DrinkerBiddle&Reath

ORIGINAL

Howard M. Liberman 202-842-8876 howard.liberman@dbr.com

Law Offices

1500 K Street, N.W. Washington, DC 20005-1209

202-842-8800 phone 202-842-8465 fax www.drinkerbiddle.com

> DELAWARE ILLINOIS NEW JERSEY NEW YORK PENNSYLVANIA WASHINGTON DC WISCONSIN

CALIFORNIA

June 19, 2012

Federal Communications Commission P.O. Box 979089 SL-MO-C2-GL 1005 Convention Plaza St. Louis, MO 63101

Re: KPQ(AM), Wenatchee, WA, Facility No. 71715

Dear Sir or Madam:

On behalf of CCR-Wescoast IV, LLC, the licensee of KPQ(AM), Wenatchee, WA, enclosed are the original and two copies of an application for modification of KPQ's license. This application is submitted on FCC Form 302-AM.

Also enclosed is a \$1,365.00 check, payable to the Commission, for payment of the \$635.00 station licensee fee and the \$735.00 AM directional antenna fee associated with this application, as well as an FCC Form 159.

Please address any questions concerning this application to me.

Sincerely,

oward M. Liberman

Established 1849

Federal Communications Commission Washington, D. C. 20554

Approved by OMB 3060-0627 Expires 01/31/98

FOR FCC
USE

FCC 302-AM

APPLICATION FOR AM

BROADCAST STATION LICENSE	FOR COMMISSIO	N USE ONLY	
(Please read instructions before filling out form.	FILE NO. BM	mL-201204	ZDACR
SECTION I - APPLICANT FEE INFORMATION			
1. PAYOR NAME (Last, First, Middle Initial)			
CCR-Wescoast IV, LLC			
MAILING ADDRESS (Line 1) (Maximum 35 characters)			
MAILING ADDRESS (Line 2) (Maximum 35 characters)			
CITY STAT Denver CO	TE OR COUNTRY (if for	eign address) ZIP C 80246	ODE
TELEPHONE NUMBER (include area code) CALL (303) 468-6500 KPC	LETTERS	OTHER FCC IDENTIFIER 71715	R (If applicable)
2. A. Is a fee submitted with this application?		🖌 Y	es No
B. If No, indicate reason for fee exemption (see 47 C.F.R. Section			
Governmental Entity Noncommercial educational	licensee Ot	ner (Please explain):	
C. If Yoo, provide the following information:		,	
Enter in Column (A) the correct Fee Type Code for the service you are app	lying for. Fee Type Co	des may be found in the "N	lass Media Services
	cation. Enter lee amour	t due in Column (C).	
(A) (B)			
	FEE DUE FOR FEE		
FEE TYPE FEE MULTIPLE	TYPE CODE IN COLUMN (A)	FOR FO	CC USE ONLY
M R 0 0 1	\$ 635.00		
To be used only when you are requesting concurrent actions which result in a	requirement to list more	than one Fee Type Code.	
(A) (B)	(C)		
M O R 0 0 0 1	\$ 730.00		
ADD ALL AMOUNTS SHOWN IN COLUMN C	TOTAL AMOUNT		
AND ENTER THE TOTAL HERE.	APPLICATION		
THIS AMOUNT SHOULD EQUAL YOUR ENCLOSED	\$ 1,365.00		

SNU

6/27/12

1. NAME OF APPLICAN CCR-Wescoast IV, LLC						
MAILING ADDRESS 501 Cherry Street, Suite 480)	9				
CITY Denver			STATE CO		ZIP CODE 80246	
2. This application is for:	Commercial		Noncomm	poroiol		
		I		iercial		
	AM Direc Nighttime	tional	L✓L AM N Daytim	on-Directional Ie		
Call letters	Community of License	Construct	tion Permit File No.	Modification of Construction	Expiration Date of L	.ast
KPQ	Wenatchee, WA	N/A		N/A	N/A	
3. Is the station no accordance with 47 C.F If No, explain in an Exhi	ow operating pursuant .R. Section 73.1620? bit.	3,7 - to autoi	אלאלא matic program	1 A I test authority in	Exhibit No.	Νο
4. Have all the terms construction permit beer	s, conditions, and obligan fully met?	ations s	et forth in the	above described	Exhibit No.	No
If No, state exceptions in	n an Exhibit.				N/A	
5. Apart from the change the grant of the underly representation contained	ges already reported, has ying construction permit d in the construction pern pibit	s any ca which v nit applic	use or circumsta vould result in a ation to be now	ance arisen since any statement or incorrect?	Exhibit No.	Νο
6. Has the permittee file certification in accordance	ed its Ownership Report ce with 47 C.F.R. Section	(FCC Fo 73.361	orm 323) or owne 5(b)?	ership	Yes	No
					Does not a	рріу
If No, explain in an Exhil	oit.				Exhibit No. N/A	
7. Has an adverse finding been made or an adverse final action been taken by any court or administrative body with respect to the applicant or parties to the application in a civil or criminal proceeding, brought under the provisions of any law relating to the following: any felony; mass media related antitrust or unfair competition; fraudulent statements to another governmental unit; or discrimination?						
If the answer is Yes, a involved, including an id (by dates and file numb information has been required by 47 U.S.C. So of that previous submiss the call letters of the sta was filed, and the date of	ttach as an Exhibit a fu entification of the court o bers), and the dispositio earlier disclosed in cor ection 1.65(c), the applica- sion by reference to the ation regarding which the of filing; and (ii) the dispose	Il disclos r admini n of the nection ant need file numl e applica sition of t	sure of the pers strative body an litigation. Wh with another a only provide: (i ber in the case of ation or Section the previously re	ons and matters d the proceeding ere the requisite application or as) an identification of an application, 1.65 information ported matter.	Exhibit No. N/A	

e²¹ 5⁴

8. Does the applicant, or any party to the application, have a petition on file to migrate to the expanded band (1605-1705 kHz) or a permit or license either in the existing band or expanded band that is held in combination (pursuant to the 5 year holding period allowed) with the AM facility proposed to be modified herein?

If Yes, provide particulars as an Exhibit.

The APPLICANT hereby waives any claim to the use of any particular frequency or of the electromagnetic spectrum as against the regulatory power of the United States because use of the same, whether by license or otherwise, and requests and authorization in accordance with this application. (See Section 304 of the Communications Act of 1934, as amended).

The APPLICANT acknowledges that all the statements made in this application and attached exhibits are considered material representations and that all the exhibits are a material part hereof and are incorporated herein as set out in full in

CERTIFICATION

1. By checking Yes, the applicant certifies, that, in the case of an individual applicant, he or she is not subject to a denial of federal benefits that includes FCC benefits pursuant to Section 5301 of the Anti-Drug Abuse Act of 1988, 21 U.S.C. Section 862, or, in the case of a non-individual applicant (e.g., corporation, partnership or other unincorporated association), no party to the application is subject to a denial of federal benefits that includes FCC benefits pursuant to that section. For the definition of a "party" for these purposes, see 47 C.F.R. Section 1.2002(b).

