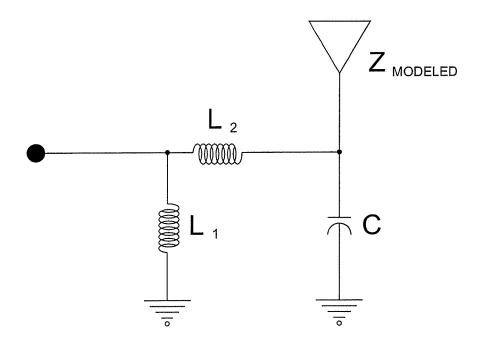
HATFIELD & DAWSON CONSULTING ENGINEERS

ANALYSIS OF TOWER IMPEDANCE MEASUREMENTS TO VERIFY METHOD OF MOMENTS MODEL

RADIO STATION KZSF

SAN JOSE, CA

09/2012


Item 2

Derivation of Operating Parameters for Directional Antenna - KZSF

The method of moments model of the array, following verification with the measured individual open circuited base impedances, was utilized for directional antenna calculations. Calculations were made to determine the complex voltage values for sources located at ground level under each tower of the array to produce current moment sums for the towers that, when normalized, equated to the theoretical field parameters of the authorized directional antenna patterns. With these voltage sources, the tower currents were calculated. Twenty segments were used for each tower.

NETBW CALCULATIONS OF OPERATING PARAMETERS FROM METHOD OF MOMENTS MODEL

Tower #1 C				
FREQUENCY (KHZ) 1370 4027249	LOAD RESISTANCE 40.725	LOAD REACTANCE 80.215	INPUT RESISTANCE 41.48257	INPUT REACTANCE 120.1238
Tower #2 E				
FREQUENCY (KHZ) 1370 3956419	LOAD RESISTANCE 39.869	LOAD REACTANCE 97.39601	INPUT RESISTANCE 40.7891	INPUT REACTANCE 144.4654
Tower #3 N				
FREQUENCY (KHZ) 1370 -1.760254	LOAD RESISTANCE 175.86	LOAD REACTANCE 158.25	INPUT RESISTANCE 184.502	INPUT REACTANCE 180.9709
Tower #4 W				
FREQUENCY (KHZ) 1370 -1.442538	LOAD RESISTANCE 143.77	LOAD REACTANCE 170.61	INPUT RESISTANCE 151.4688	INPUT REACTANCE 197.7447

TOWER	MODEL I MAG	INPUT I MAG	MODEL PHASE	INPUT PHASE	NORMALIZED I _{MAG} PHASE
#1 C	6.0567	6.001	4.50	4.903	1.0 / 0
#2 E	2.3777	2.351	75.8	76,20	0.395 <u>/71.3</u>
#3 N	1.8730	1.829	283.6	285.36	0.305 <u>/ -79.5</u>
#4 W	4.3044	4.194	254.4	255.84	0.699 / -109.1

Bob Alten, H&D

6/12/2012 1:27 PM

KZSF-KSJX CIRCUIT MOM TABLE.dwg

HATFIELD & DAWSON CONSULTING ENGINEERS

DERIVATION OF OPERATING PARAMETERS FROM METHOD OF MOMENT MODEL

RADIO STATION KZSF

SAN JOSE, CA

06/2012

Item 3
Method of Moments Model Details for Towers Driven Individually - KZSF

The array of towers was modeled using MININEC.

One wire was used to represent each tower. The top and bottom wire end points were specified using electrical degrees in the geographic coordinate system, using the theoretical directional antenna specifications. Each tower was modeled using 20 wire segments. As the towers are physically 97.8 degrees in electrical height, the segment length is 4.89 electrical degrees.

Each tower's modeled height relative to its physical height falls within the required range of 75 to 125 percent and each modeled radius falls within the required range of 80 percent to 150 percent of the radius of a circle having a circumference equal to the sum of the widths of the tower sides. The array consists of non-identical, uniform cross section towers having face widths of 18 inches.

Tower	Physical	Modeled	Modeled	Modeled	Percent of
	Height	Height	Percentage	Radius	Equivalent
	(degrees)	(degrees)	of Height	(meters)	Radius
1	97.8	104.9	107.26	0.218	100.0
2	97.8	105.3	107.67	0.218	100.0
3	97.8	105.3	107.67	0.218	100.0
4	97.8	107.2	109.61	0.218	100.0

The following pages show the details of the method of moments models for the individually driven towers.

KZSF Tower 1 Driven, Towers 2, 3 & 4 Open Circuit at Current Transformer Location

E:\KSJX and KZSF Rebuild\kzsf-1E 06-10-2012 18:40:51

KZSF 1370 San Jose

GEOMETRY

Wire coordinates in degrees; other dimensions in meters Environment: perfect ground

wire 1	caps none	Distance	Angle O	Z 0	radius .218	segs 20
1	110110	Ŏ	0	104.9		
2	none	123.3	61.	0	.218	20
2		123.3	61.	105.3	.218	20
3	none	82.2	341. 341.	105.3	.216	20
4	none		251.	0	.218	20
		91.3	251.	107.2		

Number of wires = 4 current nodes = 80

	mini	.mum	max	imum
Individual wires	wire	value	wire	value
segment length	1	5.245	4	5.36
radius	1	.218	1	.218

ELECTRICAL DESCRIPTION

Frequencies (MHz)

	frequency		no. of	segment length	(wavelengths)
no.	lowest	step	steps	minimum	maximum
1	1.37	0	1	.0145694	.0148889

