

1776 K STREET NW WASHINGTON, DC 20006 PHONE 202.719.7000 FAX 202.719.7049

7925 JONES BRANCH DRIVE McLEAN, VA 22102 PHONE 703.905.2800 FAX 703.905.2820

www.wileyrein.com

December 8, 2011

Mark Lipp 202.719.7503 mlipp@wileyrein.com

BY HAND DELIVERY

Federal Communications Commission c/o U.S. Bank – Government Lockbox #979089 SL-MO-C2-GL 1005 Convention Plaza St. Louis, MO 63101

Re: Application for AM Broadcast Station License/ Request for Program Test Authority Multicultural Radio Broadcasting Licensee, LLC Station KYPA(AM), Los Angeles, California Facility Identifier Number 18273 File Number BP-20050228ACB

Dear Ms. Dortch:

Transmitted herewith on behalf of Multicultural Radio Broadcasting Licensee, LLC, the licensee of Station KYPA(AM), are an original and two copies of its application for an AM broadcast station license to cover the construction authorized in construction permit BP-20050228ACB. This Permit allows operation on 1230 kHz with 1 kW of power during daytime and nighttime hours in the non-directional mode. The site is shared with co-owned Station KBLA(AM), Santa Monica, California. The Engineering Report, prepared by Edward A. Schober, P.E., includes all of the technical details and a complete method of moments proof-of-performance.

If there are any questions about this Application, please contact undersigned counsel for Multicultural Radio Broadcasting Licensee, LLC.

Sincerely,

Mark Lipp Enclosure

ANN

Federal Communic	ations	Commission
Washington, D. C.	20554	

Approved by OMB 3060-0627 Expires 01/31/98

ONLY 01/05/	FOR FCC		Su
	USE		orlasti
			17
FILE NOKAMAL ZUITAN KKK		De la la A	IND

FCC 302-AM

APPLICATION FOR AM

BROADCAST STATION LICENSE

(Please read instructions before filling out form.

SECTION I - APPLICANT FEE INFORMATION		
1. PAYOR NAME (Last, First, Middle Initial)		
Wiley Rein LLP		
MAILING ADDRESS (Line 1) (Maximum 35 characters) 1776 K Street, NW		
MAILING ADDRESS (Line 2) (Maximum 35 characters)		
CITY Washington	STATE OR COUNTRY (if foreign a DC	ddress) ZIP CODE 20006
TELEPHONE NUMBER (include area code) 202.719.7503	CALL LETTERS OTH KYPA 182	ER FCC IDENTIFIER (If applicable)
2. A. Is a fee submitted with this application?	12	Yes No
B. If No, indicate reason for fee exemption (see 47 C.F.R. Section		
Governmental Entity Noncommercial edu	cational licensee Other (P	lease explain):
C. If Yes, provide the following information:		
Enter in Column (A) the correct Fee Type Code for the service you Fee Filing Guide." Column (B) lists the Fee Multiple applicable for the		
(A) (B)	(C)	×
FEE TYPE FEE MULTIPLE	FEE DUE FOR FEE TYPE CODE IN COLUMN (A)	FOR FCC USE ONLY
M M R 0 0 0 1	\$ 635.00	
To be used only when you are requesting concurrent actions which re	sult in a requirement to list more than	one Fee Type Code.
(A) (B)	(C)	
M O R 0 0 1	\$ 730.00	FOR FCC USE ONLY
ADD ALL AMOUNTS SHOWN IN COLUMN C,	TOTAL AMOUNT REMITTED WITH THIS	FOR FCC USE ONLY
AND ENTER THE TOTAL HERE. THIS AMOUNT SHOULD EQUAL YOUR ENCLOSED	* 1,365.00	· · · · · · · · · · · · · · · · · · ·
REMITTANCE.		· · · · · · · · · · · · · · · · · · ·

ť.:

SECTION II - APPLICAN								
1. NAME OF APPLICANT								
Multicultural Radio Broadcas	sting Licensee, LLC							
MAILING ADDRESS 27 William Street, 11th Floor	r							
CITY New York			STATE New Y	ork	ZIP CODE 10005			
			1					
2. This application is for:								
			Noncomm	nercial				
	AM Direc	tional		on-Directional				
F	Í					1		
Call letters	Community of License		tion Permit File No.	Modification of Construction Permit File No(s).	Expiration Date of Construction Perm			
КҮРА	Los Angeles	BP-20	050228ACB	N/Å	12/19/2011			
		10 004-	motio program	tast authority in	Yes 🗸	No		
3. Is the station n accordance with 47 C.F	ow operating pursuant R. Section 73.1620?	ເບີ່ອບເດ	mano program	test autionty III	······			
	· ·				Exhibit No.			
If No, explain in an Exhi	ibit.				L			
					✓ Yes □	N.a.		
	s, conditions, and oblig	ations s	set forth in the	above described	✓ Yes	No		
construction permit been fully met? Exhibit No.								
If No, state exceptions i	n an Exhibit.				L			
5. Apart from the changes already reported, has any cause or circumstance arisen since Yes I No								
the grant of the under	lying construction permi	t which	would result in	any statement or	استنبا ۲۰۰۰ است			
representation containe	d in the construction per	mit appli	cation to be now	incorrect?	Exhibit No.			
If Yes, explain in an Ex	hibit.							
6. Has the permittee fi	led its Ownership Report	(FCC F	orm 323) or own	ership	Yes	No		
certification in accordan	nce with 47 C.F.R. Sectio	n 73.361	15(b)?		Does not	annlu		
						ոհիւն		
If No, explain in an Exh	ibit.				Exhibit No.			
7. Has an adverse find	ling been made or an ad	lverse fir	nal action been t	aken by any court	Yes 🗸	No		
or administrative body	with respect to the applic	ant or p	arties to the appl	ication in a civil or				
criminal proceeding, bro	ought under the provision elated antitrust or unfa	ns of any	etition; fraudule	ent statements to				
another governmental u		20116						
-		ull diach	sure of the nor	eone and matters	Exhibit No.			
in the answer is Yes, a involved, including an id	attach as an Exhibit a f dentification of the court	or admin	nistrative body a	nd the proceeding				
(by dates and file num	bers), and the dispositi	on of th	e litigation. W	here the requisite				
information has been	earlier disclosed in co	nnectior	n with another	application or as				
of that previous submis	Section 1.65(c), the appliession by reference to the	file nur	nber in the case	of an application,		•		
the call letters of the s	tation regarding which t	he appli	cation or Section	n 1.65 information				
was filed, and the date	of filing; and (ii) the dispo	osition o	f the previously r	eported matter.				

·· • ·

22

r

FCC 302-AM (Page 2) August 1995

8. Does the applicant, or any party to the application, have a petition on file to migrate to the expanded band (1605-1705 kHz) or a permit or license either in the existing band or expanded band that is held in combination (pursuant to the 5 year holding period allowed) with the AM facility proposed to be modified herein?

If Yes, provide particulars as an Exhibit.

The APPLICANT hereby waives any claim to the use of any particular frequency or of the electromagnetic spectrum as against the regulatory power of the United States because use of the same, whether by license or otherwise, and requests and authorization in accordance with this application. (See Section 304 of the Communications Act of 1934, as amended).

The APPLICANT acknowledges that all the statements made in this application and attached exhibits are considered material representations and that all the exhibits are a material part hereof and are incorporated herein as set out in full in

CERTIFICATION

1. By checking Yes, the applicant certifies, that, in the case of an individual applicant, he or she is not subject to a denial of federal benefits that includes FCC benefits pursuant to Section 5301 of the Anti-Drug Abuse Act of 1988, 21 U.S.C. Section 862, or, in the case of a non-individual applicant (e.g., corporation, partnership or other unincorporated association), no party to the application is subject to a denial of federal benefits that includes FCC benefits pursuant to that section. For the definition of a "party" for these purposes, see 47 C.F.R. Section 1.2002(b).

2. I certify that the statements in this application are true, complete, and correct to the best of my knowledge and belief, and are made in good faith.

Name Arthur S. Liu	Signature	Tak
Title	Date	7elephore Number
President	12/07/2011	212.431.4300

WILLFUL FALSE STATEMENTS ON THIS FORM ARE PUNISHABLE BY FINE AND/OR IMPRISONMENT (U.S. CODE, TITLE 18, SECTION 1001), AND/OR REVOCATION OF ANY STATION LICENSE OR CONSTRUCTION

FCC NOTICE TO INDIVIDUALS REQUIRED BY THE PRIVACY ACT AND THE PAPERWORK REDUCTION ACT

The solicitation of personal information requested in this application is authorized by the Communications Act of 1934, as amended. The Commission will use the information provided in this form to determine whether grant of the application is in the public interest. In reaching that determination, or for law enforcement purposes, it may become necessary to refer personal information contained in this form to another government agency. In addition, all information provided in this form will be available for public inspection. If information requested on the form is not provided, the application may be returned without action having been taken upon it or its processing may be delayed while a request is made to provide the missing information. Your response is required to obtain the requested authorization.

Public reporting burden for this collection of information is estimated to average 639 hours and 53 minutes per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the burden, can be sent to the Federal Communications Commission, Records Management Branch, Paperwork Reduction Project (3060-0627), Washington, D. C. 20554. Do NOT send completed forms to this address.

THE FOREGOING NOTICE IS REQUIRED BY THE PRIVACY ACT OF 1974, P.L. 93-579, DECEMBER 31, 1974, 5 U.S.C. 552a(e)(3), AND THE PAPERWORK REDUCTION ACT OF 1980, P.L. 98-511, DECEMBER 11, 1980, 44 U.S.C. 3507.

> FCC 302-AM (Page 3) August 1995

Yes No

Exhibit No.

V Yes

SECTION IIL-L	ICENSE APP	LICATION ENGI	NEERING DAT	A					
Name of Applicant MULTICULTURAL RADIO BROADCASTING LICENSEE, LLC									
PURPOSE OF AUTHORIZATION APPLIED FOR: (check one)									
Station License Direct Measurement of Power									
1. Facilities authorities	orized in constr	ruction permit							
Call Sign	File No. of Co	nstruction Permit	Frequency	Hours of Oper	ration	Power in	l		
KYPA	(if applicable) BP20050228A	CB	(kHz) 1230	UNLIMITED		Night 1.0	Day 1.0		
2. Station location									
State City or Town									
CALIFOR	NIA			LOS AN	GELES		······································		
3. Transmitter loc	cation				-	Street address			
State	County	_		City or Town		or other identification	ation)		
CA	Los An	geles		Los Ang	geles	1700 N Alvarado Str	••		
4. Main studio loc	cation	· · · ·	1	······································					
State	County			City or Town		Street address (or other identific:	ation)		
CA	Los Angeles				na	747 E. Green Stree	•		
5. Remote control point location (specify only if authorized directional antenna)									
State	County			City or Town		Street address (or other identification	ation)		
CA	Los An	geles		Pasader	าล	747 E. Green Street	·		
 6. Has type-approved stereo generating equipment been installed? 7. Does the sampling system meet the requirements of 47 C.F.R. Section 73.68? Yes Vo No Not Applicable Attach as an Exhibit a detailed description of the sampling system as installed. 									
8. Operating con	stants:					- i			
	t or antenna cu	rrent (in amperes)	without	RF common p modulation for 4.65		current (in ampere	s) without		
Measured antenn operating frequen Night		Day	ı ohms) at	Measured ant operating freq Night		n point reactance (Day	in ohms) at		
50.0		50.0		3+		~ 3+-			
Antenna indication	ns for direction			······································					
Tower	rs .	Antenna Phase reading		current	bnitor sample ratio(s)		ase currents		
		Night	Day	Night	Day	Night	Day		
1 (KBLA tower 6)		144.7 degrees	144.7 degrees O degrees	1.0	1.0	N/A	NA		
		Dever -	and Cogress						
				· · · · · · · · · · · · · · · · · · ·					
					<u> </u>		· · · · · · · · · · · · · · · · · · ·		
Manufacturer and	type of antenr	a monitor: Poto	omac Instrum	ents 1901	.1	<u> </u>	_ L		

FCC 302-AM (Page 4) August 1995

SECTION III - Page 2

Excitation

9. Description of antenna system ((f directional antenna is used, the information requested below should be given for each element of the array. Use separate sheets if necessary.)

r	Overall height in meters of radiator above base insulator, or above base, if grounded.	Overall height in meters above ground (without obstruction lighting)	Overall height in meters above ground (include obstruction lighting)	If antenna is either top loaded or sectionalized, describe fully in an Exhibit.
Guyed Uniform Crass Section	63.4	61	63.4	Exhibit No. N/A

Geographic coordinates to nearest second. For directional antenna give coordinates of center of array. For single vertical radiator give tower location.

North Latitude	34	0	5	•	8.	11	West Longitude 118	.0	15	i	24	. 11
						·				Evi	sible No	٦

If not fully described above, attach as an Exhibit further details and dimensions including any other antenna mounted on tower and associated isolation circuits.

N/A Exhibit No.

N/A

Also, if necessary for a complete description, attach as an Exhibit a sketch of the details and dimensions of ground system.

10. In what respect, if any, does the apparatus constructed differ from that described in the application for construction permit or in the

permit? NONE

11. Give reasons for the change in antenna or common point resistance.

N/A

I certify that I represent the applicant in the capacity indicated below and that I have examined the foregoing statement of technical information and that it is true to the best of my knowledge and belief.

Name (Please Print or Type)	Signature (check appropriate box below)
EDWARD A. SCHOBER, PE	Edward Schober
Address (include ZIP Code)	Date
Radiotechniques Engineering, LLC	31 November 2011
P.O. Box 367	Telephone No: (Include Area Code)
Haddon Heights, NJ 08035	856-546-8008

Registered Professional Engineer

Technical Consultant

Technical Director

Chief Operator

Other (specify)

FCC.302-AM (Page 5) August 1995

402 Tenth Avenue • PO Box 367 • Haddon Heights, NJ 08035 Engineering Report – Page 1 Antenna System Proof of Performance Method of Moments Modeling KYPA – Los Angeles, CA Multicultural Radio Broadcasters Licensee, LLC November 2011

Abstract

This report has been prepared to demonstrate that the KYPA day and night antenna systems comply with the provisions of Section 73.151(c), and with the terms of the construction permit BP-20050228ACB. The KYPA antenna system consists of two guyed, uniform, base insulated towers operating with identical parameters day and night.

This site is shared with co-owned KBLA, 1580 kHz which has operated with substantially the same licensed facilities since 1991. KBLA operates with four towers day and six towers night. Tower 2 is shared by KBLA and KYPA, and KBLA tower 6 is shared as tower 1 of KYPA. There are filters at the tower bases to isolate the ATU outputs of each station. Additional filters are installed in the phasing equipment to suppress undesired intermodulation products. Both of the stations use tower 2 in the day and night modes of operation and KYPA uses the KBLA tower 6 (KYPA tower 1) which is only used in the KBLA night pattern. For purposes of simplicity, KYPA tower 1 is physically labeled on site as tower 6, and may be referred to as tower 6 in some tables of this report.

The information provided in this application demonstrates that the array has now been adjusted to conform with the construction permit, as modified, and is constructed in accordance with the requirements of §73.151(c) of the FCC Rules. Program test authority is requested at full power Day and Night.

Analysis and Modeling

Tower base impedance measurements were made at the final J-plugs within the antenna filter units. Measurements were made using an Array Solutions PowerAIM 120 vector impedance meter. Before measurements were made, the PowerAIM was calibrated using precision 50 Ohm, precision short and precision open circuits. For open circuit measurement other towers were open circuited at the same points for each of the measurements.

402 Tenth Avenue • PO Box 367 • Haddon Heights, NJ 08035 Engineering Report – Page 2 Antenna System Proof of Performance Method of Moments Modeling KYPA – Los Angeles, CA Multicultural Radio Broadcasters Licensee, LLC November 2011

The KBLA towers have tower sampling loops installed at the location of the tower current loop for each tower. KYPA was operated using tower 1 at 1 kW, KBLA was taken off the air, and the shunt detuning reactance across each of towers numbered 1 and 3 - 5 bases (before the KYPA isolation filter) was adjusted for minimum signal received on the tower mounted loop. The detuning was accomplished using the KBLA antenna monitor in amplitude mode to indicate the current at each tower loop. KBLA Towers 1 and 3-5 are included in the KYPA model for open-short modeling and for antenna parameter synthesis. The sample loop isolation coils at the KYPA towers were temporarily disconnected for open-short measurements.

Each of the tower bases were shorted across the ball gap lightning arrester and the reactance of the feed connection from the antenna coupler to the tower was measured. There is a Kintronics SDC-1F static drain choke in each diplexer, connected from the antenna terminal to ground. According to the Kintronics specification, the impedance of this choke is in excess of 10,000 Ohms at 1230 kHz, and was not considered in this analysis.

The KYPA towers (KBLA towers 2 and 6) have a tower mounted vacuum capacitor installed with one terminal of the capacitor bonded to the tower and the other terminal connected to the copper feed tubing that connects to the diplexer filter terminals. This common series component decreases the operating voltage at the diplexer without effecting the current feeding the tower. The capacitor is mounted in a weatherproof metal box bonded to the tower. A bowl insulator is used to connect the capacitor to the feed tubing.

The results of these impedance measurements are shown below:

The tower impedance for open-short measurements was measured directly at the diplexer input J-Plug. The isocoils to isolate the KBLA sample loops were disconnected for these measurements.

402 Tenth Avenue • PO Box 367 • Haddon Heights, NJ 08035 Engineering Report – Page 3 Antenna System Proof of Performance Method of Moments Modeling KYPA – Los Angeles, CA Multicultural Radio Broadcasters Licensee, LLC November 2011

•	Other twr open 1, 3-5 Detuned	Other twr shorted 1, 3-5 Detuned		Base and Capacitor shorted
1 (KBLA tower 6)	47.39 +j 34.39Ω	60.75 +j 51.63Ω	5.0 -j 101.5Ω	3.4 +j 46.84Ω
2	52.7 +j 50.71Ω	66.97 +j 54.01Ω	0.4 -j 116.6Ω	0.4 +j 38.7Ω

Each tower was modeled as a single wire, extending from ground. Open tower models utilized a very high load impedance to simulate an open circuit at the first pulse. Detuned towers were modeled using the value of inductance that was required to detune the tower, ie. 75 uH in this case.

All antenna modeling was conducted using *Expert MININEC Broadcast Professional* Ver 14.6. The model summaries are attached as Table 1 through 4.

Table 1

```
Y:\AM\Multicultural\KYPA\Buildout\Proof\KYPAt6625modeshort35 11-30-2011 11:10:47
```

KYPA 1230 kHz 1 Kw Drive Tower 1 (KBLA T6) Short T2 Other towers detuned

GEOMETRY Dimensions in meters Environment: perfect ground

			,			
wire	caps	Radius	Angle	Z	radius	segs
1	2	0	0	0	.35	15
		0	0	62.5		
2	2	42.1933	340.	0	.35	15
		42.1933	340.	62.5		
3	2	84.2866	340.	0	.35	15
		84.2866	340.	62.5		
4	2	42.1933	233.	0	.35	15
		42.1933	233.	62.5		
5	2	50.1951	286.5	0	.35	15

RADIOTECHNIQUE!