2. I certify that the statements in this application are true, complete, and correct to the best of my knowledge and belief, and are made in good faith.

Name	Signature	
Joseph Schwartz	Joseph	SIT
Title	Date	Telephone Number
CEO of the Manager	6/18/12	(303)468-6500

WILLFUL FALSE STATEMENTS ON THIS FORM ARE PUNISHABLE BY FINE AND/OR IMPRISONMENT (U.S. CODE, TITLE 18, SECTION 1001), AND/OR REVOCATION OF ANY STATION LICENSE OR CONSTRUCTION

FCC NOTICE TO INDIVIDUALS REQUIRED BY THE PRIVACY ACT AND THE PAPERWORK REDUCTION ACT

The solicitation of personal information requested in this application is authorized by the Communications Act of 1934, as amended. The Commission will use the information provided in this form to determine whether grant of the application is in the public interest. In reaching that determination, or for law enforcement purposes, it may become necessary to refer personal information contained in this form to another government agency. In addition, all information provided in this form will be available for public inspection. If information requested on the form is not provided, the application may be returned without action having been taken upon it or its processing may be delayed while a request is made to provide the missing information. Your response is required to obtain the requested authorization.

Public reporting burden for this collection of information is estimated to average 639 hours and 53 minutes per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the burden, can be sent to the Federal Communications Commission, Records Management Branch, Paperwork Reduction Project (3060-0627), Washington, D. C. 20554. Do NOT send completed forms to this address.

THE FOREGOING NOTICE IS REQUIRED BY THE PRIVACY ACT OF 1974, P.L. 93-579, DECEMBER 31, 1974, 5 U.S.C. 552a(e)(3), AND THE PAPERWORK REDUCTION ACT OF 1980, P.L. 96-511, DECEMBER 11, 1980, 44 U.S.C. 3507.

🔄 Yes 🖌 No

Exhibit	No.
N/A	

🖌 Yes	No
-------	----

SECTION III - LICENSE APPLICATION ENGINEERING DATA
Name of Applicant
CCR - WESCOAST IV, LLC

PURPOSE OF AUTHORIZATION APPLIED FOR: (check one)

ſ	1	Station	Liconso
1	-	Station	License

Direct Measurement of Power

1. Facilities auth	orized in construction permit				
Call Sign	File No. of Construction Permit	Frequency	Hours of Operation	Pow	er in kilowatts
KPQ	(if applicable) N/A	(kHz) 560	Unlimited	Night 5	Day 5
2. Station location	ก				
State			City or Town		
Washingt	on		Wenatchee		
3. Transmitter lo	cation				
State WA	County Chelan		City or Town Wenatchee	Street address (or other identification) Miller & Hawley Street East	
4. Main studio lo	cation				
State County WA Chelan		City or Town Wenatchee	Street address (or other identification) 231 N. Wenatchee Avenue		
5. Remote contro	ol point location (specify only if au	thorized directi	onal antenna)		
State WA	_{County} Chelan		City or Town Wenatchee	Street addres (or other ider 231 N. Wena	ss htification) htchee Avenue

6. Has type-approved stereo generating equipment been installed?	Yes 🗸 No
7. Does the sampling system meet the requirements of 47 C.F.R. Section 73.68?	✓ Yes No
	Not Applicable
Attach as an Exhibit a detailed description of the sampling system as installed.	Exhibit No. See Engineering

8. Operating constants:							
RF common point or antenna current (in amperes) without modulation for night system 10.4			RF common modulation f 17.15	RF common point or antenna current (in amperes) without modulation for day system 17.15			
Measured antenna or com operating frequency Night	nmon point resistance Dav	e (in ohms) at	Measured ar operating fre	ntenna or commo equency	n point reactance	(in ohms) at	
50.0	17.0		JO		-J9	0	
Antenna indications for dir	ectional operation						
Towers	Anten Phase read	Antenna monitor Phase reading(s) in degrees		Antenna monitor sample current ratio(s)		Antenna base currents	
	Night	Day	Night	Day	Night	Day	
#1 (N)	-116.9		0.951				
#2 (S)	0		1.000				
Manufacturer and type of a	antenna monitor:	Potomac AM-190	_1				

FCC 302-AM (Page 4) August 1995

SECTION III - Page 2

9. Description of antenna system ((f directional antenna is used, the information requested below should be given for each element of the array. Use separate sheets if necessary.)

Type Radiator	Overall height in meters of radiator above base insulator, or above base, if grounded.	Overall height in meters above ground (without obstruction lighting)	Overall height in meters above ground (include obstruction lighting)	If antenna is either top loaded or sectionalized, describe fully in an Exhibit.
Uniform cross section guyed	91.4 m	94.2 m	95.1 m	Exhibit No. N/A
Excitation	Series	Shunt		

Geographic coordinates to nearest second. For directional antenna give coordinates of center of array. For single vertical radiator give tower location.

North Latitude	47 °	27 '	12 "	West Longitude	120 °	19 '	43 "
----------------	------	------	------	----------------	-------	------	------

If not fully described above, attach as an Exhibit further details and dimensions including any other antenna mounted on tower and associated isolation circuits.

Also, if necessary for a complete description, attach as an Exhibit a sketch of the details and dimensions of ground system.

Exhibit No. See Engineering

Exhibit No.

N/A

10. In what respect, if any, does the apparatus constructed differ from that described in the application for construction permit or in the permit?

11. Give reasons for the change in antenna or common point resistance.

N/A

I certify that I represent the applicant in the capacity indicated below and that I have examined the foregoing statement of technical information and that it is true to the best of my knowledge and belief.

Name (Please Print or Type)	Signature (check appropriate box below)
Clarence M. Beverage	ARS
Address (include ZIP Code)	Date
Communications Technologies, Inc.	06/05/2012
P. O. Box 1130	Telephone No. (Include Area Code)
Marlton, NJ 08053	856-985-0077
Technical Director	Registered Professional Engineer
Chief Operator	Technical Consultant
Other (specify) Broadcast Engineering Consultant	

FCC 302-AM (Page 5) August 1995

ENGINEERING STATEMENT IN

2⁸ 21

21

SUPPORT OF 302-AM

APPLICATION FOR LICENSE EMPLOYING MOMENT

METHOD MODELING

KPQ-AM 560 kHz

5 kW DA-N U

WENATCHEE, WASHINGTON

JUNE 2012

ENGINEERING STATEMENT IN SUPPORT OF 302-AM APPLICATON FOR LICENSE EMPLOYING MOMENT METHOD MODELING KPQ-AM 560 kHz 5 kW DA-N U WENATCHEE, WASHINGTON

JUNE 2012

TABLE OF CONTENTS

ENGINEERING STATEMENT

FORMS: FCC FORM 302-AM, SECTION III

EXHIBITS:

é. T

- I. MoM detail for towers driven individually.
- II. Derivation of nighttime operating parameters.
- FIGURES: 1. Circuit Model for Tower #1 Base other tower floating.
 - 2. Circuit Model for Tower #2 Base other tower floating.
 - 3. Circuit Model for Tower #1 Base DA-N.
 - 4. Circuit Model for Tower #2 Base DA-N
- **APPENDIX:** 1. Reference Field Strength Measurements

ENGINEERING STATEMENT IN SUPPORT OF 302-AM APPLICATON FOR LICENSE EMPLOYING MOMENT METHOD MODELING KPQ-AM 560 kHz 5 kW DA-N U WENATCHEE, WASHINGTON

JUNE 2012

SUMMARY

The following engineering statement has been prepared on behalf of **CCR** – **Wescoast IV, LLC**, licensee of standard broadcast station KPQ-AM, FCC ID 71715, 560 kHz, Wenatchee, Washington. KPQ-AM is currently licensed under BZ-19851219AI which authorizes 560 kHz daytime non directional operation at a power of 5 kW and 5 kW nighttime directional operation. This application requests licensing of the KPQ-AM antenna system using computer modeling and sample system verification as provided for in the Second Report and Order in MM Docket No. 93-177 released September 26, 2008. The rules specify that the night directional antenna parameters be set to the operating parameters determined by the moment method without deviation. That operation has been completed and Form 302-AM is submitted herein specifying the as adjusted operating parameters.