Sources

source	node	sector	magnitude	phase	type
1	1	1	1.	0	voltage

Lumped loads

тишье	u roaus	5				
		resistance	reactance	inductance	capacitance	passive
load	node	(ohms)	(ohms)	(mH)	(uF)	circuit
1	21	0	-5,874.	0	0	0
2	41	0	-5,879.	0	0	0
3	61	0	-5,876.	0	0	0

```
:\KSJX and KZSF Rebuild\kzsf-1E
                                      06-10-2012
                                                     18:40:51
IMPEDANCE
normalization = 50.
                                        phase
                                                  VSWR
                                                           S11
                                                                     S12
                              imped
          resist
                    react
freq
                               (ohms)
                                                            dB
                                                                     dB
                    (ohms)
                                         (deg)
          (ohms)
(MHz)
source =
           1; node 1, sector 1
                    107.33
                              125.69
                                        58.6
                                                  5.4091
                                                           -3.2489
                                                                     -2.7841
1.37
          65.423
E:\KSJX and KZSF Rebuild\kzsf-1E
                                        06-10-2012
                                                       18:40:51
CURRENT rms
             = 1.37 \text{ MHz}
Frequency
Input power = 5,000. watts
Efficiency = 100. %
coordinates in degrees
                                                   phase
                                                           real
                                                                       imaginary
current
                                         mag
       Х
                              Ζ
                                          (amps)
                                                    (deg)
                                                            (amps)
                                                                       (amps)
                   Y
no.
                                                                       -7.4646
                   0
                              0
                                          8.74216
                                                    301.4
                                                           4.55027
GND
        0
                              5.245
                                         9.29812
                                                    299.2
                                                           4.53654
                                                                       -8.11633
 2
        0
                   0
                                                                       -8.46427
 3
        0
                   0
                              10.49
                                         9.58396
                                                    298.
                                                           4.49539
                                                           4.42713
                                                                       -8.68813
 4
        0
                   0
                              15.735
                                          9.75106
                                                    297.
                   0
                              20.98
                                          9.81593
                                                   296.2
                                                           4.33221
                                                                       -8.8082
 5
        0
                                                                       -8.83357
 6
        0
                   0
                              26.225
                                          9.78604
                                                    295.5
                                                           4.21126
                                                                       -8.76925
                              31.47
                                          9.66565
                                                    294.9
                                                           4.06511
 7
        0
                   0
                              36.715
                                                                       -8.61882
                                         9.45795
                                                    294.3
                                                           3.89472
 8
        0
                   0
                                                                       -8.38536
                              41.96
                                         9.16588
                                                    293.8
                                                           3.70124
 9
        0
                   0
                              47.205
                                         8.79244
                                                    293.4
                                                           3.48594
                                                                       -8.07188
 10
       0
                   0
        0
                   0
                              52.45
                                         8.34084
                                                    292.9
                                                           3.25024
                                                                       -7.6815
 11
                                                                       -7.21755
                              57.695
                                         7.81453
                                                    292.5
                                                           2.99564
 12
        0
                   0
                              62.94
                                         7.21721
                                                    292.2
                                                           2.72374
                                                                       -6.68352
 13
        0
                   0
                              68.185
                                          6.55272
                                                    291.8
                                                           2.43614
                                                                       -6.08304
        0
                   0
 14
                              73.43
                                         5.82486
                                                    291.5
                                                           2.13444
                                                                       -5.41969
 15
       0
                   0
 16
       0
                   0
                              78.675
                                         5.03714
                                                    291.2
                                                           1.82011
                                                                       -4.6968
 17
       0
                   0
                              83.92
                                          4.19226
                                                    290.9
                                                           1.49428
                                                                       -3.91691
                                                                       -3.08076
                              89.165
                                         3.29102
                                                    290.6
                                                           1.15747
 18
       0
                   0
                                          2.32939
                                                    290.3
                                                            .80852
                                                                       -2.18457
                   0
                              94.41
 19
       0
                                         1.29093
                                                    290.
                                                            .442172
                                                                       -1.21284
                   0
                              99.655
 20
       0
                                                    0
                                                           0
                              104.9
                                          0
                   0
END
       0
                                          .0579288 132.
                                                                      .0430755
                   -107.841
                                                           -.0387329
       59.777
                              0
GND
                                          .266948
                                                   131.9
                                                           -.178447
                                                                       .198539
       59.777
                   -107.841
                              5.265
 22
                                                           -.264088
                                          .395216
                                                   131.9
                                                                       .29403
                   -107.841
                              10.53
 23
       59.777
                                          .498286
                                                   131.9
                                                           -.332802
                                                                       .370852
       59.777
                   -107.841
                              15.795
 24
                                                   131.9
                                                                       .433513
                   -107.841
                              21.06
                                          .582225
                                                           -.388655
 25
       59.777
                   -107.841
                              26.325
                                          .649551
                                                   131.8
                                                           -.433339
                                                                       .483874
 26
       59.777
                   -107.841
                              31.59
                                          .701431
                                                   131.8
                                                           -.467646
                                                                       .522793
       59.777
 27
                              36.855
                                          .738508
                                                   131.8
                                                           -.492024
                                                                       .550733
       59.777
                   -107.841
 28
                                                   131.7
                   -107.841
                              42.12
                                          .761205
                                                           -.50677
                                                                       .567994
 29
       59.777
                                                   131.7
                                                           -.512128
                                                                       .574811
                   -107.841
                              47.385
                                          .769859
 30
       59.777
                                                   131.7
                                          .764787
                                                           -.50833
                                                                       .571402
                   -107.841
                              52.65
 31
       59.777
                                                                       .557992
                                                   131.6
                                                           -.495617
                                          .746318
 32
       59.777
                   -107.841
                              57.915
                                                                       .534826
                                          .714809
                                                   131.6
                                                           -.474249
                              63.18
 33
       59.777
                   -107.841
                                                                       .502166
                              68.445
                                          .670639
                                                   131.5
                                                           -.444506
 34
       59.777
                   -107.841
                                                                       .460285
                                          .614206
                                                   131.5
                                                           -.406677
 35
       59.777
                   -107.841
                              73.71
                                                                       .409436
                                                           -.361039
                              78.975
                                          .545881
                                                   131.4
 36
       59.777
                   -107.841
                                                           -.307815
                                                                       .34981
                   -107.841
                              84.24
                                          .465958
                                                   131.3
       59.777
 37
```