402 Tenth Avenue • PO Box 367 • Haddon Heights, NJ 08035 Engineering Report – Page 4 Antenna System Proof of Performance Method of Moments Modeling KYPA – Los Angeles, CA Multicultural Radio Broadcasters Licensee, LLC November 2011

50.1951 286.5 62.5 6 2 82.5776 310.75 0 .35 15 Number of wires = 6 current nodes = 90 Individual wires wire value wire value segment length 1 4.19 1 4.19 segment/radius ratio 1 1.9714 1 11.9714 radius 1 .35 1 .35 ELECTRICAL DESCRIPTION requencies (KH2) no. of segment length (wavelengths) no. lowest step steps minimum maximum 1 1,230. 0 1 .0171905 .0171905 Sources source node sector magnitude phase type 1 76 1 .0 voltage Lumped loads resistance reactance inductance capacitance passive load node 0 .075 0 0 3 46 0 .	•								
<pre>Number of wires = 6 current nodes = 90 minimum maximum Individual wires wire value wire value segment length 1 4.19 1 4.19 segment/radius ratio 1 11.9714 1 11.9714 radius 1 .35 1 .35 ELECTRICAL DESCRIPTION Frequencies (KHz) no. lowest step steps minimum maximum 1 1,230. 0 1 .0171905 .0171905 Sources source node sector magnitude phase type 1 76 1 1. 0 voltage Lumped loads resistance reactance inductance capacitance passive load node (ohms) (ohms) (mH) (uF) circuit 1 1 0 0 0.075 0 0 2 31 0 0 0.775 0 0 3 466 0 0 .075 0 0 4 61 0 0 0.075 0 0 5 16 0 0 0.001 0 0 Y:\AM\Multicultural\KYPA\Buildout\Proof\KYPAt6625modeshort35 11-30-2011 11:10:47 IMPEDANCE normalization = 50. freq resist react imped phase VSWR S11 S12 (KHz) (ohms) (ohms) (deg) dB dB source = 1; node 76, sector 1</pre>		50	.1951	286.5	5	62.5			
Number of wires = 6 current nodes = 90	62	82	2.5776	310.7	75	0	.35	5	15
current nodes = 90minimummaximumIndividual wireswirevaluewirevaluesegment length14.1914.19segment/radius ratio111.9714111.9714radius1.351.35ELECTRICAL DESCRIPTIONFrequencyno. of segment length (wavelengths)no. loweststepstepsno. loweststepstepssourcessource nodesector magnitudephasetype176110.0171905Sourcesresistancereactanceloadnode(ohms)(inH)(uF)circuit110.0752310.07503460.07504610.0010Y:\AM\Multicultural\KYPA\Buildout\Proof\KYPAt6625modeshort3511-30-201111:10:47IMPEDANCEnormalization = 50.freqresist reactimpedphaseVSWRS11S12(KHz)(ohms)(ohms)(deg)KHZ(ohms)(ohms)(deg)dBdBsource = 1; node 76, sector 1		82	2.5776	310.7	15	62.5			
current nodes = 90minimummaximumIndividual wireswirevaluewirevaluesegment length14.1914.19segment/radius ratio111.9714111.9714radius1.351.35ELECTRICAL DESCRIPTIONFrequencyno. of segment length (wavelengths)no. loweststepstepsno. loweststepstepssourcessource nodesector magnitudephasetype176110.0171905Sourcesresistancereactanceloadnode(ohms)(inH)(uF)circuit110.0752310.07503460.07504610.0010Y:\AM\Multicultural\KYPA\Buildout\Proof\KYPAt6625modeshort3511-30-201111:10:47IMPEDANCEnormalization = 50.freqresist reactimpedphaseVSWRS11S12(KHz)(ohms)(ohms)(deg)KHZ(ohms)(ohms)(deg)dBdBsource = 1; node 76, sector 1									
minimummaximumIndividual wireswirevaluewirevaluesegment length14.1914.19segment/radius111.9714111.9714radius1.351.35ELECTRICAL DESCRIPTIONFrequencies (KHz)frequencyno. ofsegment length (wavelengths)no. loweststepstepsminimummaximum11,230.01.0171905.0171905Sourcessource nodesector magnitudephasetype17611.0voltageLumped loadsresistancereactanceinductancecapacitance passiveloadnode(ohms)(nHl)(uF)circuit1100.0750023100.075003460.07500051600.00100Y:\AM\Multicultural\KYPA\Buildout\Proof\KYPAt6625modeshort3511-30-201111:10:47IMPEDANCE normalization = 50.impedphaseVSWRS11S12(KHz) (Ohms)(ohms)(ohms)(deg)dBdBsource = 1;nod 76, sector 1.01.01.01	Number	of wir	res						
<pre>Individual wires wire value wire value segment length 1 4.19 1 4.19 segment/radius ratio 1 11.9714 1 11.9714 radius 1 .35 1 .35</pre> ELECTRICAL DESCRIPTION Frequencies (KHz) frequency no. of segment length (wavelengths) no. lowest step steps minimum maximum 1 1,230. 0 1 .0171905 .0171905 Sources source node sector magnitude phase type 1 76 1 1. 0 voltage Lumped loads resistance reactance inductance capacitance passive load node (ohms) (ohms) (mH) (uF) circuit 1 1 0 0 .075 0 0 2 31 0 0 .075 0 0 3 46 0 0 .075 0 0 4 61 0 0 .075 0 0 5 16 0 0 .075 0 0 5 16 0 0 .075 0 1 1:10:47 IMPEDANCE normalization = 50. freq resist react imped phase VSWR S11 S12 (KHz) (ohms) (ohms) (deg) dB dB source = 1; node 76, sector 1		cur	rent nodes	s = 9	90				
<pre>Individual wires wire value wire value segment length 1 4.19 1 4.19 segment/radius ratio 1 11.9714 1 11.9714 radius 1 .35 1 .35</pre> ELECTRICAL DESCRIPTION Frequencies (KHz) frequency no. of segment length (wavelengths) no. lowest step steps minimum maximum 1 1,230. 0 1 .0171905 .0171905 Sources source node sector magnitude phase type 1 76 1 1. 0 voltage Lumped loads resistance reactance inductance capacitance passive load node (ohms) (ohms) (mH) (uF) circuit 1 1 0 0 .075 0 0 2 31 0 0 .075 0 0 3 46 0 0 .075 0 0 4 61 0 0 .075 0 0 5 16 0 0 .075 0 0 5 16 0 0 .075 0 1 1:10:47 IMPEDANCE normalization = 50. freq resist react imped phase VSWR S11 S12 (KHz) (ohms) (ohms) (deg) dB dB source = 1; node 76, sector 1									
<pre>segment length 1 4.19 1 4.19 segment/radius ratio 1 11.9714 1 11.9714 radius 1 .35 1 .35 ELECTRICAL DESCRIPTION Frequencies (KH2) frequency no. of segment length (wavelengths) no. lowest step steps minimum maximum 1 1,230. 0 1 .0171905 .0171905 Sources source node sector magnitude phase type 1 76 1 1. 0 voltage Lumped loads resistance reactance inductance capacitance passive load node (ohms) (ohms) (mH) (uF) circuit 1 1 0 0 0 .075 0 0 2 31 0 0 .075 0 0 3 46 0 0 .075 0 0 4 61 0 0 .075 0 0 5 16 0 0 .001 0 0 Y:\AM\Multicultural\KYPA\Buildout\Proof\KYPAt6625modeshort35 11-30-2011 11:10:47 IMPEDANCE normalization = 50. freq resist react imped phase VSWR S11 S12 (KHz) (ohms) (ohms) (ohms) (deg) dB dB source = 1; node 76, sector 1</pre>									
<pre>segment/radius ratio 1 11.9714 1 11.9714 radius 1 .35 1 .35</pre> ELECTRICAL DESCRIPTION Frequencies (KH2) frequency no. of segment length (wavelengths) no. lowest step steps minimum maximum 1 1,230. 0 1 .0171905 .0171905 Sources source node sector magnitude phase type 1 76 1 1. 0 voltage Lumped loads resistance reactance inductance capacitance passive load node (ohms) (ohms) (mH) (uF) circuit 1 1 0 0 0 .075 0 0 2 31 0 0 .075 0 0 3 46 0 0 .075 0 0 4 61 0 0 .075 0 0 5 16 0 0 .001 0 0 Y:\AM\Multicultural\KYPA\Buildout\Proof\KYPAt6625modeshort35 11-30-2011 11:10:47 IMPEDANCE normalization = 50. freq resist react imped phase VSWR S11 S12 (KHz) (ohms) (ohms) (ohms) (deg) dB dB source = 1; node 76, sector 1									
radius 1 .35 1 .35 ELECTRICAL DESCRIPTION Frequencies (KHz) frequency no. of segment length (wavelengths) no. lowest step steps minimum maximum 1 1,230. 0 1 .0171905 .0171905 Sources source node sector magnitude phase type 1 76 1 1. 0 voltage Lumped loads resistance reactance inductance capacitance passive load node (ohms) (ohms) (mH) (uF) circuit 1 1 0 0 .075 0 0 2 31 0 0 .075 0 0 3 46 0 0 .075 0 0 4 61 0 0 .075 0 0 5 16 0 0 .001 0 0 Y:\AM\Multicultural\KYPA\Buildout\Proof\KYPAt6625modeshort35 11-30-2011 11:10:47 IMPEDANCE normalization = 50. freq resist react imped phase VSWR S11 S12 (KHz) (ohms) (ohms) (deg) dB dB source = 1; node 76, sector 1						1.4			
ELECTRICAL DESCRIPTION Frequencies (KHz) frequency no. of segment length (wavelengths) no. lowest step steps minimum maximum 1 1,230. 0 1 .0171905 .0171905 Sources source node sector magnitude phase type 1 76 1 1. 0 voltage Lumped loads resistance reactance inductance capacitance passive load node (ohms) (ohms) (mH) (uF) circuit 1 1 0 0 .075 0 0 2 31 0 0 .075 0 0 3 46 0 0 .075 0 0 4 61 0 0 .075 0 0 5 16 0 0 .001 0 0 Y:\AM\Multicultural\KYPA\Buildout\Proof\KYPAt6625modeshort35 11-30-2011 11:10:47 IMPEDANCE normalization = 50. freq resist react imped phase VSWR S11 S12 (KHz) (ohms) (ohms) (deg) dB dB source = 1; node 76, sector 1		/radiu	is ratio			14			
Frequencies (KHz) no. of segment length (wavelengths) no. lowest step steps minimum maximum 1 1,230. 0 1 .0171905 .0171905 Sources source node sector magnitude phase type 1 76 1 1. 0 voltage Lumped loads resistance reactance inductance capacitance passive load node (ohms) (ohms) (mH) (uF) circuit 1 1 0 0 .075 0 0 2 31 0 0 .075 0 0 3 46 0 .075 0 0 4 61 0 0 .075 0 0 5 16 0 0 .001 0 0 Y:\AM\Multicultural\KYPA\Buildout\Proof\KYPAt6625modeshort35 11-30-2011 11:10:47 IMPEDANCE	radius		•	Т			1		
Frequencies (KHz) no. of segment length (wavelengths) no. lowest step steps minimum maximum 1 1,230. 0 1 .0171905 .0171905 Sources source node sector magnitude phase type 1 76 1 1. 0 voltage Lumped loads resistance reactance inductance capacitance passive load node (ohms) (ohms) (mH) (uF) circuit 1 1 0 0 .075 0 0 2 31 0 0 .075 0 0 3 46 0 .075 0 0 4 61 0 0 .075 0 0 5 16 0 0 .001 0 0 Y:\AM\Multicultural\KYPA\Buildout\Proof\KYPAt6625modeshort35 11-30-2011 11:10:47 IMPEDANCE									
Frequencies (KHz) no. of segment length (wavelengths) no. lowest step steps minimum maximum 1 1,230. 0 1 .0171905 .0171905 Sources source node sector magnitude phase type 1 76 1 1. 0 voltage Lumped loads resistance reactance inductance capacitance passive load node (ohms) (ohms) (mH) (uF) circuit 1 1 0 0 .075 0 0 2 31 0 0 .075 0 0 3 46 0 .075 0 0 4 61 0 0 .075 0 0 5 16 0 0 .001 0 0 Y:\AM\Multicultural\KYPA\Buildout\Proof\KYPAt6625modeshort35 11-30-2011 11:10:47 IMPEDANCE	ELECTRI	CAL DE	SCRIPTION						
frequency no. of segment length (wavelengths) no. lowest step steps minimum maximum 1 1,230. 0 1 .0171905 .0171905 Sources source node sector magnitude phase type 1 76 1 1. 0 voltage Lumped loads resistance reactance inductance capacitance passive load node (ohms) (ohms) (mH) (uF) circuit 1 1 0 0 .075 0 0 2 31 0 0 .075 0 0 3 46 0 .075 0 0 4 61 0 0 .001 0 0 Y:\AM\Multicultural\KYPA\Buildout\Proof\KYPAt6625modeshort35 11-30-2011 11:10:47 IMPEDANCE									
no. lowest step steps minimum maximum 1 1,230. 0 1 .0171905 .0171905 Sources source node sector magnitude phase type 1 76 1 1. 0 voltage Lumped loads resistance reactance inductance capacitance passive load node (ohms) (ohms) (mH) (uF) circuit 1 1 0 0 .075 0 0 2 31 0 0 .075 0 0 3 46 0 0 .075 0 0 4 61 0 0 .001 0 0 Y:\AM\Multicultural\KYPA\Buildout\Proof\KYPAt6625modeshort35 11-30-2011 11:10:47 IMPEDANCE normalization = 50. freq resist react imped phase VSWR S11 S12 (KHz) (ohms) (ohms) (ohms) (deg) dB dB source = 1;	-				no. d	of segme	ent length	n (waveler	ngths)
Sources source node sector magnitude phase type 1 76 1 1. 0 voltage Lumped loads resistance reactance inductance capacitance passive load node (ohms) (ohms) (mH) (uF) circuit 1 1 0 0 .075 0 0 2 31 0 0 .075 0 0 3 46 0 .075 0 0 3 46 0 .075 0 0 4 61 0 0 .075 0 0 5 16 0 0 .001 0 0 Y:\AM\Multicultural\KYPA\Buildout\Proof\KYPAt6625modeshort35 11-30-2011 11:10:47 IMPEDANCE normalization = 50. freq resist react imped phase VSWR S11 S12 (KHz) (ohms) (ohms) (ohms) (deg) dB dB source = 1;		-	-		steps	-			2
Sources sector magnitude phase type 1 76 1 1. 0 voltage Lumped loads resistance reactance inductance capacitance passive circuit 1 1 0 .075 0 0 2 31 0 0 .075 0 0 3 46 0 0 .075 0 0 4 61 0 0 .075 0 0 5 16 0 0 .075 0 0 Y:\AM\Multicultural\KYPA\Buildout\Proof\KYPAt6625modeshort35 11-30-2011 11:10:47 IMPEDANCE	1 · 1,	230.	0		1	.017:	1905	.017190	5
source node 1 sector magnitude 1 phase 0 type voltage Lumped loads resistance reactance inductance capacitance passive load node (ohms) (ohms) (mH) (uF) circuit 1 1 0 0 .075 0 0 2 31 0 0 .075 0 0 3 46 0 0 .075 0 0 4 61 0 0 .075 0 0 5 16 0 0 .075 0 0 Y:\AM\Multicultural\KYPA\Buildout\Proof\KYPAt6625modeshort35 11-30-2011 11:10:47 IMPEDANCE									
1 76 1 1. 0 voltage Lumped loads resistance reactance inductance capacitance passive load node (ohms) (ohms) (mH) (uF) circuit 1 1 0 0 .075 0 0 2 31 0 0 .075 0 0 3 46 0 0 .075 0 0 4 61 0 0 .075 0 0 5 16 0 0 .075 0 0 Y:\AM\Multicultural\KYPA\Buildout\Proof\KYPAt6625modeshort35 11-30-2011 11:10:47 IMPEDANCE	Sources								
Lumped loads resistance reactance inductance capacitance passive load node (ohms) (ohms) (mH) (uF) circuit 1 1 0 0 .075 0 0 2 31 0 0 .075 0 0 3 46 0 0 .075 0 0 4 61 0 0 .075 0 0 5 16 0 0 .001 0 0 Y:\AM\Multicultural\KYPA\Buildout\Proof\KYPAt6625modeshort35 11-30-2011 11:10:47 IMPEDANCE	source	node	sector	magnit	ude	-			
resistance reactance inductance capacitance passive load node (ohms) (mH) (uF) circuit 1 1 0 0 .075 0 0 2 31 0 0 .075 0 0 3 46 0 0 .075 0 0 4 61 0 0 .075 0 0 5 16 0 0 .001 0 0 Y:\AM\Multicultural\KYPA\Buildout\Proof\KYPAt6625modeshort35 11-30-2011 11:10:47 IMPEDANCE normalization = 50. freq resist react imped phase VSWR S11 S12 (KHz) (ohms) (ohms) (ohms) (deg) dB dB source = 1; node 76, sector 1	1	76	1	1.		0		voltage	
resistance reactance inductance capacitance passive load node (ohms) (mH) (uF) circuit 1 1 0 0 .075 0 0 2 31 0 0 .075 0 0 3 46 0 0 .075 0 0 4 61 0 0 .075 0 0 5 16 0 0 .001 0 0 Y:\AM\Multicultural\KYPA\Buildout\Proof\KYPAt6625modeshort35 11-30-2011 11:10:47 IMPEDANCE normalization = 50. freq resist react imped phase VSWR S11 S12 (KHz) (ohms) (ohms) (ohms) (deg) dB dB source = 1; node 76, sector 1									
load node (ohms) (ohms) (mH) (uF) circuit 1 1 0 0 .075 0 0 2 31 0 0 .075 0 0 3 46 0 0 .075 0 0 4 61 0 0 .075 0 0 4 61 0 0 .075 0 0 5 16 0 0 .001 0 0 Y:\AM\Multicultural\KYPA\Buildout\Proof\KYPAt6625modeshort35 11-30-2011 11:10:47 IMPEDANCE Imped phase VSWR S11 S12 (KHz) (ohms) (ohms) (ohms) (deg) dB dB source = 1; node 76, sector 1 1	Lumped	loads					、 .	• • •	
<pre>1 1 0 0 0 .075 0 0 2 31 0 0 .075 0 0 3 46 0 0 .075 0 0 4 61 0 0 .075 0 0 5 16 0 0 .001 0 0 Y:\AM\Multicultural\KYPA\Buildout\Proof\KYPAt6625modeshort35 11-30-2011 11:10:47 IMPEDANCE normalization = 50. freq resist react imped phase VSWR S11 S12 (KHz) (ohms) (ohms) (deg) dB dB source = 1; node 76, sector 1</pre>									
2 31 0 0 .075 0 0 3 46 0 0 .075 0 0 4 61 0 0 0.075 0 0 5 16 0 0 .001 0 0 Y:\AM\Multicultural\KYPA\Buildout\Proof\KYPAt6625modeshort35 11-30-2011 11:10:47 IMPEDANCE normalization = 50. freq resist react imped phase VSWR S11 S12 (KHz) (ohms) (ohms) (deg) dB dB source = 1; node 76, sector 1					onms)	•	•		
3 46 0 0 .075 0 0 4 61 0 0 .075 0 0 5 16 0 0 .001 0 0 Y:\AM\Multicultural\KYPA\Buildout\Proof\KYPAt6625modeshort35 11-30-2011 11:10:47 IMPEDANCE 11-30-2011 freq resist react imped phase VSWR S11 S12 (KHz) (ohms) (ohms) (deg) dB dB source = 1; node 76, sector 1			-					-	
4 61 0 0 .075 0 0 5 16 0 0 .001 0 0 Y:\AM\Multicultural\KYPA\Buildout\Proof\KYPAt6625modeshort35 11-30-2011 11:10:47 IMPEDANCE normalization = 50. freq resist react imped phase VSWR S11 S12 (KHz) (ohms) (ohms) (deg) dB dB source = 1; node 76, sector 1			-	-				-	
5 16 0 0 .001 0 0 Y:\AM\Multicultural\KYPA\Buildout\Proof\KYPAt6625modeshort35 11-30-2011 11:10:47 IMPEDANCE normalization = 50. freq resist react imped phase VSWR S11 S12 (KHz) (ohms) (ohms) (deg) dB dB source = 1; node 76, sector 1			-	-				-	-
Y:\AM\Multicultural\KYPA\Buildout\Proof\KYPAt6625modeshort35 11-30-2011 11:10:47 IMPEDANCE normalization = 50. freq resist react imped phase VSWR S11 S12 (KHz) (ohms) (ohms) (deg) dB dB source = 1; node 76, sector 1	•		•	-				-	-
<pre>11:10:47 IMPEDANCE normalization = 50. freq resist react imped phase VSWR S11 S12 (KHz) (ohms) (ohms) (deg) dB dB source = 1; node 76, sector 1</pre>	5	10	0	U		• • •	.	0	Ŭ
<pre>11:10:47 IMPEDANCE normalization = 50. freq resist react imped phase VSWR S11 S12 (KHz) (ohms) (ohms) (deg) dB dB source = 1; node 76, sector 1</pre>	V·\ZM\M	ulticu	ultural\KYF	A\Buil	I dout.\P:	roof\KYP	At6625mode	eshort35	11-30-2011
<pre>IMPEDANCE normalization = 50. freq resist react imped phase VSWR S11 S12 (KHz) (ohms) (ohms) (deg) dB dB source = 1; node 76, sector 1</pre>			ar carar (nir						
normalization = 50. freq resist react imped phase VSWR S11 S12 (KHz) (ohms) (ohms) (deg) dB dB source = 1; node 76, sector 1	11.10.1								
freqresistreactimpedphaseVSWRS11S12(KHz)(ohms)(ohms)(deg)dBdBsource = 1; node 76, sector 1	IMPEDAN	CE							
freqresistreactimpedphaseVSWRS11S12(KHz)(ohms)(ohms)(deg)dBdBsource = 1; node 76, sector 1			ion = 50.						
(KHz) (ohms) (ohms) (deg) dB dB source = 1; node 76, sector 1				: ir	nped	phase	VSWR	S11	S12
source = 1; node 76, sector 1	-	(ohr	ns) (ohms		-	(deg)		dB	dB
1.230 51.673 51.849 73.201 45.1 2.6666 -6.8487 -1.0051				sector	1				
	1,230.	51.6	573 51.84	19 73	3.201	45.1	2.6666	-6.8487	-1.0051