METHOD OF MOMENTS MODEL – SELF IMPEDANCE ANALYSIS

In an effort to model the antenna system as accurately as possible, detailed mechanical data was obtained from the licensee and is summarized below:

Each tower is 300' (91.4 meters) in height, steel, uniform cross section, 38" face mounted on a square concrete base pier with 4" strap in an X configuration.

Base Insulators are brown ceramic 18" in height; specified capacitance of 30 pf.

Austin ring lighting transformer are employed at each tower and a single static drain choke.

None of the towers support an antenna or transmission line.

Tower #1 (N) is 47" from feed through bowl with a no lightning dissipation choke. Tower #2 (S) is 52" from the feed through bowl with no lightning dissipation choke.

The choice of calculating engine and software implementation chosen for this filing is the ACS Model Version 1.018 employing MININEC3. The circuit analysis software employed is WCAP Professional Version 1.1.02.

The wire models for the two towers are constructed as specified below:

<u>Tower #1 North</u> Actual radius = 0.4608 meters Model radius = 0.6 meters Percentage of actual radius = 130.2% Z = 93.17 meters Percentage of actual height = 101.9% Number of segments = 20

<u>Tower #2 South</u> Actual radius = 0.4608 meters Model radius = 0.6 meters Percentage of actual radius = 130.2% Z = 95.11 meters Percentage of actual height = 104.1% Number of segments = 20

The values above comply with the 73.151 requirement that the radius of the wire model cylinder be within 80 and 150 percent of the radius of a circle with a circumference equal to the sum of the faces, that the height be between 75 and 125 percent of the physical length and that no segment be less than 10 electrical degrees.

The tower measured base self impedances, with all other towers floating, as measured at the J plug, are listed below. Tower impedance was obtained using a Delta OIB-3, serial number 1369 fed by the transmitter. The modeled self impedance measurements, with all other towers floating, may be found in <u>Exhibit I, page 2</u> for Tower #1 and <u>Exhibit I, page 5</u> for Tower #2. A circuit model has been constructed for each tower to account for shunt and series reactance across the tower base. All calculations have been

made employing WCAP Professional version 1.1.02 as seen in <u>Figures 1 and 2</u> for self impedance and <u>Figures 3 and 4</u> for nighttime directional operation. The measured and calculated self impedance values are well within the tolerance specified in 73.151(c)(2)(ii) as seen below:

Tower #1

Measured self impedance at ATU:	13.0 -J 85
Modeled self impedance at base:	13.916 -J 113.146
Shunt capacitance:	30 pf
Series inductance:	+J 27.55, 7.83 uh
Shunt reactance:	+J 10,000, 2,842 uh
Modeled self impedance at ATU:	13.82 -J 85
Tower #2	
Measured self impedance at ATU:	15 –J 87
Modeled self impedance at base:	14.744 -J 106.62
Shunt capacitance:	30 pf
Series inductance:	+J 19.18, 5.45 uh
Shunt reactance:	+J 10,000, 2,842 uh
Modeled self impedance at ATU:	14.67 -J 87

The calculated tolerances are:

Tower #1 13 ± 2.52 resistance, -J 85 ± 5.40 reactance Tower #2 15 ± 2.6 resistance, -J 87 ± 5.48 reactance

METHOD OF MOMENTS MODEL – BASE OPERATING PARAMETERS

The modeled tower array was employed, as constructed for the derivation of self impedance, for the determination of nighttime operating parameters. The FCC theoretical values were converted to base excitation values. The base excitation values for the nighttime array may be found in <u>Exhibit II, page 2</u> and the base operating parameters on <u>page 3</u>.

The calculated base operating parameters and the phase monitor parameters as adjusted and reflected on Form 302-AM, attached, are as follows:

NIGHTTIME:

Tower	Figures 4 – 6 Circuit Model <u>Ratio and Phase</u>	Correction to Modeled Values to Derive Antenna Monitor Values
#1 #2	1.003 -0.006 1.003 -0.002	1.000 -0.004 1.000 0.000
Tower	MoM Modeled Current & Phase	Antenna Monitor Current & Phase
#1	0.951 -116.9	0.951 -116.9
#2	1.000 0.00	1.000 0.00

The adjusted pattern has phase monitor values which are equal to the modeled phase and ratio corrected for circuit model amplitude and phase. The nighttime directional pattern has been adjusted to the values above and as shown on the attached form 302-AM.

DIRECT MEASUREMENT OF POWER

Common point impedance was measured with a Delta OIB-3, serial number 1369, placed at the Delta TCA-20 EXR common point ammeter. Common point current was measured with a Delta TCA-20 EXR permanently installed in the phasing cabinet with the toroidal sample immediately adjacent to the impedance bridge. Common point resistance was set to 50 +J0 and the transmitter power adjusted to yield the correct current of 10.4 amps for a power level of 5,400 watts as found on FCC Form 302-AM attached.

Tower #2 non-directional impedance, was taken at the J plug where a thermocouple ammeter, 0-20 amps, is inserted for non directional mode power measurement.

POST CONSTRUCTION CERTIFICATION OF ARRAY GEOMETRY

The array has been modeled using the best available data.

	ASR	Height Above Base Insulator	Height Overall AGL
Tower #1	1033940	91.4 meters	95.1
Tower #2	1033941	91.4 meters	95.1

As an existing licensed facility a surveyor's certification is not included as provided for in Public Notice FCC DA 09-2430 dated October 29, 2009.

SAMPLING SYSTEM

The antenna system is licensed with an approved sampling system and no changes to the sampling system were required for this filing.

Delta toroid sampling devices, type TCT-3, are mounted on open panels in weather proof buildings at the base of each tower. Sample lines are equal length Andrew FSJ1-50. The antenna monitor is a Potomac Instruments AM-1901.