Hatfield & Dawson Consulting Engineers

```
38
        59.777
                   -107.841
                               89.505
                                          .374505
                                                    131.3
                                                            -.247089
                                                                        .281426
                                                            -.178562
                                                                        .20386
 39
        59.777
                   -107.841
                               94.77
                                          .271004
                                                    131.2
                                                                        .115524
                                                    131.1
                                                            -.100923
                               100.035
                                          .153399
 40
        59.777
                   -107.841
                               105.3
END
        59.777
                   -107.841
                                                    0
                                                            -.0697633
                                                                       .0117568
                   26.7617
                                          .070747
                                                    170.4
GND
        77.7216
                                                                        .0541309
                   26.7617
                               5.265
                                          .326175
                                                    170.4
                                                            -.321652
 42
        77.7216
                                                                        .0799362
                                          .482786
                                                            -.476123
                               10.53
                                                    170.5
 43
        77.7216
                   26.7617
                                                            -.600135
                                                                        .100454
                               15.795
                                                    170.5
        77.7216
                   26.7617
                                          .608485
 44
                                                                        .116918
                                                    170.5
                                                            -.701015
        77.7216
                   26.7617
                               21.06
                                          .710698
 45
                               26.325
                                                    170.6
                                                            -.781808
                                                                        .129839
        77.7216
                   26.7617
                                          .792516
 46
        77.7216
                   26.7617
                               31.59
                                          .855378
                                                    170.6
                                                            -.843933
                                                                        .139462
 47
                                                                        .145935
 48
        77.7216
                   26.7617
                               36.855
                                          .900095
                                                    170.7
                                                            -.888186
                                                                        .14937
        77.7216
                                                    170.7
                                                            -.915094
 49
                   26.7617
                               42.12
                                          .927205
                                                                        .149876
        77.7216
                               47.385
                                                    170.8
                                                            -.925085
                   26.7617
                                          .937147
 50
                                                                        .147572
                                                    170.9
                                                            -.918562
                   26.7617
                               52.65
                                          .930341
 51
        77.7216
        77.7216
                               57.915
                                                    171.
                                                            -.895948
                                                                        .142597
 52
                   26.7617
                                          .907225
 53
                   26.7617
                               63.18
                                          .86827
                                                    171.
                                                            -.857694
                                                                        .135106
        77.7216
                                                            -.804287
                               68.445
                                          .813984
                                                    171.1
                                                                        .125274
 54
        77.7216
                   26.7617
                                                    171.3
                                                            -.736224
                                                                        .113287
                               73.71
                                          .744889
 55
                   26.7617
        77.7216
                                                    171.4
                                                            -.653981
                                                                        .0993332
                                          .661482
                   26.7617
                               78.975
 56
        77.7216
                               84.24
                                                    171.5
                                                            -.557934
                                                                        .0835908
                   26.7617
                                          .564162
 57
        77.7216
                   26.7617
                               89.505
                                          .453051
                                                    171.6
                                                            -.448189
                                                                        .0661941
 58
        77.7216
                                                    171.7
                                                            -.324151
                                                                        .0471713
 59
        77.7216
                   26.7617
                               94.77
                                          .327565
                                                                        .0262809
                   26.7617
                               100.035
                                          .185257
                                                    171.8
                                                            -.183383
 60
        77.7216
END
        77.7216
                   26.7617
                               105.3
                                                   161.4
                                                            -.0711122 .0238984
GND
        -29.7244
                   86.3258
                                          .0750205
                                                            -.330506
                                                                        .111033
                   86.3258
                               5.36
                                                    161.4
 62
        -29.7244
                                          .348659
                               10.72
                                          .517116
                                                    161.4
                                                            -.490223
                                                                        .16459
 63
        -29.7244
                   86.3258
                                                            -.618624
                                                                        .207541
 64
        -29.7244
                   86.3258
                               16.08
                                          .65251
                                                    161.5
                                                    161.5
                                                            -.72322
                                                                        .242411
                               21.44
                                          .762765
 65
        -29.7244
                   86.3258
                                                                        .270233
                                                    161.5
                                                            -.807103
                               26.8
                                          .851141
 66
        -29.7244
                   86.3258
                                                    161.5
                                                            -.871704
                                                                        .291494
                               32.16
                                          .919151
 67
        -29.7244
                   86.3258
                               37.52
                                          .967626
                                                    161.5
                                                            -.917813
                                                                        .306465
 68
        -29.7244
                   86.3258
                                                                        .315335
 69
        -29.7244
                   86.3258
                               42.88
                                          .997126
                                                    161.6
                                                            -.945952
                                                    161.6
                                                            -.956544
                                                                        .318265
 70
        -29.7244
                   86.3258
                               48.24
                                          1.0081
        -29.7244
                                          1.00099
                                                    161.6
                                                            -.949995
                                                                        .315423
                   86.3258
                               53.6
 71
                                                    161.7
                                                                        .306988
 72
        -29.7244
                   86.3258
                               58.96
                                          .976257
                                                            -.926734
 73
        -29.7244
                   86.3258
                               64.32
                                          .934406
                                                    161.7
                                                            -.887227
                                                                        .293161
                                                    161.8
                                                            -.831977
                                                                        .274165
 74
        -29.7244
                   86.3258
                               69.68
                                          .875987
 75
        -29.7244
                   86.3258
                               75.04
                                          .801568
                                                    161.8
                                                            -.761509
                                                                        .25023
                                                    161.9
                                                                        .221583
 76
        -29.7244
                   86.3258
                               80.4
                                          .711704
                                                            -.676331
                                                    161.9
                                                                        .188418
 77
        -29.7244
                   86.3258
                               85.76
                                          .606841
                                                            -.576849
                                                    162.
                                                                        .150837
        -29.7244
                   86.3258
                               91.12
                                          .487142
                                                            -.463202
 78
                   86.3258
                                                                        .108702
        -29.7244
                               96.48
                                          .35202
                                                    162.
                                                            -.334816
 79
                   86.3258
                               101.84
                                          .198888
                                                    162.1
                                                            -.18922
                                                                        .0612528
 80
        -29.7244
                                                            0
        -29.7244
                   86.3258
                               107.2
                                          0
                                                    0
END
```

KZSF Tower 2 Driven, Towers 1, 3 & 4 Open Circuit at Current Transformer Location

E:\KSJX and KZSF Rebuild\kzsf-1E 06-10-2012 18:39:00

IMPEDANCE

normalization = 50.

freq	resist	react	imped	phase	VSWR	S11	S12
(MHz)	(ohms)	(ohms)	(ohms)	(deg)		dB	dB
source =	1; node	21, sect	or 1				
1.37	76.996	112.14	136.02	55.5	5.2656	-3.3396	-2.7042

KZSF Tower 3 Driven, Towers 1, 2 & 4 Open Circuit at Current Transformer Location

E:\KSJX and KZSF Rebuild\kzsf-1E 06-10-2012 18:37:19

IMPEDANCE

normalization = 50.

freq	resist	react	imped	phase	VSWR	S11	S12
(MHz)	(ohms)	(ohms)	(ohms)	(deg)		dB	dB
source	= 1; node	41, sect	tor 1				
1.37	71.112	113.37	133.83	57.9	5.5605	-3.1585	-2.867

KZSF Tower 4 Driven, Towers 1, 2 & 3 Open Circuit at Current Transformer Location

E:\KSJX and KZSF Rebuild\kzsf-1E 06-10-2012 18:35:21

IMPEDANCE

normalization = 50.

freq	resist	react	ımped	pnase	VSWR	SII	512
(MHz)	(ohms)	(ohms)	(ohms)	(deg)		dB	dB
source =	1; node	61, sect	or 1				
1.37	78.468	121.96	145.02	57.2	5.8261	-3.0115	-3.0091

Item 4
Method of Moments Model Details for Directional Antenna- KZSF

The array of towers was modeled using MININEC with the individual tower characteristics that were verified by the individual tower impedance measurements. Calculations were made to determine the complex voltage values for sources located at ground level under each tower of the array to produce current moment sums for the towers that, when normalized, equated to the theoretical field parameters of the authorized directional antenna pattern. The following pages contain details of the method of moments models of the directional antenna patterns.