Y:\AM\Multicultural\KYPA\Buildout\Proof\KYPAt6625modeshort35 11-30-2011

402 Tenth Avenue • PO Box 367 • Haddon Heights, NJ 08035 Engineering Report – Page 5 Antenna System Proof of Performance Method of Moments Modeling KYPA – Los Angeles, CA Multicultural Radio Broadcasters Licensee, LLC November 2011

11:10:47

	CURRENT	r noak				•		
	Frequer	-	230 KHz					
			00482164 wat	-+-				,
Efficiency = 100. % coordinates in meters								
			liecers			nhaaa	~~~l	imaginary
	current				mag	phase	real	
	no.	X	Y	Z	(amps)	(deg)	(amps)	(amps)
	GND	0	0	0	2.64E-04		2.61E-04	3.43E-05
	2	0	0	4.19	1.43E-04		1.42E-04	1.92E-05
	3	0	0	8.38	7.33E-05		7.24E-05	1.16E-05
	4	0	0	12.57	1.88E-05		1.75E-05	6.95E-06
	5	0	0	16.76	2.63E-05		-2.59E-05	
	6	0	0	20.95	5.97E-05		-5.96E-05	
	7	0	0	25.14	8.46E-05		-8.44E-05	
	8	0	0	29.33	1.01E-04		-1.01E-04	
	9	0	0 ·	33.52	1.11E-04		-1.1E-04	9.01E-06
	10	0	0	37.71	1.13E-04		-1.12E-04	
	11	0	0	41.9	1.09E-04	172.8	-1.08E-04	1.36E-05
	12	0	0	46.09	9.93E-05	171.4	-9.82E-05	1.49E-05
	13	0	0	50.28	8.41E-05	169.8	-8.27E-05	1.49E-05
	14	0	0	54.47	6.35E-05	168.2	-6.22E-05	1.3E-05
	15	0	0	58.66	3.75E-05	166.5	-3.64E-05	8.78E-06
	END	0	0	62.85	0	0	0	0
	GND	39.6487	-14.431	0	7.93E-03	59.7	4.E-03	6.85E-03
	17	39.6487	-14.431	4.19	7.84E-03	59.7	3.95E-03	6.77E-03
	18	39.6487	-14.431	8.38	7.69E-03	59.7	3.88E-03	6.64E-03
	19	39.6487	-14.431	12.57	7.48E-03	59.7	3.77E-03	6.45E-03
	20	39.6487	-14.431	16.76	7.19E-03	59.6	3.63E-03	6.2E-03
	21	39.6487	-14.431	20.95	6.83E-03	59.6	3.46E-03	5.89E-03
	22	39.6487	-14.431	25.14	6.41E-03	59.5	3.25E-03	5.52E-03
	23	39.6487	-14.431	29.33	5.92E-03	59.4	3.01E-03	5.1E-03
	24	39.6487	-14.431	33.52	5.37E-03	59.4	2.74E-03	4.62E-03
	25	39.6487	-14.431	37.71	4.77E-03	59.3	2.44E-03	4.1E-03
	26	39.6487	-14.431	41.9	4.12E-03	59.1	2.11E-03	3.54E-03
	27	39.6487	-14.431	46.09	3.42E-03	59.	1.76E-03	2.93E-03
	28	39.6487	-14.431	50.28	2.68E-03		1.38E-03	2.29E-03
	29	39.6487	-14.431	54.47	1.89E-03	58.7	9.81E-04	1.62E-03
	30	39.6487	-14.431	58.66	1.05E-03	58.6	5.47E-04	8.95E-04
	END	39.6487	-14.431	62.85	0	0	0	0
	GND	79.2035	-28.8277	0	8.2E-04	56.7	4.51E-04	6.85E-04
	32	79.2035	-28,8277	4.19	4.44E-04		2.45E-04	3.71E-04
	33	79.2035	-28.8277	8.38	2.21E-04		1.24E-04	1.83E-04
	34	79.2035	-28.8277	12.57	4.27E-05		2.95E-05	3.08E-05
	J 7	, , , , , , , , , , , , , , , , , , , ,						

6

402 Tenth Avenue • PO Box 367 • Haddon Heights, NJ 08035 Engineering Report – Page 6 Antenna System Proof of Performance Method of Moments Modeling KYPA – Los Angeles, CA Multicultural Radio Broadcasters Licensee, LLC November 2011

35	79.2035	-28.8277	16.76	1.04E-04	244.1	-4.56E-05	-9.39E-05
	79.2035	-28.8277	20.95	2.21E-04		-1.04E-04	
37	79.2035	-28.8277	25.14	3.1E-04			
38	79.2035	-28.8277	29.33	3.74E-04		-1.75E-04	
39	79.2035	-28.8277	33.52	4.14E-04		-1.9E-04	-3.67E-04
40	79.2035	-28.8277	37.71	4.29E-04		-1.93E-04	
41	79.2035	-28.8277	41.9	4.21E-04		-1.85E-04	
42	79.2035	-28.8277	46.09	3.9E-04		-1.67E-04	
43	79.2035	-28.8277	50.28	3.35E-04		-1.4E-04	
44	79.2035	-28.8277	54.47	2.58E-04			-2.36E-04
45	79.2035	-28.8277	58.66	1.55E-04		-6.07E-05	
END	79.2035	-28.8277	62.85	0	0	0	0
GND	-25.3926	-33.6971	0	4.72E-04		4.67E-04	6.24E-05
47	-25.3926	-33.6971	4.19	2.55E-04		2.53E-04	3.41E-05
48	-25.3926	-33.6971	8.38	1.27E-04	8.1	1.26E-04	1.79E-05
49	-25.3926	-33.6971	12.57	2.48E-05	12.8	2.42E-05	5.49E-06
50	-25.3926	-33.6971	16.76	5.86E-05	183.9	-5.84E-05	-4.01E-06
51	-25.3926	-33.6971	20.95	1.25E-04	185.1	-1.24E-04	-1.11E-05
52	-25.3926	-33.6971	25.14	1.76E-04	185.3	-1.75E-04	-1.61E-05
53	-25.3926	-33.6971	29.33	2.12E-04	185.2	-2.11E-04	-1.93E-05
54	-25.3926	-33.6971	33.52	2.33E-04	185.1	-2.33E-04	-2.08E-05
55	-25.3926	-33.6971	37.71	2.41E-04	185.	-2.41E-04	-2.1E-05
56	-25.3926	-33.6971	41.9	2.36E-04	184.8	-2.35E-04	-1.99E-05
57	-25.3926	-33.6971	46.09	2.18E-04	184.7	-2.17E-04	-1.78E-05
58	-25.3926	-33.6971	50.28	1.87E-04	184.5	-1.86E-04	-1.48E-05
59	-25.3926	-33.6971	54.47	1.43E-04	184.4	-1.43E-04	-1.09E-05
60	-25.3926	-33.6971	58.66	8.55E-05	184.2	-8.53E-05	-6.29E-06
END	-25.3926	-33.6971	62.85	0	0	0	0
GND	14.2562	-48.1281	0	8.17E-04	56.	4.56E-04	6.77E-04
62	14.2562	-48.1281	4.19	4.42E-04	55.9	2.48E-04	3.66E-04
63	14.2562	-48.1281	8.38	2.21E-04		1.26E-04	1.81E-04
64	14.2562	-48.1281	12.57	4.34E-05	44.6	3.09E-05	3.05E-05
65	14.2562	-48.1281	16.76	1.03E-04	244.3	-4.46E-05	-9.26E-05
66	14.2562	-48.1281	20.95	2.18E-04		-1.03E-04	
67	14.2562	-48.1281	25.14	3.07E-04		-1.46E-04	
68	14.2562	-48.1281	29.33	3.7E-04	242.	-1.74E-04	
69	14.2562	-48.1281	33.52	4.09E-04		-1.89E-04	-3.63E-04
70	14.2562	-48.1281	37.71	4.24E-04		-1.92E-04	
71	14.2562	-48.1281	41.9	4.16E-04		-1.84E-04	
72	14.2562	-48.1281	46.09	3.85E-04		-1.66E-04	
73	14.2562	-48.1281	50.28	3.31E-04	245.2	-1.39E-04	
74	14.2562	-48.1281	54.47	2.55E-04		-1.04E-04	
75	14.2562	-48.1281	58.66	1.53E-04		-6.04E-05	-1.41E-04
END	14,2562	-48.1281	62.85	0	0	0	0.
GND	53.9033	-62.5579	0	.013661	314.9	9.64E-03	-9.68E-03

402 Tenth Avenue • PO Box 367 • Haddon Heights, NJ 08035 Engineering Report – Page 7 Antenna System Proof of Performance Method of Moments Modeling KYPA – Los Angeles, CA Multicultural Radio Broadcasters Licensee, LLC November 2011

77 78 79 80 81 82 83 84 85 86 87 88	53.9033 53.9033	-62.5579 -62.5579	4.19 8.38 12.57 16.76 20.95 25.14 29.33 33.52 37.71 41.9 46.09 50.28 54.47	.0141576 .0142837 .0141993 .0139212 .0134597 .0128226 .0120178 .0110538 9.94E-03 8.68E-03 7.29E-03 5.77E-03 4.12E-03	311.4 310.4 309.6 308.9 308.3 307.8 307.3 306.8 306.4 306. 305.7	9.6E-03 9.45E-03 9.21E-03 8.88E-03 8.46E-03 7.95E-03 7.36E-03 6.7E-03 5.96E-03 5.16E-03 4.29E-03 3.37E-03	0104102 0107101 0108057 0107212 0104696 0100596 -9.5E-03 -8.79E-03 -7.95E-03 -6.99E-03 -5.9E-03 -4.69E-03
89	53.9033	-62.5579	54.47	4.12E-03		2.38E-03	-3.36E-03
90 END	53.9033 53.9033	-62.5579 -62.5579	58.66 62.85	2.31E-03 0	305. 0	1.32E-03 0	-1.89E-03 0

Table 2

Y:\AM\Multicultural\KYPA\Buildout\Proof\KYPAt6625modelopen35 11-30-2011

11:42:01

KYPA 1230 kHz 1 Kw Drive Tower1 (KBLA T6) Open T2 Other towers detuned

GEOMETRY Dimensions in meters Environment: perfect ground

wire	caps	Radius	Angle	Z.	radius	segs
1	2	0	0.	0	.35	15
	1	Ò	0	62.5		
2	2	42.1933	340.	0	.35	15
		42.1933	340.	62.5		
3	2	84.2866	340.	0	.35	15
		84.2866	340.	62.5		
4	2	42.1933	233.	0	.35	15
3	-	42.1933 84.2866 84.2866	340. 340. 340.	0 62.5 0	.35	15

@

402 Tenth Avenue • PO Box 367 • Haddon Heights, NJ 08035 Engineering Report – Page 8 Antenna System Proof of Performance Method of Moments Modeling KYPA – Los Angeles, CA Multicultural Radio Broadcasters Licensee, LLC November 2011

	42.1933	233.	62.5			
5 2	50.1951	286.5 286.5	0 62.5	.3	5	15
6 2	50.1951 82.5776	310.75	02.5	.3	5	15
	82.5776	310.75	62.5			
Number of	winog	= 6				
NUMBEL OI	current nodes					
		minimum		ma	ximum	
Individual		ire value	•	wire		
segment le	-	1 4.19 1 11.97	14	1 1	4.19 11.9714	
radius		1 .35	÷. 1	1	.35	
FLECTRICAT	DESCRIPTION					
Frequencie						
frequ	ency	no.			h (wavele	-
no. lowes 1 1,230	-	step 1			maximum .017190	
I 1,200		، <u>بد</u>	.01/1	· .	.01/100	0
Sources			,			
source nod 1 76		magnitude 1.	phase 0		type voltage	
1 /0	±	±•	0		VOICAGE	
Lumped loa					. .	
load node	resistance (ohms)	reactanc (ohms)	e ind (mH	uctance	capacita (uF)	nce passive circuit
1 1	0	0	.07	•	0	0
. 2 31	0	0	.07		0	0
3 46	.0	0	.07	-	0 0	0
4 61 5 16	0 0	0	.07	5	0 5.E-05	0
		-	-		,	
Y:\AM\Mult 11:42:01	icultural\KYP	A\Buildout\E	Proof\KYPA	t6625mod	elopen35	11-30-2011
IMPEDANCE	zation = 50.					
	esist react	imped	phase	VSWR	S11	S12
Ŧ	ohms) (ohms	-	(deg)	-	dB	dB
	1; node 76, s			1 00.11	0 0000	
1,230. 4	4.672 32.58	6 55.294	36.1	1.9841	-9.6355	50003

Consulting Engineers

· · · ·

402 Tenth Avenue • PO Box 367 • Haddon Heights, NJ 08035 Engineering Report – Page 9 Antenna System Proof of Performance Method of Moments Modeling KYPA – Los Angeles, CA Multicultural Radio Broadcasters Licensee, LLC November 2011

Y:\AM\Multicultural\KYPA\Buildout\Proof\KYPAt6625modelopen35 11-30-2011 11:42:01

CURRE	NT peak						
		30 KHz					
Input	power $= .0$	0730545 wa	tts				
Effic	iency = 10	0. %					
coord	inates in m	neters					
curre	nt			mag	phase	real	imaginary
no.	Х	Y	Z	(amps)	(deg)	(amps)	(amps)
GND	0	0	0	8.45E-04		7.86E-04	-3.11E-04
2	0	0	4.19	4.58E-04		4.26E-04	-1.68E-04
3	0	0	8.38	2.27E-04		2.12E-04	-8.26E-05
4	0 · ·	0	12.57	4.26E-05		4.05E-05	-1.34E-05
5	0	0	16.76	1.08E-04	156.3	-9.87E-05	4.34E-05
6	0	.0	20.95	2.28E-04	157.	-2.1E-04	8.93E-05
7	0	0	25.14	3.21E-04	157.1	-2.96E-04	1.25E-04
8	0	0	29.33	3.87E-04	157.1	-3.57E-04	1.51E-04
9	0	0	33.52	4.28E-04	157.1	-3.94E-04	1.67E-04
10	0	0	37.71	4.44E-04	157.	-4.09E-04	1.73E-04
11	0	0	41.9	4.36E-04	157.	-4.01E-04	1.7E-04
12	0	0	46.09	4.03E-04	157.	-3.71E-04	1.58E-04
13	0	0	50.28	3.47E-04	156.9	-3.19E-04	1.36E-04
14	0	0	54.47	2.67E-04	156.9	-2.45E-04	1.05E-04
15	0	0	58.66	1.6E-04	156.9	-1.47E-04	6.29E-05
END	0	0	62.85	0	0	0	0
GND	39.6487	-14.431	0	2.46E-04	199.1	-2.33E-04	-8.05E-05
17	39.6487	-14.431	4.19	7.42E-04	199.1	-7.01E-04	-2.44E-04
18	39.6487	-14.431	8.38	1.02E-03	199.3	-9.63E-04	-3.36E-04
19	39.6487	-14.431	12.57	1.22E-03	199.4	-1.16E-03	-4.07E-04
20	39.6487	-14.431	16.76	1.37E-03	199.5	-1.29E-03	-4.59E-04
21	39.6487	-14.431	20.95	1.47E-03	199.7	-1.38E-03	-4.95E-04
22	39.6487	-14.431	25.14	1.51E-03	199.9	-1.42E-03	-5.15E-04
23	39.6487	-14.431	29.33	1.51E-03	200.2	-1.42E-03	-5.21E-04
24	39.6487	-14.431	33,52	1.47E-03	200.4	-1.38E-03	-5.12E-04
25	39.6487	-14.431	37.71	1.38E-03	200.7	-1.3E-03	-4.89E-04
26	39.6487	-14.431	41.9	1.26E-03	201.	-1.18E-03	-4.51E-04
27	39.6487	-14.431	46.09	1.1E-03	201.3	-1.02E-03	-3.98E-04
28	39.6487	-14.431	50.28	8.99E-04	201.6	-8.36E-04	-3.31E-04
29	39.6487	-14.431	54.47	6.62E-04	201.9	-6.14E-04	-2.47E-04
30	39.6487	-14.431	58.66	3.82E-04	202.2	-3.53E-04	-1.44E-04
END	39.6487	-14.431	62.85	0	0	0	0
GND	79.2035	-28.8277	0	1.05E-03	31.9	8.93E-04	5.56E-04
32	79.2035	-28.8277	4.19	5.7E-04	31.8	4.85E-04	3.E-04
54	, , , , , , , , , , , , , , , , , , , ,	20.02//				_	

