n) ¹ F

£

5

Federal Communications Commission Washington, D. C. 20554	Approved by 3060 Expires 01	-0627 FOR 31/98 FCC USE		
FCC 302	-AM	ONLY		
APPLICATION	FOR AM			
BROADCAST STA	FION LICENSE	FOR COMMISSION USE ONLY		
(Please read instructions b	efore filling out form.	FILE NBMME20130	1/SADS	
SECTION I - APPLICANT FEE INFO	RMATION			
1. PAYOR NAME (Last, First, Middle Initi	al)			
Kiertron, Inc.		copy notices and comm	unications to:	
MAILING ADDRESS (Line 1) (Maximum 3	35 characters)	Miller and Neely		
P.O. Box 3003)E characters)	6900 Wisconsin A		
MAILING ADDRESS (Line 2) (Maximum 3	so characters)	Bethesda, MD 20	815	
CITY Blue Bell		STATE OR COUNTRY (if foreign address) PA	ZIP CODE 19422	
TELEPHONE NUMBER (include area coc (215) 628-3500	le)	CALL LETTERS OTHER FCC IDENTIFIER (If applicable) KBRT FRN 0001519610		
2. A. Is a fee submitted with this application	on?	EACTD 2/500	X Yes No	
B. If No, indicate reason for fee exemption	ion (see 47 C.F.R. Section			
Governmental Entity	Noncommercial educ	ational licensee Other (Please explain):		
C. If Yes, provide the following informat	lant			
		re applying for. Fee Type Codes may be found in s application. Enter fee amount due in Column (C).		
Fee Filing Guide. Column (D) lists the Fe	e multiple applicable for thi	s application. Enter lee amount due in Column (C).		
(A)	(B)	(C)		
		FEE DUE FOR FEE		
FEE TYPE	FEE MULTIPLE	TYPE CODE IN F	OR FCC USE ONLY	
m m r O	0 0 1	\$ 635.00	خ ال	
To be used only when you are requesting of	concurrent actions which res	ult in a requirement to list more than one Fee Type	Code.	
(A)	(B)	(C)		
mor 0	0 0 1	\$ 730.00	OR FCC USE ONLY	
]		
]	
ADD ALL AMOUNTS SHOWN IN COLUM		TGTAL AMOUNT REMITTED WITH THIS	OR FCC USE ONLY	
AND ENTER THE TOTAL HERE.		APPLICATION		
THIS AMOUNT SHOULD EQUAL YOUR	ENCLOSED	\$ 1,365.00		
REMITTANCE.				

Received & Inspected JAN 15 2013 FCC Mail Froom

502

SECTION II - APPLICANT INFORMATION 1. NAME OF APPLICANT						
Kiertron, Inc. FRN0001519610						
MAILING ADDRESS P.O. Box 3003						
CITY	STATE	ZIP CODE				
Blue Bell	PA	19422				
2. This application is for:	ercial Noncommercial					
AN	1 Directional AM Non-Directional					
Call letters FAC 34588 Community of License	Construction Permit File No. Modification of Constructio	n Expiration Date of Last				
KBRT Costa Mesa, CA	Permit File No(s).	Construction Permit				
accordance with 47 C.F.R. Section 73.1620 W	suant to automatic program test authority in 0? Tritten program test authority request 1so MDCL authority requested herein	ed Exhibit No. E-1				
_	imen addiertey requested herein					
4. Have all the terms, conditions, and construction permit been fully met?	obligations set forth in the above described	X Yes No				
If No, state exceptions in an Exhibit.		Exhibit No. N/A				
5. Apart from the changes already reported the grant of the underlying construction prepresentation contained in the construction	ed, has any cause or circumstance arisen since permit which would result in any statement or n permit application to be now incorrect?	Yes X No				
If Yes, explain in an Exhibit IBOC	restrictions authorized in special n #5 are implemented as specified.	Exhibit No. N/A				
6. Has the permittee filed its Ownership R certification in accordance with 47 C.F.R. S		Yes No				
		X Does not apply				
lf No, explain in an Exhibit.		Exhibit No. N/A				
7. Has an adverse finding been made or an adverse final action been taken by any court or administrative body with respect to the applicant or parties to the application in a civil or criminal proceeding, brought under the provisions of any law relating to the following: any felony; mass media related antitrust or unfair competition; fraudulent statements to another governmental unit; or discrimination?						
involved, including an identification of the c (by dates and file numbers), and the disp information has been earlier disclosed in required by 47 U.S.C. Section 1.65(c), the a	it a full disclosure of the persons and matters court or administrative body and the proceeding position of the litigation. Where the requisite n connection with another application or as applicant need only provide: (i) an identification to the file number in the case of an application,	Exhibit No. N/A				

the call letters of the station regarding which the application or Section 1.65 information was filed, and the date of filing; and (ii) the disposition of the previously reported matter.

3 - S 4

5

8. Does the applicant, or any party to the application, have a petition on file to migrate to the expanded band (1605-1705 kHz) or a permit or license either in the existing band or expanded band that is held in combination (pursuant to the 5 year holding period allowed) with the AM facility proposed to be modified herein?

If Yes, provide particulars as an Exhibit.

 γ_{1}

£

The APPLICANT hereby waives any claim to the use of any particular frequency or of the electromagnetic spectrum as against the regulatory power of the United States because use of the same, whether by license or otherwise, and requests and authorization in accordance with this application. (See Section 304 of the Communications Act of 1934, as amended).

The APPLICANT acknowledges that all the statements made in this application and attached exhibits are considered material representations and that all the exhibits are a material part hereof and are incorporated herein as set out in full in

CERTIFICATION

1. By checking Yes, the applicant certifies, that, in the case of an individual applicant, he or she is not subject to a denial of federal benefits that includes FCC benefits pursuant to Section 5301 of the Anti-Drug Abuse Act of 1988, 21 U.S.C. Section 862, or, in the case of a non-individual applicant (e.g., corporation, partnership or other unincorporated association), no party to the application is subject to a denial of federal benefits that includes FCC benefits pursuant to that section. For the definition of a "party" for these purposes, see 47 C.F.R. Section 1.2002(b).

2. I certify that the statements in this application are true, complete, and correct to the best of my knowledge and belief, and are made in good faith.

Name	Signature 0 5	******
Donald B. Crawford	1 Japan	Jow
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Title	Date	Telephone Number
President	01/11/2013	(215) 628-3500

#### WILLFUL FALSE STATEMENTS ON THIS FORM ARE PUNISHABLE BY FINE AND/OR IMPRISONMENT (U.S. CODE, TITLE 18, SECTION 1001), AND/OR REVOCATION OF ANY STATION LICENSE OR CONSTRUCTION

FCC NOTICE TO INDIVIDUALS REQUIRED BY THE PRIVACY ACT AND THE PAPERWORK REDUCTION ACT

The solicitation of personal information requested in this application is authorized by the Communications Act of 1934, as amended. The Commission will use the information provided in this form to determine whether grant of the application is in the public interest. In reaching that determination, or for law enforcement purposes, it may become necessary to refer personal information contained in this form to another government agency. In addition, all information provided in this form will be available for public inspection. If information requested on the form is not provided, the application may be returned without action having been taken upon it or its processing may be delayed while a request is made to provide the missing information. Your response is required to obtain the requested authorization.

Public reporting burden for this collection of information is estimated to average 639 hours and 53 minutes per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the burden, can be sent to the Federal Communications Commission. Records Management Branch, Paperwork Reduction Project (3060-0627), Washington, D. C. 20554. Do NOT send completed forms to this address.

THE FOREGOING NOTICE IS REQUIRED BY THE PRIVACY ACT OF 1974, P.L. 93-579, DECEMBER 31, 1974, 5 U.S.C. 552a(e)(3). AND THE PAPERWORK REDUCTION ACT OF 1980, P.L. 96-511, DECEMBER 11, 1980, 44 U.S.C. 3507.

FCC 302-AM (Page 3) August 1995

# Yes X No

Exhibit No. N/A





	cant -						
Кі	ertron, Inc.						
PURPOSE OF	AUTHORIZATIO	N APPLIED FOR	: (check one)				
X	Station License		Direct Me	asurement of Po	wer		
1. Facilities a	uthorized in constr		T				
Call Sign	File No. of Co (if applicable)	nstruction Permit	Frequency (kHz)	Hours of Ope	ration	Power Night	in kilowatts
KBRT	BMP-20120	809AAQ	740	Unlimited		50.0	Day 0.19
2. Station loca	ation			T			
State California				City or Town Costa Mesa	1		
3. Transmitter	location						
State	County			City or Town		Street address (or other identif	fication)
CA	Orange			Silverado		9193 Black S	itar Cyn Roa
4. Main studio	location						
State	County			City or Town		Street address	Section)
CA	Orange			Costa Mes	а	(or other identif 3183-D Airwa	
5. Remote co	ntrol point location	(specify only if a	uthorized directio	 nal antenna)			-
State	County			City or Town		Street address	
СА	Orange			Costa Mesa		(or other identification) 3183-D Airway Ave.	
	ampling system m					г <u> </u>	
Attach as an	Exhibit a detailed	description of the	e sampling system	n as installed.		E	xhibit No.
8. Operating (	constants: oint or antenna cu			RF common modulation fo	r day system	a current (in ampe 32.45	xhibit No. E-1 eres) without
<ol> <li>Operating of RF common p modulation for</li> <li>Measured anto operating freq Night</li> </ol>	constants: oint or antenna cu night system enna or common p	rrent (in amperes 2.02 oint resistance (in Day	) without	RF common for modulation for Measured an operating free Night	r day system	a current (in ampe 32.45 on point reactance Day	E-1
<ol> <li>Operating of RF common p modulation for</li> <li>Measured anto operating freq</li> </ol>	constants: oint or antenna cu night system enna or common p	rrent (in amperes 2.02 oint resistance (in	) without	RF common modulation for Measured an operating free	r day system	a current (in ampe 32.45 on point reactance	xhibit No. E-1 eres) without
8. Operating of RF common p modulation for Measured antio operating freq Night 50	constants: oint or antenna cu night system enna or common p	rrent (in amperes 2.02 oint resistance (in Day 50 al operation	) without n ohms) at	RF common modulation fo Measured an operating free Night 0	r day system ienna or comm juency	a current (in ampe 32.45 on point reactance Day	xhibit No. E-1 eres) without
8. Operating of RF common p modulation for Measured antio operating freq Night 50 Antenna indica	constants: oint or antenna cu night system enna or common p uency	rrent (in amperes 2.02 oint resistance (ii Day 50 al operation Antenna Phase reading	) without n ohms) at monitor	RF common modulation fo Measured an operating free Night 0 Antenna m	r day system eenna or comm juency onitor sample t ratio(s)	a current (in ampe 32.45 on point reactance Day 0 Antenna	xhibit No. E-1 eres) without e (in ohms) a
8. Operating of RF common p modulation for Measured anto operating freq Night 50 Antenna indica	constants: oint or antenna cu night system enna or common p uency ations for direction wers	rrent (in amperes 2.02 oint resistance (in Day 50 al operation Antenna Phase reading Night	) without n ohms) at monitor (s) in degrees Day	RF common for modulation for Measured an operating free Night 0 Antenna m curren Night	r day system eenna or comm juency onitor sample t ratio(s) Day	a current (in ampe 32.45 on point reactance Day 0	xhibit No. E-1 eres) without
8. Operating of RF common p modulation for Measured anto operating freq Night 50 Antenna indica To 1276731	constants: oint or antenna cu night system enna or common p uency ations for direction wers	rrent (in amperes 2.02 oint resistance (in Day 50 al operation Antenna Phase reading Night -39.7	) without n ohms) at monitor (s) in degrees Day -39.7	RF common for modulation for Measured an operating free Night 0 Antenna m curren Night 0.476	r day system eenna or comm juency onitor sample t ratio(s) Day 0.476	a current (in ampe 32.45 on point reactance Day 0 Antenna	xhibit No. E-1 eres) without e (in ohms) a a base curren
8. Operating of RF common p modulation for Measured anti- operating freq Night 50 Antenna indica To 1276731 1276732	constants: oint or antenna cu night system enna or common p uency ations for direction wers	rrent (in amperes 2.02 oint resistance (in Day 50 al operation Antenna Phase reading Night	) without n ohms) at monitor (s) in degrees Day	RF common for modulation for Measured an operating free Night 0 Antenna m curren Night	r day system eenna or comm juency onitor sample t ratio(s) Day	a current (in ampe 32.45 on point reactance Day 0 Antenna	xhibit No. E-1 eres) without e (in ohms) a a base curren

#### SECTION III - Page 2

 ${}^{k}B$ 

9. Description of antenna system ((f directional antenna is used, the information requested below should be given for each element of the array. Use separate sheets if necessary.)

Type Radiator See E-1 Page 41	Overall height in meters of radiator above base insulator, or above base, if grounded.	Overall height in meters above ground (without obstruction lighting)	above ground (include obstruction lighting)	If antenna is either top loaded or sectionalized, describe fully in an Exhibit.
	See E-1 Page 41	See E-1 Page 41	See E-1 Page 41	N/A
	possed to the second			

Excitation

Series

X

Shunt

Geographic coordinates to nearest second. For directional antenna give coordinates of center of array. For single vertical radiator give tower location.

The additional of the provide the second sec		
North Latitude 33 49 44 West Longitude 117 38	18 "	
		2

Exhibit No.

E-1

Exhibit No.

N/A

If not fully described above, attach as an Exhibit further details and dimensions including any other antenna mounted on tower and associated isolation circuits.

Also, if necessary for a complete description, attach as an Exhibit a sketch of the details and dimensions of ground system.

10. In what respect, if any, does the apparatus constructed differ from that described in the application for construction permit or in the permit?

None

11. Give reasons for the change in antenna or common point resistance.

N/A

I certify that I represent the applicant in the capacity indicated below and that I have examined the foregoing statement of technical information and that it is true to the best of my knowledge and belief.