Tower	Wire	Base Node
1	1	1
2	2	21
3	3	41
4	4	61

KZSF Driven Array

C:\Muticultural Stations\KSJX and KZSF Rebuild\NEW 6-7-2012 Analysis\kzsf-1Edriven 06-11-2012 15:03:13

KZSF 1370 San Jose

GEOMETRY

Wire coordinates in degrees; other dimensions in meters Environment: perfect ground

wire	caps	Distance	Angle	Z	radius	segs
1	none	0	0	0	.218	20
		0	0	104.9		
2	none	123.3	61.	0	.218	20
		123.3	61.	105.3		
3	none	82.2	341.	0	.218	20
		82.2	341.	105.3		
4	none	91.3	251.	0	.218	20
		91.3	251.	107.2		

Number of wires = 4 current nodes = 80

	mini	.mum	maximum	
Individual wires	wire	value	wire	value
segment length	1	5.245	4	5.36
radius	1	.218	1	.218

ELECTRICAL DESCRIPTION

Frequencies (MHz)

frequency no. lowest 1 1.37	step 0	no. of steps 1	segment minimum .0145694	length (wavelengths) maximum .0148889
Sources source node	sector	magnitude	phase	type

source	node	sector	magnitude	phase	type
1	1	1	770.556	67.6	voltage
2	21	1	353.877	143.6	voltage
3	41	1	626.65	325.6	voltage
4	61	1	1,358.12	304.3	voltage

C:\Muticultural Stations\KSJX and KZSF Rebuild\NEW 6-7-2012 Analysis\kzsf-1Edriven 06-11-2012 15:03:13

IMPEDANCE

normalization = 50.

HOLINA	112001011	50.					
freq	resist	react	imped	phase	VSWR	S11	S12
(MHz)	(ohms)	(ohms)	(ohms)	(deg)		dB	dB
source =	1; node	1, secto	r 1				
1.37	40.725	80.215	89.961	63.1	5.0022	-3.5202	-2.554

Hatfield & Dawson Consulting Engineers

```
source = 2; node 21, sector 1
                                                6.66
                                                         -2.6283
                                                                   -3.4292
                                       67.7
1.37
          39.869
                   97.396
                             105.24
source =
          3; node 41, sector 1
                                                6.4955
                                                         -2.6959
                                                                   -3.3493
1.37
         175.86
                   158.25
                             236.58
                                       42.
          4; node 61, sector 1
                                                                   -3.6513
                                       49.9
                                                7.1321
                                                         -2.4519
1.37
         143.77
                   170.61
                             223.11
```

C:\Muticultural Stations\KSJX and KZSF Rebuild\NEW 6-7-2012 Analysis\kzsf-1Edriven 06-11-2012 15:03:13

CURRENT rms Frequency

= 1.37 MHz

```
Input power = 5,000. watts
Efficiency = 100. %
coordinates in degrees
                                                                       imaginary
                                          mag
                                                    phase
                                                            real
current
                              Z
                                                            (amps)
                                                                       (amps)
                                          (amps)
                                                    (deg)
no.
        Χ
                                                            6.0376
                                                                       .48044
GND
                   0
                              0
                                          6.05668
                                                    4.5
                                                                       .351683
                              5.245
                                          6.33835
                                                            6.32859
 2
        0
                   0
                                                    3.2
                                                            6.4646
                                                                       .268739
 3
        0
                   0
                              10.49
                                          6.47018
                                                    2.4
                                                            6.52819
 4
        0
                   0
                              15.735
                                          6.53119
                                                    1.7
                                                                       .19781
                                                            6.52892
 5
                                          6.53032
                                                                       .135268
        0
                   0
                              20.98
                                                    1.2
                              26.225
                                          6.47181
                                                            6.47132
                                                                       .0796726
 6
        0
                   0
                                                    . 7
                                                            6.35812
                                                                       .0304279
 7
        0
                   0
                              31.47
                                          6.3582
                                                    . 3
                                                    359.9
                                                            6.19153
                                                                       -.012711
                   0
                              36.715
                                          6.19154
 8
        0
                                                    359.5
                                                            5.97358
                                                                       -.0498278
                   0
                              41.96
                                          5.97379
 9
        0
                                                            5.70638
                                                                       -.0809256
                              47.205
                                          5.70696
                                                    359.2
 10
        0
                   0
                                          5.3932
                                                    358.9
                                                           5.39216
                                                                       -.105971
        0
                   0
                              52.45
 11
 12
        0
                   0
                              57.695
                                          5.03484
                                                    358.6
                                                           5.03329
                                                                       -.124913
                                                    358.3
                                                            4.63228
                                                                       -.137701
 13
                   0
                              62.94
                                          4.63433
                                                            4.1917
                   0
                              68.185
                                          4.19419
                                                    358.
                                                                       -.144285
 14
                                                    357.8
                                                                       -.14462
 15
                   0
                              73.43
                                          3.71693
                                                            3.71412
        0
                   0
                              78.675
                                          3.20488
                                                    357.5
                                                            3.20188
                                                                       -.138658
 16
        0
                              83.92
                                                    357.3
 17
        0
                   0
                                          2.65982
                                                            2.65681
                                                                       -.126332
 18
        0
                   0
                              89.165
                                          2.08232
                                                    357.
                                                            2.07954
                                                                       -.107509
                                                    356.8
 19
        0
                   0
                              94.41
                                          1.46994
                                                            1.46766
                                                                       -.0818646
                                                    356.6
                                                                       -.0485529
 20
                              99.655
                                          .812469
                                                            .811017
        0
                              104.9
                                                            0
END
                   -107.841
                                          2.37769
                                                    75.8
                                                            .58211
                                                                       2.30533
GND
        59,777
        59.777
                   -107.841
                              5.265
                                          2.51359
                                                    74.5
                                                            .671842
                                                                       2.42214
 22
        59.777
                                                                       2.47751
 23
                   -107.841
                              10.53
                                         2.58091
                                                    73.7
                                                            .723215
                              15.795
                   -107.841
                                         2.61735
                                                    73.1
                                                            .760501
                                                                       2.50443
 24
        59.777
                   -107.841
                                          2.6272
                                                    72.6
                                                            .786402
                                                                       2.50674
 25
        59.777
                              21.06
        59.777
                                         2.61242
                                                    72.1
                                                            .80205
                                                                       2.48625
                   -107.841
                              26.325
 26
        59.777
                                         2.57417
                                                    71.7
                                                                       2.44407
                   -107.841
                              31.59
                                                            .808018
 27
       59.777
                   -107.841
                              36.855
                                         2.51334
                                                    71.3
                                                            .804667
                                                                       2.38105
 28
       59.777
 29
                   -107.841
                              42.12
                                         2.43076
                                                    71.
                                                            .792264
                                                                       2.29803
        59.777
                                                    70.7
                                                                       2.19584
 30
                   -107.841
                              47.385
                                         2.32727
                                                            .771044
        59.777
                   -107.841
                              52.65
                                         2.20376
                                                    70.3
                                                            .74126
                                                                       2.07535
 31
        59.777
                   -107.841
                              57.915
                                         2.06118
                                                    70.1
                                                            .703171
                                                                       1.93753
 32
        59.777
                   -107.841
                              63.18
                                         1.90053
                                                    69.8
                                                            .657045
                                                                       1.78335
 33
```