6

402 Tenth Avenue • PO Box 367 • Haddon Heights, NJ 08035 Engineering Report – Page 10 Antenna System Proof of Performance Method of Moments Modeling KYPA – Los Angeles, CA Multicultural Radio Broadcasters Licensee, LLC November 2011

				· · · · · · · · ·			1 1
33	79.2035	-28.8277		2.84E-04		2.43E-04	1.46E-04
34	79.2035	-28.8277	12.57	5.47E-05	21.2	5.1E-05	1.98E-05
35	79,2035	-28.8277	16.76	1.34E-04	219.4	-1.04E-04	-8.51E-05
36	79.2035	-28.8277	20.95	2.83E-04	217.2	-2.26E-04	-1.71E-04
37	79.2035	-28.8277	25.14	3.98E-04		-3.18E-04	-2.4E-04
38	79.2035	-28.8277	29.33	4.8E-04	217.4	-3.82E-04	
39.	79.2035	-28.8277	33,52	5.31E-04		-4.19E-04	
40	79.2035	-28.8277	37.71	5.51E-04		-4.31E-04	
					210.5	-4.18E-04	
41	79.2035	-28.8277	41.9	5.4E-04			
42	79.2035	-28.8277	46.09	5.E-04	219.9	-3.83E-04	
43	79.2035	-28.8277	50.28	4.31E-04		-3.26E-04	
44	79.2035	-28.8277	54.47	3.31E-04		-2.48E-04	
45	79.2035	-28.8277	58.66	1.99E-04	222.2	-1.47E-04	-1.34E-04
END	79.2035	-28.8277	62.85	0	0	0	0
GND	-25.3926	-33.6971	0	7.89E-04	336.6	7.24E-04	-3.13È-04
47	-25.3926	-33.6971	4.19	4.27E-04	336.6	3.92E-04	-1.69E-04
48	-25.3926	-33.6971	8.38	2.12E-04	336.9	1.95E-04	-8.32E-05
49	-25.3926	-33.6971	12.57	3.98E-05	340.4	3.75E-05	-1.34E-05
50	-25.3926	-33.6971	16.76	1.01E-04	154.1	-9.06E-05	4.4E-05
51	-25.3926	-33.6971	20.95	2.13E-04		-1.93E-04	
52	-25.3926	-33.6971	25.14	3.E-04	155.	-2.72E-04	
53	-25.3926	-33.6971	29.33	3.61E-04		-3.28E-04	
54	-25.3926	-33.6971	33.52	3.99E-04		-3.62E-04	
	-25.3926	-33.6971	37.71	4.14E-04		-3.75E-04	
55				4.14E-04 4.06E-04		-3.67E-04	
56	-25.3926	-33.6971	41.9				
57	-25.3926	-33.6971	46.09	3.75E-04		-3.39E-04	
58	-25.3926	-33.6971	50.28	3.23E-04		-2.92E-04	
59	-25.3926	-33.6971	54.47	2.48E-04		-2.24E-04	
60	-25.3926	-33.6971	58.66	1.49E-04		-1.34E-04	
END	-25.3926	-33.6971	62.85	0	0	0	0
GND	14.2562	-48.1281	0	1.04E-03		8.96E-04	5.34E-04
62	14.2562	-48.1281	4.19	5.65E-04	30.7	4.86E-04	2.88E-04
63	14.2562	-48.1281	8.38	2.82E-04	29.7	2.45E-04	1.4E-04
64	14.2562	-48.1281	12.57	5.62E-05	18.7	5.32E-05	1.8E-05
65	14.2562	-48.1281		1.31E-04	219.7	-1.E-04	-8.35E-05
66	14.2562	-48.1281	20.95	2.77E-04		-2.21E-04	
67	14.2562	-48.1281	25.14	3.9E-04	216.9	-3.12E-04	
68	14.2562	-48.1281	29.33	4.71E-04		-3.75E-04	
			33.52			-4.12E-04	
69	14.2562						
70	14.2562	-48.1281	37.71	5.39E-04		-4.23E-04	
.71	14.2562	-48.1281	41.9	5.29E-04		-4.11E-04	
72	14.2562	-48.1281	46.09	4.9E-04	219.7	-3.77E-04	
73	14.2562	-48.1281	50.28	4.22E-04		-3.21E-04	
74	14.2562	-48.1281	54.47	3.24E-04		-2.44E-04	
75	14.2562	-48.1281	58.66	1.95E-04	222.	-1.45E-04	-1.3E-04

402 Tenth Avenue • PO Box 367 • Haddon Heights, NJ 08035 Engineering Report – Page 11 Antenna System Proof of Performance Method of Moments Modeling KYPA – Los Angeles, CA Multicultural Radio Broadcasters Licensee, LLC November 2011

78 53.9033 -62.5579 8.38 $.0184744$ 320.8 $.0143187$ 01167 79 53.9033 -62.5579 12.57 $.0182417$ 319.9 $.0139558$ 01174 80 53.9033 -62.5579 16.76 $.0177836$ 319.2 $.0134523$ 01163 81 53.9033 -62.5579 20.95 $.0171102$ 318.5 $.0128126$ 01134 82 53.9033 -62.5579 25.14 $.0162304$ 317.9 $.0120423$ 01088 83 53.9033 -62.5579 29.33 $.0151535$ 317.4 $.0111481$ 01026 84 53.9033 -62.5579 33.52 $.0138897$ 316.9 $.0101376$ $-9.49E 85$ 53.9033 -62.5579 37.71 $.0124497$ 316.4 $9.02E-03$ $-8.58E 86$ 53.9033 -62.5579 41.9 $.0108442$ $316.$ $7.8E-03$ $-7.53E 87$ 53.9033 -62.5579 46.09 $9.08E-03$ 315.6 $6.49E-03$ $-6.36E 88$ 53.9033 -62.5579 50.28 $7.17E-03$ 315.2 $5.09E-03$ $-5.05E 89$ 53.9033 -62.5579 54.47 $5.11E-03$ 314.8 $3.6E-03$ $-3.62E-$	15 16 4 03 03 03 03 03
89 53.9033 -62.5579 54.47 5.11E-03 314.8 3.6E-03 -3.62E- 90 53.9033 -62.5579 58.66 2.86E-03 314.5 2.E-03 -2.04E- END 53.9033 -62.5579 62.85 0 0 0 0	

Table 3

Y:\AM\Multicultural\KYPA\Buildout\Proof\KYPA625modelshort35 11-30-2011 14:50:50

KYPA 1230 kHz 1 Kw tower 2 Driven Tower 1 shorted, others detuned

GEOMETRY Dimensions in meters Environment: perfect ground

wire	caps	Radius	Angle	Z	radius	segs
1	2	0	0	0	.35	15
		0	0	62.5		
2	2	42.1933	340.	0	.35	15
		42.1933	340.	62.5		
3	.2	84.2866	340.	0	.35	15
		84.2866	340.	62.5		
4	2	42.1933	233.	0	.35	15

6

402 Tenth Avenue • PO Box 367 • Haddon Heights, NJ 08035 Engineering Report – Page 12 Antenna System Proof of Performance Method of Moments Modeling KYPA – Los Angeles, CA Multicultural Radio Broadcasters Licensee, LLC November 2011

5 2 50 50 6 2 82).1951 28 2.5776 31	3. 6.5 6.5 0.75 0.75	62.5 0 62.5 0 62.5	.35		15 15
Number of wir cur	res = rrent nodes =	6 90				
Individual wi segment lengt segment/radiu radius	res wire th 1	nimum value 4.19 11.971 .35	4	max wire 1 1 1	imum value 4.19 11.9714 .35	
ELECTRICAL DE Frequencies (frequenc no. lowest 1 1,230.	KHz) Cy step	no. o steps 1		ım	h (waveler maximum .0171905	
Sources source node 1 16	sector mag 1 1.	nitude	phase 0		type voltage	
Lumped loads load node 1 1 2 31 3 46 4 61 5 76	resistance (ohms) 0 0 0 0 0 0	reactance (ohms) 0 0 0 0 0	indu (mH) .075 .075 .075 .075 .075	5 5 5	capacitar (uF) 0 0 0 0 0	nce passive circuit 0 0 0 0 0 0
14:50:50 IMPEDANCE normalizat freq resi (KHz) (ohm	lst react ns) (ohms) node 16, sect	imped (ohms)	oof\KYPA(phase (deg) 44.5	625models VSWR 2.6146	short35 : S11 dB -6.9999	s12 dB 96655

6

402 Tenth Avenue • PO Box 367 • Haddon Heights, NJ 08035 Engineering Report – Page 13 Antenna System Proof of Performance Method of Moments Modeling KYPA – Los Angeles, CA Multicultural Radio Broadcasters Licensee, LLC November 2011

Y:\AM\Multicultural\KYPA\Buildout\Proof\KYPA625modelshort35 11-30-2011 14:50:50

FNT poak	4					
-	230 KH7					
4 +4		tte				
		665				
••						
	meters.		marr	nhase	real	imaginary
	v	7.		-		(amps)
			-	-		6.97E-04
						3.77E-04
						1.85E-04
						2.84E-05
			•			
			0		0	0
		0	.0138178		9.86E-03	-9.68E-03
		4.19				0104159
			.0144283	312.	9.66E-03	0107151
		12.57	.0143376	311.1	9.42E-03	0108097
		16.76	.0140524	310.3	9.08E-03	0107241
39.6487	-14.431	20.95	.0135827	309.6	8.65E-03	0104711
39.6487	-14.431	25.14	.0129365	309.	8.13E-03	0100597
39.6487	-14.431	29.33	.0121219	308.4	7.53E-03	-9.5E-03
39.6487	-14.431	33.52	.0111472	307.9	6.85E-03	-8.79E-03
39.6487	-14.431	37.71	.0100213	307.5 [.]	6.1E-03	-7.95E-03
39.6487	-14.431	41.9			5.28E-03	-6.98E-03
39.6487	-14.431	46.09			4.39E-03	-5.89E-03
39.6487	-14.431	50.28			3.45E-03	-4.69E-03
39.6487	-14.431	54.47			2.44E-03	-3.36E-03
39.6487	-14.431	58.66	2.33E-03	305.7	1.36E-03	-1.89E-03
39.6487	-14.431	62.85	0	0	0	0
79.2035	-28.8277	0	8.21E-04	56.8	4.49E-04	6.87E-04
79.2035	-28.8277	4.19	4.45E-04	56.7	2.44E-04	3.72E-04
	t power = 1 ciency = 1 dinates in ent X 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$\begin{array}{llllllllllllllllllllllllllllllllllll$	quency = 1230 KHz at power = .00492925 watts ciency = 100. % cdinates in meters	puency = 1230 KHz tt power = .00492925 watts .ciency = 100. % dinates in meters tent mag X Y Z (amps) 0 0 0 1.07E-03 0 0 4.19 5.77E-04 0 0 0 8.38 2.86E-04 0 0 12.57 5.26E-05 0 0 16.76 1.39E-04 0 0 20.95 2.93E-04 0 0 22.95 2.93E-04 0 0 22.95 2.93E-04 0 0 22.93 4.96E-04 0 0 29.33 4.96E-04 0 0 33.52 5.49E-04 0 0 37.71 5.71E-04 0 0 37.71 5.71E-04 0 0 41.9 5.61E-04 0 0 50.28 4.49E-04 0 0 50.28 4.49E-04 0 0 58.66 2.08E-04 0 0 58.687 -14.431 58.66 2.33E-03 0 39.6487 -14.431 58.66	puency = 1230 KHz tt power = .00492925 watts cdinates in meters ent mag phase X Y Z (amps) (deg) 0 0 0 4.19 5.77E-04 40.8 0 0 4.19 5.77E-04 40.8 0 0 12.57 5.26E-05 32.7 0 0 12.57 5.26E-05 32.7 0 0 12.57 5.26E-05 32.7 0 0 16.76 1.39E-04 226.2 0 0 20.95 2.93E-04 224.7 0 0 22.913 4.96E-04 224.8 0 0 22.933 4.96E-04 224.8 0 0 33.52 5.49E-04 225.2 0 0 37.71 5.71E-04 225.6 0 0 33.52 5.49E-04 225.2 0 0 0 37.71 5.71E-04 225.6 0 0 41.9 5.61E-04 226.1 0 0 50.28 4.49E-04 227.2 0 0 54.47 3.46E-04 227.2 0 0 58.66 2.08E-04 228.3 0 0 58.66 2.08E-04 228.3 0 0 62.85 0 0 39.6487 -14.431 0 .0138178 315.5 39.6487 -14.431 12.57 .0143376 311.1 39.6487 -14.431 12.57 .0143376 311.1 39.6487 -14.431 20.95 .0135827 309.6 39.6487 -14.431 20.95 .0135827 309.6 39.6487 -14.431 25.14 .0129365 309. 39.6487 -14.431 33.52 .0111472 307.9 39.6487 -14.431 37.71 .0100213 307.5 39.6487 -14.431 37.71 .0100213 307.5 39.6487 -14.431 41.9 8.75E-03 306.7 39.6487 -14.431 50.28 5.82E-03 305.7 39.6487 -14.431 50.28 5.82E-03 305.7 39.6487 -14.431 58.66 2.33E-03 305.7 39.6487 -14.431 58.66 2.33E-03 305.7 39.6487 -14.431 58.66 2.33E-04 56.8	puency = 1230 KHz t power = .00492925 watts .ciency = 100. % rent mag phase real x Y Z (amps) (deg) (amps) 0 0 0 1.07E-03 40.8 8.06E-04 0 0 4.19 5.77E-04 40.8 4.37E-04 0 0 0 8.38 2.86E-04 40.2 2.19E-04 0 0 0 12.57 5.26E-05 32.7 4.43E-05 0 0 0 16.76 1.39E-04 226.2 -9.64E-05 0 0 0 20.95 2.93E-04 224.7 -2.08E-04 0 0 0 25.14 4.11E-04 224.6 -2.93E-04 0 0 0 29.33 4.96E-04 224.8 -3.52E-04 0 0 0 33.52 5.49E-04 225.2 -3.87E-04 0 0 0 37.71 5.71E-04 225.6 -3.99E-04 0 0 0 37.71 5.71E-04 225.6 -3.99E-04 0 0 0 41.9 5.61E-04 226.1 -3.89E-04 0 0 0 50.28 4.49E-04 227.2 -3.57E-04 0 0 50.28 4.49E-04 227.8 -2.32E-04 0 0 58.66 2.08E-04 228.3 -1.38E-03 39.6487 -14.431 4.19 .0143379 313.3 9.81E-03 39.6487 -14.431 16.76 .0143376 311.1 9.42E-03 39.6487 -14.431 20.95 .0138178 315.5 9.86E-03 39.6487 -14.431 20.95 .013827 309.6 8.65E-03 39.6487 -14.431 20.95 .013827 309.6 8.65E-03 39.6487 -14.431 20.95 .0135827 309.6 8.65E-03 39.6487 -14.431 37.71 .0100213 307.5 6.1E-03 39.6487 -14.431 46.09 7.35E-03 306.7 4.39E-03 39.6487 -14.431 50.28 5.82E-03 306.7 4.39E-03 39.6487 -14.431 50.28 5.82E-03 306.7 4.39E-03 39.6487 -14.431 50.28 5.82E-03 306.7 1.36E-03 39.6487 -14.431 50.28 5.82E-03 306.7

402 Tenth Avenue • PO Box 367 • Haddon Heights, NJ 08035 Engineering Report – Page 14 Antenna System Proof of Performance Method of Moments Modeling KYPA – Los Angeles, CA Multicultural Radio Broadcasters Licensee, LLC November 2011