Name (Please Print or Type)	Signature (check appropriate box below)
Wendell C. Alexander	110th
Address (include ZIP Code)	Date
Crawford Broadcasting Company	01/11/2013
2821 S. Parker Road, Suite 1205	Telephone No. (Include Area Code)
Aurora CO 80014	(303) 433-0104

X	Technical Director	Registered Professional Engineer
	Chief Operator	Technical Consultant
	Other (specify)	

FCC 302-AM (Page 5) August 1995

Received & Inspected LAN 15 2013 FCC Mail Room

EXHIBIT E-1

4 F

APPLICATION FOR LICENSE INFORMATION RADIO STATION KBRT COSTA MESA, CALIFORNIA

BMP-20120809AAQ

Kiertron, Inc.

January 11, 2013

740 kHz 50 kW-D/0.19 kW-N DA-2



CRAWFORD BROADCASTING COMPANY

### EXECUTIVE SUMMARY

This engineering exhibit supports an application for license to cover a construction permit for a change in day and night facilities for radio station KBRT, Costa Mesa, California (FCC

FID No. 34588, BMP-20120809AAQ) pursuant to the AM technical rules permitting moment-method modeling of eligible AM directional arrays [47 C.F.R. §73.151(c)].

KBRT is currently licensed on 740 kHz with 10 kW day and 0.113 kW night using the same directional parameters day and night. The construction permit specifies a site change as well as both day and night power increases to 50 kW and 0.19 kW, respectively, using the same four-tower directional array and pattern. It is desired to license both the day and night facilities pursuant to the AM modeling option.

Information is provided herein showing that the directional antenna parameters for the day and night patterns authorized by the FCC have been determined in accordance with the requirements of 47 C.F.R. 73.151(c). The system has been adjusted to produce antenna monitor parameters within  $\pm 5$  percent in ratio and  $\pm 3$  degrees in phase of the modeled values, as required by the Rules. A modified station license is requested herewith specifying the new operating parameters.

The new KBRT facility was adjusted to the model-determined operating parameters and reference field intensity measurements were made while operating pursuant to 47 C.F.R. §73.1615. KBRT is presently operating from its licensed site and facilities pending grant of program test authority. Program test authority is requested herewith.

KBRT intends to take advantage of the built-in MDCL power-saving technology available with its Nautel NX-50 main transmitter. As such, we herewith request a waiver of 47 C.F.R. §73.1560(a) for the purpose of allowing MDCL operation in accordance with Public Notice, DA 11-1535, dated September 13, 2011.

Received & Inspected

JAN 15 2013

# Analysis of Tower Impedance Measurements to Verify Method of Moments Model

# FCC Mail Room

Tower base impedance measurements were made at the final J-plugs within the Antenna Tuning Units (ATUs) using a Delta Electronics OIB-1 operating impedance bridge. The other towers were all open-circuited at the same points where the impedance measurements were made for them. This arrangement left only the static drain chokes in shunt across the ATU outputs and the short feed tubing between the ATU outputs and the tower bases in series in the impedance measurements.

ACSModel (MININEC 3.1 core) was used to model the KBRT array.

A lumped load with a reactance of -j10,000 was modeled at the base of the other towers to simulate an open circuit at each tower base.

The tower heights were adjusted in the model in order to achieve calibration of the model with the measured base impedances. All modeled tower heights were within 75 to 125 percent of the physical tower height as required by the FCC Rules.

The modeled radius for each tower was the physical radius of the tower as determined by the formula  $3T/2\pi$ , where T is the tower face width in meters. The KBRT radiators are uniform cross-section triangular towers and have face widths of 0.6097 meters. Each tower's radius was modeled at 0.2911 meters.

Each tower is fed with a short length of ³/₄-inch copper tubing that exhibits some amount of series inductive reactance. This tubing connects to each tower immediately above the base insulator.

Tower #1 supports a 4-foot parabolic antenna for WQPJ213, an 11 GHz fixed microwave link. This antenna is mounted at the 275-foot level and is fed with multimode fiber-optic cable. No top-loading effects were observed as a result of this antenna and it was not necessary to account for it in the model.

A circuit model was constructed for each tower using the shunt static drain choke reactance, the assumed series feed tubing and shunt base region reactances. This model was used with WCAP Professional version 1.1.02 to determine the effects of these reactances on the ATU output impedance at each tower. In each of the WCAP tabulations, node 2 represents the ATU output reference point and node 3 represents the tower base as shown on the circuit model schematic provided with each tabulation. Node 0 represents ground potential. The ATU output impedances can be found in the "TO IMPEDANCE" column of each WCAP tabulation, following the phantom 1.0 ohm resistor inserted in the model to provide a calculation point for the impedance. The complex base impedance of each tower from the moment method model is represented in each case by the complex load from node 3 to ground. A value of 90 pF was assumed for the base insulator.

At tower #3, the antenna tuning unit cabinet is quite large and is located in close proximity to the tower base. A capacitor with a value of 100 pF was used in the circuit model in addition to the capacitor representing base insulator to account for the stray capacitance produced by the proximity to the ATU cabinet. The total capacitance used in the tower #3 circuit model is 190 pF, the reactance for which is 1,132 ohms. As such, the total shunt capacitance used to model base region effects is less than 250 pF and the reactance is greater than five times the

magnitude of the tower base operating impedance, thus complying with the limits set forth in 47 C.F.R. §73.151(c)(1)(viii).

The WCAP circuit model tabulation immediately follows the model for each tower.

ì,

ź

The modeled and measured impedances at the ATU output J-plugs with the other towers open-circuited at their ATU output J-plugs agree within  $\pm 2$  ohms and  $\pm 4$  percent as required by the FCC rules.

				Series	Shunt	Phys.	Model	%
	Z _{BASE}	Z _{ATU}	Z _{ATU}	L	С	Height	Height	Phys.
Twr.	(Modeled)	(Modeled)	(Measured)	(uH)	pF	(deg.)	(deg.)	Height
1	22.1 –j61.1	21.1 –j16.7	21.0 –j17.0	9.25	90	74.5	74.8	100.4
2	22.0 –j62.6	21.0 –j19.9	21.0 –j19.9	8.88	90	74.5	74.5	100.0
3	21.2 –j66.5	19.0 –j19.9	19.0 –j19.9	9.30	190	74.5	73.8	99.1
4	23.0 –j56.8	22.0 –j18.5	22.0 -j18.5	8.00	90	74.5	75.6	101.5

 Table 1 – Analysis of Tower Impedance Measurements to Verify Moment Method Model

# 

#### KBRT Calibration Model Tower 1 Driven, All Others Floated

Frequency = 0.740 MHz Wavelength = 405.13513 Meters

No. of Wires: 4

5 U 4 U 2 J

Wire No. 1 X Segments	Coordinates Y	Z	Radius	End Connection	No. of
0	0	0		-1	
0	0	84.17808	0.2911	0	20
Wire No. 2 X Segments	Coordinates Y	Ζ.	Radius	End Connection	No. of
50.64189	87.71432	0		-2	
50.64189	87.71432	83.84046	0.2911	0	20
Wire No. 3 X Segments	Coordinates Y	Z	Radius	End Connection	No. of
-44.53305	122.3536	0		-3	
-44.53305	122.3536	83.0527	0.2911	0	20
Wire No. 4	Coordinates			End	No. of
X Segment <i>s</i>	Y	Z	Radius	Connection	
-95.17562	34.64109	0		- 4	
-95.17562	34.64109	85.07838	0.2911	0	20

#### **** ANTENNA GEOMETRY ****

Wire No.	1 Coordinates			Conn	action	Pulse
Х	Y	Z	Radius	End1	End2	No.
0	0	0	0.2911	-1	1	1
0	0	4.208904	0.2911	1	1	2
0	0	8.417808	0.2911	1	1	3
0	0	12.62671	0.2911	1	1	4
0	· 0	16.83562	0.2911	1	1	5
0	0	21.04452	0.2911	1	1.	6
0	0	25.25342	0.2911	1	1	7
0	0	29.46233	0.2911	1	1	8
0	0	33.67123	0.2911	1	1.	9
0	0	37.88013	0.2911	1	1	10
0	0	42.08904	0.2911	1	1	11
0	0	46.29794	0.2911	1	1	12
0	0	50.50685	0.2911	1	1	13
0	0	54.71575	0.2911	1	1	14
0	0	58.92465	0.2911	1	1	15
0	0	63.13356	0.2911	1	1	16
0	0	67.34246	0.2911	1.	1	17
0	0	71.55137	0.2911	1	1	18

Page 4 of 44

0 0	0 0	75.76027 79.96917	0.2911 0.2911	$\begin{array}{cccc}1&1&19\\1&0&20\end{array}$
Wire No. 2 X 50.64189 50.64189 50.64189 50.64189 50.64189 50.64189 50.64189 50.64189 50.64189 50.64189 50.64189 50.64189 50.64189 50.64189 50.64189 50.64189 50.64189 50.64189	Coordinates Y 87.71432 87.71432 87.71432 87.71432 87.71432 87.71432 87.71432 87.71432 87.71432 87.71432 87.71432 87.71432 87.71432 87.71432 87.71432 87.71432 87.71432 87.71432 87.71432 87.71432 87.71432	Z 0 4.192023 8.384047 12.57607 16.76809 20.96012 25.15214 29.34416 33.53619 37.72821 41.92023 46.11225 50.30428 54.4963 58.68832 62.88035 67.07237	Radius 0.2911 0.2911 0.2911 0.2911 0.2911 0.2911 0.2911 0.2911 0.2911 0.2911 0.2911 0.2911 0.2911 0.2911 0.2911 0.2911 0.2911 0.2911 0.2911	ConnectionPulseEnd1End2No2221222222232224222522262227222822302231223322332234223522362237
50.64189 50.64189 50.64189	87.71432 87.71432 87.71432	71.26439 75.45641 79.64844	0.2911 0.2911 0.2911	2 2 38 2 2 39 2 0 40
Wire No. 3 X -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.533	Coordinates Y 122.3536 122.3536 122.3536 122.3536 122.3536 122.3536 122.3536 122.3536 122.3536 122.3536 122.3536 122.3536 122.3536 122.3536 122.3536 122.3536 122.3536 122.3536 122.3536 122.3536	Z 0 4.152635 8.30527 12.45791 16.61054 20.76318 24.91581 29.06845 33.22108 37.37372 41.52635 45.67899 49.83162 53.98426 58.13689 62.28953 66.44216 70.5948 74.74744 78.90007	Radius 0.2911 0.2911 0.2911 0.2911 0.2911 0.2911 0.2911 0.2911 0.2911 0.2911 0.2911 0.2911 0.2911 0.2911 0.2911 0.2911 0.2911 0.2911 0.2911	Connection       Pulse         End1       End2       No.         -3       3       41         3       3       42         3       3       43         3       3       44         3       3       44         3       3       44         3       3       45         3       3       46         3       3       46         3       3       47         3       3       48         3       3       50         3       3       50         3       3       51         3       3       52         3       3       54         3       3       54         3       3       55         3       3       56         3       3       59         3       3       59         3       0       60
Wire No. 4 X -95.17562 -95.17562 -95.17562 -95.17562 -95.17562 -95.17562 -95.17562 -95.17562 -95.17562 -95.17562	Coordinates Y 34.64109 34.64109 34.64109 34.64109 34.64109 34.64109 34.64109 34.64109 34.64109	Z 0 4.253919 8.507837 12.76176 17.01567 21.26959 25.52351 29.77743 34.03135	Radius 0.2911 0.2911 0.2911 0.2911 0.2911 0.2911 0.2911 0.2911 0.2911	ConnectionPulseEndlEnd2No446144624463446444654466446744684469

r f s

Page 5 of 44

-95.17562	34.64109	38.28527	0.2911	4	4	70
-95.17562	34.64109	42.53919	0.2911	4	4	71
-95.17562	34.64109	46.79311	0.2911	4	4	72
-95.17562	34.64109	51.04703	0.2911	4	4	73
-95.17562	34.64109	55.30095	0.2911	4	4	74
-95.17562	34.64109	59.55486	0.2911	4	4	75
-95.17562	34.64109	63.80878	0.2911	4	4	76
-95.17562	34.64109	68.0627	0.2911	4	4	77
-95.17562	34.64109	72.31662	0.2911	4	4	78
-95,17562	34.64109	76.57054	0.2911	4	4	79
		80.82446	0.2911	4	0	80
Sources: 1						
Pulse No.,	Voltage Magnitu	de, Phase (Dec	grees): 1, 100	0.0, 0.	0	
Number of L	oads: 3					
Pulse No.,	Resistance, Rea	ctance: 21,	0 ,-10000			
Pulse No.,	Resistance, Rea	ctance: 41,	0 ,-10000			
Pulse No.,	Resistance, Rea	ctance: 61,	0 ,-10000			
****	******* SC	URCE DATA	* * * * * * * * * * * * *	* * * * * * *	*	
Pulse 1	Voltage = (1	00.0, 0.0j)				
	Current = (0)	.5228, 1.4474	)			
	Impedance =	(22.077, -61.1	.16j)			
	Power = $26.1$	4 Watts				

، ، د د



A A A A

WCAP - KBRT Tower 1 Calibration Model

WCAP OUTPUT AT FREQUENCY: 0.740 MHz

NODE VOLTAGES

* . , t

2

Node:	ł	27.6976 🖌	-37.1999° V
Node:	2	26.9078 🗚	-38.4873° V
Mode:	3	63.4298 <b>4</b>	-70.5427° V

	WCAP PF	\RT	BRAN	CH	VOLTAGE		BRANCH	CURRENT
R	1-+2	1.00000000	1.00	4	0.000°	V	1.00 4	0.000°
٤,	2⊶0	2920.70000000	26.91	4	-38.487°	V	0.00 🗚	-128.487°
Ŀ	2 🕶 3	9.25000000	43.06	4	90.089°	V	1.00 4	0.089°
$C_{-}$	3-+0	0.00009000	63.43	4	-70.543°	V	0.03 4	19.457°
R	$3 \rightarrow 0$	22.10000000	63.43	4	-70.543°	v	0.98 4	-0.428°