Hatfield & Dawson Consulting Engineers

```
34
        59.777
                   -107.841
                               68.445
                                          1.72287
                                                    69.5
                                                             .60317
                                                                        1.61383
                                                                        1.42998
        59.777
                   -107.841
                               73.71
                                          1.52919
                                                    69.2
                                                             .541834
 35
        59.777
                   -107.841
                               78.975
                                          1.32048
                                                    69.
                                                             .473299
                                                                        1.23274
 36
 37
        59.777
                   -107.841
                               84.24
                                          1.09745
                                                    68.8
                                                             .397748
                                                                        1.02283
        59.777
                   -107.841
                               89.505
                                          .860323
                                                    68.5
                                                             .315183
                                                                        .800509
 38
                                                                        .56488
        59.777
                   -107.841
                               94.77
                                          .608091
                                                    68.3
                                                             .225133
 39
                               100.035
                                          .336505
                                                             .125896
                                                                        .312067
        59.777
                   -107.841
                                                    68.
 40
        59.777
                   -107.841
                               105.3
                                          0
END
                                                    283.6
                                                                        -1.8202
GND
        77.7216
                   26.7617
                                          1.873
                                                             .441601
                               5.265
                                          2.0596
                                                    278.
                                                                        -2.03957
        77.7216
                   26.7617
                                                            .286499
 42
                                                                        -2.16166
        77.7216
                   26.7617
                               10.53
                                          2.16981
                                                    275.
                                                            .187984
 43
        77.7216
                   26.7617
                               15.795
                                          2.24872
                                                    272.7
                                                            .105232
                                                                        -2.24626
 44
                                          2.30033
                                                                        -2.30009
 45
        77.7216
                   26.7617
                               21.06
                                                    270.8
                                                            .0338277
        77.7216
                   26.7617
                               26.325
                                          2.32625
                                                    269.3
                                                            -.0280179
                                                                       -2.32609
 46
                                                                       -2.32582
 47
        77.7216
                   26.7617
                               31.59
                                          2.32724
                                                    268.
                                                            -.0810868
                                                    266.9
                                                                        -2.30036
        77.7216
                   26.7617
                               36.855
                                          2.3038
                                                            -.125763
 48
                                          2.25642
                                                    265.9
                                                            -.162259
                                                                        -2.25058
        77.7216
                   26.7617
                               42.12
 49
                                                    265.
                                                            -.190715
                                                                        -2.17731
        77.7216
                   26.7617
                               47.385
                                          2.18565
 50
        77.7216
                   26.7617
                               52.65
                                          2.0921
                                                    264.2
                                                            -.211253
                                                                        -2.08141
 51
                   26.7617
                                                                        -1.96378
 52
        77.7216
                               57.915
                                          1.97651
                                                    263.5
                                                            -.223997
                                                                        -1.82538
                   26.7617
        77.7216
                               63.18
                                          1.8397
                                                    262.8
                                                            -.229094
 53
                                                    262.3
                                                                        -1.66721
        77.7216
                   26.7617
                               68.445
                                          1.68255
                                                            -.226711
 54
                                                                        -1.49024
        77.7216
                   26.7617
                               73.71
                                          1.50596
                                                    261.7
                                                            -.217034
 55
        77.7216
                   26.7617
                               78.975
                                          1.31079
                                                    261.2
                                                            -.200247
                                                                        -1.2954
 56
 57
        77.7216
                   26.7617
                               84.24
                                          1.09767
                                                    260.7
                                                            -.176512
                                                                        -1.08339
 58
        77.7216
                   26.7617
                               89.505
                                          .866765
                                                    260.3
                                                            -.1459
                                                                        -.854398
                   26.7617
                               94.77
                                          .616951
                                                    259.9
                                                            -.10823
                                                                        -.607383
 59
        77.7216
                                                                        -.338007
                   26.7617
                               100.035
                                          .343766
                                                    259.5
                                                            -.062659
        77.7216
 60
                   26.7617
                               105.3
                                          0
        77.7216
                                                    0
END
                   86.3258
                                          4.30439
                                                    254.4
                                                            -1.15479
                                                                        -4.14659
       -29.7244
GND
                               0
                                                    249.8
                                                                        -4.47037
        -29.7244
                   86.3258
                               5.36
                                          4.76315
                                                            -1.64421
 62
                   86.3258
                                                            -1.93851
                                                                        -4.64044
                              10.72
                                          5.02907
                                                    247.3
 63
        -29.7244
                   86.3258
                               16.08
                                          5.21721
                                                    245.5
                                                            -2.16752
                                                                        -4.74565
 64
       -29.7244
                   86.3258
                               21.44
                                          5.33898
                                                    243.9
                                                            -2.34555
                                                                        -4.79615
       -29.7244
 65
                   86.3258
                               26.8
                                          5.3991
                                                    242.7
                                                            -2.47859
                                                                        -4.79655
       -29.7244
 66
       -29.7244
                   86.3258
                               32.16
                                          5.39997
                                                    241.6
                                                            -2.56951
                                                                        -4.74945
 67
                               37.52
                                          5.3432
                                                    240.6
                                                            -2.61996
                                                                        -4.65678
       -29.7244
                   86.3258
 68
                   86.3258
                               42.88
                                          5.23027
                                                    239.8
                                                            -2.63115
                                                                        -4.52026
 69
       -29.7244
                                          5.0627
                                                    239.
                                                            -2.60411
                                                                        -4.3416
 70
       -29.7244
                   86.3258
                               48.24
                                                    238.4
                                                            -2.53987
                                                                        -4.12263
       -29.7244
                   86.3258
                               53.6
                                          4.84221
 71
                                          4.5707
                                                    237.7
                                                            -2.43952
                                                                        -3.86524
                               58.96
 72
       -29.7244
                   86.3258
                               64.32
                                          4.2503
                                                    237.2
                                                            -2.30424
                                                                        -3.57149
                   86.3258
 73
       -29.7244
                                                            -2.13531
                                                                        -3.24347
                   86.3258
                               69.68
                                          3.88325
                                                    236.6
 74
       -29.7244
                                                            -1.934
                                                                        -2.88331
                               75.04
                                          3.47186
                                                    236.1
 75
       -29.7244
                   86.3258
                                                            -1.70157
                                                                        -2.49297
                              80.4
                                          3.01832
                                                    235.7
                   86.3258
 76
       -29.7244
                                                            -1.43898
                                                                        -2.07404
                              85.76
                                          2.52434
                                                    235.2
                   86.3258
 77
       -29.7244
                   86.3258
                               91.12
                                          1.99054
                                                    234.8
                                                            -1.14655
                                                                        -1.62717
       -29.7244
 78
                                                                        -1.15065
                               96.48
                                          1.41459
                                                    234.4
                                                            -.822853
       -29.7244
                   86.3258
 79
                                                            -.461924
                                                                        -.636694
       -29.7244
                   86.3258
                               101.84
                                          .786609
                                                    234.
 80
                                                                        0
                                                    0
END
       -29.7244
                   86.3258
                               107.2
```

Hatfield & Dawson Consulting Engineers

C:\Muticultural Stations\KSJX and KZSF Rebuild\NEW 6-7-2012 Analysis\kzsf-1Edriven 06-11-2012 13:13:53

CURRENT MOMENTS (amp-degrees) rms

Frequency = 1.37 MHz
Input power = 5,000. watts

input power ofoco: "acce							
			vertical cu	crent moment			
wire	magnitude	phase (deg)	magnitude	phase (deg)			
1	418.201	360.	418.201	360.			
2	170.208	71.4	170.208	71.4			
3	155.153	267.4	155.153	267.4			
4	365.925	241.	365.925	241.			