34 79.2035 -28.8277 12.57 4.29E-05 46.1 2.97E-05 3.09E-05 35 79.2035 -28.8277 20.95 2.21E-04 244.4 -4.5E-05 -9.4E-05 36 79.2035 -28.8277 20.95 2.21E-04 242.1 -1.45E-04 -2.74E-04 38 79.2035 -28.8277 33.52 4.13E-04 242.9 -1.88E-04 -2.74E-04 39 79.2035 -28.8277 37.71 4.29E-04 243.5 -1.91E-04 -3.84E-04 40 79.2035 -28.8277 46.09 3.89E-04 244.9 -1.63E-04 -3.32E-04 41 79.2035 -28.8277 50.28 3.35E-04 246.5 -1.03E-04 -2.35E-04 44 79.2035 -28.8277 54.47 2.58E-04 246.5 -1.03E-04 -2.35E-04 45 79.2035 -28.8277 62.85 0 0 0 0 60D 79.2035 -28.8277 50.28 3.35E-04	33	79.2035	-28.8277	8.38	2.21E-04	55.9	1.24E-04	1.83E-04
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	34	79.2035	-28.8277	12.57	4.29E-05	46.1	2.97E-05	3.09E-05
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	35	79.2035	-28.8277	16.76	1.04E-04	244.4	-4.5E-05	-9.4E-05
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	36	79.2035	-28.8277	20.95	2.21E-04	242.2	-1.03E-04	-1.95E-04
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	37	79.2035	-28.8277	25.14	3.1E-04	242.1	-1.45E-04	-2.74E-04
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	38	79.2035	-28.8277	29.33	3.74E-04	242.4	-1.73E-04	-3.32E-04
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	39	79.2035	-28.8277	33.52	4.13E-04	242.9	-1.88E-04	-3.68E-04
4279.2035 -28.8277 46.09 $3.89E-04$ 244.9 $-1.65E-04$ $-3.53E-04$ 4379.2035 -28.8277 50.28 $3.35E-04$ 245.7 $-1.38E-04$ $-3.05E-04$ 4479.2035 -28.8277 54.47 $2.58E-04$ 245.7 $-1.03E-04$ $-2.36E-04$ END79.2035 -28.8277 58.66 $1.55E-04$ 247.3 $-5.98E-05$ $-1.43E-04$ END79.2035 -28.8277 62.85 0 0 0 0 GND -25.3926 -33.6971 0 $7.9E-04$ 17.9 $4.07E-04$ $1.32E-04$ 48 -25.3926 -33.6971 8.38 $2.13E-04$ $18.$ $2.02E-04$ $6.58E-05$ 50 -25.3926 -33.6971 20.95 $2.12E-04$ 197.4 $-9.55E-05$ $-2.99E-05$ 51 -25.3926 -33.6971 20.95 $2.12E-04$ 197.7 $-2.84E-04$ $-9.06E-05$ 53 -25.3926 -33.6971 23.52 $2.99E-04$ 197.7 $-3.43E-04$ $-1.1E-04$ 54 -25.3926 -33.6971 33.52 $398E-04$ 197.8 $-3.79E-04$ $-1.26E-04$ 55 -25.3926 -33.6971 37.71 $4.12E-04$ 197.8 $-3.92E-04$ $-1.26E-04$ 55 -25.3926 -33.6971 50.28 $3.22E-04$ $19.26E-04$ $-1.26E-04$ 56 -25.3926 -33.6971 50.28 $3.22E-04$ $19.26E-04$ $-1.26E-04$ 57 -25.3926	40	79.2035	-28,8277	37.71	4.29E-04	243.5	-1.91E-04	-3.84E-04
4379.2035 -28.8277 50.28 $3.35E-04$ 245.7 $-1.38E-04$ $-3.05E-04$ 4479.2035 -28.8277 54.47 $2.58E-04$ 246.5 $-1.03E-04$ $-2.36E-04$ 4579.2035 -28.8277 58.66 $1.55E-04$ 247.3 $-5.98E-05$ $-1.43E-04$ 47 -25.3926 -33.6971 0 $7.9E-04$ 17.9 $7.51E-04$ $2.43E-04$ 47 -25.3926 -33.6971 0 $7.9E-04$ 17.9 $7.51E-04$ $2.43E-04$ 48 -25.3926 -33.6971 12.57 $4.02E-05$ 18.8 $3.8E-05$ $1.32E-05$ 50 -25.3926 -33.6971 20.95 $2.12E-04$ 197.4 $-9.55E-05$ $-2.99E-05$ 51 -25.3926 -33.6971 20.95 $2.12E-04$ 197.7 $-3.43E-04$ $-1.1E-04$ 52 -25.3926 -33.6971 20.95 $2.99E-04$ 197.7 $-3.43E-04$ $-1.1E-04$ 54 -25.3926 -33.6971 35.52 $3.98E-04$ 197.7 $-3.43E-04$ $-1.1E-04$ 54 -25.3926 -33.6971 37.71 $4.12E-04$ 197.7 $-3.43E-04$ $-1.24E-04$ 55 -25.3926 -33.6971 50.28 $3.22E-04$ 197.7 $-3.65E-04$ $-1.24E-04$ 56 -25.3926 -33.6971 50.28 $3.22E-04$ 197.7 $-3.65E-04$ $-1.24E-04$ 57 -25.3926 -33.6971 50.28 $3.22E-04$ 197.7 $-3.65E-04$ -1.24	41	79.2035	-28.8277	41.9	4.2E-04	244.2	-1.83E-04	-3.79E-04
4479.2035-28.827754.47 $2.58E-04$ 246.5 $-1.03E-04$ $-2.36E-04$ 4579.2035-28.827758.66 $1.55E-04$ 247.3 $-5.98E-05$ $-1.43B-04$ END79.2035-28.827762.85000 -25.3926 -33.69710 $7.9E-04$ 17.9 $7.51E-04$ $2.43E-04$ 47-25.3926-33.6971 8.38 $2.13E-04$ $18.$ $2.02E-04$ $6.58E-05$ 48-25.3926-33.6971 12.57 $4.02E-05$ 18.8 $3.8E-05$ $1.3E-05$ 50-25.3926-33.6971 20.95 $2.12E-04$ 197.4 $-9.55E-05$ $-2.99E-05$ 51-25.3926-33.6971 20.95 $2.12E-04$ 197.7 $-3.43E-04$ $-1.1E-04$ 54-25.3926-33.6971 23.33 $3.6E-04$ 197.7 $-3.43E-04$ $-1.1E-04$ 54-25.3926-33.6971 33.52 $3.98E-04$ 197.8 $-3.79E-04$ $-1.21E-04$ 55-25.3926-33.6971 37.71 $4.12E-04$ 197.8 $-3.56E-04$ $-1.24E-04$ 56-25.3926-33.6971 50.28 $3.22E-04$ 198.8 $-3.66E-04$ $-9.99E-05$ 59-25.3926-33.6971 50.28 $3.22E-04$ 198.8 $-1.41E-04$ 58-25.3926-33.6971 52.8 $3.22E-04$ 198.8 $-1.41E-04$ 59-25.3926-33.6971 52.8 $3.22E-04$ 198.8 $-1.41E-04$ 6	42	79.2035	-28.8277	46.09	3.89E-04	244.9	-1.65E-04	-3.53E-04
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	43	79.2035	-28.8277	50.28	3.35E-04	245.7	-1.38E-04	-3.05E-04 ·
END79.2035-28.827762.8500000GND-25.3926-33.697107.9E-0417.97.51E-042.43E-0447-25.3926-33.69714.194.28E-0417.94.07E-041.32E-0448-25.3926-33.697112.574.02E-0518.83.8E-051.3E-0550-25.3926-33.697112.574.02E-0518.83.8E-05-2.99E-0551-25.3926-33.697125.142.99E-04197.7-2.84E-04-9.05E-0552-25.3926-33.697125.132.99E-04197.7-3.43E-04-1.1E-0454-25.3926-33.697133.523.98E-04197.7-3.43E-04-1.2Ee-0455-25.3926-33.697141.94.04E-04197.9-3.85E-04-1.24E-0456-25.3926-33.697146.093.74E-04198.1-3.06E-04-9.99E-0559-25.3926-33.697154.472.47E-04198.1-3.06E-04-9.99E-0559-25.3926-33.697154.472.47E-04198.3-1.41E-04-4.65E-0560-25.3926-33.697154.472.47E-04198.3-1.41E-04-4.65E-0559-25.3926-33.697154.671.48E-04198.3-1.41E-04-4.65E-0560-25.3926-33.697154.671.48E-04198.3-1.41E-04-4.65E-0559-25.3926-33.6971 <t< td=""><td>44</td><td>79.2035</td><td>-28.8277</td><td>54.47</td><td>2.58E-04</td><td>246.5</td><td>-1.03E-04</td><td>-2.36E-04</td></t<>	44	79.2035	-28.8277	54.47	2.58E-04	246.5	-1.03E-04	-2.36E-04
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	45	79.2035	-28.8277	58.66	1.55E-04	247.3	-5.98E-05	-1.43E-04
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	END	79.2035	-28.8277	62.85	0	0	0	0
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	GND	-25.3926	-33.6971	0	7.9E-04	17.9	7.51E-04	2.43E-04
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	47	-25.3926	-33.6971	4.19	4.28E-04	17.9	4.07E-04	1.32E-04
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	48	-25.3926	-33.6971	8.38	2.13E-04	18.	2.02E-04	6.58E-05
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	49	-25.3926	-33.6971	12.57	4.02E-05	18.8	3.8E-05	1.3E-05
52 -25.3926 -33.6971 25.14 $2.99E-04$ 197.7 $-2.84E-04$ $-9.06E-05$ 53 -25.3926 -33.6971 29.33 $3.6E-04$ 197.7 $-3.43E-04$ $-1.1E-04$ 54 -25.3926 -33.6971 37.52 $3.98E-04$ 197.7 $-3.43E-04$ $-1.21E-04$ 55 -25.3926 -33.6971 37.71 $4.12E-04$ 197.8 $-3.92E-04$ $-1.24E-04$ 56 -25.3926 -33.6971 41.9 $4.04E-04$ 197.9 $-3.85E-04$ $-1.24E-04$ 57 -25.3926 -33.6971 50.28 $3.22E-04$ 198.1 $-3.66E-04$ $-9.99E-05$ 59 -25.3926 -33.6971 54.47 $2.47E-04$ 198.2 $-2.35E-04$ $-7.72E-05$ 60 -25.3926 -33.6971 58.66 $1.48E-04$ 198.3 $-1.41E-04$ $-4.65E-05$ END -25.3926 -33.6971 58.66 $1.48E-04$ 198.3 $-1.41E-04$ $-4.65E-05$ 60 -25.3926 -33.6971 58.66 $1.48E-04$ 198.3 $-1.41E-04$ $-4.65E-05$ END -25.3926 -33.6971 58.66 $1.48E-04$ 198.3 $-1.41E-04$ $-6.5E-05$ 61 14.2562 -48.1281 4.19 $4.46E-04$ $55.$ $2.56E-04$ $3.65E-04$ 63 14.2562 -48.1281 12.57 $4.55E-05$ 43.9 $3.28E-05$ $3.16E-05$ 65 14.2562 -48.1281 12.57 $4.55E-05$ </td <td>50</td> <td>-25.3926</td> <td>-33.6971</td> <td>16.76</td> <td>1.E-04</td> <td>197.4</td> <td>-9.55E-05</td> <td>-2.99E-05</td>	50	-25.3926	-33.6971	16.76	1.E-04	197.4	-9.55E-05	-2.99E-05
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	51	-25.3926	-33.6971		2.12E-04	197.6	-2.02E-04	-6.41E-05
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	52	-25.3926	-33.6971	25.14	2.99E-04	197.7	-2.84E-04	-9.06E-05
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	53	-25.3926	-33.6971	29.33	3.6E-04	197.7	-3.43E-04	-1.1E-04
56 -25.3926 -33.6971 41.9 $4.04E-04$ 197.9 $-3.85E-04$ $-1.24E-04$ 57 -25.3926 -33.6971 50.28 $3.74E-04$ $198.$ $-3.56E-04$ $-1.16E-04$ 58 -25.3926 -33.6971 50.28 $3.22E-04$ 198.1 $-3.06E-04$ $-9.99E-05$ 59 -25.3926 -33.6971 54.47 $2.47E-04$ 198.2 $-2.35E-04$ $-7.72E-05$ 60 -25.3926 -33.6971 58.66 $1.48E-04$ 198.3 $-1.41E-04$ $-4.65E-05$ END -25.3926 -33.6971 62.85 0 0 0 0 GND 14.2562 -48.1281 0 $8.23E-04$ 55.1 $4.71E-04$ $6.75E-04$ 62 14.2562 -48.1281 8.38 $2.23E-04$ 54.1 $1.31E-04$ $1.81E-04$ 64 14.2562 -48.1281 12.57 $4.55E-05$ 43.9 $3.28E-05$ $3.16E-05$ 65 14.2562 -48.1281 16.76 $1.01E-04$ 243.8 $-4.45E-05$ $-9.04E-05$ 66 14.2562 -48.1281 20.95 $2.16E-04$ 241.2 $-1.04E-04$ $-1.89E-04$ 67 14.2562 -48.1281 35.2 $4.05E-04$ 241.2 $-1.04E-04$ $-3.57E-04$ 69 14.2562 -48.1281 37.71 $4.2E-04$ 241.4 $-1.94E-04$ $-3.72E-04$ 70 14.2562 -48.1281 37.71 $4.2E-04$ 242.4 $-1.94E-04$	54	-25.3926	-33.6971	33.52	3.98E-04	197.8	-3.79E-04	-1.21E-04
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	55	-25.3926	-33.6971	37.71	4.12E-04	197.8	-3.92E-04	-1.26E-04
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	56	-25.3926	-33.6971	41.9			-3.85E-04	-1.24E-04
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	57	-25.3926	-33.6971	46.09	3.74E-04	198.	-3.56E-04	-1.16E-04
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	58	-25.3926	-33.6971	50.28	3.22E-04	198.1	-3.06E-04	-9.99E-05
END -25.3926 -33.6971 62.85 0 0 0 0 GND 14.2562 -48.1281 0 $8.23E-04$ 55.1 $4.71E-04$ $6.75E-04$ 62 14.2562 -48.1281 4.19 $4.46E-04$ $55.$ $2.56E-04$ $3.65E-04$ 63 14.2562 -48.1281 8.38 $2.23E-04$ 54.1 $1.31E-04$ $1.81E-04$ 64 14.2562 -48.1281 12.57 $4.55E-05$ 43.9 $3.28E-05$ $3.16E-05$ 65 14.2562 -48.1281 16.76 $1.01E-04$ 243.8 $-4.45E-05$ $-9.04E-05$ 66 14.2562 -48.1281 20.95 $2.16E-04$ 241.2 $-1.04E-04$ $-1.89E-04$ 67 14.2562 -48.1281 25.14 $3.04E-04$ 241.2 $-1.04E-04$ $-3.21E-04$ 68 14.2562 -48.1281 29.33 $3.66E-04$ 241.3 $-1.76E-04$ $-3.57E-04$ 69 14.2562 -48.1281 33.52 $4.05E-04$ 241.8 $-1.91E-04$ $-3.72E-04$ 70 14.2562 -48.1281 37.71 $4.2E-04$ 242.4 $-1.94E-04$ $-3.67E-04$ 71 14.2562 -48.1281 46.09 $3.81E-04$ 243.8 $-1.68E-04$ $-3.42E-04$ 73 14.2562 -48.1281 50.28 $3.28E-04$ 244.6 $-1.41E-04$ $-2.96E-04$ 74 14.2562 -48.1281 50.28 $3.28E-04$ 245.4 $-1.05E-04$ -2.29	59	-25.3926		54.47	2.47E-04	198.2	-2.35E-04	-7.72E-05
GND 14.2562 -48.1281 0 $8.23E-04$ 55.1 $4.71E-04$ $6.75E-04$ 62 14.2562 -48.1281 4.19 $4.46E-04$ $55.$ $2.56E-04$ $3.65E-04$ 63 14.2562 -48.1281 8.38 $2.23E-04$ 54.1 $1.31E-04$ $1.81E-04$ 64 14.2562 -48.1281 12.57 $4.55E-05$ 43.9 $3.28E-05$ $3.16E-05$ 65 14.2562 -48.1281 16.76 $1.01E-04$ 243.8 $-4.45E-05$ $-9.04E-05$ 66 14.2562 -48.1281 20.95 $2.16E-04$ 241.2 $-1.04E-04$ $-1.89E-04$ 67 14.2562 -48.1281 29.33 $3.66E-04$ $241.$ $-1.47E-04$ $-2.66E-04$ 68 14.2562 -48.1281 33.52 $4.05E-04$ 241.3 $-1.76E-04$ $-3.21E-04$ 69 14.2562 -48.1281 37.71 $4.2E-04$ 242.4 $-1.94E-04$ $-3.57E-04$ 70 14.2562 -48.1281 37.71 $4.2E-04$ 242.4 $-1.94E-04$ $-3.67E-04$ 71 14.2562 -48.1281 46.09 $3.81E-04$ 243.8 $-1.68E-04$ $-3.42E-04$ 73 14.2562 -48.1281 50.28 $3.28E-04$ 244.6 $-1.41E-04$ $-2.96E-04$ 74 14.2562 -48.1281 54.47 $2.52E-04$ 245.4 $-1.05E-04$ $-2.29E-04$	60	-25.3926	-33.6971	58.66	1.48E-04		-1.41E-04	-4.65E-05
62 14.2562 -48.1281 4.19 $4.46E-04$ $55.$ $2.56E-04$ $3.65E-04$ 63 14.2562 -48.1281 8.38 $2.23E-04$ 54.1 $1.31E-04$ $1.81E-04$ 64 14.2562 -48.1281 12.57 $4.55E-05$ 43.9 $3.28E-05$ $3.16E-05$ 65 14.2562 -48.1281 16.76 $1.01E-04$ 243.8 $-4.45E-05$ $-9.04E-05$ 66 14.2562 -48.1281 20.95 $2.16E-04$ 241.2 $-1.04E-04$ $-1.89E-04$ 67 14.2562 -48.1281 25.14 $3.04E-04$ $241.$ $-1.47E-04$ $-2.66E-04$ 68 14.2562 -48.1281 29.33 $3.66E-04$ 241.3 $-1.76E-04$ $-3.21E-04$ 69 14.2562 -48.1281 33.52 $4.05E-04$ 241.8 $-1.91E-04$ $-3.57E-04$ 70 14.2562 -48.1281 37.71 $4.2E-04$ 242.4 $-1.94E-04$ $-3.72E-04$ 71 14.2562 -48.1281 41.9 $4.11E-04$ 243.1 $-1.86E-04$ $-3.42E-04$ 72 14.2562 -48.1281 46.09 $3.81E-04$ 243.8 $-1.68E-04$ $-3.42E-04$ 73 14.2562 -48.1281 50.28 $3.28E-04$ 244.6 $-1.41E-04$ $-2.96E-04$ 74 14.2562 -48.1281 54.47 $2.52E-04$ 245.4 $-1.05E-04$ $-2.29E-04$	END	-25.3926	-33.6971	62.85				
$ \begin{array}{ccccccccccccccccccccccccccccccccccc$	GND	14.2562	-48.1281	-			4.71E-04	
64 14.2562 -48.1281 12.57 $4.55E-05$ 43.9 $3.28E-05$ $3.16E-05$ 65 14.2562 -48.1281 16.76 $1.01E-04$ 243.8 $-4.45E-05$ $-9.04E-05$ 66 14.2562 -48.1281 20.95 $2.16E-04$ 241.2 $-1.04E-04$ $-1.89E-04$ 67 14.2562 -48.1281 25.14 $3.04E-04$ 241.2 $-1.04E-04$ $-2.66E-04$ 68 14.2562 -48.1281 29.33 $3.66E-04$ 241.3 $-1.76E-04$ $-3.21E-04$ 69 14.2562 -48.1281 33.52 $4.05E-04$ 241.8 $-1.91E-04$ $-3.57E-04$ 70 14.2562 -48.1281 37.71 $4.2E-04$ 242.4 $-1.94E-04$ $-3.72E-04$ 71 14.2562 -48.1281 41.9 $4.11E-04$ 243.1 $-1.68E-04$ $-3.42E-04$ 72 14.2562 -48.1281 46.09 $3.81E-04$ 243.8 $-1.68E-04$ $-3.42E-04$ 73 14.2562 -48.1281 50.28 $3.28E-04$ 244.6 $-1.41E-04$ $-2.96E-04$ 74 14.2562 -48.1281 54.47 $2.52E-04$ 245.4 $-1.05E-04$ $-2.29E-04$	62	14.2562						
65 14.2562 -48.1281 16.76 $1.01E-04$ 243.8 $-4.45E-05$ $-9.04E-05$ 66 14.2562 -48.1281 20.95 $2.16E-04$ 241.2 $-1.04E-04$ $-1.89E-04$ 67 14.2562 -48.1281 25.14 $3.04E-04$ 241.2 $-1.47E-04$ $-2.66E-04$ 68 14.2562 -48.1281 29.33 $3.66E-04$ 241.3 $-1.76E-04$ $-3.21E-04$ 69 14.2562 -48.1281 33.52 $4.05E-04$ 241.8 $-1.91E-04$ $-3.57E-04$ 70 14.2562 -48.1281 37.71 $4.2E-04$ 242.4 $-1.94E-04$ $-3.72E-04$ 71 14.2562 -48.1281 41.9 $4.11E-04$ 243.1 $-1.68E-04$ $-3.42E-04$ 72 14.2562 -48.1281 46.09 $3.81E-04$ 243.8 $-1.68E-04$ $-3.42E-04$ 73 14.2562 -48.1281 50.28 $3.28E-04$ 244.6 $-1.41E-04$ $-2.96E-04$ 74 14.2562 -48.1281 54.47 $2.52E-04$ 245.4 $-1.05E-04$ $-2.29E-04$								
66 14.2562 -48.1281 20.95 $2.16E-04$ 241.2 $-1.04E-04$ $-1.89E-04$ 67 14.2562 -48.1281 25.14 $3.04E-04$ $241.$ $-1.47E-04$ $-2.66E-04$ 68 14.2562 -48.1281 29.33 $3.66E-04$ 241.3 $-1.76E-04$ $-3.21E-04$ 69 14.2562 -48.1281 33.52 $4.05E-04$ 241.8 $-1.91E-04$ $-3.57E-04$ 70 14.2562 -48.1281 37.71 $4.2E-04$ 242.4 $-1.94E-04$ $-3.72E-04$ 71 14.2562 -48.1281 41.9 $4.11E-04$ 243.1 $-1.86E-04$ $-3.67E-04$ 72 14.2562 -48.1281 46.09 $3.81E-04$ 243.8 $-1.68E-04$ $-3.42E-04$ 73 14.2562 -48.1281 50.28 $3.28E-04$ 244.6 $-1.41E-04$ $-2.96E-04$ 74 14.2562 -48.1281 54.47 $2.52E-04$ 245.4 $-1.05E-04$ $-2.29E-04$	64			•				
67 14.2562 -48.1281 25.14 $3.04E-04$ $241.$ $-1.47E-04$ $-2.66E-04$ 68 14.2562 -48.1281 29.33 $3.66E-04$ 241.3 $-1.76E-04$ $-3.21E-04$ 69 14.2562 -48.1281 33.52 $4.05E-04$ 241.8 $-1.91E-04$ $-3.57E-04$ 70 14.2562 -48.1281 37.71 $4.2E-04$ 242.4 $-1.94E-04$ $-3.72E-04$ 71 14.2562 -48.1281 41.9 $4.11E-04$ 243.1 $-1.86E-04$ $-3.67E-04$ 72 14.2562 -48.1281 46.09 $3.81E-04$ 243.8 $-1.68E-04$ $-3.42E-04$ 73 14.2562 -48.1281 50.28 $3.28E-04$ 244.6 $-1.41E-04$ $-2.96E-04$ 74 14.2562 -48.1281 54.47 $2.52E-04$ 245.4 $-1.05E-04$ $-2.29E-04$	65							
68 14.2562 -48.1281 29.33 3.66E-04 241.3 -1.76E-04 -3.21E-04 69 14.2562 -48.1281 33.52 4.05E-04 241.8 -1.91E-04 -3.57E-04 70 14.2562 -48.1281 37.71 4.2E-04 242.4 -1.94E-04 -3.72E-04 71 14.2562 -48.1281 41.9 4.11E-04 243.1 -1.86E-04 -3.67E-04 72 14.2562 -48.1281 46.09 3.81E-04 243.8 -1.68E-04 -3.42E-04 73 14.2562 -48.1281 50.28 3.28E-04 244.6 -1.41E-04 -2.96E-04 74 14.2562 -48.1281 54.47 2.52E-04 245.4 -1.05E-04 -2.29E-04	66	14.2562	-48.1281					
69 14.2562 -48.1281 33.52 4.05E-04 241.8 -1.91E-04 -3.57E-04 70 14.2562 -48.1281 37.71 4.2E-04 242.4 -1.94E-04 -3.72E-04 71 14.2562 -48.1281 41.9 4.11E-04 243.1 -1.86E-04 -3.67E-04 72 14.2562 -48.1281 46.09 3.81E-04 243.8 -1.68E-04 -3.42E-04 73 14.2562 -48.1281 50.28 3.28E-04 244.6 -1.41E-04 -2.96E-04 74 14.2562 -48.1281 54.47 2.52E-04 245.4 -1.05E-04 -2.29E-04	67	14.2562	-48.1281					
7014.2562-48.128137.714.2E-04242.4-1.94E-04-3.72E-047114.2562-48.128141.94.11E-04243.1-1.86E-04-3.67E-047214.2562-48.128146.093.81E-04243.8-1.68E-04-3.42E-047314.2562-48.128150.283.28E-04244.6-1.41E-04-2.96E-047414.2562-48.128154.472.52E-04245.4-1.05E-04-2.29E-04	68	14.2562						
7114.2562-48.128141.94.11E-04243.1-1.86E-04-3.67E-047214.2562-48.128146.093.81E-04243.8-1.68E-04-3.42E-047314.2562-48.128150.283.28E-04244.6-1.41E-04-2.96E-047414.2562-48.128154.472.52E-04245.4-1.05E-04-2.29E-04	69	14.2562	-48.1281	33.52	4.05E-04	241.8		
7214.2562-48.128146.093.81E-04243.8-1.68E-04-3.42E-047314.2562-48.128150.283.28E-04244.6-1.41E-04-2.96E-047414.2562-48.128154.472.52E-04245.4-1.05E-04-2.29E-04	70	14.2562						
7314.2562-48.128150.283.28E-04244.6-1.41E-04-2.96E-047414.2562-48.128154.472.52E-04245.4-1.05E-04-2.29E-04	71	14.2562	-48.1281				-1.86E-04	-3.67E-04
74 14.2562 -48.1281 54.47 2.52E-04 245.4 -1.05E-04 -2.29E-04	72	14.2562	-48.1281	46.09				
	73	14.2562	-48.1281	50.28				
75 14.2562 -48.1281 58.66 1.51E-04 246.1 -6.12E-05 -1.38E-04	74	14.2562	-48.1281	54.47				
	75	14.2562	-48.1281	58.66	1.51E-04	246.1	-6.12E-05	-1.38E-04