	WCAP PA	RT'			FROM IMP	EDANCE	TO .	IMPEDA	NCE
R	1-+2	1.000	0000	00	22.06 - j	16.746	21.06	~ j	16.746
L	2-+0	2920.700	0000	0	0.00 + j	13579.962	0.00	+ j	0.000
L	2-+3	9.250	0000	0	21.01 - j	16.758	21.01	- 1	59.766
C	3-+0	0,000	0900	0	0.00 - 1	2389.714	0.00	+ 1	0.000
К	3-+0	22,100	0000	0	22.10 - j	61.100	0.00	+ j	0.000
WC7	VP UNPOT I	DATA:							
	0.7400	0.0	0000	0000	0				
i.	1.0	00000000	0	1	0.00000	00			
R	1,0	00000000	ť	2	0.00000	0.0			
L	2920.1	70000000	2	0	0.00000	00			
L	э.:	25000000	5	3	0.000000	00			
0	0.0	00000000	3	0					
R	22.1	10000000	3	0	-61.100000	00			

#### 

### KBRT Calibration Model Tower 2 Driven, All Others Floated

Frequency = 0.740 MHz Wavelength = 405.13513 Meters

No. of Wires: 4

Wire No. 1 X Segments	Coordinates Y	Z	Radius	End Connection	No. of
0	0	0		-1	
0	0	84.17808	0.2911	Ō	20
Wire No. 2 X Segments	Coordinates Y	Z	Radius	End Connection	No. of
50.64189	87.71432	0		-2	
50.64189	87.71432	83.84046	0.2911	0	20
Wire No. 3	Coordinates			End	No. of
X Segments	Y	Z	Radius	Connection	
-44.53305	122.3536	0		-3	
-44.53305	122.3536	83.0527	0.2911	0	20
Wire No. 4	Coordinates			End	No. of
Х					
	Y	Z:	Radius	Connection	
Segments -95.17562	Y 34.64109	Z	Radius	Connection -4	

## **** ANTENNA GEOMETRY ****

Wire No.	1 Coordinates			Conr	ection	Pulse
Х	Y	Z	Radius	End1	End2	No.
0	0	0	0.2911	-1	1	1
0	0	4.208904	0.2911	1	1	2
0	0	8.417808	0.2911	1	1	3
0	0	12.62671	0.2911	1	1	4
0	0	16.83562	0.2911	1	1	5
0	0	21.04452	0.2911	1	1	6
0	0	25.25342	0.2911	1	1	7
0	0	29.46233	0.2911	1	1	8
0	0	33.67123	0.2911	1	1	9
0	0	37.88013	0.2911	1	1	10
0	0	42.08904	0.2911	1	1	11
0	0	46.29794	0.2911	1	1	12
0	0	50.50685	0.2911	1	1	13
0	0	54.71575	0.2911	1	1	14
0	0	58.92465	0.2911	1	1	15
0	0	63.13356	0.2911	1	1	16
0	0	67.34246	0.2911	1	1	17

Page 8 of 44

0 0 0	0 0 0	71.55137 75.76027 79.96917	0.2911 0.2911 0.2911	1 1 1	1 1 0	18 19 20
Wire No. 2 X 50.64189 50.64189 50.64189 50.64189 50.64189 50.64189 50.64189 50.64189 50.64189 50.64189 50.64189 50.64189 50.64189 50.64189 50.64189	Coordinates Y 87.71432 87.71432 87.71432 87.71432 87.71432 87.71432 87.71432 87.71432 87.71432 87.71432 87.71432 87.71432 87.71432 87.71432 87.71432 87.71432 87.71432 87.71432	Z 0 4.192023 8.384047 12.57607 16.76809 20.96012 25.15214 29.34416 33.53619 37.72821 41.92023 46.11225 50.30428 54.4963	Radius 0.2911 0.2911 0.2911 0.2911 0.2911 0.2911 0.2911 0.2911 0.2911 0.2911 0.2911 0.2911 0.2911 0.2911 0.2911 0.2911 0.2911		ection End2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Pulse No. 21 22 23 24 25 26 27 28 29 30 31 32 33 34
50.64189 50.64189 50.64189 50.64189 50.64189 50.64189 50.64189 Wire No. 3 X -44.53305	87.71432 87.71432 87.71432 87.71432 87.71432 87.71432 87.71432 87.71432 Coordinates Y 122.3536	58.68832 62.88035 67.07237 71.26439 75.45641 79.64844 Z	0.2911 0.2911 0.2911 0.2911 0.2911 0.2911 Radius	2 2 2 2 2 2 Conn End1	2 2 2 2 0 ection End2	35 36 37 38 39 40 Pulse No.
-44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44	122.3536 122.3536 122.3536 122.3536 122.3536 122.3536 122.3536 122.3536 122.3536 122.3536 122.3536 122.3536 122.3536 122.3536 122.3536 122.3536	0 4.152635 8.30527 12.45791 16.61054 20.76318 24.91581 29.06845 33.22108 37.37372 41.52635 45.67899 49.83162 53.98426 58.13689	0.2911 0.2911 0.2911 0.2911 0.2911 0.2911 0.2911 0.2911 0.2911 0.2911 0.2911 0.2911 0.2911 0.2911 0.2911 0.2911 0.2911 0.2911	-3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
-44.53305 -44.53305 -44.53305 -44.53305 -44.53305 Wire No. 4	122.3536 122.3536 122.3536 122.3536 122.3536 122.3536 Coordinates Y	62.28953 66.44216 70.5948 74.74744 78.90007 Z	0.2911 0.2911 0.2911 0.2911 0.2911 0.2911 Radius	3 3 3 3 3 Conn	3 3 3 0	56 57 58 59 60 Pulse No.
-95.17562 -95.17562 -95.17562 -95.17562 -95.17562 -95.17562 -95.17562 -95.17562	34.6410934.6410934.6410934.6410934.6410934.6410934.6410934.6410934.64109	0 4.253919 8.507837 12.76176 17.01567 21.26959 25.52351 29.77743	0.2911 0.2911 0.2911 0.2911 0.2911 0.2911 0.2911 0.2911	-4 4 4 4 4 4 4 4 4	4 4 4 4 4 4 4 4 4 4 4 4	61 62 63 64 65 66 67 68

, * ' * D

Page 9 of 44

-95.17562 -95.17562	34.64109 34.64109	34.03135 38.28527	0.2911 0.2911	4	4	69
-95.17562	34.64109			4	4	70
		42.53919	0.2911	4	4	71
-95.17562	34.64109	46.79311	0.2911	4	4	72
-95.17562	34.64109	51.04703	0.2911	4	4	73
-95.17562	34.64109	55.30095	0.2911	4	4	74
-95.17562	34.64109	59.55486	0.2911	4	4	75
-95.17562	34.64109	63.80878	0.2911	4	4	76
-95.17562	34.64109	68.0627	0.2911	4	4	77
-95.17562	34.64109	72.31662	0.2911	4	4	78
-95.17562	34.64109	76.57054	0.2911	4	4	79
-95.17562	34.64109	80.82446	0.2911	4	0	80

ء د

建新维护 的复数潜艇 计输出 化二乙酸化

的复数形式 经济权 化合金化

.



WCAP - KBRT Tower 2 Calibration Model

WCAP OUTPUT AT FREQUENCY: 0.740 MHz

Noc	ie: 1	29.6416 <b>4</b>	-42	.1678° V							
Noc	de: 2	28.9082 4	-43	4985° V							
Npe	de: 3	64.7582 <b>4</b>	-71	0464° V							
	WCAP PA	RT		BRA	NCH	VOLTAGE		BRA	NCH	CURRENT	
R	1-+3	1.00000	000	1.00	¥	0.000°	, v	1.00			, д
I.		2920.700000							'	-133.498°	
l,	2-+3	8.88000	000	41.35	4	90.088°	v			0.088°	
Ċ.		0.000090								18.954°	
R		22.02000								-0.426°	
	WCAP PA	RT		FRO	1 IM	1PEDANCE		ТО	IMP	EDANCE	
R	1-+3	1.00000	000	21.97	~ 3	19.8	99	20.97	~	19.8	99
ξ.,	2 -	2920.70000	166	0.00	+ j	13579.9	62	0.00	+ i	0.0	00
ι.	3-+3	8.880000	000	20.91	- j	19.9	02	20.91	- 1	61.1	90
Ċ.	3-+0	0.00090	000	-0.00	- 1	2389.7	14	0.00	4	0.0	00
R	3→0	22.020000	000	22.02	~ j	62.6	00	0.00	+ J	0.0	00
WCA.	P IMPUT	DATA:									
	0.740	0.000	00000	0							
I	1.	0.0000000 0	1	0.0	0000	000					
P		00000000 = 1	2	0.0	0000	000					
		70000000 2		0.0	0000	000					
].		88000000 2	-	0.0	0000	000					
C		00009000 3									
R.	22.	02000000 3	0	-62.64	0000	000					

#### 

KBRT Calibration Model Tower 3 Driven, All Others Floated

Frequency = 0.740 MHz Wavelength = 405.13513 Meters

No. of Wires: 4

Wire No. 1 X Segments	Coordinates Y	Z	Racius	End Connection	No. of
0	0	0		-1	
0	0	84.17808	0.2911	0	20
Wire No. 2 X Segments	Coordinates Y	Z	Radius	End Connection	No. of
50.64189	87.71432	0		-2	
50.64189	87.71432	83.84046	0.2911	0	20
Wire No. 3	Coordinates			End	No. of
X Segment <i>s</i>	Y	Z	Radius	Connection	
-44.53305	122.3536	0		-3	
-44.53305	122.3536	83.0527	0.2911	0	20
Wire No. 4	Coordinates			End	No. of
X	Y	Z	Radius	Connection	
Segments -95.17562	34.64109	0		- 4	
-95.17562	34.64109	85.07838	0.2911	0	20

#### **** ANTENNA GEOMETRY ****

Wire No.	1 Coordinates			Con	nectio	n Pulse
Х	Y	Z	Radius	End	1 End2	No.
0	0	0	0.2911	-1	1	1
0	0	4.208904	0.2911	1	1	2
0	0	8.417808	0.2911	1	1	3
0	0	12.62671	0.2911	1	1	4
0	0	16.83562	0.2911	1	1	5
0	0	21.04452	0.2911	1	1	6
0	0	25.25342	0.2911	1	1	7
0	0	29.46233	0.2911	1	1	8
0	0	33.67123	0.2911	1	1	9
0	0	37.88013	0.2911	1	1	10
0	0	42.08904	0.2911	1	1	11
0	0	46.29794	0.2911	1	1	12
0	0	50.50685	0.2911	1	1	13
0	0	54.71575	0.2911	1	1	1.4
0	0	58.92465	0.2911	1	1	15
0	0	63.13356	0.2911	1	1	16
0	0	67.34246	0.2911	1	1	17

Page 12 of 44

0 0 0	0 0 0	71.55137 75.76027 79.96917	0.2911 0.2911 0.2911	1 1 18 1 1 19 1 0 20
Wire No. 2 X 50.64189 50.64189 50.64189	Coordinates Y 87.71432 87.71432 87.71432	Z 0 4.192023 8.384047	Radius 0.2911 0.2911	Connection Pulse Endl End2 No. -2 2 21 2 2 22 2 2 22
50.64189 50.64189 50.64189 50.64189 50.64189 50.64189	87.71432 87.71432 87.71432 87.71432 87.71432 87.71432	12.57607 16.76809 20.96012 25.15214 29.34416	0.2911 0.2911 0.2911 0.2911 0.2911 0.2911 0.2911	2 2 23 2 2 24 2 2 25 2 2 26 2 2 27 2 2 28
50.64189 50.64189 50.64189 50.64189 50.64189 50.64189	87.71432 87.71432 87.71432 87.71432 87.71432 87.71432	33.53619 37.72821 41.92023 46.11225 50.30428	0.2911 0.2911 0.2911 0.2911 0.2911 0.2911	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
50.64189 50.64189 50.64189 50.64189 50.64189 50.64189	87.71432 87.71432 87.71432 87.71432 87.71432 87.71432	54.4963 58.68832 62.88035 67.07237 71.26439	0.2911 0.2911 0.2911 0.2911 0.2911 0.2911	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
50.64189 50.64189 Wire No. 3 X	87.71432 87.71432 Coordinates Y	75.45641 79.64844 Z	0.2911 0.2911 Radius	2 2 39 2 0 40 Connection Pulse Endl End2 No.
-44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305	122.3536 122.3536 122.3536 122.3536 122.3536 122.3536	0 4.152635 8.30527 12.45791 16.61054	0.2911 0.2911 0.2911 0.2911	-3 3 41 3 3 42 3 3 43 3 3 44
-44.53305 -44.53305 -44.53305 -44.53305	122.3536 122.3536 122.3536 122.3536 122.3536	20.76318 24.91581 29.06845 33.22108	0.2911 0.2911 0.2911 0.2911 0.2911	3     3     46       3     3     47       3     3     48       3     3     49
-44.53305 -44.53305 -44.53305 -44.53305 -44.53305	122.3536 122.3536 122.3536 122.3536 122.3536 122.3536	37.37372 41.52635 45.67899 49.83162 53.98426	0.2911 0.2911 0.2911 0.2911 0.2911 0.2911	3       3       50         3       3       51         3       3       52         3       3       53         3       3       54
-44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305	122.3536 122.3536 122.3536 122.3536 122.3536 122.3536	58.13689 62.28953 66.44216 70.5948 74.74744	0.2911 0.2911 0.2911 0.2911 0.2911 0.2911	3     3     55       3     3     56       3     3     57       3     3     58       3     3     59       3     0     60
Wire No. 4 X -95.17562	122.3536 Coordinates Y 34.64109	78.90007 Z 0	0.2911 Radius 0.2911	Connection Pulse Endl End2 No. -4 4 61
-95.17562 -95.17562 -95.17562 -95.17562 -95.17562	34.64109 34.64109 34.64109 34.64109 34.64109 34.64109	4.253919 8.507837 12.76176 17.01567 21.26959	0.2911 0.2911 0.2911 0.2911 0.2911 0.2911	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
-95.17562 -95.17562	34.64109 34.64109	25.52351 29.77743	0.2911 0.2911	4 4 67 4 4 68

Page 13 of 44

-95.17562	34.64109	34.03135	0.2911	4	4	69
-95.17562	34.64109	38.28527	0.2911	4	4	70
-95.17562	34.64109	42.53919	0.2911	4	4	71
-95.17562	34.64109	46.79311	0.2911	4	4	72
-95.17562	34.64109	51.04703	0.2911	4	4	73
-95.17562	34.64109	55.30095	0.2911	4	4	74
-95.17562	34.64109	59.55486	0.2911	4	4	75
-95.17562	34.64109	63.80878	0.2911	4	4	76
-95.17562	34.64109	68.0627	0.2911	4	4	77
-95.17562	34.64109	72.31662	0.2911	4	4	78
-95.17562	34.64109	76.57054	0.2911	4	4	79
-95.17562	34.64109	80.82446	0.2911	4	0	80

ж 5.у.у.