Medium wave array vertical current moment (amps-degrees) rms (Calculation assumes tower wires are grouped together. The first wire of each group must contain the source.)

tower	magnitude	phase	(deg)
1	418.201	360.	
2	170.208	71.4	
3	155.153	267.4	
4	365.925	241.	

```
Tower 2(E) parameters normalized 0.407 \frac{/}{+71.4} Tower 3(N) parameters normalized 0.371 \frac{/}{-92.6} Tower 4(W) parameters normalized 0.875 \frac{/}{-119.0}
```

Item 5

Summary of Post Construction Certified Array Geometry- KZSF

Because the KZSF antenna system was previously licensed and there has been no change in the theoretical antenna parameters, a post-construction survey is not required per the FCC Public Notice DA 09-2340. (October 29, 2009)

Item 6
Sampling System Measurements - KZSF

Impedance measurements were made of the antenna monitor sampling system using an AIM network analyzer in a calibrated measurement system. The measurements were made looking into the antenna monitor ends of the sampling lines for two conditions – with and without the sampling lines connected to the sampling transformers at the antenna tuning units.

The following table shows the frequency closest to the carrier frequency where series resonance – zero reactance corresponding with low resistance – was found. As frequencies of resonance occur at odd multiples of 90 degrees electrical length, the sampling line length at the resonant frequency below carrier frequency – which is the closest one to the carrier frequency – was found to be 270 electrical degrees. The electrical length at carrier frequency appearing in the table below was calculated by ratioing the carrier frequency to the resonant frequency.

Tower	Sampling Line	Sampling Line Electrical	1370 kHz
	Open-Circuited	Length at 1370 kHz	Measured Impedance with
	Resonance (kHz)	Degrees	Sample Transformer
			Connected
1	1115.025	331.74	51.8 <u>+</u> j0
2	1115.40	331.63	51.4 -j0.5
3	1117.45	331.02	51.5 -j0.2
4	1115.75	331.53	50.4 -j0.7

The sampling line lengths meet the requirement that they be equal in length within 1 electrical degree.

In order to determine the characteristic impedance values of the sampling lines, open-circuited measurements were made with frequencies offset to produce +/- 45 degrees of electrical length from resonance. The characteristic impedance was calculated using the following formula, where R1 +j X1 and R2 +j X2 are the measured impedances at the +45 and -45 degree offset frequencies, respectively:

$$Zo = [(R_1^2 + X_1^2)^{1/2} \times (R_2^2 + X_2^2)^{1/2}]^{1/2}$$

Tower	-45° Offset	-45°	+45° Offset	+45°	Calculated
	Frequency	Measured	Frequency	Measured	Characteristic
	(kHz)	Impedance	(kHz)	Impedance	Impedance
		(Ohms)		(Ohms)	(Ohms)
1	929.19	6.47 -j 49.48	1300.86	9.36 +j50.25	50.50
2	929.50	5.65 -j 49.64	1301.30	8.42 +j50.85	50.37
3	931.208	5.85 -j 49.48	1303.69	8.74+j49.86	50.21
4	929.79	5.67 -j 49.73	1301.71	8.39 +j50.24	50.49

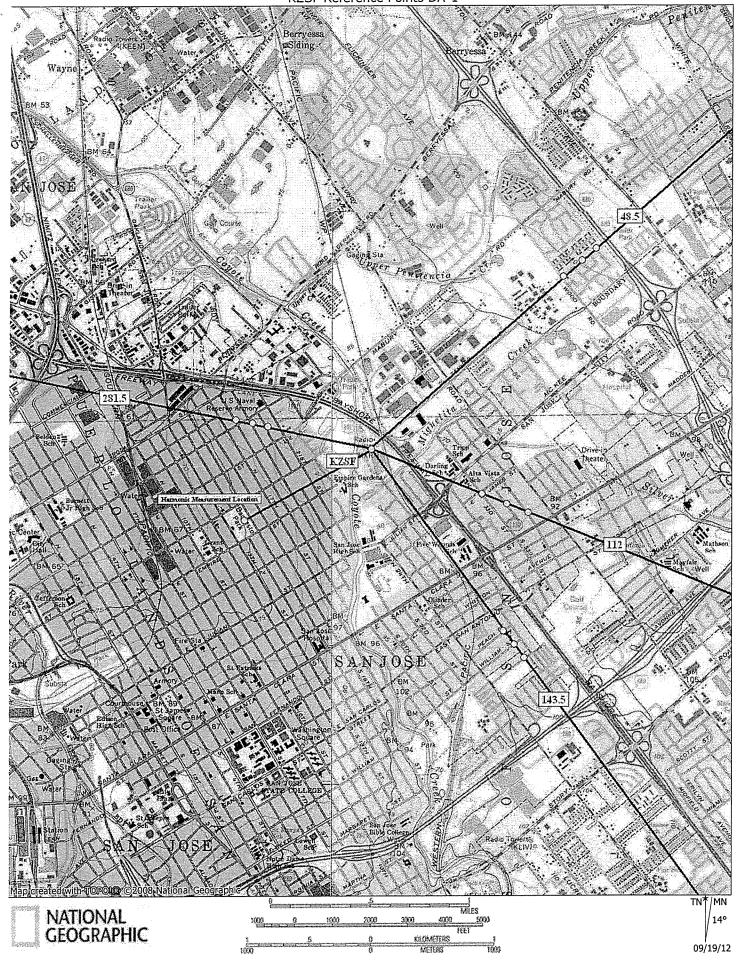
The sampling line measured characteristic impedances meet the requirement that they be equal within 2 ohms.

Item 7

Reference Field Strength Measurements - KZSF

Reference field strength measurements were made along radials at the azimuths with radiation value limits specified on the station license and, additionally, on the radial of the line of the towers in the maximum. The transmitter power was at 5.4 kW (antenna common point current 10.4 Amps) for these measurements.

Measurements were made using a Potomac Instruments field strength meter, model FIM-41.


The measured field strengths and descriptions and GPS coordinates for the reference measurement points are shown on the following pages.