6

402 Tenth Avenue • PO Box 367 • Haddon Heights, NJ 08035 Engineering Report – Page 15 Antenna System Proof of Performance Method of Moments Modeling KYPA – Los Angeles, CA Multicultural Radio Broadcasters Licensee, LLC November 2011

END GND 77 78 79 80 81 82 83 83	14.2562 53.9033 53.9033 53.9033 53.9033 53.9033 53.9033 53.9033 53.9033 53.9033 53.9033	-48.1281 -62.5579 -62.5579 -62.5579 -62.5579 -62.5579 -62.5579 -62.5579 -62.5579 -62.5579 -62.5579	62.85 0 4.19 8.38 12.57 16.76 20.95 25.14 29.33 33.52	0 7.93E-03 7.84E-03 7.7E-03 7.48E-03 7.19E-03 6.83E-03 6.41E-03 5.92E-03 5.37E-03	59.8 59.8 59.7 59.7 59.7 59.6 59.5	0 3.99E-03 3.94E-03 3.87E-03 3.77E-03 3.62E-03 3.45E-03 3.24E-03 3.E-03 2.73E-03	0 6.85E-03 6.78E-03 6.65E-03 6.46E-03 6.21E-03 5.9E-03 5.53E-03 5.1E-03 4.63E-03
85 86	53.9033 53.9033	-62.5579 -62.5579	37.71 41.9	4.77E-03 4.12E-03		2.43E-03 2.11E-03	4.11E-03 3.54E-03
87 88	53.9033 53.9033	-62.5579 -62.5579	46.09	3.42E-03 2.68E-03	59.1	1.76E-03 1.38E-03	2.94E-03 2.3E-03
89 90	53.9033 53.9033	-62.5579 -62.5579 -62.5579	54.47 58.66	1.89E-03 1.05E-03	58.8	9.79E-04 5.45E-04	1.62E-03 8.96E-04
END	53.9033	-62.5579	62.85	0	0	0	0

Consulting Engineers

- <u>}</u>

402 Tenth Avenue • PO Box 367 • Haddon Heights, NJ 08035 Engineering Report – Page 16 Antenna System Proof of Performance Method of Moments Modeling KYPA – Los Angeles, CA Multicultural Radio Broadcasters Licensee, LLC November 2011

Table 4 -

Y:\AM\Multicultural\KYPA\Buildout\Proof\KYPA625modelopent35 11-30-2011 15:04:02

KYPA 1230 kHz 1 Kw tower 2 Driven Tower 1 shorted,

others detuned

GEOMETRY Dimensions in meters Environment: perfect ground

wire	caps	Radius	Angle	Z	radius	segs
1	2	0	0	0	.35	15
		0	0	62.5		
2	2	42.1933	340.	0	.35	15
		42.1933	340.	62.5		
3	2	84.2866	340.	0	.35	15
		84.2866	340.	62.5	· ·	
4	2	42.1933	233.	0	.35	15
		42.1933	233.	62.5		
5	2	50.1951	286.5	0	.35	15
		50.1951	286.5	62.5		
6	2	82.5776	310.75	0	.35	15
•		82.5776	310.75	62.5		

Number of wires = 6 current nodes = 90

	mini	mum	max	imum
Individual wires	wire	value	wire	value
segment length	1	4.19	1	4.19
segment/radius ratio	1	11.9714	1	11.9714
radius	1	.35	1	.35

ELECTRICAL DESCRIPTION

Freque	encies (KHz)						
	frequency		no.	of	segment	length	(wavelengths)
no.	lowest	step	ste	ps	minimum		maximum

.

402 Tenth Avenue • PO Box 367 • Haddon Heights, NJ 08035 Engineering Report – Page 17 Antenna System Proof of Performance Method of Moments Modeling KYPA – Los Angeles, CA Multicultural Radio Broadcasters Licensee, LLC November 2011

1	1,230.	0	1	.01719	05	.0171905	
Sour sour	ces ce node	sector	magnitude	phase		type	
1	16	1	1.	0		voltage	
Lump	ed loads						
		resistanc	e reactanc	e indu	ctance	capacitan	ce passive
load	node	(ohms)	(ohms)	(mH)		(uF)	circuit
1	· 1	0	0	.075		0	0
2	31	0	0	.075		0	0
3	46	0	0	.075		0	0
4 5	61 76		0 O	.075 0		0 0	0
С	76	1.E+07	0	0		0	0
Y:\A	M\Multic	ultural\KY	PA\Buildout\E	roof\KYPA6	25model	opent35 1	1-30-2011
15 : 0	4:02						
					•	·	
	DANCE	tion = 50 .					
freq				phase	VSWR	S11	S12
(KHz		ms) (ohm	-	(deg)			dB
-		node 16,					
1,23	0. 44.	974 31.8	93 55.134	35.3	1.951	-9.8356	47624
V•\7	M\Multic	ultural\KV	PA\Buildout\E	roof\ KVPB6	25model	opent35 1	1-30-2011
	M (MUILIC) 4:02	urcurar (Mr	PA (Burrdout (E	TOOL (MILKO	ZJIIIOUEI	opencoo r	1 50 2011
2010							
	ENT peak						
		= 1230 KHz					
		= 1,000. w	atts		•		
	-	= 100. %					
		in meters		m 2 a	phase	real	imaginary
curr no.	X	Y	Z	mag (amps)	-		(amps)
GND	0	0	0	.381271			.217092
2	õ	Õ	4.19	.206555	34.6	.170067	.117227
3	0	0	8.38	.10292	33.7	.0856433	.0570771
4	0	0	12.57	.0202117		.0185907	7.93E-03
5	0	0	16.76	.0481134		0351323	
6	0	0	20.95	.101959	220.6	077367	0664082
7	0	0	25.14	.143397	220.5	109083	0930787
8	0	0	29.33	.172965	220.8	130945	113006
9	0	0	33.52	.191083	221.3	143507	126168

Consulting Engineers

÷ · ·

Ŧ

402 Tenth Avenue • PO Box 367 • Haddon Heights, NJ 08035 Engineering Report – Page 18 Antenna System Proof of Performance Method of Moments Modeling KYPA – Los Angeles, CA Multicultural Radio Broadcasters Licensee, LLC November 2011

10 11 12 13 14	0 0 0 0	0 0 0 0	37.71 41.9 46.09 50.28 54.47	.179799 .154792 .118994	222. 222.7 223.4 224.2 225.	14729 142803 130534 110891 0840704	
15	. 0	0.	58.66	.0714051		0497278	0512429
END	0	0	62.85	0	0	0	0 -3.85756
GND	39.6487	-14.431	0 4.19	6.66862 6.80581	324.7 322.7	5.43964 5.41247	-4.12603
17 18	39.6487 39.6487	-14.431	4.19	6.80581	321.6	5.33115	-4.23207
	39.6487	-14.431	12.57	6.71953	321.0	5.19639	-4.26023
19 20	39.6487	-14.431 -14.431	16.76	6.54964	319.9	5.00936	-4.21949
20	39.6487	-14.431 -14.431	20.95	6.30069	319.2	4.77166	-4.1146
21	39.6487	-14.431	25.14	5.97594	318.6	4.48532	-3.94889
22	39.6487	-14.431	29.33	5.57878	318.1	4.15276	-3.72524
23	39.6487	-14.431	33.52	5.11298	317.6	3.77682	-3.44648
25	39.6487	-14.431	37.71	4.58243	317.2	3.36042	-3.11549
26	39.6487	-14.431	41.9	3.99113	316.7	2.90664	-2.73506
27	39.6487	-14.431	46.09	3.3426	316.3	2.41822	-2.30763
28	39.6487	-14.431	50.28	2.63902	316.	1.89695	-1.83467
29	39.6487	-14.431	54.47	1.87877	315.6	1.34197	-1.31487
30	39.6487	-14.431	58.66	1.05074	315.2	.745779	740175
END	39.6487	-14.431	62.85	0 .	0	0	0
GND	79.2035	-28.8277	0	.389081	32.8	.327216	.210509
32	79.2035	-28.8277	4.19	.210759	32.6	.177477	.113672
33	79.2035	-28.8277	8.38	.104918	31.8	.0891358	.0553414
34	79.2035	-28.8277	12.57	.0203164	22.2	.018811	7.67E-03
35	79.2035	-28.8277	16.76	.049388	220.3	0376914	0319146
36	79.2035	-28.8277	20.95	.104516	218 . 1	0822611	0644724
37	79.2035	-28.8277	25.14	.146959	218.	115871	0903925
38	79.2035	-28.8277	29.33	.177267		139173	109793
39	79.2035	-28.8277	33.52	.195856	218.8	1527	122646
40	79.2035	-28.8277	37.71	.203059	219.4	156953	128837
41	79.2035	-28.8277	41.9	.199154	220.1	152417	128184
42	79.2035	-28.8277	46.09	.184346	220.8	139559	120444
43	79.2035	-28.8277	50.28	.158713	221.6	118767	105282
44	79.2035	-28.8277	54.47	.12201	222.3	0902013	
45	79.2035	-28.8277	58.66	.0732129		053449	0500333
END	79.2035	-28.8277	62.85	0	0	0	0
GND	-25.3926	-33.6971	0		1.3	.317506	7.37E-03
47	-25.3926	-33.6971	4.19	.172067			4.03E-03
48		-33.6971	8.38	.0857581		.0857319	
49		-33.6971	12.57	.0165824		.0165696	
50		-33.6971	16.76	.0395036		0395003 0842527	
51	-25.3926	-33.6971	20.95	.0842651	TOT.	0042327	-1.440-03

Consulting Engineers

.

402 Tenth Avenue • PO Box 367 • Haddon Heights, NJ 08035 Engineering Report – Page 19 Antenna System Proof of Performance Method of Moments Modeling KYPA – Los Angeles, CA Multicultural Radio Broadcasters Licensee, LLC November 2011

52	-25.3926		25.14	.118569	181.1	118548	-2.19E-03
53	-25.3926	-33.6971	29.33	.142933	181.1	142905	-2.8E-03
54	-25.3926	-33.6971	33.52	.157732	181.2	157698	-3.28E-03
55	-25.3926	-33.6971	37.71	.163276	181.3	163235	-3.62E-03
56	-25.3926	-33.6971	41.9	.159833	181.4	159788	-3.81E-03
57	-25.3926	-33.6971	46.09	.147628	181.5	14758	-3.78E-03
58	-25.3926	-33.6971	50.28	.126792	181.6	126744	-3.5E-03
59	-25.3926	-33.6971	54.47	.0972098	181.7	0971668	
60	-25.3926	-33.6971	58.66	.0581591		0581294	-1.86E-03
END	-25.3926	-33.6971	62.85	0	0	0	0
GND	14.2562	-48.1281	0	.391674	31.5	.333943	.204673
62	14.2562	-48.1281	4.19	.212276	31.4	.18122	.110546
63	14.2562	-48.1281	8.38	.106052	30.6	.0913289	.0539071
64	14.2562	-48.1281	12.57	.0213904		.019966	7.67E-03
65	14.2562	-48.1281	16.76	.0482202	219.5	037202	030679
66	14.2562	-48.1281	20.95	.103046	217.1	0821644	0621892
67	14.2562	-48.1281	25.14	.145136	217.	115978	0872562
68	14.2562	-48.1281	29.33	.1751	217.3	139363	106011
69	14.2562	-48.1281	33.52	.193416	217.8	152911	11844
70	14.2562	-48.1281	37.71	.200463	218.4	157163	12444
71	14.2562	-48.1281	41.9	.196549	219.1	152631	123837
72	14.2562	-48.1281	46.09	.1819	219.8	139786	116394
73	14.2562	-48.1281	50.28	.156596	220.5	119011	101779
74	14.2562	-48.1281	54.47	.12039	221.3	0904428	0794598
75	14.2562	-48.1281	58.66	.0722541	222.1	0536368	0484122
END		-48.1281	62.85	0	0	0	0
GND	53.9033	-62.5579	0	2.32E-05	110.9	-8.26E-06	2.17E-05
77	53.9033	-62.5579	4.19	.181323	200.9	169362	064764
78	53.9033	-62.5579	8.38	.28395	201.	265027	101924
79	53.9033	-62.5579	12.57	.360977	201.2	336622	130346
80	53,9033	-62.5579	16.76	.417597	201.3	389014	151841
81	53.9033	-62.5579	20.95	.456193	201.5	42445	167195
82	53.9033	-62.5579	25.14	.478033	201.7	444149	176769
83	53,9033	-62.5579	29.33	.483983	201.9	448966	180747
84	53.9033	-62.5579	33.52	.47475	202.2	43962	179228
85	53.9033	-62.5579	37.71	.450972	202.5	41678	17225
86	53.9033	-62.5579	41.9	.413238	202.8	381087	159807
87	53.9033	-62.5579	46.09	.36204	203.1	333097	141842
88	53.9033	-62.5579	50.28	.297687	203.4	273211	118209
89	53.9033	-62.5579	54.47	.219968	203.7	201355	0885537
90	53.9033	-62.5579	58.66	.127416	204.1	116315	0520176
END	53.9033	-62.5579	62.85	0	0	0	0
	00.0000	02.0019	02.00	v	•	•	-

402 Tenth Avenue • PO Box 367 • Haddon Heights, NJ 08035 Engineering Report – Page 20 Antenna System Proof of Performance Method of Moments Modeling KYPA – Los Angeles, CA Multicultural Radio Broadcasters Licensee, LLC November 2011

Tower Impedance Transformation

The model impedance at the base of the tower must be modified by the circuit effects of the antenna stray capacitance, the inductance of the feed connection to the tower, any static drain inductors, and other identified stray reactance in the system that must be considered. In this case the capacitance to ground of the components and interconnecting tube within the KYPA and KBLA multiplexing filters, must be added.