WCAP - KBRT Tower 3 Calibration Model

WCAP OUTPUT AT FREQUENCY: 0.740 MHz

RODE VOLTAGES Node: 1 28.1914 **4** -44.9199° V Node: 2 27.4924 **4** -46.3916° V Node: 3 66.0110 **4** -73.2514° V

	WCAP PA	ART'			BRANCH '	VOLTAGE	BRAN	ICH	CURRENT
R	1-•2	1.000	0000	0	1.00 🖌	0.000° V	1.00	¥	0.000° A
1,	2~*()	2920.700	0000	0	27.49 <b>4</b>	~46.392° V	0.00	4	-136.392° A
Ĭ,	23	9.300	0000	0	43.30 <b>4</b>	90,080° V	1.00	<b>4</b> .	0.080° A
C .	3-+0	0.000	0.900	0	66.01 <b>4</b>	-73.251° V	0.03	<b>4</b> .	16.749° A
R	3⊶0	21.200	0000	00	66.01 <b>4</b>	~73.251° V	0.95	4	-0.934° A
С	3-+0	0.000	1000	00	66.01 <b>4</b>	-73.251° V	0.03	4	16.749° A
	WCAP PA	\RT			FROM IM	PEDANCE	TO 1	IMPE	DANCE
R	1-+2	1.000	0000	10	19.96 - j	19.906	18.95	- j	19.906
L	2.+0	2920.700	0000	0	-0.00 + j	13579.962	0.00	+ j	0.000
ľ,	2-+3	9.300	0000	00	18.91 - j	19.904	18.91	- j	63.145
Ċ	3-+0	0.000	0900	0	0.00 - j	2389.714	0.00	+ j	0.000
R	3~0	21.200	0000	0	21.20 - 7	66.500	0.00	+ j	0.000
Ç	3++0	0.000	1000	0	0.00 - j	2150.742	0.00	+ j	0.000
WCA	P INPUT	DATA:							
	0.740	0.0	0000	0000	0				
E		000000000		1	0.00000				
R	1.	00000000	-	2	0.00000	000			
1.	2920.	70000000	2	0	0.00000	000			
1.	9.	30000500	2	3	0.00000	000			
<u>(</u> *	0.	00009000	3	0					
R	21.	20000000	3	0	-66.50000	000			
Ç	0.	00010000	3	0					

#### 

### KBRT Calibration Model Tower 4 Driven, All Others Floated

Frequency = 0.740 MHz Wavelength = 405.13513 Meters

No. of Wires: 4

i a a

Wire No. 1 X Segments	Coordinates Y	Z	Radius	End Connection	No. of
0	0	0		-1	
0	0	84.17808	0.2911	0	20
Wire No. 2	Coordinates			End	No. of
X Segments	Y	Z	Radius	Connection	
50.64189	87.71432	0		-2	
50.64189	87.71432	83.84046	0.2911	0	20
Wire No. 3	Coordinates			End	No. of
X Segments	Y	Ζ	Radius	Connection	
-44.53305	122.3536	0		-3	
-44.53305	122.3536	83.0527	0.2911	0	20
Wire No. 4	Coordinates			End	No. of
X Segments	Y	Z	Radius	Connection	
-95.17562	34.64109	0		- 4	
-95.17562	34.64109	85.07838	0.2911	Ô	20

#### **** ANTENNA GEOMETRY ****

Wire No.	1 Coordinates			Con	nectio	on Pulse
Х	Y	Z	Radius	End	1 End2	No.
0	0	0	0.2911	-1	1	1
0	0	4.208904	0.2911	1	1	2
Ö	0	8.417808	0.2911	1	1	3
0	0	12.62671	0.2911	1	1	4
0	0	16.83562	0.2911	1	1	5
0	0	21.04452	0.2911	1	1	6
0	0	25.25342	0.2911	1	1	7
0	0	29.46233	0.2911	1	1	8
0	0	33.67123	0.2911	1	1	9
0	0	37.88013	0.2911	1	1	1.0
0	0	42.08904	0.2911	1	1	11
0	0	46.29794	0.2911	1	1	12
0	0	50.50685	0.2911	1	1	13
0	0	54.71575	0.2911	1	1	14
0	0	58.92465	0.2911	1	1	15
0	0	63.13356	0.2911	1	1	16
0	0	67.34246	0.2911	.1	1	17
0	0	71.55137	0.2911	1	1	18

(- .5	0 0	75 76027 79.96917	0.2911 0.2911	1.	î Q	19 20
Wire No. 2	Coordinates			Can	nantin	n Polse
X	Y	<b>17</b>	Radius		1 End2	
50,64199	87.71432	<u></u>	0.2911		5 101077 	22
50.64189	87.71430	4.192023	0.2911	2	i	to an Alt
50.64129	87.71432	8.384447	0.2911	t i Li		23
50.64189	87.71432	12.32282	0.2911	tin V		
50.64189	87.71432	16.76869			92 1	24
50.64189	87.71432		0.2911	с. С. О		25
50.64189	87.71432	20.66012	0.2913	2		26
	87,71432	25.16214	0.291)	2.	2	27
50.61189		25.34416	0.2911	5	3	28
50.64189	87.71432	33.53619	0.2911	3	Ž	53
50.64199	87.71433	37.72821	0.2913	2	R	34
59.64189	87.71432	43 97023	0.2913	1	2	<u> </u>
50.60189	87.21196	46.11225	C.2913	2	.)	
50.64186	97.71432	56.30423	0.2901	2	2	3.3
50,64189	57.71432	54.4963	0.2001	Ż.	2	34
59.64189	67,71432	58.60632	0.24.1	2	2	35
50,64189	97.71432	62.88035	0.2913	2	2	36
50.64189	87.71432	67.07257	0.2911		2	37
50.64189	87.71132	71,26430	0.2911	2	Ст. Ка	38
50,64789	87,71422	75.度外有车前	0.2911	2		29
50.64169	87.71432	之句,后人招迎了	0.2911	2	, î	40
Wire No. 1	Courtification			Con	nectic.	t Pulso
X	<u>}</u> *	L	Radius		i fandz	
~44.53306	122.3536	Ĉ	0.2911		3	4
-44.53305	12213536	4.152635	0.2911		3	12
-44.53305	128.3536	8.30.227	0.2911	3	3	.1.3
-44.53305	122.3536	12.45/91	0.2911	9	ž	
-44.53305	122.3538	16.61454	0.2911	3	4	4.5
- 44.52305	122.3536	10.76319	6.2911			16
-44.53305	122.3536	24, 위치(58)	0.2911		3	: 7
-44.53305	122.0536	29.06845	0.2911	3	3	. 1 4 14
-44.53305	120.3536	73.22108	0.2913	2	ž.	49
- 44,53395	12213538	17.37372	0.2911	3	) )	4.2 50
- 44.53305	122.3536	41.5.635	0.2911	3		
-44.53305	122.3538	45.67899	0.2911	े हे	3 3	51 52
-44.53305	122,3536			2	3	172 1710
-44.53305	121.3336	49.83162	0.2911	5		
~44.53305		53.98426	0.2911	3	3	54
	122.2536	58.13689	0.2911	2	2	5.5
-44.53305	122.3536	62.03953	0.2911	2	3	<u> (</u> ) (
-14.33309	122.3536	66.44216	0.2975		2	57
- 66,53305	127.25.5	101, ¹⁴¹ 年月8	0.2901	) )	2	2.9
-44,53905	12218536	24.74244	0.2911	2	7	1.13
-44.53303	122.0530	16,90007	0.2911	3	9	$(\cdot, \cdot)$
7.7 ²	and a state of the state			47.		
Wire No. 4 X			·			n Fuise
	Y		Padivs		) kndž	
<ul> <li>95.117562</li> <li>35.17562</li> </ul>	34.64103	9	0.2911	~ 4	.)	61
- 35.17562	34.64103	4.253919	G12911	4	-	62
-95.17562	34.64109	8.567837	1.2911	4	.1	63
-95.17562	31.641.03	12.74176	0,29.4	4	4	$\epsilon_{j} \lesssim$
-95.17582	11.64165	17,11567	0.291)		-t	6 S
-95.17562	34.K4109	81.23955	0.2911	Ą	ŝ	6
-95,17562	34.64209	25.5399	0.2911	۰.	d.	ę. ¹⁷
-95.17562	34.64109	29.77-43	0.2911	4		65
-93.17962	34,64103	34.03136	0.291.	d)	- Ì	69
		Page 17 o	f 4A			
		1 (4 <u>0</u> 06 - 17 C)				

к : к : Ч. е

-95.17562	34.64109	38,28527	0.2911	4	4	70
-95.17562	34.64109	42.53919	0.2911	4	4	71
-95.17562	34.64109	46.79311	0.2911	4	4	72
-95.17562	34.64109	51.04703	0.2911	4	4	73
-95.17562	34.64109	55.30095	0.2911	4	4	74
-95.17562	34.64109	59.55486	0.2911	4	4	75
-95.17562	34.64109	63.80878	0.2911	4	4	76
-95.17562	34.64109	68.0627	0.2911	4	4	77
-95.17562	34.64109	72.31662	0.2911	4	4	78
-95.17562	34.64109	76.57054	0.2911	4	4	79
-95.17562	34.64109	80.82446	0.2911	4	0	80

' 17 В



WCAP - KBRT Tower 4 Calibration Model

WCAF OUTFUT AT FREQUENCY: 0.740  $\rm MHz$ 

NODE VOLTAGES Node: 1 29,5067 **4** -38.7794° V Node: 2 28.7339 **4** -40.0284° V Node: 3 59,9362 **4** -68.4014° V

	WCAP (	ART			BR	ANCI	I VOLTAG	E	BRA	ANCF	L CURRENT
R	1.42	1,000	0000	0	1.00	4	0.00	0° V	1.00	4	0.000° A
L	2-40	2920.700	0000	)	28.73	4	-40.02	8° V	0.00	¥	-130.028° A
Ι,	2-+3	8.000	0000	Э	37.25	4	90.04	93° V	1.00	4	0.093° A
41	3-40	ð,000	0900	3	59.94	4	~68.40	l° V	0.03	4	21.599° A
К	3.46	23.000	0000	)	59.94	*	-68.40	1° V	0.98	4	-0.446° A
	WCAP I	ART			FR	MC	IMPE DANC	Έ	TO	UME	PEDANCE
R	1.5.2	1.000	0000	)	23.00	. ·	j 18	.481	22.00	<u> </u>	18.481
L	2.40	2920,200	0600	)	0.00	4	j 13579	.962	0.00	+ 1	0.000
1,	2.43	8.000	9000	)	21,94		18	.491	21.94	- j	55.688
С	3-+0	0.000	0900	)	0.00		2389	.714	0.00	+ j	0.000
R	3-40	23.000	0000	)	23.00		j 56	.800	0.00	+ j	0.000
∜CA	P INPU	DATA:									
	0.74	100 0.4	0000	0000	0						
E	3	.00000000	0	1	0.0	000	00000				
R	1	.000000000	1	2	0.0	000	00000				
L	2920	.70000000	2	0	0.0	000	00000				
L	8	3.0000000	- 2 -	3	0.0	000	00000				
C,	0	0.00000000	3	Ű.							
R	23	3.00000000	3	0	-56.8	3000	00000				

# Derivation of Operating Parameters for Day Directional Operation

Once calibrated against the measured individual open-circuited base impedances, the moment method model was utilized for day directional antenna calculations. These calculations were made to determine the complex voltage source values to be applied at ground level for each tower of the array to produce the current moment sums for the towers which, when normalized to the reference tower, equate to the theoretical field parameters of the authorized directional pattern. These voltage sources were then applied in the model and the tower currents were calculated.

# Day Antenna Model

÷ ۵

Twenty segments were used for each tower. The KBRT towers are base sampled, which is permitted for towers of 120 electrical degrees or less. As such, the first (ground) segment of each tower was used to determine the model operating parameters of the array.

A circuit model was constructed to determine the effect of the series feed inductance and shunt base region capacitance on the ATU output current. Again, this model was used with the WCAP Professional program.

This effect was, as expected, minimal, and the results are tabulated in the table below along with the base operating parameters for the day array.

Twr.	Node	Current Magnitude (amperes)	Current Phase (degrees)	WCAP Current Offset for Unity I _{BASE}	WCAP Phase Offset for Unity Ø _{BASE} (degrees)	Antenna Monitor Ratio	Antenna Monitor Phase (degrees)
1	1	23.2553	-37.7	1.025	+0.7	0.476	-39.7
2	21	43.0568	+105.3	1.025	+0.0	0.880	+102.6
3	41	47.3868	+1.9	1.058	+0.8	1.000	0.0
4	61	28.2243	-96.4	1.008	+0.8	0.567	-98.3

# 

.