Measurements on the sampling system components are tabulated below. Toroidal sample devices were tested for accuracy by removing the units from the tuning units at the base of each tower and placing the devices in series on the same conductor in the transmitter building. The sample devices were then measured when connected to the phase monitor with coax jumpers having exact equal electrical length:

		<u>Ratio</u>	<u>Phase</u>
Toroid #1	#691	100.0	0.0
Toroid #2	#690	100.0	0.0

The sampling device accuracy was verified as being well within the manufacturer tolerance of $\pm 2\%$ in magnitude and ± 3 degrees in phase

Phase monitor accuracy was confirmed by feeding two tower inputs at a time through a splitter and equal length jumpers to confirm equal magnitude and phase on each tower. There were no observable errors.

Impedance and electrical length for each of the three sample lines were measured with an Array Solutions model AIM4170C vector network analyzer ("VNA"). The VNA was connected to the sample lines at the transmitter building with the sample lines unterminated on the turning unit end. The measured electrical length data is found below:

Sample line open-circuited odd quarter wave below 560 kHz (0.25 wavelength)	1 (N) = 216 kHz 1,138.9' = 233.3 deg. 2 (S) = 216 kHz 1,138.9' = 233.3 deg.
Sample line open-circuited odd quarter wave above 560 kHz (0.75 wavelength)	1 (N) = 659 kHz 1,119.9' = 229.4 deg. 2 (S) = 659 kHz 1,119.9' = 229.4 deg.

It may be seen that the sample lines are equal in length. The sample system meets the rule requirement that the sample lines be equal to within one degree.

The impedance of the sample lines was determined by measuring the open circuit impedance 45 degrees above and below the resonant length of the sample lines. The measured data is presented below. The impedance is determined using the formula:

$$Z_{o} = ((R_{1}^{2} + X_{1}^{2})^{1/2} \times (R_{2}^{2} + X_{2}^{2})^{1/2})^{1/2}$$

	3/8 lambda +45° From <u>3/4 wave</u>	Measured Impedance	1/8 lambda -45° From <u>3/4 wave</u>	Measured Impedance	Calculated Impedance by formula
Tower #1(N)	769	17.009 + J 47.497	549	11.360 –J 48.01	3 49.89
Tower #2(S)	769	16.956 +J 47.061	549	11.233 – J 48.14	49.70

The characteristic impedance of the transmission lines is within 1 ohm. The allowable tolerance is 2 ohms.

Sampling system impedance was measured with each of the sampling lines terminated in its respective toroid sampling device. Impedance was measured by connecting each sample line directly to the VNA. The measured impedance data is found below as measured at 560 kHz.

Measured impedance of sampling line and associated toroid

Tower #1(N) 54.82 –J1.95 Tower #2(S) 52.52 –J 2.91

GROUND SYSTEM

The ground system consists of 90 radials, equally spaced, 137.2 meters in length plus 10 radials 122 meters in length equally spaced at tower #1 North. At tower #2 South the ground system consists of 90 radials, equally spaced, 122 meters in length plus 30 equally spaced radials 106.7 meters in length.

REFERENCE FIELD STRENGTH MEASUREMENTS

Reference field strength measurements were taken by Kenneth Eklund, Director of Engineering for Cherry Creek Radio. The measurement data appears in <u>Appendix 1</u>. The field meter was checked against other meters of known calibration prior to the commencement of measurements.

CONCLUSION

All adjustments, measurements and field work were undertaken under the direction of the affiant.

The foregoing was prepared on behalf of **CCR** - **Wescoast IV**, **LLC** by Clarence M. Beverage of *Communications Technologies, Inc.*, Marlton, New Jersey, whose qualifications are a matter of record with the Federal Communications Commission. The statements herein are true and correct of his own knowledge, except such statements made on information and belief, and as to these statements he believes them to be true and correct.

/s/ Clarence M. Beverage for Communications Technologies, Inc. Marlton, New Jersey

June 5, 2012

EXHIBIT I

KPQ TOWER #1 FED TOWER #2 FLOATING

ACSModel

(MININEC 3.1 Core)

05-10-2012 19:57:46 *****

KPQ TOWER #1

Frequency = 0.560 MHz Wavelength = 535.35714 Meters

No. of Wires: 2

Wire No. 1	Coordinates			End	No. of
Х	Y	Z	Radius	Connection	Segments
0	0	0		-1	
0	0	93.16702	0.6	0	20
Wire No. 2	Coordinates			End	No. of
Х	Y	Z	Radius	Connection	Segments
-114.7227	68.93233	0		-2	
-114.7227	68.93233	95.11512	0.6	0	20

**** ANTENNA GEOMETRY ****

Wire No.	1	Coordinates			Conn	ection	Pulse
Х		Y	Z	Radius	Endl	End2	No.
0		0	0	0.6	-1	1	1
0		0	4.658351	0.6	1	1	2
0		0	9.316702	0.6	1	1	3
0		0	13.97505	0.6	1	1	4
0		0	18.6334	0.6	1	1	5
0		0	23.29175	0.6	1	1	6
0		0	27.9501	0.6	1	1	7
0		0	32.60846	0.6	1	1	8
0		0	37.26681	0.6	1	1	9
0		0	41.92516	0.6	1	1	10
0		0	46.58351	0.6	1	1	11
0		0	51.24186	0.6	1	1	12
0		0	55.90021	0.6	1	1	13
0		0	60.55856	0.6	1	1	14
0		0	65.21691	0.6	1	1	15
0		0	69.87526	0.6	1	1	16
0		0	74.53362	0.6	1	1	17
0		0	79.19196	0.6	1	1	18
0		0	83.85031	0.6	1	1	19
0		0	88.50867	0.6	1	0	20

EXHIBIT I

KPQ TOWER #1 FED TOWER #2 FLOATING

Page 2

Wire No.	2 Coordinates			Conn	ection	Pulse
Х	Y	Z	Radius	Endl	End2	No.
-114.7227	68.93233	0	0.6	-2	2	21
-114.7227	68.93233	4.755756	0.6	2	2	22
-114.7227	68.93233	9.511512	0.6	2	2	23
-114.7227	68.93233	14.26727	0.6	2	2	24
-114.7227	68.93233	19.02302	0.6	2	2	25
-114.7227	68.93233	23.77878	0.6	2	2	26
-114.7227	68.93233	28.53454	0.6	2	2	27
-114.7227	68.93233	33.29029	0.6	2	2	28
-114.7227	68.93233	38.04605	0.6	2	2	29
-114.7227	68.93233	42.8018	0.6	2	2	30
-114.7227	68.93233	47.55756	0.6	2	2	31
-114.7227	68.93233	52.31332	0.6	2	2	32
-114.7227	68.93233	57.06907	0.6	2	2	33
-114.7227	68.93233	61.82483	0.6	2	2	34
-114.7227	68.93233	66.58058	0.6	2	2	35
-114.7227	68.93233	71.33634	0.6	2	2	36
-114.7227	68.93233	76.09209	0.6	2	2	37
-114.7227	68.93233	80.84785	0.6	2	2	38
-114.7227	68.93233	85.60361	0.6	2	2	39
-114.7227	68.93233	90.35936	0.6	2	0	40
Sources	1					
Pulse No .	. Voltage Magnitu	ide. Phase (Dec	$(rees) \cdot 1 = 10$		0	
14100 1101,	vortage nagnret	ac, made (be	grees, r, r		0	
Number of	Loads: 1					
Pulse No.,	Resistance, Rea	actance: 21,	0 ,-10000			
********	*************** SC	DURCE DATA	*********	******		
Pulse 1	Voltage = (1	.000.0, 0.0j)				
	Current = (1)	0708, 8.7064	j)			
	Impedance =	(13.916, -113	.146j)			
	Power $=$ 535.	42 Watts				