A table of these values, from the measured impedances above, and sketch of the evaluated circuit is shown below:

	Tower		Measured Prematch Capacitor	Measured Feed Inductance	Static Drain	Measured Diplex Filter Stray Capacitance
·	1 (KBLA twr 6)	50 pF	872 pF	6.06 uH	> 10000 Ω	138 pf
	2	100 pF	833 pF	5.0 uH	> 10000 Ω	146 pF

Table 5 and 6 are the spreadsheets used in analysis of permitted ranges for modeling parameters and performing the network calculations. The actual antenna impedance is transformed to the values that are measured at the J-Plugs by using network analysis. This is to take into account the impedance transforming effects of the antenna shunt impedance, the series reactance tower mounted capacitor and the tower-to-ATU feed system, the static drain or lighting choke, and any other identifiable impedance in the circuit before the point of current and impedance measurement.

402 Tenth Avenue • PO Box 367 • Haddon Heights, NJ 08035 Engineering Report – Page 21 Antenna System Proof of Performance Method of Moments Modeling KYPA – Los Angeles, CA Multicultural Radio Broadcasters Licensee, LLC November 2011

Table 5 Tower 1 (KBLA Tower6) Comparison of Measured and Modeled Impedance

MOM Spreadsheet Call Sign K	Table 5 YPA Twr1	FCC Rules Section 73.15	1(c) parameters		
Frequency	1230 kHz	Base Capacitance Lead Inductance Diplexer Capacitance	50 pF 6.06 uH 146 pF	46.83	-2587.9 Ohms 2.0 Ohms -886.3 Ohms
Tower Height Height	90.0 degrees 60.959 Meters	Face Width Effective Diameter	24 In 0.291 meters	# of Faces	3
Min Height Max Height	45.719 Meters 76.199 Meters	Min Diameter Max Diameter	0.233 meters 0.437 meters	Max Segs Max Segs	32.72 17.45
Min Segments	12	MOM Z (open) Transformed Z Measured Z Error Value MOM Z (short) Transformed Z Measured Z Measured Z	44.97 R Ohms 49.63 R Ohms 47.39 R Ohms 51.67 R Ohms 60.71 R Ohms 60.75 R Ohms	31.89 J Ohms 32.11 J Ohms 34.39 J Ohms 51.85 J Ohms 53.37 J Ohms 51.63 J Ohms	

Error Value

From Table 5 it can be seen that the model of Table 1 and 2 have measured impedance (Measured Z) that match the modeled - transformed impedance (Transformed Z) for Tower 1 when Tower 2 is shorted and when Tower 2 is open within +/-2 Ohms and +/- 4 %, of resistance and reactance. This meets the requirements of 3.151(c)(2)(ii).

402 Tenth Avenue
PO Box 367
Haddon Heights, NJ 08035
Engineering Report – Page 22
Antenna System Proof of Performance
Method of Moments Modeling
KYPA – Los Angeles, CA
Multicultural Radio Broadcasters Licensee, LLC
November 2011

Table 6 - Tower 2 Open and Short Model Impedance Comparison

MOM Spreadshee Call Sign	t Table 6 KYPA Twr2	FCC Rules Section 73.151	(c) parameters		
Frequency	/ 1230 kHz	Base Capacitance Lead Inductance Diplexer Capacitance	150 pF 5 uH 138 pF	38.64	-862.6 Ohms 6.0 Ohms -937.6 Ohms
Tower Heigh Heigh		Face Width Effective Diameter	24 In 0.291 meters	# of Faces	3
Min Heigh Max Heigh		Min Diameter Max Diameter	0.233 meters 0.437 meters	Max Segs Max Segs	32.72 17.45
Min Segments	12	MOM Z (open) Transformed Z Measured Z Error Value = MOM Z (short) Transformed Z Measured Z Error Value =	44.67 R Ohms 52.03 R Ohms 52.76 R Ohms 51.63 R Ohms 55.4 R Ohms 66.97 R Ohms	32.59 J Ohms 36.04 J Ohms 35.49 J Ohms 50.71 J Ohms 55.46 J Ohms 54.01 J Ohms	:

From Table 6 it can be seen that the model of Table 3 and 4 have measured impedance (Measured Z) that match the modeled - transformed impedance (Transformed Z) for Tower 2 when Tower 1 is shorted and when Tower 1 is open within +/-2 Ω and +/-4 %, of resistance and reactance. This meets the requirements of §73.151(c)(2)(ii).

402 Tenth Avenue • PO Box 367 • Haddon Heights, NJ 08035 Engineering Report – Page 23 Antenna System Proof of Performance Method of Moments Modeling KYPA – Los Angeles, CA Multicultural Radio Broadcasters Licensee, LLC November 2011

Sampling System Measurements

The sampling system for KYPA consists of two Delta Electronics TCT-3 toroidal current transformers, sampling the current in the line immediately on the tower side of the J plugs at the location where the antenna impedance measurements were made. The sample signals are transmitted through two lengths of Andrew LDF2-50 solid outer conductor coaxial cables, buried from the tower ATU to the transmitter building. The lines were measured using a with the equipment listed above, utilizing direct coaxial connection from the bridge to the cable using coaxial adapters. This sample system meets the requirements of Section 73.68(a) of the rules.

Measurements were made at the antenna monitor end of the cables. The resonant frequency of the cables are noted below with the tower ends open and shorted. The measurements were made with an AEA Technology VIA Bravo II network analyzer serial number 21 calibrated against a precision 50 ohm resistor before the measurements were made.

The results are shown below:

Tower Sample Line	Open Circuit Resonance	Short Circuit Resonance	Electrical Length at 1230 kHz	Open /Short Difference
1 (KBLA Tower 6)	592kHz /1783kHz	1185 kHz	186.7 deg 186.3	0.21 deg
2	592kHz /1783kHz	1186 kHz	187.7 deg	0.21 deg

The measurements above show that there is no difference in line lengths to the accuracy of measurement. Since the lines are exposed to identical environmental conditions, there should be no seasonal variation of indications from this source.

RADOTECHNQUE!

402 Tenth Avenue • PO Box 367 • Haddon Heights, NJ 08035 Engineering Report – Page 24 Antenna System Proof of Performance Method of Moments Modeling KYPA – Los Angeles, CA Multicultural Radio Broadcasters Licensee, LLC November 2011

The characteristic impedance of the sample lines was measured using the same equipment. The frequency was set to the geometric mean of the open and short circuit resonance frequencies. The reactance measured at this frequency is equal to the characteristic impedance of the line.

Sample Line			Characteristic Impedance	5/8 λ Frequency	Measurement Freq	Char. Impedance
1	889.4 kHz	889 kHz	49.7 Ohms	1.482.3 kHz	1482 kHz	49.9 Ω
2	889.4 kHz	889 kHz	49.5 Ohms	1.482.3 kHz	1482 kHz	49.7 Ω

The sample lines were reconnected to the TCT sampling transformers, and the impedance of the sample system was measured at the station carrier frequency of 1230 kHz to provide a reference standard to establish that the sample system is undamaged for periodic verification.

Tower Sample Line	Measurement Frequency	AEA Network Analyzer Reading
1	1230 kHz	50.2 + J0.0 Ω
2	1230 kHz	49.9 + J0.0 Ω

Operating Parameters Calculation

The model of the array developed above, matching the measured base impedance was used for directional antenna calculations. Complex voltage values for sources located at the same feed point location used in the individual antenna model calculations at each tower of the array were used to develop the current moment sums for the towers which when normalized, equated to the theoretical field parameters of the target directional antenna pattern.

These voltage sources were then used to establish the tower base input currents developed

402 Tenth Avenue • PO Box 367 • Haddon Heights, NJ 08035 Engineering Report – Page 25 Antenna System Proof of Performance Method of Moments Modeling KYPA – Los Angeles, CA Multicultural Radio Broadcasters Licensee, LLC November 2011

when the correct theoretical field parameters are established. The actual drive point impedance at the base of each tower was also calculated by the complex division of base drive voltage and the base drive current. The results of this method of moments synthesis of array parameters as calculated using *Expert MININEC Broadcast Professional* is shown in Table 7.

Table 7 Calculation of Daytime Antenna Pattern Base Drive Parameters

Y:\AM\Multicultural\KYPA\Buildout\Proof\KYPApattern 11-29-2011 20:09:20

MEDIUM WAVE ARRAY SYNTHESIS FROM FIELD RATIOS

Frequency = 1230 KHz

	field ratio		
tower	magnitude	phase	(deg)
1	.001	0	
2	1.	0	
3	.001	0	
4	.001	0	
5	.001	0	
6	.4	154.	

VOLTAGES AND CURRENTS - peak

source	voltage		current	
node	magnitude	phase (deg)	magnitude	phase (deg)
1	269.459	5.5	.603924	97.1
16	477.456	53.8	7.72181	4.7
. 31	185.144	4.2	.408597	95.4
46	180.103	337.	.401	66.
61	186.061	4.2	.406641	95.5
76	154.286	293.9	3.22131	149.5
Sum of	square of sou	arce currents	= 70.8611	
_				

Total power = 1,000. watts

TOWER ADMIT	FANCE MATRIX	
admittance	real (mhos)	imaginary (mhos)
Y(1, 1)	.00454646	0145728
Y(1, 2)	.00171889	.00732931
Y(1, 3)	.000616892	00024672
Y(1, 4)	.00166329	.007069
Y(1, 5)	000581844	.00307164

402 Tenth Avenue • PO Box 367 • Haddon Heights, NJ 08035 Engineering Report – Page 26 Antenna System Proof of Performance Method of Moments Modeling KYPA – Los Angeles, CA Multicultural Radio Broadcasters Licensee, LLC November 2011

Y(1, 6)	000677555	000227386
Y(2, 1)	.00171889	.00732931
Y(2, 2)	.00178034	016969
Y(2, 3)	.00159864	.00732457
Y(2, 4)	000426188	.000208863
Y(2, 5)	000409589	.00542014
Y(2, 6)	00058164	.00306373
Y(3, 1)	.000616892	000246719
Y(3, 2)	.00159864	.00732457
Y(3, 3)	.00578914	0137085
Y(3, 4)	000548962	000312658
Y(3, 5)	000427585	.000211216
Y(3, 6)	.00166264	.00707069
Y(4, 1)	.00166329	.00706901
Ý(4, 2)	000426187	.000208864
Y(4, 3)	000548962	000312658
Y(4, 4)	.00579886	0136867
Y(4, 5)		.00730482
Y(4, 6)	.000615995	000247458
	000581845	.00307164
	000409589	.00542014
Y(5, 3)	000427584	.000211216
Y(5, 4)	.00160018	.00730482
Y(5, 5)	.00178397	0169538
Y(5, 6)	.0017199	.00732862
Y(6, 1)	000677555	000227386
Y(6, 2)	000581641	.00306373
Y(6, 3)	.00166264	.00707069
Y(6, 4)	.000615995	000247457
Y(6, 5)		.00732862
Y(6, 6)	.00455014	0145749
- (-) -)		
TOWER IMPEDA		
impedance	real (ohms)	imaginary (ohms)
Z(1, 1)	41.6293	32.5725
Z(1, 2)	27.4438	-14.8179
Z(1, 3)	.544128	-26.4156
Z(1, 4)	30.8043	-13.2419
Z(1, 5)	23.7803	-20.3868
Z(1, 6)	1.18311	-27.9731
Z(2, 1)	27.4438	-14.8179
Z(2, 2)	39.4792	29.0332
Z(2, 3)	28.9309	-14.0209
Z(2, 4)	12.0431	-26.1292
Z(2, 5)	27.2182	-17.4383

Consulting Engineers

 ω_{1} , where ω_{2} , where ω_{2} , ω_{2} , ω_{3} , ω_{4} , ω_{2} , ω_{3} , ω_{4} , $\omega_$

- 6

402 Tenth Avenue • PO Box 367 • Haddon Heights, NJ 08035 Engineering Report – Page 27 Antenna System Proof of Performance Method of Moments Modeling KYPA – Los Angeles, CA Multicultural Radio Broadcasters Licensee, LLC November 2011

Z(2, 6)	23.7905	-20.3896
Z(3, 1)	23.7905 .544121	-26.4156
Z(3, 2)	28.9309	-14.0209
	43.3569	33.6845
		-23.4416
Z(3, 5)	12.1018	-26.12
	30.8217	-13.2358
	30.8043	-13.2419
	-12.0723	-26.1292 -23.4415
	28.8703	33.707 -14.0712 -26.4052
	.479771	-26.4052
•••	23.7803	-20.3868
	27.2182	-17.4383
		-26.1199
Z(5, 4)	28.8703	-14.0712
	39.4698	29.0394
Z(5, 5)	27.4487	-14.8143
Z(5, 6)	1.1831	-27.9731
- (-) -)		
	23.7905	-20.3896
= , = , = ,	30.8217	-13.2358
, , ,	.479759	-26.4052
Z(6, 5)	27.4487	-14.8143
Z(6, 6)	41.6368	32.5702

6

402 Tenth Avenue • PO Box 367 • Haddon Heights, NJ 08035 Engineering Report – Page 28 Antenna System Proof of Performance Method of Moments Modeling KYPA – Los Angeles, CA Multicultural Radio Broadcasters Licensee, LLC November 2011

Y:\AM\Multicultural\KYPA\Buildout\Proof\KYPApattern 11-29-2011

20:10:07

DESIGN ANALYSIS

Normalization = 50 ohms

Frequency = 1230 KHz			
source	resistance	reactance	VSWR
	(ohms)	(ohms)	
node 1, sector 1	-12.1833	-446.02	****
node 16, sector 1	40.4314	46.7817	2.8
node 31, sector 1	-9.41602	-453.025	****
node 46, sector 1	7.37951	-449.085	553.5
node 61, sector 1	-10.4516	-457.428	****
node 76, sector 1	-38.9533	27.868	****
total nower -1	000 watte		

total	power		=	1,	000).	watts	
total	power	loss	=	0	wat	ts	5	
effici	ency		=	10	0.	90		

402 Tenth Avenue PO Box 367 Haddon Heights, NJ 08035 Engineering Report – Page 29 Antenna System Proof of Performance Method of Moments Modeling KYPA – Los Angeles, CA Multicultural Radio Broadcasters Licensee, LLC November 2011

Y:\AM\Multicultural\KYPA\Buildout\Proof\KYPApattern 11-29-2011

20:13:58

KYPA - DA-1 1230 kHz 1 Kw 6 towers, 2 towers Active

GEOMETRY

Dimensions in meters Environment: perfect ground

wire	caps	Radius	Angle	Z	radius	segs
1	2	0	0	0	.35	15
		0	0	62.5		
2	2	42.1933	340.	0	.35	15
		42.1933	340.	62.5		
3	2	84.2866	340.	0	.35	15
		84.2866	340.	62.5		
4	2	42.1933	233.	0	.35	15
		42.1933	233.	62.5		
. 5	2	50.1951	286.5	0 .	.35	15
		50.1951	286.5	62.5		
6	2	82.5776	310.75	0	.35	15
		82.5776	310.75	62.5		

Number of wires = 6 current nodes = 90

	mini	mum	maximum		
Individual wires	wire	value	wire	value	
segment length	1	4.19	1	4.19	
segment/radius ratio	1	11.9714	1	11.9714	
radius	1	.35	1	.35	

ELECTRICAL DESCRIPTION

Frequencies (KHz) no. of segment length (wavelengths) frequency no. lowest steps minimum maximum step .0171905 .0171905 1,230. 0 ·1 1 Sources source node sector magnitude phase type 5.5 1 1 1 269.459 voltage

402 Tenth Avenue . PO Box 367 . Haddon Heights, NJ 08035 Engineering Report – Page 30 Antenna System Proof of Performance Method of Moments Modeling KYPA – Los Angeles, CA Multicultural Radio Broadcasters Licensee, LLC November 2011

2	16	1	477.456	53.8	voltage
3	31	1	185.144	4.2	voltage
4	46	1	180.103	337.	voltage
5	61	1	186.061	4.2	voltage
6	76	1	154.286	293.9	voltage

11-29-2011 Y:\AM\Multicultural\KYPA\Buildout\Proof\KYPApattern

20:13:59

imaginary

IMPEDANCE

normalization = 50.