KBRT

4 - E

Daytime Directional Operation

Frequency = 0.740 MHz Wavelength = 405.13513 Meters

No. of Wires: 4

Wire No. 1 X Segments	Coordinates Y	Z	Radius	End Connection	No. of
0	0	0		-1	
0	0	84.17808	0.2911	0	20
Wire No. 2 X Segments	Coordinates Y	Z	Radius	End Connection	No. of
50.64189	87.71432	0		-2	
50.64189	87.71432	83.84046	0.2911	0	20
Wire No. 3	Coordinates			End	No. of
X Segments	Y	Z	Radius	Connection	
-44.53305	122.3536	0		-3	
-44.53305	122.3536	83.0527	0.2911	0	20
Wire No. 4	Coordinates			End	No. of
X Segments	Y	Z	Radius	Connection	
2					
-95.17562	34.64109	0		4	

#### **** ANTENNA GEOMETRY ****

Wire No.	1 Coordinates			Conn	ection	Pulse
Х	Y	Z	Radius	Endl	End2	No.
0	0	0	0.2911	-1	1	1
0	0	4.208904	0.2911	1	1	2
0	0	8.417808	0.2911	1	1	3
0	0	12.62671	0.2911	1	1	4
0	0	16.83562	0.2911	1	1	5
0	0	21.04452	0.2911	1	1	6
0	0	25.25342	0.2911	1	1	7
0	0	29.46233	0.2911	1	1	8
Ô	0	33.67123	0.2911	1	1	9
0	0	37.88013	0.2911	1	1	10
0	Ο	42.08904	0.2911	1	1	11
0	0	46.29794	0.2911	1	1	12
0	0	50.50685	0.2911	1	1	13
0	0	54.71575	0.2911	1	1	14
0	0	58.92465	0.2911	1	1	15
0	0	63.13356	0.2911	1	1	16
0	0	67.34246	0.2911	1	1	17

Page 22 of 44

0 0 0	0 0 0	71.55137 75.76027 79.96917	0.2911 0.2911 0.2911	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
Wire No. 2 X 50.64189 50.64189 50.64189 50.64189 50.64189 50.64189 50.64189 50.64189 50.64189 50.64189 50.64189 50.64189 50.64189 50.64189 50.64189 50.64189 50.64189	Coordinates Y 87.71432 87.71432 87.71432 87.71432 87.71432 87.71432 87.71432 87.71432 87.71432 87.71432 87.71432 87.71432 87.71432 87.71432 87.71432 87.71432 87.71432 87.71432 87.71432 87.71432 87.71432 87.71432 87.71432 87.71432	Z 0 4.192023 8.384047 12.57607 16.76809 20.96012 25.15214 29.34416 33.53619 37.72821 41.92023 46.11225 50.30428 54.4963 58.68832 62.88035 67.07237 71.26439	Radius 0.2911 0.2911 0.2911 0.2911 0.2911 0.2911 0.2911 0.2911 0.2911 0.2911 0.2911 0.2911 0.2911 0.2911 0.2911 0.2911 0.2911 0.2911 0.2911 0.2911	Connection       Pulse         Endl       End2       No.         -2       2       21         2       2       22         2       2       23         2       2       23         2       2       23         2       2       24         2       2       25         2       2       26         2       2       27         2       2       27         2       2       27         2       2       27         2       2       27         2       2       27         2       2       27         2       2       30         2       2       31         2       2       33         2       2       35         2       2       36         2       2       37         2       2       38
50.64189 50.64189 50.64189 Wire No. 3	87.71432 87.71432 87.71432 Coordinates	71.26439 75.45641 79.64844	0.2911 0.2911 0.2911	2 2 38 2 2 39 2 0 40 Connection Pulse
X -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305	Y 122.3536 122.3536 122.3536 122.3536 122.3536 122.3536 122.3536 122.3536 122.3536 122.3536 122.3536 122.3536 122.3536 122.3536 122.3536 122.3536 122.3536 122.3536 122.3536	Z 0 4.152635 8.30527 12.45791 16.61054 20.76318 24.91581 29.06845 33.22108 37.37372 41.52635 45.67899 49.83162 53.98426 58.13689 62.28953 66.44216 70.5948 74.74744 78.90007	Radius 0.2911 0.2911 0.2911 0.2911 0.2911 0.2911 0.2911 0.2911 0.2911 0.2911 0.2911 0.2911 0.2911 0.2911 0.2911 0.2911 0.2911 0.2911 0.2911 0.2911 0.2911	EndlEnd2No. $-3$ 341334233433344334533463347334833493350335133523352335433563357335833593060
Wire No. 4 X -95.17562 -95.17562 -95.17562 -95.17562 -95.17562 -95.17562 -95.17562 -95.17562	Coordinates Y 34.64109 34.64109 34.64109 34.64109 34.64109 34.64109 34.64109 34.64109	Z 0 4.253919 8.507837 12.76176 17.01567 21.26959 25.52351 29.77743	Radius 0.2911 0.2911 0.2911 0.2911 0.2911 0.2911 0.2911 0.2911	ConnectionPulseEnd1End2No44614462446344644465446644674468

ه ۲ د د چ

Page 23 of 44

0.2911 -95.17562 34.64109 34.03135 4 69 4 0.2911 4 0.2911 4 -95.17562 34.64109 38.28527 4 70 -95.17562 34.64109 42.53919 4 71 46.79311 -95.17562 34.64109 0.2911 4 4 72 

 40.79311
 0.2911

 51.04703
 0.2911

 55.30095
 0.2911

 59.55486
 0.2911

 63.80878
 0.2911

 68.0627
 0.2911

 -95.17562 34.64109 73 4 4 -95.17562 34.64109 4 4 74 -95.17562 34.64109 34.64109 4 4 75 -95.17562 4 4 34.64109 34.64109 34.64109 34.64109 34.64109 76 -95.17562 4 4 77 
 72.31662
 0.2911

 76.57054
 0.2911
 -95.17562 4 4 78 -95.17562 4 4 79 80.82446 -95.17562 34.64109 0.2911 4 0 80 Sources: 4 Pulse No., Voltage Magnitude, Phase (Degrees): 1, 1721.0, -96.6 Pulse No., Voltage Magnitude, Phase (Degrees): 21, 2734.5, 17.3 Pulse No., Voltage Magnitude, Phase (Degrees): 41, 3291.8, -72.1 Pulse No., Voltage Magnitude, Phase (Degrees): 61, 1210.2, -115.7 Number of Loads: 0 ***** Pulse 1 Voltage = (-197.0202, -1709.6807j) Current = (18.3921, -14.2317j)Impedance = (38.291, -63.328j)Power = 10353.98 Watts Pulse 21 Voltage = (2611.4575, 811.1731j)Current = (-11.3595, 41.5313j)Impedance = (2.171, -63.473j)Power = 2012.15 Watts Pulse 41 Voltage = (1011.8479, -3132.4116j)Current = (47.3611, 1.5609j)Impedance = (19.164, -66.771j)Power = 21516.33 Watts Pulse 61 Voltage = (-524.3434, -1090.6593j)Current = (-3.1316, -28.0501j)Impedance = (40.465, -14.175j)Power = 16117.55 Watts Total Power = 50000.003 Watts ************* Wire No. 1 : Pulse Imaginary Real Magnitude Phase (Amps) No. (Amps) (Amps) (Degrees) 23.2553 22.5573 1 18.3921 -14.2317 -37.7323 2 -38.7143 17.6009 -14.1082 3 17.0013 21.9871 -13.9424 -39.3544 4 16.3948 -13.7117 21.3729 -39.9073 5 15.7592 -13.4141 20.6952 -40.4042 6 -13.0495 19.9467 -40.8605 15.0858 7 14.371 -12.6184 19.1246 -41.2845 -41.6821 8 13.6138 -12.1218 18.2284 -42.0571 9 -11.5613 12.8144 17.2589 10 -42.4127 -10.9383 16.2177 11.9736 -10.2546 15.1066 -42.7513 11 11.0929

s .

6

. e

Page 24 of 44

12 13 14 15 16 17 18 19 20 E	10.1738 9.2182 8.2276 7.2034 6.1465 5.0562 3.9295 2.7578 1.5174 0.0	-9.5122 -8.7128 -7.8581 -6.9496 -5.988 -4.9727 -3.9005 -2.7623 -1.5337 0.0	13.9279 12.6841 11.3773 10.0093 8.5811 7.0917 5.5367 3.9033 2.1575 0.0	-43.075 -43.3855 -43.6842 -43.9726 -44.2519 -44.5232 -44.7879 -45.0476 -45.3068 0.0
Wire No. 2 Pulse No. 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 E	: Real (Amps) -11.3595 -10.9771 -10.6701 -10.3443 -9.9897 -9.6023 -9.1809 -8.7257 -8.2372 -7.7165 -7.1651 -6.5845 -5.9762 -5.3418 -4.6826 -3.9996 -3.2928 -2.5607 -1.798 -0.9897 0.0	Imaginary (Amps) 41.5313 40.2896 39.269 38.1665 36.9491 35.6042 34.1276 32.5189 30.7799 28.9135 26.9237 24.8147 22.5909 20.2565 17.8148 15.2676 12.6135 9.8446 6.9382 3.8341 0.0	Magnitude (Amps) 43.0568 41.7582 40.6928 39.5434 38.2757 36.8763 35.341 33.6692 31.863 29.9255 27.8608 25.6734 23.368 20.949 18.4199 15.7828 13.0362 10.1722 7.1674 3.9598 0.0	Phase (Degrees) 105.2972 105.2406 105.2013 105.1647 105.129 105.0933 105.0571 105.0201 104.9822 104.943 104.9025 104.8608 104.8176 104.773 104.727 104.6795 104.6306 104.5803 104.5282 104.4738 0.0
Wire No. 3 Pulse No. 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 E	: Real (Amps) 47.3611 45.8861 44.6888 43.4063 41.9989 40.4513 38.7581 36.9184 34.934 32.8079 30.5441 28.1474 25.6223 22.9732 20.2038 17.3155 14.3065 11.1676 7.8724 4.3524 0.0	Imaginary (Amps) 1.5609 1.1208 0.8429 0.6096 0.4075 0.2308 0.0767 -0.0563 -0.1691 -0.2623 -0.3363 -0.3913 -0.4275 -0.445 -0.445 -0.444 -0.4243 -0.3859 -0.3282 -0.2501 -0.1486 0.0	Magnitude (Amps) 47.3868 45.8998 44.6968 43.4106 42.0009 40.452 38.7582 36.9185 34.9344 32.8089 30.546 28.1501 25.6258 22.9775 20.2086 17.3207 14.3117 11.1724 7.8764 4.3549 0.0	Phase (Degrees) 1.8877 1.3992 1.0806 0.8046 0.5559 0.3269 0.1134 -0.0874 -0.2773 -0.4581 -0.6308 -0.7964 -0.9558 -1.1097 -1.2589 -1.4038 -1.5451 -1.6834 -1.8195 -1.956 0.0

e de la constante de la consta

Page 25 of 44

Pulse	Real	Imaginary	Magnitude	Phase
No.	(Amps)	(Amps)	(Amps)	(Degrees)
61	-3.1316	-28.0501	28.2243	-96.3703
62	-3.5993	-27.7464	27.9788	-97.3911
63	-3.8641	-27.3827	27.654	-98.0322
64	-4.0535	-26.8988	27.2025	-98.5697
65	-4.1824	-26.2888	26.6194	-99.0398
66	-4.2576	-25.5513	25.9036	-99.4603
67	-4.2826	-24.6873	25.056	-99.8415
68	-4.2598	-23.6983	24.0782	-100.1902
69	-4.1909	-22.5871	22.9726	-100.5114
70	-4.0774	-21.3566	21.7423	-100.8089
71	-3.9206	-20.01	20.3905	-101.085
72	-3.7218	-18.5511	18.9207	-101.3442
73	-3.4821	-16.9832	17.3365	-101.5868
74	-3.2026	-15.3096	15.641	-101.8153
75	-2.8841	-13.5331	13.837	-102.0308
76	-2.5274	-11.6549	11.9258	-102.2353
77	-2.1323	-9.6741	9.9063	-102.4301
78	-1.6976	-7.5844	7.7721	-102.6165
79	-1.2192	-5.3682	5.5049	-102.7962
80	-0.6861	-2.9782	3.0562	-102.9724
E	0.0	0.0	0.0	0.0

Current Moments (amp-meters) Peak

Frequency: 740 kHz Input Power: 50,000 Watts

н ³ - Р

			Vert. Curre	nt Moment
Wire	Real	Imag	Magnitude	Phase
1	880.2251	-778.7572	1175.2697	-41.50
2	-559.6954	2088.8112	2162.4965	105.00
3	2350.5395	-0.0003	2350.5395	0.00
4	-271.4310	-1539.3618	1563.1089	-100.00



WCAP - KBRT Tower 1 DA Model

WCAP OUTPUT AT FREQUENCY: 0.740 MHz

38.30000000 3 0

R

NODE VOLTAGES Node: 1 1002.5393 **4** -64.0848° V Node: 2 981.3781 **4** -64.7187° V Node: 3 1720.2912 **4** -96.5560° V BRANCH VOLTAGE BRANCH CURRENT WCAP PART 23.84 **4** -36.991° V 23.84 × -36.991° A R 1---2 1.00000000 -64.719° V 0.07 # -154.719° A 2-+0 2920.70000000 981.38 **4** L 23.87 **4** -26.838° A 0.72 **4** -6.556° A 1026.64 **4** 53.162° V 3-+3 9.25000000 Ŀ -96.556° V 3-+0 0.00009000 1720.29 ≰ 1720.29 4 -46.556° V 23.25 4 -37.732° A 38.30000000 3----6 12 FROM IMPEDANCE TO IMPEDANCE WCAP FART 37.44 - j 19.155 36.44 - j 19.155 i-• 0 R 1.00000000 0.00 + 3 0.000 0----3920.70000000 0.00 + j 13579.962 ۲. 36.34 - j 9.25000000 19.226 36.34 - j 62.234 3~3 0.00 - j 2389.714 38.30 - j 63.300 0.00 + j 0.000 0.00009000 ₹**~+**{} 0.00 + j 0.000 3-+0 38.30000000 К WCAP INPUT DATA: 0.00000000 0.7400 0 -36.99130000 23.83700000 0 1 0.00000000 1 
 1.0000000
 1
 2

 920.7000000
 2
 0

 9.2500000
 2
 3

 9.00009065
 3
 0
 Ŕ 1,00000000 -2 0.00000000 L 2920.70000000 0.00000000 ŀ

-63.30000000

#### $W(\Delta P) \sim KPR^{(2)}$ fower is the Model.

WOAF OUTPUT AT FIE (MENTY: 6.740 MHz.