EXHIBIT I

KPQ TOWER #1 FED TOWER #2 FLOATING

Page 3

* * * * * * * * * * * * * * * * * * * *		CURRENT DATA	* * * * * * * * * * * * * * * * * * * *		
Wire No.	1 :				
Pulse	Real	Imaginary	Magnitude	Phase	
No.	(Amps)	(Amps)	(Amps)	(Degrees)	
1	1.0708	8.7064	8.772	82.9882	
2	1.0682	8.191	8.2603	82.57	
3	1.0602	7.8643	7.9355	82.322	
4	1.047	7.548	7.6203	82.1029	
5	1.0285	7.2295	7.3023	81.9034	
6	1.0047	6.9019	6.9747	81.7174	
7	0.9758	6,5622	6.6344	81.5419	
8	0.9418	6.2088	6.2798	81.3748	
9	0.9026	5.8408	5.9101	81.2149	
10	0.8585	5,458	5.5251	81.0611	
11	0.8094	5.0603	5.1246	80,9126	
12	0.7554	4.6477	4.7087	80.7687	
13	0.6965	4,2203	4.2774	80.6289	
14	0.6327	3,7782	3.8308	80.4927	
15	0.5641	3.3211	3,3687	80.3596	
16	0.4906	2.8487	2.8906	80.2292	
17	0.4118	2.3596	2.3952	80,1011	
18	0.3273	1.8514	1.8801	79.9748	
19	0.236	1.3182	1.3392	79.8493	
20	0.1358	0.7489	0.7612	79.7213	
E	0.0	0.0	0.0	0.0	
Wire No.	2 :				
Pulse	Real	Imaginary	Magnitude	Phase	
No.	(Amps)	(Amps)	(Amps)	(Degrees)	
21	0.006	-0.0067	0.009	-48.2613	
22	0.0359	-0.0402	0.0539	-48.2052	
23	0.0519	-0.0579	0.0777	-48.1068	
24	0.0646	-0.0717	0.0965	-47.9854	
25	0.0748	-0.0826	0.1114	-47.8453	
26	0.0829	-0.0911	0.1232	-47.6891	
27	0.0892	-0.0974	0.1321	-47.5184	
28	0.0937	-0.1017	0.1383	-47.3347	
29	0.0966	-0.1041	0.142	-47.1389	
30	0.0979	-0.1047	0.1433	-46.9321	
31	0.0976	-0.1036	0.1423	-46.7153	
32	0.0957	-0.1008	0.139	-46.4893	
33	0.0922	-0.0964	0.1334	-46.2551	
34	0.0873	-0.0904	0.1257	-46.0135	
35	0.0807	-0.0829	0.1157	-45.7654	
36	0.0726	-0.0739	0.1036	-45.5116	
37	0.0629	-0.0635	0.0894	-45.2528	
38	0.0515	-0.0515	0.0728	-44.9894	
39	0.0382	-0.0378	0.0537	-44.7212	
40	0.0225	-0.0221	0.0316	-44.4419	
E	0.0	0.0	0.0	0.0	

EXHIBIT I Page 4

KPQ TOWER #2 FED TOWER #1 FLOATING

ACSModel

(MININEC 3.1 Core)

05-10-2012 20:08:38

KPQ Tower #2

τ.

Frequency = 0.560 MHz Wavelength = 535.35714 Meters

No. of Wires: 2

Wire No. 1 X O	Coordinates Y O	Z O	Radius	End Connection -1	No. of Segments
0	0	93.16702	0.6	0	20
Wire No. 2 X -114.7227	Coordinates Y 68.93233	Z	Radius	End Connection -2	No. of Segments
-114.7227	68.93233	95.11512	0.6	0	20

**** ANTENNA GEOMETRY ****

Wire No.	1	Coordinates				Conne	ection	Pulse
Х		Y	Z	I	Radius	Endl	End2	No.
0		0	0		0.6	-1	1	1
0		0	4.658	351	0.6	1	1	2
0		0	9.316	702	0.6	1	1	3
0		0	13.97	505	0.6	1	1	4
0		0	18.63	34	0.6	1	1	5
0		0	23.29	175	0.6	1	1	6
0		0	27.95	01	0.6	1	1	7
0		0	32.60	846	0.6	1	1	8
0		0	37.26	681	0.6	1	1	9
0		0	41.92	516	0.6	1	1	10
0		0	46.58	351	0.6	1	1	11
0		0	51.24	186	0.6	1	1	12
0		0	55.90	021	0.6	1	1	13
0		0	60.55	356	0.6	1	1	14
0		0	65.21	691	0.6	1	1	15
0		0	69.87	526	0.6	1	1	16
0		0	74.53	362	0.6	1	1	17
0		0	79.193	196	0.6	1	1	18
0		0	83.850	031	0.6	1	1	19
0		0	88.50	367	0.6	1	0	20

EXHIBIT I Page 5

KPQ TOWER #2 FED TOWER #1 FLOATING

Wire No.	2	Coordinates			Conne	ection	Pulse
Х		Y	Z	Radius	Endl	End2	No.
-114.7227		68.93233	0	0.6	-2	2	21
-114.7227		68.93233	4.755756	0.6	2	2	22
-114.7227		68.93233	9.511512	0.6	2	2	23
-114.7227		68.93233	14.26727	0.6	2	2	24
-114.7227		68.93233	19.02302	0.6	2	2	25
-114.7227		68.93233	23.77878	0.6	2	2	26
-114.7227		68.93233	28.53454	0.6	2	2	27
-114.7227		68.93233	33.29029	0.6	2	2	28
-114.7227		68.93233	38.04605	0.6	2	2	29
-114.7227		68.93233	42.8018	0.6	2	2	30
-114.7227		68.93233	47.55756	0.6	2	2	31
-114.7227		68.93233	52.31332	0.6	2	2	32
-114.7227		68.93233	57.06907	0.6	2	2	33
-114.7227		68.93233	61.82483	0.6	2	2	34
-114.7227		68.93233	66.58058	0.6	2	2	35
-114.7227		68.93233	71.33634	0.6	2	2	36
-114.7227		68.93233	76.09209	0.6	2	2	37
-114.7227		68.93233	80.84785	0.6	2	2	38
-114.7227		68.93233	85.60361	0.6	2	2	39
-114.7227		68.93233	90.35936	0.6	2	0	40
Sources: Pulse No.,	1 , Voi	ltage Magnit	ude, Phase (I	Degrees): 1, 28	303.2, -80).4	
Manala and C	T	 J 1		-	·		
Number of	LOad	istanco Po	actance. 1	0 -10000			
10136 NO.,		sistance, ne	actance. I,	, , 10000			
********	****	***** S	OURCE DATA	*********	*******		
Pulse 21		Voltage = (469.4222, -27	763.5891j)			
		Current = (2)	26.0311, 0.80)31j)			
		Impedance =	(14.744, -10)6.62j)			
		Power = 500	0.13 Watts				