KZSF, San Jose 1370 kHz - 5000 Watts; DA-1

Reference Field Strength Measurements

Radial	Point	Distance (km)	Field (mv/m)	Coordinate	es (NAD 83)	Description
	1	2.09	60	37° 22.219	121° 51.279	2303 Ashland
48.5	2	2.29	52	37° 22.281	121° 51.187	584 Breezyglen
	3	2.45	54	37° 22.328	121° 51.115	2459 Threadway Drive
	1	.97	138	37° 21.232	121° 51.710	119 33rd Street
112	2	1.16	155	37° 21.198	121° 51.583	78 Eastwood
	3	1.37	224	37° 21.117	121° 51.481	40 34th Street
	1	1.81	44	37° 20.661	121° 51.603	1365 Peach
143.5	2	1.95	24	37° 20.609	121° 51.547	1341 Williams
	3	2.09	41	37° 20.545	121° 51.489	1371 Sunny Court
	1	.87	740	37° 21.542	121° 52.913	744 20th Street
281.5	2	.99	800	37° 21.553	121° 53.001.	779 19th Street
	3	1.13	450	37° 21.575	121° 53.088	N.E Corner 18th & East Mission

Measurements were made August 30, 2012 by Robert F. Turner Potomac Instruments FIM-41, SN 1205 calibrated 16 July, 1999.

Item 8

Direct Measurement of Power - KZSF

Common point impedance measurements were made using a Hewlett Packard 8751A network analyzer in a calibrated measurement system. The measurements were made at the phasor cabinet input jack adjacent to the common point current meter that is used to determine operating power. The impedance measured at this point was adjusted to a value of 50 +/- j0.

Item 9

Antenna Monitor and Sampling System - KZSF

The antenna monitor is a Potomac Instruments model AM-1901. The sample transformers are connected through equal lengths of % inch foam heliax solid outer conductor transmission lines (Andrew LDF cable) to the antenna monitor. The two sample lines are routed to the towers such that they are subject to similar environmental conditions.

The antenna monitor was checked by placing the amplified network analyzer output through a sample transformer. A "T" connector was placed on the tower 1 sample transformer and the two outputs of the "T" were fed into the antenna monitor inputs 1 & 2. Both inputs read 0 degrees and a ratio of 100.

The sample transformers were tested by feeding their outputs configured as described above into the A and B inputs of the network analyzer.

All transformers TCT-1 0.5 V/A

Serial #	889	15708	586	1168
Magnitude	1.0067	1.0049	1.0061	reference
Phase	+0.625	+0.456	+0.672	reference

These values are well within the manufacturer's rated tolerance of +/- 2% amplitude and +/- 2 degrees phase.

Harmonic Measurement Field Worksheet

Station 1	KZSF	Frequency	1370	KHz	Power	5000	Mode	DA-1	
Station 2	KSJX	Frequency	1500	KHz	Power	10000	Mode	DA-D	
Date	08/30/12	Time	8:15 AM	Stati	on 1 Field	Strength	900	mV/m	
	Notes	Reading	in mV/m	Value	FCC	Limit			
1	F1 + F2	2870			0.0)40	-87.0	-80	dBc
2	F1 + 2(F2)	4370			0.035		-88.2	-80	dBc
3	F2 + 2(F1)	4240			0.010		-99.1	-80	dBc
4	2(F1) - F2	1240		2				-80	dBc
5	2(F2)	30	00		0.025		-91.1	-80	dBc
6	2(F2) - F1	16	30		0.013		-96.8	-80	dBc
7	2(F1) - 2(F2)	-260		1				-80	dBc
8	2(F1) + 2(F2)	5740		1				-80	dBc
9	2(F1)	2740			0.0)30	-89.5	-80	dBc
10	3(F1)	4110			0.0)10	-99.1	-80	dBc
11	3(F1)-F2	2610			0.0)17	-94.5	-80	dBc
12	3(F2)	4500			0.0)13	-96.8	-80	dBc
13	3(F2)-F1	3130			0.0)15	-95.6	-80	dBc
14	3(F1)-(2)F2	1110		2				-80	dBc
15	3(F2)-(2)F1	17	60		0.0)20	-93.1	-80	dBc
	1 Frequency exceeds FIM capabi					FIM capabil	ities		
				2	Frequency cannot be measured/Other station prese				
				3	No Signal Present				

Measurement Location: GPS: 37° 21.151 / 121° 53.017 - East side of Bakesto Park. Approximately 0.75 miles from KZSF at 243-degrees true.

Harmonic Measurement Field Worksheet

Station 1	KZSF	Frequency	1370	KHz	Power	5000	Mode	D A	\-1
Station 2	KSJX	Frequency	1500	KHz	Power	5000	Mode	DA-N	
Date	09/18/12	Time	10:30 AM	Stati	on 1 Field	Strength	900	mV/m	
Harmonic Calculations					Reading	in mV/m	Value	FCC	Limit
1	F1 + F2	2870			0.050		-85.1	-80	dBc
2	F1 + 2(F2)	4370			0.019		-93.5	-80	dBc
3	F2 + 2(F1)	4240			0.040		-87.0	-80	dBc
4	2(F1) - F2	12	240	2				-80	dBc
5	2(F2)	30	000		0.018		-94.0	-80	dBc
6	2(F2) - F1	16	30		0.0	16	-95.0	-80	dBc
7	2(F1) - 2(F2)	-260		1				-80	dBc
8	2(F1) + 2(F2)	5740		1				-80	dBc
9	2(F1)	2740			0.0	27	-90.5	-80	dBc
10	3(F1)	4110			0.0	16	-95.0	-80	dBc
11	3(F1)-F2	2610			0.0	26	-90.8	-80	dBc
12	3(F2)	4500			0.0)14	-96.2	-80	dBc
13	3(F2)-F1	3130			0.0	24	-91.5	-80	dBc
14	3(F1)-(2)F2	1110		2				-80	dBc
15	3(F2)-(2)F1	17	760		0.0)22	-92.2	-80	dBc
20000000000000000000000000000000000000					Frequency exceeds FIM capabilities				
	2	Frequency cannot be measured/Other station present							
					No Signal Present				

Measurement Location: GPS: 37° 21.151 / 121° 53.017 - East side of Bakesto Park. Approximately 0.75 miles from KZSF at 243-degrees true.