2963	48 - 26 M P.	23.00					
- 8. s. d	36 t	978.015년 🕰	13.9457				
11. M	Re : :	912,5550 🖌	2510541° V				
ton)	terr ⊅	2724,3109 🕹	a vu paken i V				
	$W^{*}TY = \mathbb{P}/$	ЪС,	EPAST	a 78 LTAGS	GRADCH	URRENT	
8	1.21	0.1535367	10 44.13 <b>X</b>	105.3394 7	44.13 a	205.539° A	
3	10 m (5	10.00000000	50. 300. sto <b>x</b>	21.071° V	0.07 4	-68.936° A	
÷.	j n k	A.98 4000	10 1931.20 ¥	-164 -6502 - V	44.00 4	105.3482 6	
$C^{*}$	() + A	0,56503966	10 2734.32 4	17.055° V	1.14 ×	101.26° A	
ŀ	3	1.17.6m91	90 - 1973 <b>4</b> , 52 <b>≰</b>	11.246* 17	43.08.3	105.237° A	
	WEX.SH EV	VR I	⊁r⊂ M	LMPERANCE	TO IMPERANCE		
R,	• • •	1.000060	a. 3.00 -	3 20,575	3.07 - 1	20.515	
:	.; ►9	. 9.01.106060(	0,01+	1 13529.962		0.000	
:		\$	10 1,00 -	10.144	5.06 - 1	61,833	
	3.+0	616966900	90 – (Y) –	1 2269.714	6,05 + 9	6.150	
Ē	$\lambda = 0$	1.1710000	91 - E. 17 -	主になっても	$(C_{i}, (C_{i})) \in C$	$\mathcal{O} \in \mathcal{O} \times \mathcal{O}$	
<i>8</i> 10	s anna	E.354:					
	2,74.	a) (a, 9) G b	53.5% 1				
l		1 + (-(0) + (-(0))) = 0					
ŗ.		-3000(500) = 1		00-100			
1	. G. P.	.7^%((\$00 - 1)	- 0 0, .) <i>f</i> e5:	06699			
1 5 7	*2 *2	经济外的资源的 一位。	0.000	00000			
1	S.,	0010000 3	0				
F		1.163960 3.	(1 - 63,373)	99999			



WCAP - KBRT Tower 3 DA Model

WCAP OUTPUT AT FREQUENCY: 0.740 MHz

Norl	e: 1	1356.8175	4	45.1995° 1	J					
Nod	e: 3	1323.7528	×	46.8105° N	<i>.</i>					
Nod	le: 3	3292.8428	<b>4</b>	72.0980° 1	I					
	WCAP PA	RT		BRJ	ANCH	VOLTAGE		BEA	NCH	CURRENT
R	1 -+ 2	1.000	00000	50.13	4	2.732°	У	50.12	22	2.732° A
L –	2-+ Ô	2920.700	00000	1323.75	4	-46.810°	V	0,10	4	-136.810° A
L,	2-+3	9.300	00000	2170.87	4	92.804°	V	50.00	¥	2.804° A
C	3-+0	0.000	09000	3292.84	4	-72.098°	V	1.08	¥	17.902° A
R	3-+0	19,164	00000	3292.84	4	-73.098°	V	\$7-39	4	1.888° A
C	3→0	0,000	10000	3292.84	4	-72.098°	V	1.53	4	17,902° A
	WOAF PA	RT		FRO	м п	<b>1PEDANCE</b>		TO	IMPI	EDANCE
R	1-+ 3	i.000	00000	18.13	~ j	20.09	92	17.13	·· j	20.093
<u>}</u> .	2-• 0	2920.700	00000	0.00	4 j	13579.96	52	0.00	+ 1	9.000
L.	2 ** 3	3.300	00000	17.08	- j	20.08	34	17.08	- j	63.325
Ç.	See (1	0.000	09000	-0.01	j	2389.71	4	0.00	+ j	0.000
R	′3 <del>→</del> ()	19.164	00000	19.16	~ j	66.77	71	0.00	+ j	0.000
C.	3-0	0.000	10000	0.90	- j	2150.74	12	0.00	+ j	0.000
WCA	P INPUT	DATA:								
	0.240									
1		13000000			73170					
R		00000000			00000					
Ŀ		70000000	···		0.0000000					
L		30000000			00000	0000				
C R		00009000	·*·	0	171.04	0000				
к. /*		16400000		0 -66.7 0	110	1000				

k k K j

2.666元,在你的你的。"在的比。

"自我的运行的关系的资产"。这次认为



WCAP - KBRT fower 4 DA Model

WCAP OUTPUT AT FREQUENCY: 0.740 MHz

NCD	E VOLTAC	ES									
Nod	e: 1	1326,4070	) 4 -	66.7129° V	<i>r</i>						
Nod	e: 2	1301.571	94 ~	66.1086° V	<i>,</i>						
Nod	e: 3	1210.0250	3 <b>4</b> -1	15.6758° V	7						
	WCAP PA	<b>I</b> RT		BRA	NCH	VOLTAGE		BRAN	СН	CURRENT	
R	1-+3	1.000	00000	28.44	4	-95.574°	V	28.44	<i>z</i> .	-95.574° A	
L	2~+0	2920.700	00000	1301.57	Ą.	-66.109°	V	0.10	4	-156.109° A	
L	23	8.000	00000	1056.12	4	-5.406°	V	28.39.	4	-95.406° A	
C	3-+()	0.000	00000	1210.03	4	-115.676°	V	0.51 .	4	-25.676° A	
R	3-+0	40.465	00000	1210.03	4	-115.676°	V	28.22	4	-96.370° A	
	WCAP FART				FROM IMPEDANCE				TO IMPEDANCE		
R	1-+2	1.000	00000	40.85	+ -	22.5	12	39.85	+ j	22.512	
ţ_	2-+0	2920.700	00060	0.00	4	j 13579.9	52	0.00	ŧ j	0.000	
ĩ.	2-+3	8.000	00000	39.98	4	i 22.4:	32	39.98	- 1	14.764	
6	30	0.000	09000	0.00		2389.7	14	0.00	+ i	0.000	
В	3-+0	40.469	00000	40.47	~	j 14.1	75	0.00	+ j	0.000	
WCA	P INPUT	DATA:									
	0.740		000000	00 0							
J	28.	44000000	0	-95.5	743	0000					
R	1.	00000000	1	2 0.0	000	0000					
ſ,	2920.			0.0	000	0000					
L				3 0.0	000	0000					
Ç		00009000		0							
R	40.	46500000	3	0 -14.1	750	0000					
## Derivation of Operating Parameters for Night Directional Antenna

The KBRT night array is identical in all respects to the day array with the exception of antenna input power. As such, the night operating parameters as indicated on the antenna monitor will be identical to those for day operation. For the sake of completeness, the antenna model itself was re-run with the sources adjusted for the proper night input power, and that model is shown herein. Likewise, the day directional circuit models were adjusted for the night input power, and those models are provided and shown herein.

					WCAP		
				WCAP	Phase		Antenna
		Current	Current	Current	Offset for	Antenna	Monitor
		Magnitude	Phase	Offset for	Unity Ø _{BASE}	Monitor	Phase
Twr.	Node	(amperes)	(degrees)	Unity I _{BASE}	(degrees)	Ratio	(degrees)
1	1	1.4336	-37.7	1.025	+0.7	0.476	-39.7
2	21	2.6542	+105.3	1.025	+0.0	0.880	+102.6
							0.0
3	41	2.9211	+1.9	1.058	+0.8	1.000	0.0
4	61	1.7399	-96.4	1.008	+0.8	0.567	-98.3

*******

### ACSModel

## (MININEC 3.] Core)

01-08-2013 21:35:46

KBRT

Night Directional Operation

Frequency = 0.740 MHz Wavelength = 405.13513 Meters

No. of Wires: 4

Wire No. 1 X	Coordinates Y	7. 1.3	Radius	End Connection	No. of
Sequents					
0	0	0		- 1	
G	0	84.17808	0.2911	С	A)
Wice No. 2	Coordinates			End	No. of
X Segments	J.	Z	Radius	Connection	
50.64189	87.71432	0		-2	
50.64189	87.71432	83.84046	0.2911	()	20
Wire No. 3	Coordinates			End	No. of
X	Y	Z	Radius	Connection	
Segments					
-44.53305	122.3536	0		-3	
-44.53305	122.3536	83.0527	0.2911	6	20
Wire No. 4	Coordisates			End	No. of
X.	Ý	Z	Radius	Connection	
Segments					
-05.17562	34.64109	0		/]	
-90,17562	34,64109	85.07838	0.2911	0	20

**** ANTENNA GEOMETRY ****

Wire No.	1 Coordinates			Cont	nection	Pulse
X	Y	2	Radius	End)	End2	No.
0	0	0	0.2911	- L	1	1
()	Û	4.208904	0.2911	1	1	2
0	0	8.417808	0.2911	1	1	3
()	0	12.62671	0.2911	1	1	4
()	Q	16.83562	0.2911	i.	1	C 
()	0	21.04452	0.2911	]	1	6
0	0	25.25342	G.2911	].	j	7
Ũ	0	29.46233	0.2911	1_	1	8
0	0	33.67123	0.2911	1		<u>Si</u>
0	0	37.88013	0.2911	1	1	10
Û	0	42.03904	0.2911	1	1	11
Ô.	0	45.29794	0.2911	1	l	1.2
0	0	50.50685	0.2911	1	1	13
()	0	54.71575	0.2911	1	1	14
$\langle \rangle$	0	53.92465	0.2911	1	1.	15
()	0	63.13356	0.2911	1	1	1.6
Ô	0	67.34246	6.2911	1	1	17

Page 32 of 44

0 0 0	0 0 0	71.55137 75.76027 79.96917	0.2911 0.2911 0.2911	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
Wire No. 2 X 50.64189 50.64189 50.64189 50.64189 50.64189 50.64189 50.64189 50.64189 50.64189 50.64189 50.64189 50.64189 50.64189 50.64189 50.64189 50.64189 50.64189 50.64189 50.64189 50.64189	Coordinates Y 87.71432 87.71432 87.71432 87.71432 87.71432 87.71432 87.71432 87.71432 87.71432 87.71432 87.71432 87.71432 87.71432 87.71432 87.71432 87.71432 87.71432 87.71432 87.71432 87.71432 87.71432 87.71432 87.71432 87.71432 87.71432 87.71432	Z 0 4.192023 8.384047 12.57607 16.76809 20.96012 25.15214 29.34416 33.53619 37.72821 41.92023 46.11225 50.30428 54.4963 58.68832 62.88035 67.07237 71.26439 75.45641	Radius 0.2911 0.2911 0.2911 0.2911 0.2911 0.2911 0.2911 0.2911 0.2911 0.2911 0.2911 0.2911 0.2911 0.2911 0.2911 0.2911 0.2911 0.2911 0.2911 0.2911	ConnectionPulseEndlEnd2No. $-2$ 2212222222322242225222622262227222822302231223322342236223722382239
50.64189 Wire No. 3 X -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305 -44.53305	87.71432 Coordinates Y 122.3536 122.3536 122.3536 122.3536 122.3536 122.3536 122.3536 122.3536 122.3536 122.3536 122.3536 122.3536 122.3536 122.3536 122.3536 122.3536 122.3536 122.3536 122.3536 122.3536	<pre>79.64844 Z 0 4.152635 8.30527 12.45791 16.61054 20.76318 24.91581 29.06845 33.22108 37.37372 41.52635 45.67899 49.83162 53.98426 58.13689 62.28953 66.44216 70.5948 74.74744 78.90007</pre>	0.2911 Radius 0.2911 0.2911 0.2911 0.2911 0.2911 0.2911 0.2911 0.2911 0.2911 0.2911 0.2911 0.2911 0.2911 0.2911 0.2911 0.2911 0.2911 0.2911 0.2911 0.2911	2       0       40         Connection       Pulse         Endl       End2       No.         -3       3       41         3       3       42         3       3       42         3       3       43         3       3       44         3       3       44         3       3       46         3       3       46         3       3       46         3       3       47         3       3       49         3       3       50         3       3       51         3       3       52         3       3       52         3       3       54         3       3       55         3       3       56         3       3       57         3       3       58         3       3       59         3       3       59         3       3       59         3       3       59
Wire No. 4 X -95.17562 -95.17562 -95.17562 -95.17562 -95.17562 -95.17562 -95.17562 -95.17562	Coordinates Y 34.64109 34.64109 34.64109 34.64109 34.64109 34.64109 34.64109 34.64109 34.64109	Z 0 4.253919 8.507837 12.76176 17.01567 21.26959 25.52351 29.77743	Radius 0.2911 0.2911 0.2911 0.2911 0.2911 0.2911 0.2911 0.2911	Connection       Pulse         Endl       End2       No.         -4       4       61         4       4       62         4       4       63         4       4       63         4       4       65         4       4       65         4       4       66         4       4       67         4       4       68

e f E

Page 33 of 44

-95.17562 -95.17562 -95.17562 -95.17562 -95.17562 -95.17562 -95.17562 -95.17562 -95.17562 -95.17562 -95.17562 -95.17562 -95.17562 -95.17562	$\begin{array}{c} 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\ 34.64109\\$	34.03135 38.28527 42.53919 46.79311 51.04703 55.30095 59.55486 63.80878 68.0627 72.31662 76.57054 80.82446	0.2911 0.2911 0.2911 0.2911 0.2911 0.2911 0.2911 0.2911 0.2911 0.2911 0.2911 0.2911	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	69 70 71 72 73 74 75 76 77 78 79 80
Pulse No., Vo Pulse No., Vo	oltage Magnitud oltage Magnitud oltage Magnitud oltage Magnitud	de, Phase (Deg de, Phase (Deg	rees): 21, 168 rees): 41, 202	3.6, 17.3 2.9, -72.1	
Number of Loa	ads: 0				
********	******* SOI	JRCE DATA	*****	* * * * * * *	
Pulse 1	Voltage = (-1 Current = (1	12.1451, -105. .1338, -0.8773 (38.291, -63.3	j)		
Pulse 21	Current = (-(	60.981, 50.004 ).7002, 2.5602 (2.171, -63.47 Watts	j)		
Pulse 41	Current = (2)	2.3745, -193.0 .9195, 0.0962j (19.164, -66.7 6 Watts	)		
Pulse 61	Current = (-(	32.3227, -67.2 0.193, -1.7291 (40.465, -14.1 5 Watts	j)		
Total Power =	= 190.000 Watt:	5			
* * * * * * * * * * * * *	****** CU	RRENT DATA	* * * * * * * * * * * * * * * * * *	* * * * * * *	
Wire No. 1 Pulse No. 1 2 3 4 5 6 7 8 9	Real (Amps) 1.1338 1.085 1.048 1.0106 0.9715 0.93 0.8859 0.8392 0.7899	Imaginary (Amps) -0.8773 -0.8697 -0.8595 -0.8452 -0.8269 -0.8044 -0.7778 -0.7472 -0.7127	Magnitude (Amps) 1.4336 1.3905 1.3554 1.3175 1.2757 1.2296 1.1789 1.1237 1.0639	Phase (Degrees) -37.7323 -38.7143 -39.3544 -39.9073 -40.4042 -40.8605 -41.2845 -41.6821 -42.0571	
10 11	0.7381 0.6838	-0.6743 -0.6321	0.9997 0.9312	-42.4127 -42.7513	