Total Power = 5000.000 Watts

EXHIBIT I Page 6

KPQ TOWER #2 FED TOWER #1 FLOATING

* * * * * * * * * * * * * * * * * * * *		CURRENT DATA	*****		
Wire No.	1 :				
Pulse	Real	Imaginary	Magnitude	Phase	
No.	(Amps)	(Amps)	(Amps)	(Degrees)	
1	0.0029	0.005	0.0057	60.0123	
2	-0.0819	-0.0987	0.1283	-129.7117	
3	-0.1265	-0.1536	0.199	-129.4608	
4	-0.1614	-0.1974	0.255	-129.2787	
5	-0.1891	-0.2326	0.2998	-129.1069	
6	-0.2108	-0.2609	0.3354	-128.9324	
7	-0.227	-0.2828	0.3627	-128.751	
8	-0.2383	-0.2989	0.3823	-128.5611	
9	-0.2449	-0.3094	0.3946	-128.3623	
10	-0.247	-0.3145	0.3999	-128.1549	
11	-0.2449	-0.3142	0.3984	-127.939	
12	-0.2387	-0.3087	0.3903	-127.7152	
13	-0.2286	-0.2981	0.3757	-127.484	
14	-0.2147	-0.2823	0.3547	-127.2461	
15	-0.197	-0.2615	0.3274	-127.0021	
16	-0.1758	-0.2354	0.2938	-126.7526	
17	-0.151	-0.204	0.2538	-126.4981	
18	-0.1225	-0.1671	0.2072	-126.239	
19	-0.09	-0.1239	0.1531	-125.9748	
20	-0.0526	-0.0733	0.0902	-125.6991	
Е	0.0	0.0	0.0	0.0	
Wire No.	2:				
Pulse	Real	Imaginary	Magnitude	Phase	
No.	(Amps)	(Amps)	(Amps)	(Degrees)	
21	26.0311	0.8031	26.0434	1.767	
22	24.5889	0.5671	24.5954	1.3212	
23	23.6592	0.4362	23.6632	1.0563	
24	22.7499	0.3268	22.7523	0.8229	
25	21.8256	0.2327	21.8269	0.6107	
26	20.8674	0.1505	20.868	0.4133	
27	19.8669	0.0788	19.8671	0.2272	
28	18.8199	0.0166	18.8199	0.0504	
29	17.7245	-0.0367	17.7245	-0.1186	
30	16.58	-0.0813	16.5802	-0.281	
31	15.3863	-0.1175	15.3868	-0.4377	
32	14.1439	-0.1455	14.1447	-0.5892	
33	12.8533	-0.1652	12.8544	-0.7364	
34	11.5147	-0.1768	11.5161	-0.8796	
35	10.1279	-0.1802	10.1295	-1.0194	
36	8.6916	-0.1754	8.6933	-1.1563	
37	7.2023	-0.1623	7.2041	-1.2906	
38	5.6526	-0.1404	5.6543	-1.4231	
39	4.0249	-0.1092	4.0264	-1.5545	
40	2.2851	-0.0674	2.2861	-1.6884	
E	0.0	0.0	0.0	0.0	

EXHIBIT II

KPQ NIGHT DA ARRAY

ACSModel

(MININEC 3.1 Core)

05-10-2012 20:16:52 *****

KPQ NIGHT ARRAY MoM PROP. PARAMETERS

Frequency = 0.560 MHz Wavelength = 535.35714 Meters

No. of Wires: 2

Wire No. 1	Coordinates			End	No. of
Х	Y	Z	Radius	Connection	Segments
0	0	0		-1	
0	0	93.16702	0.6	0	20
Wire No. 2	Coordinates			End	No. of
Х	Y	Z	Radius	Connection	Segments
-114.7227	68.93233	0		-2	
-114.7227	68.93233	95.11512	0.6	0	20

**** ANTENNA GEOMETRY ****

Wire No.	1 Coordinates			Conn	ection	Pulse
Х	Y	Z	Radius	End1	End2	No.
0	0	0	0.6	-1	1	1
0	0	4.658351	0.6	1	1	2
0	0	9.316702	0.6	1	1	3
0	0	13.97505	0.6	1	1	4
0	0	18.6334	0.6	1	1	5
0	0	23.29175	0.6	1	1	6
0	0	27.9501	0.6	1	1	7
0	0	32.60846	0.6	1	1	8
0	0	37.26681	0.6	1	1	9
0	0	41.92516	0.6	1	1	10
0	0	46.58351	0.6	1	1	11
0	0	51.24186	0.6	1	1	12
0	0	55.90021	0.6	1	1	13
0	0	60.55856	0.6	1	1	14
0	0	65.21691	0.6	1	1	15
0	0	69.87526	0.6	1	1	16
0	0	74.53362	0.6	1	1	17
0	0	79.19196	0.6	1	1	18
0	0	83.85031	0.6	1	1	19
0	0	88.50867	0.6	1	0	20

EXHIBIT II

· ·

KPQ NIGHT DA ARRAY

Page 2

Wire No.	2 Coordinates			Conne	ection	Pulse
Х	Y	Z	Radius	Endl	End2	No.
-114.7227	68.93233	0	0.6	-2	2	21
-114.7227	68.93233	4.755756	0.6	2	2	22
-114.7227	68.93233	9.511512	0.6	2	2	23
-114.7227	68.93233	14.26727	0.6	2	2	24
-114.7227	68.93233	19.02302	0.6	2	2	25
-114.7227	68.93233	23.77878	0.6	2	2	26
-114.7227	68.93233	28.53454	0.6	2	2	27
-114.7227	68.93233	33.29029	0.6	2	2	28
-114.7227	68.93233	38.04605	0.6	2	2	29
-114.7227	68.93233	42.8018	0.6	2	2	30
-114.7227	68.93233	47.55756	0.6	2	2	31
-114.7227	68.93233	52.31332	0.6	2	2	32
-114.7227	68.93233	57.06907	0.6	2	2	33
-114.7227	68.93233	61.82483	0.6	2	2	34
-114.7227	68.93233	66.58058	0.6	2	2	35
-114.7227	68.93233	71.33634	0.6	2	2	36
-114.7227	68.93233	76.09209	0.6	2	2	37
-114.7227	68.93233	80.84785	0.6	2	2	38
-114.7227	68.93233	85.60361	0.6	2	2	39
-114.7227	68.93233	90.35936	0.6	2	0	40
	_					
Sources:	2					
Pulse No.,	Voltage Magnit	ude, Phase (Deg	rees): 1, 2	176.8, 163	3.0	
Pulse No.,	Voltage Magnit	ude, Phase (Deg	rees): 21,	2433.3, -8	36.4	
Number of	Loads: 0					
********	*********	SOURCE DATA	********	*****		
Pulse I	Voltage = (-2081.3945, 637	.4816j)			
	Current = (-9.2625, -18.79	5j)			
	Impedance =	(16.621, -102.	551j)			
	Power = 364	8.73 Watts				
Pulse 21	Voltage = (150.76792428	.6548i)			
10100 01	Current = (22.0285. 0.2547	i)			
	Impedance =	(5.569, -110.3	15i)			
	Power = 135	1.27 Watts	J •			
Total Powe	er = 5000.000 Wa	tts				

EXHIBIT II KPQ NIGHT DA ARRAY Page 3

.