APPENDIX A: License Document BL-950203AA

APPENDIX B: FCC Form 302-AM

FCC Form 352 May 1988

UNITED STATES OF AMERICA FEDERAL COMMUNICATIONS COMMISSION

File No. : BL-950203AA

Call Sign : KKSJ

LIC	ENSEE:		United	Broadcasting Co	mpany				
1.		501 W	ose, CA ooster S ose, CA		3. Transmitter(s): Type Accepted. See Sections 73.1660, 73.1665, and 73.1670 of the Commission's rules) 4. Main Studio Location: (See Section 73.1125) 3.99 3rd Street Campbell, CA 5. Remote control location				
	North Latitude: West Longitude:		37° 21' 21° 52'	28" 17"	399 3rd Street Campbell, CA				
6.	Antenna and ground system: Attached				The state of the s				
7. 1, 8.	Obstruction marking and lightin 3, 11 & 21 for to Frequency	owers		4:	1, 3, 12 & 21 for tower #2;				
1,	3, 11 & 21 for t	owers 1 5	#1, 3 & 370 kHz	4 lonal antenna:	5.0 Night				
1,	3, 11 & 21 for t Frequency: Nominal power (kW): Antenna input power (kW):	Owers 1 5 Day Night	#1, 3 & 370 kHz .0 Day Non-directional	dional antenna: current antenna: currentional antenna:	t. 10.2 amperes: resistance 52 ohms				
1,8.	3, 11 & 21 for t Frequency	Owers 1 5 Day Night	#1, 3 & 370 kHz .0 Day Non-directive Directional Non-directive Directional	dional antenna: current antenna: currentional antenna:	t. 10.2 amperes: resistance 52 ohms				

Subject to the provisions of the Communications Act of 1934, as amended, subsequent Acts, Treatles, and Commission rules made thereunder, and further subject to conditions set forth in this license, the LICENSEE is hereby authorized to use and operate the radio transmitting apparatus herein described for the purpose of broadcasting for the term ending 3. A.M. Local Time

December 1, 1997

The Commission reserves the right during said license period of terminating this license or making effective any change, or modification of this license which may be necessary to comply with any decision of the Commission rendered as a result of any hearing held under the rules of the Commission prior to the commencement of this license period.

The license is issued on the licensee's representation that the statements contained in the licensee's application are true and that the undertakings therein contained so far as they are consistent herewith, will be carried out in good faith. The licensee shall, during the term of this license, render such broadcasting service as will serve the public interest, convenience or necessity to the full extent of the privileges herein conferred.

This license shall not vest in the licensee any right to operate the station nor any right in the use of the frequency designated in the license beyond the term hereof, nor in any other manner than authorized herein. Notifier the license nor the right granted hereunder shall be assigned or otherwise transferred in violation of the Communications Act of 1934, as amended. This license is subject to the right 1 or control by the Government of the United States conferred by section 606 of the Communications Act of 1934, as amended.

JAV:rao

This license consists of this page and pages 2 & 3

FEDERAL COMMUNICATIONS COMMISSION

Dated: JAN 2 2 1996

FCC Form 353-A June 1980

File No.: BL-950203AA Call Sign: KKSJ

1. DESCRIPTION OF DIRECTIONAL ANTENNA SYSTEM

No. and Type of Elements: Four (4) vertical, guyed, series excited, steel radiators of uniform cross section. Theoretical RMS: (day & night) 712 mV/m. Standard RMS: (day & night) 747.97 mV/m. Q (day & night) 22.36.

Height above Insulators:

59.4 m (97.8°)

Overall Height: 61 m

Spacing and Orientation: With tower #1 as reference, tower #2 is spaced 123.3° apart on a line bearing of 61.0° T; tower #3 is spaced 82.2° apart on a line bearing of 341.0° T; tower #4 is spaced 91.3° apart on a line bearing 251.0°T.

Non-Directional Antenna: None Authorized.

Ground System consists of 120 equally spaced, buried, copper radials 60.96 m in length except where terminated by property boundaries or where intersecting radials are shortened and bonded, plus a 7.3 m x 7.3 m ground screen about the base of each tower.

THEORETICAL Towers:	#1	#2	#3	#4	
Phasing: [Day & Night	0.0°	71.4°	-119.0°	-92.6°
Field Ratio: Da	y & Night:	1.000	0.407	0.875	0.371
		S 0.0°	60.4°	-56.0°	99.0°
Antenna Base Current Ratio:	Day & Night:	1.000	0.337	0.242	0.632
Antenna Monit Current Ratio:	-	1 000	0.310	0.220	0.626
	Towers: Phasing: Da Field Ratio: Da OPERATING S Phase Indication Antenna Base Current Ratio: Antenna Monit	Phasing: Day & Night Field Ratio: Day & Night: OPERATING SPECIFICATION: Phase Indication*:	Phasing: Day & Night 0.0° Field Ratio: Day & Night: 1.000 OPERATING SPECIFICATIONS Phase Indication*:	Towers: #1 #2 Phasing: Day & Night 0.0° 71.4° Field Ratio: Day & Night: 1.000 0.407 OPERATING SPECIFICATIONS Phase Indication*: Day & Night: 0.0° 60.4° Antenna Base Current Ratio: Day & Night: 1.000 0.337 Antenna Monitor Sample Current Ratio:	Towers: #1 #2 #3 Phasing: Day & Night 0.0° 71.4° -119.0° Field Ratio: Day & Night: 1.000 0.407 0.875 OPERATING SPECIFICATIONS Phase Indication*: Day & Night: 0.0° 60.4° -56.0° Antenna Base Current Ratio: Day & Night: 1.000 0.337 0.242 Antenna Monitor Sample Current Ratio:

^{*} As indicated by Potomac Instruments AM-19 (204) Antenna Monitor.

Antenna sampling system approved under Section 73.68 (b) of the Rules.

File No: BL-950203AA Call Sign: KKSJ

DESCRIPTION OF AND FIELD INTENSITY AT MONITORING POINTS:

Direction of 48.5° True North. From the KKSJ transmitter site proceed on Eggo Way to Wooster St. at Julian St., which becomes Mc Kee Road. East of highway 101, turn left and proceed East for 6.7 miles to Toyon Avenue. Turn left and proceed 1.3 miles North along Toyon Avenue for 1.3 miles and take a right turn on Pepper Tree Lane. Go 0.8 miles to the monitor point which is in front of 4147 Pepper Tree at the Santa Clara County survey marker in the middle of the road. The distance is 5.5 km from the array center. The field intensity measured at this point should not exceed 5.5 mV/m.

Direction of 112° True North. From the 48.5° monitor point re-trace steps to highway 101, the Bayshore Freeway. Head southbound on 101 for 3.3 miles to Story Road. Head East on Story Road for 2.3 miles turning right onto Adrian Way. Turn left at 0.2 miles onto Amador Drive then turn right in another 0.2 miles onto Tallahassee Drive and drive 0.4 miles to Arden way. The monitor point is at the intersection of Tallahassee and Arden on the N.E. corner (Casell School). The distance is 4.06 km from the array center. The field intensity measured at this point should not exceed 73.2 mV/m.

Direction of 143.5° True North. From the 112° monitor point re-trace route to Story Road. Turn left and drive 3 miles and take a left turn onto McGlaughlin Avenue. Head South for 0.6 miles and turn left onto Camelian Drive. In 0.3 miles turn right onto Santee Drive. The monitor point is 0.2 miles down Santee at Tami Lee Drive at the south side of the street on the curb at 1360 Tammy Lee Drive. The distance is 4 km from the array center. The field intensity measured at this point should not exceed 24.8 mV/m.