Page 34 of 44

12 13 14 15 16 17 18 19 20 E	$\begin{array}{c} 0.6272 \\ 0.5682 \\ 0.5072 \\ 0.4441 \\ 0.3789 \\ 0.3117 \\ 0.2422 \\ 0.17 \\ 0.0935 \\ 0.0 \end{array}$	$\begin{array}{c} -0.5864 \\ -0.5371 \\ -0.4844 \\ -0.4284 \\ -0.3691 \\ -0.3065 \\ -0.2404 \\ -0.1703 \\ -0.0945 \\ 0.0 \end{array}$	0.8586 0.7819 0.7013 0.617 0.529 0.4372 0.3413 0.2406 0.133 0.0	-43.075 -43.3855 -43.6842 -43.9726 -44.2519 -44.5232 -44.7879 -45.0476 -45.3068 0.0
Wire No. Pulse No. 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 E	2 : Real (Amps) -0.700'2 -0.6767 -0.6577 -0.6158 -0.5919 -0.566 -0.5379 -0.5078 -0.4757 -0.4417 -0.4059 -0.3684 -0.3293 -0.2887 -0.2465 -0.203 -0.1579 -0.1108 -0.061 0.0	Imaginary (Amps) 2.5602 2.4836 2.4207 2.3527 2.2777 2.1948 2.1038 2.0046 1.8974 1.7823 1.6597 1.5297 1.5297 1.3926 1.2487 1.0982 0.9412 0.7775 0.6069 0.4277 0.2364 0.0	Magnitude (Amps) 2.6542 2.5742 2.5085 2.4376 2.3595 2.2732 2.1786 2.0755 1.9642 1.8447 1.7175 1.5826 1.4405 1.2914 1.1355 0.9729 0.8036 0.6271 0.4418 0.2441 0.0	Phase (Degrees) 105.2972 105.2406 105.2013 105.1647 105.129 105.0933 105.0571 105.0201 104.9822 104.943 104.9025 104.8608 104.8176 104.773 104.727 104.6795 104.6307 104.5803 104.5282 104.4738 0.0
Wire No. Pulse No. 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 E	3 : Real (Amps) 2.9195 2.8286 2.7548 2.6757 2.589 2.4936 2.3892 2.2758 2.1535 2.0224 1.8829 1.7351 1.5795 1.4162 1.2454 1.0674 0.8819 0.6884 0.4853 0.2683 0.0	<pre>Imaginary (Amps) 0.0962 0.0691 0.052 0.0376 0.0251 0.0142 0.0047 -0.0035 -0.0104 -0.0162 -0.0207 -0.0241 -0.0264 -0.0274 -0.0274 -0.0274 -0.0262 -0.0238 -0.0202 -0.0154 -0.0092 0.0</pre>	Magnitude (Amps) 2.9211 2.8295 2.7553 2.676 2.5891 2.4936 2.3892 2.2758 2.1535 2.0225 1.883 1.7353 1.5797 1.4164 1.2457 1.0677 0.8822 0.6887 0.4855 0.2685 0.0	Phase (Degrees) 1.8877 1.3992 1.0806 0.8046 0.5559 0.3269 0.1134 -0.0874 -0.2773 -0.4581 -0.6308 -0.7964 -0.9558 -1.1097 -1.2589 -1.4038 -1.5451 -1.6834 -1.8195 -1.956 0.0

es e

Pulse	Real	Imaginary	Magnitude	Phase
No.	(Amps)	(Amps)	(Amps)	(Degrees)
61	-0.193	-1.7291	1.7399	-96.3703
62	-0.2219	-1.7104	1.7247	-97.3911
63	-0.2382	-1.688	1.7047	-98.0322
64	-0.2499	-1.6582	1.6769	-98.5697
65	-0.2578	-1.6205	1.6409	-99.0398
66	-0.2625	-1.5751	1.5968	-99.4603
67	-0.264	-1.5218	1.5446	-99.8415
68	-0.2626	-1.4609	1.4843	-100.1902
69	-0.2583	-1.3924	1.4161	-100.5114
70	-0.2513	-1.3165	1.3403	-100.8089
71	-0.2417	-1.2335	1.257	-101.0856
72	-0.2294	-1.1436	1.1664	-101.3442
73	-0.2146	-1.0469	1.0687	-101.5868
74	-0.1974	-0.9437	0.9642	-101.8151
75	-0.1778	-0.8342	0.853	-102.0308
76	-0.1558	-0.7185	0.7352	-102.2353
7.7	-0.1314	-0.5963	0.6107	-102.4301
78	-0.1046	-0.4675	0.4791	-102.6165
79	-0.0752	-0.3309	0.3393	-102.7962
80	-0.0423	-0.1836	0.1884	-102.9724
E	0.0	0.0	0.0	0.0

Current Moments (amp-meters) Peak

Frequency: 740 kHz Input Power: 190 Watts

e s e

			Vert. Curre	ent Moment	
Wire	Real	Imag	Magnitude	Phase	
1	54.2607	-48.0058	72.4485	-41.50	
2	-34.5019	128.7630	133.3052	105.00	
3	144.8970	0.0000	144.8970	0.00	
4	-16.7321	-94.8926	96.3565	-100.00	



WCAP - KBRT Tower 1 DA-N Model

WCAP OUTPUT AT FREQUENCY: 0.740 MHz

HOD	E VOLTAC	ÆS										
Noc	le: 1	61.8002	4	-64	.0848° ∖							
Nod	le: 2	60.4957	4	-64	7187° V							
Noc	ie: 3	106.0450	4	~96.	.5560° V							
	WCAP PA	кт			BRA	NCH	VOLTAGE		BRANC	H CUE	RENT	
R	1-2	1.000	000	00	1.47	4	-36.991°	v	1.47 A	-3	6.991	° A
3.1	2-+0	2920.700	000	00	60.50	<b>X</b> .	-64.719°	v	0.00 4	-15	54.719	° A
L	2-+3	9.250	000	00	63.29	<b>4</b> .	53.162°	v	1.47 <b>4</b>	-3	36.838	° A
С	3-+0	0.000	0.90	00	106.05	4	~96.556°	v	0.04 4	-	6.556	° A
В	3-+0	38.300	000	<u>16</u>	106.05	4	-96.556°	V	1.43 4	-3	17.732	" A
	WCAP PA	'Ku			FRO	M II	<b>1PEDANCE</b>		TO IM	PEDAN	∛CE	
р	1-+2	1.000	000	00	37.44	- j	19.1	55	36.44 -	j	19.1	155
Ľ,	0 <del>~~</del> 0	2920.700	090	00	0.90	+ j	13579.9	62	0.00 +	j	0.0	000
1,	2-+3	9,250	000	00	36.34	~ j	19.2	26	36.34 -	i	62.2	234
0	3-+0	0.000	090	)C	0.00	- 1	2389.7	14	0.00 +	i	0.0	000
R	3-+0	38.300	000	00	38.30	- 1	63.30	00	0.00 +	j	0.0	900
WCA	P INPUT	DATA:										
	0.740	0.0	0000	0000	0							
J	1.	46940000	0	1	-36.9	913(	0000					
R	1.	00000000	1	2	0.0	0600	0000					
L.		70000000	2		0.0	000	0000					
í.		25000000	2	3	0.0	0004	0000					
C,		00000000	- 3	0								
В	36.	30000000	- 3-	0	~63.3	000(	0000					

demon etapolegi cur e Mexi Terquelas Rolajs, cur e alz



WCAF - KBRT Tower 2 DA-N Model

WCAP OUTPUT AT FREQUENCY: 0.740 MH2

NOD	e. Voltag	RS							
Node		56.595	X	23.8157°	v				
		56.258	-	21.0741°					
		168.570		17.2562°					
	WCAP PA	RT		BF		H VOLTAGE		BRANCI	I CURRENT
Ŗ	1-+2	1.000	00000	) 2.7	2 4	105.339°		2.72 4	
ŧ.	2-+0	2920.700	00000	56.2	6 <b>x</b>	21.074°		0.00 <b>x</b>	-68.976° A
L	2-+-3	8,880	00000			-164.652°		2.72 ¥	105.346° A
ĉ	3-+0	0.000				17.256°		0.07 <b>x</b>	107.256° A
R.	3-+0	2.171				17.256°		2.65 4	
	<i></i>		0.0000	/ 10010	/ 4	11.400	v	2.00 4	100.207 X
	WCAP PA	RΤ		FF	MOM	IMPEDANCE		TO IM	PEDANCE
R	) <del>~*</del> 2	1.000	00000	) 3.0	7 -	1 20.5	75	2.07 -	j 20.575
L.	2 <b>-</b> 0	2920.700	00000	0.0	0 +	1 13579.9	62	0.00 +	i 0.000
b	23	8.880	00000	2.0	6 -	1 20.5	44	2.06 -	j 61.833
С	3-+0	0.000	0.90.00	0.0	1 -	1 2389.7	14	0.00 +	i 0.000
R	3→0	2.171	00000	2.1	7 -	63.4	73	0.00 +	j 0.000
WCA	P INFUT	DATA:							
	0.740	0.0.0	0000	000 0					
1	2.	72060000	0	1 105.	3393	20000			
Р	1.	00000000	1	2 0.	000	0000			
L	2920.	70000000	2		0000	00000			
1,		88000000	2		0000	00000			
C		00009000	3	0					
F	È.	17100000	3	0 -63.	473	00000			



### WCAP - KBRT Tower 3 DA-N Model

WCAP OUTPUT AT FREQUENCY: 0.740 MHz

NOC	DE VOLTAG	ÆS											
Noc	ie: i	93.647	44	~45	.1995° V								
Nod	le: 2	81,609	3 4	-46	.8105° V								
Hoc	ke: S	203.002	9 <b>4</b>	-12	.0980° V								
	WCAP PP	RT			BRANC	H N	/OLTAGE	E,	3RA	NCI	нc	URRENT	
R	1-+2	1.000	000	00	3.09 <b>4</b>		2.732° V	3.	09	a.		2.7317	A
L	2-+0	2920.700	000	00	81.61 <b>4</b>		-46.810° V	0.	01	4		136.810°	А
L	23	9.300	000	00	133.83 4		92.804° V	· 3.	10	x		2.804"	A
С	3-+0	0.000	090	00	203.00 4		-72.098° V					17.902°	
R	3→0	19.164	000	00	203.00 4		~72.098° V					1.888°	
C	3 ()	0.000	100	00	203.00 4		-72.093° V	0.	09	4		17.902°	A
	WCAP PA	.P T			FROM	146	PEDANCE	1	0	IM	PED	DANCE	
R	1-+2	1.000	000	00	18.13 -	Э	20.092	17.	13		i	20.0	92
L		2920.700					13579.962				~		00
Γ.	2-+3	9,300	000	96	17.08 -	j	20.084	17.	60		i	63.3	25
C –	3-+0	0.000	090	00	0.01 -	j	2389.714	0.	00	4	÷	0.0	00
R	3-+0	19.164	0.00	00	19.16 -	i.	66.771	0.	00	+	Ť	0.0	00
C,	30	0.000	100	00	0.00 -	į	2150.742	0.	00	÷	j	0.0	00
WCP	P INPUT	DATA:											
	0.740	0.0.0	0000	0000	0								
I		09050000	0	1	2.731	700	000						
R			1	2	0.000	000	000						
		70000000	2	0	0.000	000	00						
$J_2$		30000000		3	0.000	000	000						
Ç		00003000	~	0									
Б		16400000		0	-66.771	000	00						
£*	0.	00010000	3	0									

医二丁酸乙二丁酯 网络女子 医上球系错误

网络利润的教育 自由



WCAP - KBRT Tower 4 DA-N Model

WCAP OUTPUT AT FREQUENCY: 0.740 MHz

NOU	E VOLTAC	ES										
Nod	le: 1	81.7811	4	-66.	7129° V	r						
Nod	le: 2	80.2499	A	-66.	1086° V	r						
Nod		74.6055										
	WCAP PA	RT			BRA	NCF	VOLTAGE		BRAN	JC'H	CHERENT	
R	1-+2	1.0000	000	00							-95.574	n
Ŀ		2920.7000							0.01		-156.109°	
Ι,		8,0000					-5.406				-95.406°	
Ċ		0.0000									-25.676	
Ř		40.4650									~96.370°	
	~ ^	10.1000				4	115.070	v	.1, , / ·s	4	~96.570	¥.8
	WCAP PP	RT			FRO	МΙ	MPEDANCE		TO 1	MPE	EDANCE	
R	1-+3	1.0000	000	00	40.85	÷	j 22.5	12	39.85	+ j	22.51	12
la -	( - <del>-</del> 0	2920.7000	000	00	0.00	÷	j 13579.9	62	0.00	+ 1	0.00	00
		8.0000					j 22.4					
C	3-++ ()	0.0000	900	50	0.00	-	1 2389.7	14	0.00	+ 1	0.00	00
ų.		40.4650					j 14.1		0.00			
WCA	PINPUT	DATA:										
	0.740	0 0.00	00	0000	0							
1	i.	75350000	0	1	-95.5	743	0000					
R	1.	00000000	1	3	0.0	000	0000					
Τ.	2920.	79000000	2	0	0.0	000	0000					
ſ.	8.	00000000	2	3	0.0	000	0000					
C	0.	00009000	3	0								
R	40.	46500000	3	Û	-14.1	750	0000					

## Summary of Post Construction Certified Array Geometry

With respect to Question 9, Section III, Page 2 of the attached Form 302-AM, the tower information is as follows:

Tower		Height above	Height above ground	Overall height
No.		base insulator	w/o obst. lighting	above ground
	ASRN	(meters)	(meters)	(meters)
1	1276731	83.8	84.8	85.7
2	1276732	83.8	84.8	85.7
3	1276733	83.8	84.8	85.7
4	1276734	83.8	84.8	85.7

All towers are uniform cross-section, steel, guyed vertical radiators.