* * * * * * * * * * * * * * * * * * * *		CURRENT DATA	******		
Wire No. 1	:				
Pulse	Real	Imaginary	Magnitude	Phase	
No.	(Amps)	(Amps)	(Amps)	(Degrees)	
1	-9.2625	-18.795	20.9535	-116.2349	
2	-8.9246	-17.7205	19.841	-116.7311	
3	-8.6882	-17.0356	19.1232	-117.0218	
4	-8.4399	-16.3689	18.4166	-117.2759	
5	-8.1716	-15.6942	17.6942	-117,5048	
6	-7.8791	-14.9974	16.9412	-117.7159	
7	-7.5608	-14.272	16.151	-117,9129	
8	-7.2157	-13.5149	15.3205	-118.0982	
9	-6 8437	-12 7243	14 448	-118 2735	
10	-6 4449	-11 8997	13 5329	-118 4401	
11	-6 0194	-11 0409	12 5752	-118 599	
12	-5 5677	-10 1481	11 5751	-118 751	
13	-5 0898	-9 2214	10 5329	-118 8969	
11	-4 5962	-9.261	0 1106	-110.0272	
15	-4.3002	-8.201	9.4400	-119.0372	
15	-4.0365	-7.2005	0.3221	-119.1726	
10	-3.5004	-6.2368	7.152	-119.3036	
17	-2.9164	-5.1693	5.9352	-119.4306	
18	-2.3013	-4.0585	4.6655	-119.5545	
19	-1.6477	-2.8915	3.328	-119.676	
20	-0.9414	-1.6438	1.8943	-119.7984	
E	0.0	0.0	0.0	0.0	
Wire No. 2	:				
Pulse	Real	Imaginary	Magnitude	Phase	
No.	(Amps)	(Amps)	(Amps)	(Degrees)	
21	22.0285	0.2547	22.03	0.6625	
22	20.7631	0.1788	20.7639	0.4934	
23	19.9523	0.1363	19.9527	0.3914	
24	19.1634	0.1004	19.1636	0.3003	
25	18.3654	0.0692	18.3655	0.2159	
26	17.5416	0.0416	17.5417	0.136	
27	16.6848	0.0172	16.6848	0.0591	
28	15.791	-0.0042	15.791	-0.0154	
29	14.8588	-0.0229	14.8588	-0.0883	
30	13.8873	-0.0387	13.8874	-0.1598	
31	12.8766	-0.0518	12.8767	-0.2304	
32	11.8271	-0.062	11.8273	-0.3003	
33	10.7392	-0.0693	10.7394	-0.3697	
34	9.613	-0.0736	9.6133	-0.4387	
35	8.4485	-0.0749	8.4488	-0.5077	
36	7.2446	-0.0729	7.245	-0.5766	
37	5 9986	-0.0676	5 999	-0 6457	
38	4 7042	-0.0587	1 7046	-0 7153	
30	3 347	-0.0459	3 3473	-0.7856	
10	1 8986	-0.0285	1 9999	-0.8586	
90 F	1.0900	-0.0285	1.0909	0.000	
Ľ,	0.0	0.0	0.0	0.0	
*******	* BASE C	PERATING PARAMET	'ERS ******	****	
	Twr.	Ratio Phas	e		
	1	0.951 -116.	9		
	2	1.000 0.	0		

TOWER #1 BASE CIRCUIT MODEL

WCAP - KPQ TOWER #1

WCAP OUTPUT AT FREQUENCY: 0.560 MHz

NODE	VOLTAG	ES			
Node:	1	1136.1040	4	-82.9930°	V
Node:	2	860.9391	4	-80.7618°	V
Node:	3	860.9407	¥	-80.7612°	V

	WCAP	PART	CURRENT IN	CURRENT OUT
	WCAP	PART	BRANCH VOLTAGE	BRANCH CURRENT
R	3⊸2	0.00100000	0.01 4 0.000° V	10.00 4 0.000° A
R	1→0	13.91600000	1136.10 ≰ -82.993° V	9.97 ≰ -0.005° A
С	1→0	0.00003000	1136.10 ≰ -82.993° V	0.12 🗳 7.007° A
L	2→0	2842.00000000	860.94 ≰ -80.762° V	0.09 ≰ -170.762° A
L	2→1	7.83000000	277.85 4 90.079° V	10.08 4 0.079° A
	WCAP	PART	FROM IMPEDANCE	TO IMPEDANCE
R	3→2	0.00100000	13.82 - j 84.977	13.82 - j 84.977
R	1-+0	13.91600000	13.92 - j 113.146	0.00 + j 0.000
С	1→0	0.00003000	0.00 - j 9473.509	0.00 + j 0.000
L	2→0	2842.00000000	0.00 + j 9999.815	0.00 + j 0.000
L	2→1	7.83000000	13.59 - j 84.280	13.59 - j 111.830

WCAP PART

VSWR

Ο.	00000	0000	0
0000	0	3	0.00000000
0000	3	2	0.0000000
0000	1	0	-113.14600000
3000	1	0	
0000	2	0	0.0000000
0000	2	1	0.0000000
	0. 0000 0000 0000 3000 0000 0000	$\begin{array}{c} 0.00000\\ 0000 & 0\\ 0000 & 3\\ 0000 & 1\\ 3000 & 1\\ 0000 & 2\\ 0000 & 2\\ \end{array}$	$\begin{array}{cccc} 0.00000000\\ 0000&0&3\\ 0000&3&2\\ 0000&1&0\\ 3000&1&0\\ 0000&2&0\\ 0000&2&1\\ \end{array}$

Center Frequency: 0.56 MHz

Frequency Range: ±0 kHz

TOWER #2 BASE CIRCUIT MODEL

WCAP - KPQ TOWER #2

~

WCAP OUTPUT AT FREQUENCY: 0.560 MHz

NODE VOLTAGES Node: 1 1073.6281 **4** -82.1316° V Node: 2 882.3685 **4** -80.4300° V Node: 3 882.3702 **4** -80.4293° V

	WCAP	PART	CURRENT IN	CURRENT OUT
	WCAP	PART	BRANCH VOLTAGE	BRANCH CURRENT
R	3→2	0.00100000	0.01 ≰ 0.000° V	10.00 4 0.000° A
R	1→0	14.74400000	1073.63 ≰ -82.132° V	9.97 4 -0.005° A
С	1→0	0.00003000	1073.63 🞸 -82.132° V	0.11 4 7.868° A
\mathbf{L}	2→0	2842.00000000	882.37 ≰ -80.430° V	0.09 🖇 -170.430° A
L	2⊶1	5.45000000	193.43 4 90.083° V	10.09 ≰ 0.083° A
	WCAP	PART	FROM IMPEDANCE	TO IMPEDANCE
R	3→2	0.00100000	14.67 - j 87.009	14.67 — ј 87.009
R	1→0	14.74400000	14.74 - j 106.620	0.00 + j 0.000
С	1→0	0.00003000	0.00 - j 9473.509	0.00 + j 0.000
L	2→0	2842.00000000	0.00 + j 9999.815	0.00 + j 0.000
L	2→1	5.45000000	14.42 - j 86.279	14.42 - j 105.456

WCAP PART

VSWR

WCAP	INPUT DATA:							
	0.5600	0.000	00000	0				
I	10.0000000	0 0	3	0.00000000				
R	0.0010000)0 3	2	0.0000000				
R	14.7440000	00 1	0	-106.62000000				
С	0.0000300	00 1	0					
L	2842.0000000	0 2	0	0.0000000				
L	5.4500000	0 2	1	0.0000000WCAP	-	KPQ	TOWER	#1

Center Frequency:	0.56	MH
-------------------	------	----

Frequency Range: ±0 kHz

TOWER #1 BASE CIRCUIT MODEL DA MODE

WCAP - KPQ TOWER #1 DIRECTIONAL

WCAP OUTPUT AT FREQUENCY: 0.560 MHz

NODE VOLTAGES Node: 1 1035.4185 **4** -80.7994° V Node: 2 762.6266 **4** -77.4971° V Node: 3 762.6287 **4** -77.4964° V

	WCAP	PART	CURRENT IN	CURRENT OUT
	WCAP	PART	BRANCH VOLTAGE	BRANCH CURRENT
R	3→2	0.00100000	0.01 ≰ 0.000° V	10.00 4 0.000° A
R	1→0	16.62100000	1035.42 🗳 -80.799° V	9.97 ≰ -0.006° A
С	1→0	0.00003000	1035.42 ≰ -80.799° V	0.11 4 9.201° A
L	2→0	2842.00000000	762.63 🞸 -77.497° V	0.08 4 -167.497° A
L	2→1	7.83000000	277.56 4 90.094° V	10.07 4 0.094° A
	WCAP	PART	FROM IMPEDANCE	TO IMPEDANCE
R	3→2	0.00100000	16.51 - j 74.454	16.51 - j 74.454
R	1-+0	16.62100000	16.62 - j 102.551	0.00 + j 0.000
С	1→0	0.00003000	-0.00 - j 9473.509	0.00 + j 0.000
L	2→0	2842.00000000	0.00 + j 9999.815	0.00 + j 0.000
L	2→1	7.83000000	16.27 - j 73.930	16.27 - j 101.481

WCAP PART

VSWR

WCAP	INPUT DATA:				
	0.5600	0	.000000	000	0
I	10.000000	00	0	3	0.0000000
R	0.001000	00	3	2	0.0000000
R	16.621000	00	1	0	-102.55100000
С	0.000030	00	1	0	
L	2842.000000	00	2	0	0.0000000
L	7.830000	00	2	1	0.0000000

Center Frequency: 0.56 MHz

Frequency Range: ____0 kHz

TOWER #2 BASE CIRCUIT MODEL DA MODE

WCAP - KPQ TOWER #2 DIRECTIONAL

÷

ν

WCAP OUTPUT AT FREQUENCY: 0.560 MHz

NODE VOLTAGES Node: 1 1101.7422 **4** -87.1118° V Node: 2 908.5320 **4** -86.5037° V Node: 3 908.5326 **4** -86.5030° V

	WCAP	PART	CURRENT IN	CURRENT OUT
	WCAP	PART	BRANCH VOLTAGE	BRANCH CURRENT
R	3→2	0.00100000	0.01 ≰ 0.000° V	10.00 4 0.000° A
R	1→0	5.56900000	1101.74 ≰ -87.112° V	9.97 ≰ -0.002° A
С	1→0	0.00003000	1101.74 ≰ -87.112° V	0.12 4 2.888° A
L	2→0	2842.00000000	908.53 ≰ -86.504° V	0.09 ≰ -176.504° A
L	2→1	5.45000000	193.50 4 90.031° V	10.09 4 0.031° A
	WCAP	PART	FROM IMPEDANCE	TO IMPEDANCE
R	3→2	0.00100000	5.54 - j 90.684	5.54 - j 90.684
R	1→0	5.56900000	5.57 - j 110.315	0.00 + j 0.000
С	1-+0	0.00003000	0.00 - j 9473.509	0.00 + j 0.000
L	2-→0	2842.00000000	0.00 + j 9999.815	0.00 + j 0.000
L	2→1	5.4500000	5.44 - j 89.872	5.44 - j 109.048

WCAP PART

VSWR

WCAP	INPUT DA	ATA:			
	0.5600	0.	00000	0000	0
I	10.00	0000000	0	3	0.0000000
R	0.00	0100000	3	2	0.0000000
R	5.50	5900000	1	0	-110.31500000
С	0.00	0003000	1	0	
L	2842.00	000000	2	0	0.0000000
L	5.45	5000000	2	1	0.0000000

Center	Frequency:	0.56	MH2
--------	------------	------	-----

Frequency Range: ±0 kHz

APPENDIX 1 KPQ-AM 5 KW Night DA Reference Field Strength Measurements for M.O.M. April 11, 2012 PI FIM-41 SN 699

Radial	Point	Time	Distance	mV/m	Coordinate	es (NAD83)	Description
102.5	A	10:18a	1.04 mi	42	47° 26' 53.72"	120° 18' 19.30"	Driveway of 2610 Columbus Ave.
	В	10:26a	1.55 mi	10.5	47° 26' 48.09"	120° 17' 41.01"	50' south of corner of 26 th St. on Ashland
	С	10:33a	1.88 mi	24.5	47° 26' 44.24"	120° 17' 16.33"	Front of house 2434 Catalina
	A	11:42a	1.14 mi	180	47° 26' 14.89"	120° 18' 52.48"	Entrance to Lynden Tree Area
149	В	10:58a	3.53 mi	60	47° 24' 28.47"	120° 17' 17.42"	Corner of 2 nd St. & Valley Parkway
	С	10:48a	4.01 mi	61	47° 24' 6.57"	120° 16' 58.70"	South entrance to Coast parking lot
	A	11:35a	1.11 mi	45	47° 26' 10.03"	120° 20' 00.06"	Corner of Holbrook & Dartmouth
195.5	В	11:25a	2.01 mi	19.5	47° 25' 25.43"	120° 20' 18.78"	Front of house 1504 Jefferson
	C	11:19a	2.62 mi	21	47° 24' 53.61"	120° 20' 30.94"	50' north of Pacific Lane & Eisenhower Dr.
	A	9:23a	1.70 mi	420	47° 28' 21.46"	120° 20' 44.87"	SE Corner of School St. & Peters St.
329	В	9:33a	2.27 mi	440	47° 28' 47.68"	120° 21' 08.14"	Dirt road beside water line markers
	C	9:42a	2.56 mi	440	47° 29' 00.29"	120° 21' 19.47"	South side of American Fruit Rd. by pole 1723205302

	Ratio	Phase
Tower1	.951	-116.9
Tower2	1.000	0.0