مه م ( ک

A Certified Survey drawing is shown in Appendix B attached hereto.

The tower relative distances provided in feet on the Certified Survey drawing were converted to electrical degrees at 740 kHz and used along with the survey tower azimuths relative to True North to calculate the as-built X-Y coordinates of each tower relative to the center of the array. Likewise, the X-Y coordinates of the specified (CP) tower locations were calculated in the same way. The difference between the X-Y coordinates of the specified tower location and the X-Y coordinates of the as-built tower location was then used to compute the displacement of each tower from the specified location. Below is a tabulation showing those distances and other data that is relevant to their determination.

	Specified Array Geometry						Built ication	As-Built Displacement
	Spacing	Spacing	Azimuth	X	Y	X	Y	
Twr.	(degrees)	(feet)	(deg. T.)	(deg.)	(deg.)	(deg.)	(deg.)	(deg.)
1	Ref.	Ref.	Ref.	19.786	-54.361	19.755	-54.373	0.033
2	90.0	332.4	60.0	64.785	23.579	64.799	23.543	0.039
3	115.7	427.4	110.0	-19.786	54.361	-19.755	54.373	0.033
4	90.0	332.4	160.0	-64.785	-23.579	-67.799	-23.543	0.039

Extraordinary care was exercised in the survey, excavation and construction processes to insure that towers were built in the proper locations. This is evident in the as-built displacements noted above, the worst case of which is 0.039 electrical degrees. As such, all of the displacements are well below the 1.5 electrical degree tolerance specified by the FCC.

## Sampling System

. ...

The sampling system consists of Delta Electronics TCT-1 current transformers installed at the output of each antenna tuning unit, immediately adjacent to the final J-plug. Samples from the current transformers are fed to the antenna monitor via equal lengths of Andrew LDF4-50J ½-inch foam-dielectric coaxial transmission lines. The antenna monitor is a Potomac Instruments Type 1901, which was modified and calibrated at the factory immediately prior to installation at the new site.

Impedance measurements were made of the antenna sampling system using an Agilent E5062A network analyzer. The measurements were made looking into the antenna monitor ends of the sample lines with the tower ends of the sample lines open-circuited.

The table below shows the frequencies above and below the carrier frequency where resonance, defined as zero reactance corresponding with low resistance, was found. As the length of distortionless transmission line is 180 electrical degrees at the difference frequency between adjacent frequencies of resonance, and frequencies of resonance occur at odd multiples of 90 degrees electrical length, the sample line length at the resonant frequency above carrier frequency, which is the closest one to the carrier frequency, was found to be 270 electrical degrees. The electrical length at carrier frequency appearing in the table below was calculated by ratioing the frequencies.

	Sample Line	Sample Line	Sample Line
	Open-Circuited	Open-Circuited	Calculated
	Resonance	Resonance	Electrical Length
	Below 740 kHz	Above 740 kHz	At 740 kHz
Twr.	(kHz)	(kHz)	(deg.)
1	411.8	1235.5	161.7
2	412.3	1237.0	161.5
3	411.8	1235.5	161.7
4	411.8	1235.5	161.7

Because the electrical lengths were determined to be identical to within the nearest 0.2 degree, the sample lines meet the requirement in the Rules that they be equal in length within one electrical degree.

To determine the characteristic impedance values of the sample lines, open-circuited measurements were made with frequencies offset to produce  $\pm$  45 degrees of electrical length from resonance. Because of the limitations of the vector network analyzer (lower frequency limit is 300 kHz), the 225- and 315-degree frequencies were used rather than the 45 and 135 degree frequencies.

The characteristic impedance was calculated using the following formula, where  $R_1 + j X_1$  and  $R_2 + j X_2$  are the measured impedances at the +45 and -45 degree offset frequencies, respectively:

ŧ.,

с I 2

$$Z_0 = ((R_1^2 + X_1^2)^{1/2} \times (R_2^2 + X_2^2)^{1/2})^{1/2}$$

	+ 45 Deg.	+45 Deg.	- 45 Deg.	-45 Deg.	Calculated
	Offset	Measured	Offset	Measured	Characteristic
	Frequency	Impedance	Frequency	Impedance	Impedance
Twr.	(kHz)	(ohms)	(kHz)	(ohms)	(ohms)
1	1441.4	4.4 +j49.7	1029.6	4.1 –j50.5	50.3
2	1443.2	4.5 +j50.1	1030.8	4.1 –j50.2	50.3
3	1441.4	4.5 +j50.0	1029.6	4.2 -j50.3	50.3
4	1441.4	4.5 +j50.2	1029.6	4.0 –j50.1	50.3

The sample line measured characteristic impedances meet the requirement that they be equal within 2 ohms.

The calibration of the Delta TCT-1 current transformers, which were installed new from the factory at the new site, was verified by removing them all from the ATUs and installing them on a test jig so that each was located very close to the adjacent transformer (spacing of less than two inches). Short transmission lines of equal length were connected between the outputs of all four current transformers and the inputs of the antenna monitor. The Potomac 1901 antenna monitor was calibrated using the internal calibration function. A single source of RF current on the carrier frequency was fed through a conductor passing through all of the current transformers, and the differential phases and ratios were noted on the antenna monitor as follows:

	Serial		Phase
Twr.	No.	Ratio	(deg.)
1	18115	1.000	0.0
2	18114	1.000	0.0
3	18113	Ref.	Ref.
4	18116	1.000	0.0

The requirement that the sample current transformers are accurate to within the manufacturer's specification ( $\pm 2\%$  ratio and  $\pm 2$  degrees phase) has thus been demonstrated.

The impedance of each of the sample lines was measured with the sample current transformers attached. These impedances are tabulated below:

	R	Х
Twr.	(ohms)	(ohms)
1	48.8	+0.7
2	48.9	+0.7
3	48.8	+0.8
4	48.8	+0.7

Page 43 of 44

## Direct Measurement of Power

• • • • • •

Common point impedance measurements were made using a Delta CPB-1A common point bridge installed in the common point bus of the phasing and coupling system. The resistance value was adjusted to 50 ohms and the reactance value was adjusted to zero.

• • • •

**Received & Inspected** 

JAN 152013

FCC Mail Room

Appendix A

Reference Field Strength Measurements

Reference field strength measurements were made on January 9, 2013 using two Potomac Instruments FIM-41 field intensity meters, S/Ns 1898 and 1323. Measurements were made at three locations along radials at the azimuths with radiation values specified on the construction permit and, additionally, on the major lobe radial. The measured field strengths and descriptions and WGS-84 GPS coordinates for the reference measurement points are shown in the following tables. FIM-41 S/N 1898 has a calibration date of February 13, 2012. A copy of the calibration certificate is supplied herewith as Appendix C. FIM-41 S/N 1323 was checked against FIM-41 S/N 1898 and found to be in agreement.

,

4 7

Because the day and night operating parameters are identical with the exception of antenna input power, separate night reference field strength measurements were not made.

## <u>Daytime</u>

Radial 32.5°

Poin	nt   Dist.					Field	Point
No.	km km	Latitude	Longitude	Date	Time	mV/m	Description
1	5.22	32-52-8.25	117-36-29.7	01/09/13	1540	62	1187 Hummingbird Lane
2	8.01	33-53-24.7	117-35-31.8	01/09/13	1558	41	372 N. Smith
3	9.42	33-54-0.2	117-34-59.7	01/09/13	1606	50	1391 Palos Verdes Dr.

#### Radial 78.5°

Point	Dist.					Field	Point
No.	km	Latitude	Longitude	Date	Time	mV/m	Description
1	4.59	33-50-14.6	117-35-23.0	01/09/13	1229	80	3294 Clearing Cir.
2	6.38	33-50-25.7	117-34-14.92	01/09/13	1245	50	184 Tamarack Dr.
3	9.12	33-50-42.7	117-32-30.7	01/09/13	1255	61	1312 Radcliffe Dr.

#### Radial 104.0°

Point	Dist.					Field	Point
No.	km	Latitude	Longitude	Date	Time	mV/m	Description
1	9.86	33-48-25.4	117-32-5.9	01/09/13	1340	34.5	1800 Eagle Glenn Pkwy. at the golf club entrance
2	12.8	33-48-2.3	117-30-13.3	01/09/13	1320	29	Access Rd. paralleling E. side of I-15
3	15.7	33-47-36.6	117-28-25.5	01/09/13	1505	33.0	Dawson Canyon east to entrance of waste disposal

#### Radial 208.5°

Point	Dist.					Field	Point
No.	km	Latitude	Longitude	Date	Time	mV/m	Description
1	0.99	33-49-15.9	117-38-39.3	01/09/13	1235	2800	BSC Rd. 1.2 mi. SW Site
2	2.23	33-48-40.7	117-39-02.4	01/09/13	1243	1480	BSC Rd. 2.6 mi. SW Site
3	4.01	33-47-49.9	117-39-35.4	01/09/13	1251	870	BSC Rd. 4.0 mi. SW Site

Received & Inspected

# JAN 152013

## FCC Mail Room

Radial 311.5°

t i t t i t

Point	Dist.					Field	Point
No.	km	Latitude	Longitude	Date	Time	mV/m	Description
1	8.17	33-52-39.6	117-42-18.7	01/09/13	1352	44	SW Corner Brush Canyon & Mulberry Way
2	8.45	33-52-45.8	117-42-26.5	01/09/13	1356	46	Meadowland Dr. 0.1 mi. E. of De Bryant
3	8.78	33-52-54.0	117-42-35.4	01/09/13	1400	62	Kodiak Mtn. at Terraza

Radial 339.5°

Point	Dist.					Field	Point
No.	km	Latitude	Longitude	Date	Time	mV/m	Description
1	1.4	33-50-26.5	117-38-40.1	01/09/13	1154	1080	N. Main Div. 1.1 mi. NW Site
2	1.92	33-50-42.3	117-38-47.0	01/09/13	1158	870	N. Main Div. 1.5 mi. NW Site
3	2.32	33-50-54.5	117-38-52.5	01/09/13	1201	830	On Spur Rd. 1.8 mi. NW Site

Received & Inspected JAN 152013 FCC Mall Room

Appendix B

Certified Survey



era a E f de sar

> Received & Inspected JAN 15 2013

FCC Mail Room

Appendix C

Certificate of FIM Calibration

#### POTOMAC INSTRUMENTS, inc. Frederick, Maryland

#### CERTIFICATE OF CALIBRATION

Field Intensity Meter Type FIM-41

R D P

Serial Number 1898

This instrument was calibrated in an induction field of 220.0 millivolts per meter. At each measurement frequency the measured field was recorded and a correction factor K was computed; the indicated field must be multiplied by K to obtain the true field.

<u>kHz</u>	<u>K</u>	<u>kHz</u>	<u>K</u>	MHz	<u>K</u>	MHz	K	
540	1.014	1100	1.000	1.6	0.991	3.5	1.000	
600	1.005	1200	1.000	1.9	0.991	3.8	1.000	
700	1.005	1300	1.000	2.2	0.995	4.1	0.986	
800	1.000	1400	1.000	2.5	1.000	4.4	0.995	
900	1.000	1500	1.000	2.8	1.000	4.7	0.995	
1000	1.000	1600	1.000	3.2	1.000	5.0	0.977	

The calibrating field is maintained equal to the National Institute of Standards and Technology (NIST) standard field within an accuracy of 1.0 percent. NIST states that the absolute accuracy of its field is "believed to be within 3.0 percent."

The error at points on the meter scale other than the calibration point is less than 3.0 percent. The attenuator ratios are correct within 2.0 percent. These accuracies apply for battery voltages that are indicated by the instrument's battery check circuit to be useable.

NEXT RECOMMENDED CALIBRATION DATE: February 12, 2014

Marcella R. Laliberte NOTARY PUBLIC Frederick County State of Maryland

My Commission Expires December 17, 2012

Calibrated by STATE OF MARYLAN

Date: Feb. 13, 2012

JAN 15 2013 FCC Mall Room

Technician Zachary Babendreier, personally appeared before me on Feb.14, 2012, and testified under oath that the above calibration was made either by himself or under his direction and that the statements in the above certificate are true to the best of his knowledge and belief.



Mareelea L. Lallevier Notate Public