Υ:`	AM\Multicultural	\KYPA\Buildo	out\Proof	\KYPApattern	11-29-2011	20:13:59
-----	------------------	--------------	-----------	--------------	------------	----------

mag

phase

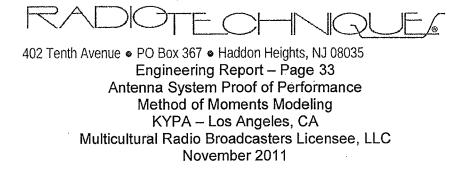
real

CURRE	NT peal	٢					
Frequ	ency	=	1230	KI	Ηz		
Input	power	==	1,000).	watts		
Effic	iency	=	100.	웅			
coordinates in meters							
curre							
no.	Х		Y				
ĢND	0		0				
2	0		0				

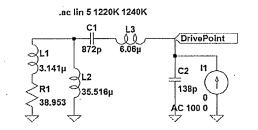
				mag	pnaoe	1001	InagInal J
no.	Х	Y	Z	(amps)	(deg)	(amps)	(amps)
GND	0	0	0	.603917	97.1	0747502	.599273
2	0	0	4.19	.390048	97.9	053477	.386365
3	0	0	8.38	.260938	98.6	039228	.257973
4	0.	0	12.57	.155059	99.7	0261275	.152842
5	0	0	16.76	.0666186	101.9	0137382	.0651867
6	0.	0	20.95	7.72E-03	254.9	-2.01E-03	-7.45E-03
7	0	0	25.14	.0667681	277.7	8.93E-03	0661682
8	0	0	29.33	.113111	279.6	.0188054	111537
9	0 .	0	33.52	.14646	280.7	.0272689	143899
10	0	0	37.71	.166961	281.7	.0338932	163485
11	0	0	41.9	.174688	282.6	.0381893	170463
12	0	0	46.09	.169628	283.5	.0396179	164937
13	0	· 0 .	50.28	.151627	284.4	.037594	146893
14	0	0	54.47	.120198	285.2	.0314567	116009
15	Q ·	0.	58.66	.0740435	286.	.0203555	0711906
END	0	0	62.85	0	0	0	0
GND	39.6487	-14.431	0	7.7218	4.7	7.69637	.626166
17	39.6487	-14.431	4.19	7.96951	2.9	7.95934	.402513
18	39.6487	-14.431	8.38	8.01979	1.9	8.01532	.267915
19	39.6487	-14.431	12.57	7.95506	1.1	7.95349	.157964
20	39.6487	-14.431	16.76	7.78433	.5	7.78405	.0665399
21	39.6487	-14.431	20.95	7.51318	359.9	7.51318	-8.99E-03
22	39.6487	-14.431	25.14	7.14613	359.4	7.14579	0698506
23	39.6487	-14.431	29.33	6.68767	359.	6.68665	116692
24	39.6487	-14.431	33.52	6.14256	358.6	6.14073	149938

6

402 Tenth Avenue • PO Box 367 • Haddon Heights, NJ 08035 Engineering Report – Page 31 Antenna System Proof of Performance Method of Moments Modeling KYPA – Los Angeles, CA Multicultural Radio Broadcasters Licensee, LLC November 2011


25 26 27 28	39.6487 39.6487 39.6487 39.6487 39.6487	-14.431 -14.431 -14.431 -14.431	37.71 41.9 46.09 50.28	5.5158 4.81237 4.03671 3.19161	358.2 357.9 357.6 357.3	5.51318 4.80912 4.0331 3.18799	169891 176781 170767 151873
29	39.6487	-14.431	54.47	2.27519	357.	2.27203	119802
30	39.6487	-14.431	58.66	1.27405	356.7	1.27193	0734464
END	39.6487	-14.431	62.85	0	0	0	0
GND	79.2035	-28.8277	0	.408595	95.4	0385317 0273366	.406774
32	79.2035	-28,8277	4.19	.261785	96. 06.		.260354 .172425
33	79.2035	-28.8277	8.38 12.57	.173546 .101569	96.5	0196923 0125295	.172425
34	79.2035	-28,8277		.0418206	97.1 97.7	-5.63E-03	.0414399
35 36	79.2035	-28.8277 -28.8277	16.76 20.95	7.45E-03		1.02E-03	-7.38E-03
36 37	79.2035 79.2035	-28.8277	25.14	.0470584		7.31E-03	0464875
38	79.2035	-28.8277	29.33	.0774644	•	.0130686	0763541
- 39	79.2035	-28.8277	33.52	.0989675	280.5	.0180633	0973051
40	79.2035	-28.8277	37.71	.111787	281.4	.0220055	1096
41	79.2035	-28,8277	41.9	.116093	282.2	.0245656	113464
42	79.2035	-28.8277	46.09	.111998	283.1	.0253781	109085
43	79.2035	-28.8277	50.28	.0995217		.0240453	0965733
44	79.2035	-28.8277	54.47	.0784632	284.9	.0201192	0758399
45	79.2035	-28.8277	58.66	.048087	285.7	.0130296	0462881
END	79.2035	-28.8277	62.85	0	0	0	0
GND	-25.3926	-33.6971	0	.40099	66.	.162813	.366449
47	-25.3926	-33.6971	4.19	.258169	65.5	.106933	.234982
48	-25.3926	-33.6971	8.38	.172352	64.8	.0732768	.155999
49	-25.3926	-33.6971	12.57	.102406	63.5	.0457692	.091609
50	-25.3926	-33.6971	16.76	.0445281		.0228975	.0381897
51	-25.3926	-33.6971	20.95	7.09É-03	304.5	4.02E-03	-5.84E-03
52	-25.3926	-33.6971	25.14	.0427004		0111699	
53	-25.3926	-33.6971	29.33	.0720739			0683602
54	-25.3926	-33.6971	33.52	.0929169			0875521
55	-25.3926	-33.6971	37.71	.105377	250.	0361247 0379849	0989919
56	-25.3926	-33.6971	41.9	.109628 .105809	249.7 249.6	,	0991984
57	-25.3926	-33.6971	46.09	.0939876			0881107
58	-25.3926	-33.6971	50.28 54.47	.0939878			0694186
59	-25.3926 -25.3926	-33.6971 -33.6971	58.66	.0453056			0425039
60 END	-25.3926	-33.6971	62.85	0	0 .	0	0
END GND	14.2562	-48.1281		.406649	95.5	0390662	
GND 62	14.2562	-48.1281	4.19	.259267	96.2	0278384	•
63	14.2562	-48.1281	8.38	.171022	96.8	0201251	
64	14.2562	-48.1281	12.57	.0993549			.098519
65	14.2562	-48.1281	16.76		98.4		.0397188
66	14.2562	-48.1281	20.95	8.45E-03		9.37E-04	
	<i>`````````````````````````````````</i>						

402 Tenth Avenue • PO Box 367 • Haddon Heights, NJ 08035 Engineering Report – Page 32 Antenna System Proof of Performance Method of Moments Modeling KYPA – Los Angeles, CA Multicultural Radio Broadcasters Licensee, LLC November 2011


67 68 69 70 71 72 73 74 75 END GND 77 78 79 80 81 82 83 84 85	14.2562 14.2562 14.2562 14.2562 14.2562 14.2562 14.2562 14.2562 14.2562 14.2562 14.2562 14.2562 53.9033	-48.1281 -48.1281 -48.1281 -48.1281 -48.1281 -48.1281 -48.1281 -48.1281 -48.1281 -62.5579 -62.	$\begin{array}{r} 41.9\\ 46.09\\ 50.28\\ 54.47\\ 58.66\\ 62.85\\ 0\\ 4.19\\ 8.38\\ 12.57\\ 16.76\\ 20.95\\ 25.14\\ 29.33\\ 33.52 \end{array}$.0473185 .0770138 .0979024 .110258 .114287 .110123 .0977885 .0770747 .0472381 0 3.22131 3.27669 3.26988 3.22135 3.13355 3.00825 2.84711 2.65194 2.42472 2.16762	279.9 280.8 281.7 282.6 283.5 284.4 285.3 286.1 0 149.5 151.2 152.2 153.6 154.1 154.6 155.4	7.35E-03 .0132222 .0183 .0222942 .024873 .025672 .0242974 .0203067 .0131355 0 -2.77622 -2.87234 -2.89252 -2.86943 -2.80687 -2.70719 -2.5723 -2.40413 -2.20469 -1.97611	0467437 0758703 0961769 107981 111548 07089 0947218 0743515 0453751 0 1.63384 1.57681 1.52493 1.46405 1.39306 1.31176 1.22037 1.11934 1.00926 890826
85	53.9033	-62.5579	37.71	2.16762	155.7	-1.97611	.890826
86	53.9033	-62.5579	41.9	1.88283	156.	-1.72052	.764756
87	53.9033	-62.5579	46.09	1.57236	156.3	-1.43988	.631724
88	53.9033	-62.5579	50.28	1.23763		-1.13556	.49217
89	53.9033	-62.5579	54.47	.87827	156.8	807299	.345871
90	53.9033	-62.5579	58.66	.489513	157.	450737	.190944
END	53.9033	-62.5579	62.85	0	0	0	0

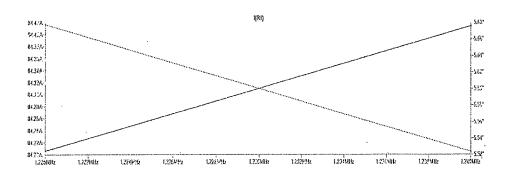
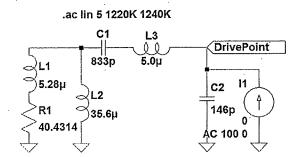
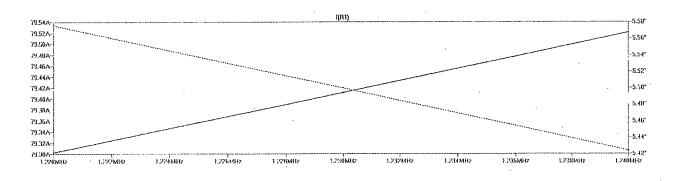

Figure 9A and 9B are results of a *SPICE* simulation of the impedance transformation of the stray values and components between the drive point where the toroidal current transformer monitors the antenna current, and the actual modeled radiation resistance. For each of the towers, I1 represents the current out of the antenna coupler as monitored, C2 is the measured stray static capacitance of the diplexer components to ground, L3 is the tubing connection to the tower C1 is the measured value of the tower mounted pre-match capacitor and L2 is the KBLA sample loop isolation coil. L1 and R1 represent the modeled antenna operating impedance.

Figure 9A is the SPICE model for tower 1 and Figure 9B is for tower 2.

Table 9A – Transformation of Base Current to Current at Sample Tower 1


The plotted relationship between the drive point current and the radiation current for tower 1 is:


84.31 A / 100 A = .8431 at an angle of 5.6°

è.

402 Tenth Avenue • PO Box 367 • Haddon Heights, NJ 08035 Engineering Report – Page 34 Antenna System Proof of Performance Method of Moments Modeling KYPA – Los Angeles, CA Multicultural Radio Broadcasters Licensee, LLC November 2011

Table 9B – Transformation of Base Current to Current at Sample Tower 2

The plotted relationship between the drive point current and the radiation current for tower 2 is:

79.41 A / 100 A = .7941 at an angle of 5.5°

Tower 1 is the reference, the adjustment that has to be made for strays, the tower mounted capacitors and connecting lines is .9418 and a phase correction of - 0.1°

402 Tenth Avenue • PO Box 367 • Haddon Heights, NJ 08035 Engineering Report - Page 35 Antenna System Proof of Performance Method of Moments Modeling KYPA – Los Angeles, CA Multicultural Radio Broadcasters Licensee, LLC November 2011

			Antenna Monitor Parameters	
Tower	Base current	Normalized Base Current (Ratio)	Base current ratio corrected for strays and network at bases	
1 [.]	3.221 ∡ +149.5° Amps	0.417 ∡ +144.8°	0.442 ∡ +144.7°	
2	7.722 ∡ +4.7° Amps	1.0 ∡ 0°	1.0 ∡ 0°	

Monitor Doromoto

Since the sample lines are identical in length, there is no adjustment to the phase due to differential phase delay in the sample system. The relative complex current sampled at the two TCT transformers are the values which should be presented on the antenna monitor.

Diplexing and Intermodulation

Most of the diplexing equipment for KYPA and KBLA has been in place since KYPA began operating from this site in 2009. The filtering includes 1230 kHz Reject filters at KBLA towers 1 and 3-5. At KBLA towers 6 and 2 (KYPA towers 1 and 2) there area pass-reject filters for each station, and a reject filter at the common point in each phasor.

It should be noted that KBLA is currently operating under the terms of an STA to operate using one tower of its directional antenna at reduced power. The day and night antennas of KBLA can be operated in conformance with the terms of its license for testing. Due to a project to modify its antenna for better bandwidth, and verify its performance using computer modeling as described in Section 73.151(c) of the FCC rules, the antenna is operated as described in the STA for normal operation while the project is underway. For the spurious emissions test, the KBLA antenna was operating at full power in day directional mode.

The desired signals of 1580 kHz and 1230 kHz were both in excess of 500 mV/m at the measurement location approximately ½ km from the antenna location. Both stations were

RADIOTECHNIQUES

402 Tenth Avenue • PO Box 367 • Haddon Heights, NJ 08035 Engineering Report – Page 36 Antenna System Proof of Performance Method of Moments Modeling KYPA – Los Angeles, CA Multicultural Radio Broadcasters Licensee, LLC November 2011

operating at full day power. With the filters adjusted, the third order products at 880 kHz, and 2810 kHz were not discernible. The 1930 kHz product was more than 75 db below the KYPA (weaker) carrier below the required value of 73 db. It was more than 80 db below the KBLA signal. A scan of all frequencies below 5 MHz was accomplished using the FIM-41 and no spurious or other undesired signals were noted at the monitoring location excepting the 1930 kHz product, which was within the requirements of the FCC rules and regulations.

The Multicultural Radio Broadcasting Licensee, LLC is the licensee of both KBLA and KYPA. It accepts responsibility for installation and maintenance of all equipment required to provide adequate filters, trap and other equipment to assure that no unacceptable spurious radiation products will be permitted. In the case that Multicultural Radio Broadcasting Licensee, LLC transfers either or both stations to another party, a firm agreement will be made with the other party with respect to responsibility for eliminating any spurious emissions.

Common Point Impedance

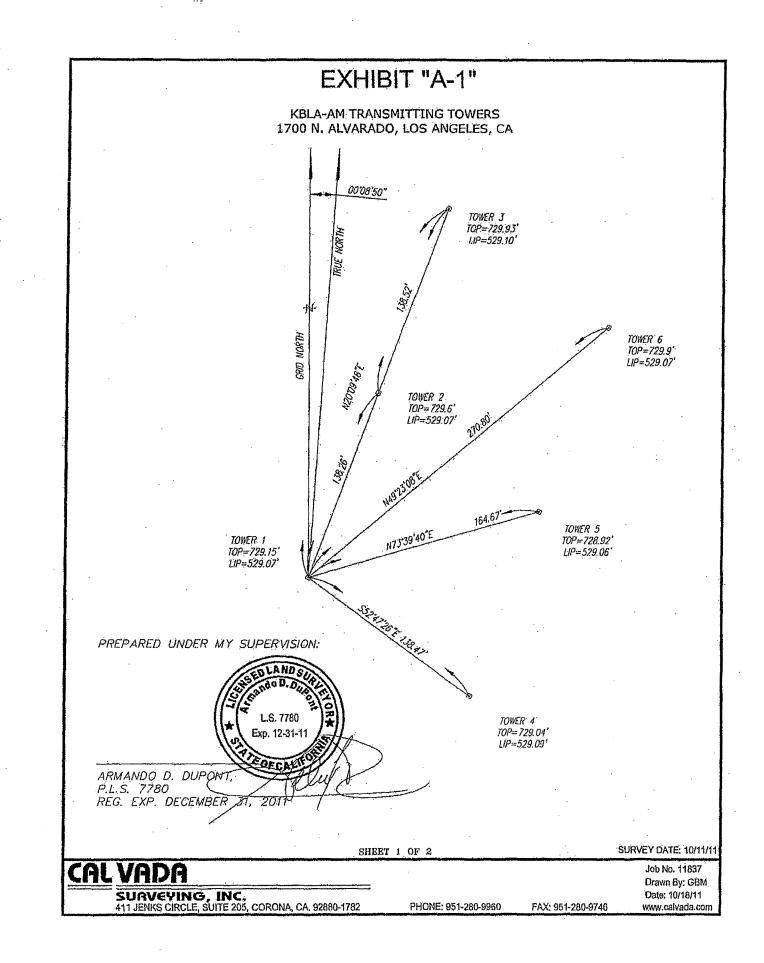
Both KYPA and KBLA have common point impedance bridges installed at the common point of the antennas. The impedance for both KBLA directional antennas was checked, and is set to the value of its instrument of authorization. The KYPA antenna common point impedance is set as shown in the FCC Form 302-AM.

402 Tenth Avenue • PO Box 367 • Haddon Heights, NJ 08035 Engineering Report – Page 37 Antenna System Proof of Performance Method of Moments Modeling KYPA – Los Angeles, CA Multicultural Radio Broadcasters Licensee, LLC November 2011

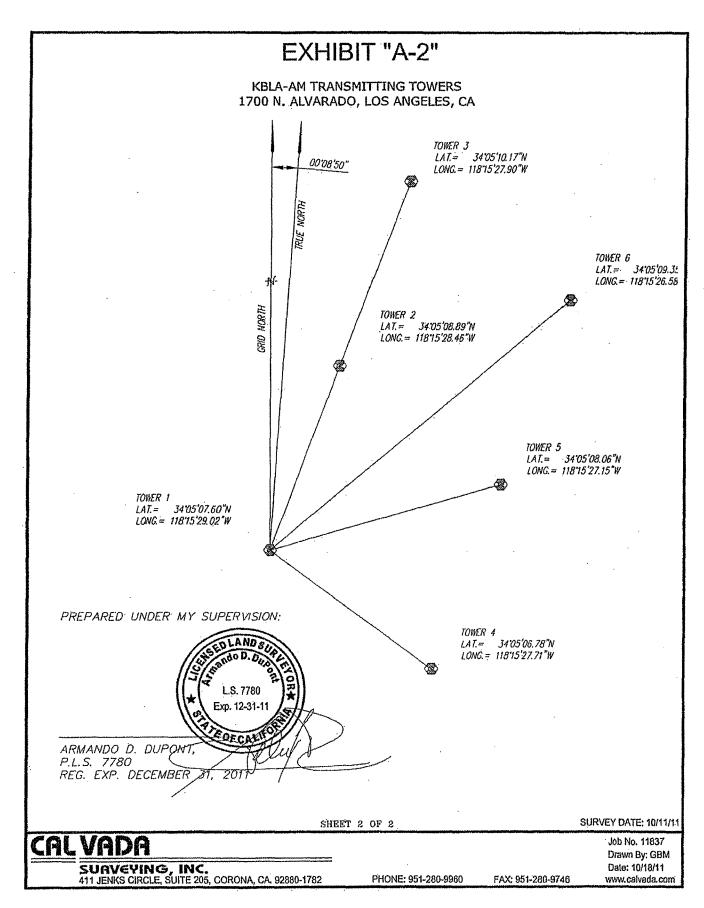
Blanketing Interference

Upon full power testing of KYPA, The licensee is unaware of any additional interference problems within the 1 V/m contour of the station. The KYPA power is only 1000 Watts, in comparison with the KBLA power of 50,000 Watts. KYPA has been operating under an STA at 1 kW on this site for over one year. There have been no complaints of blanketing interference with respect to KYPA.

Power Measurement


The day antenna common point impedance was measured at 50.0 +J0 Ohms, which means that the antenna current should be:

 $I = \sqrt{\left(\frac{(1000 Watts X 1.08)}{500 \text{ hms}}\right)} = 4.65 \text{ Amperes}$


Surveyor Verification of Tower Location

Attached is a copy of the sealed surveyor's certification of the relative location of the towers in the KYPA model. Exhibit A-1 is the relative position of the six towers on the site. Tower 6 on this plot is Tower 1 of KYPA, and Tower 2 of this plot is Tower 2 of KYPA. The relative position of these towers is well within 0.1 degree of bearing and electrical spacing compared to the construction permit values.

Exhibit A-2 shows the geographic coordinates of each tower.

· 11 ·

402 Tenth Avenue • PO Box 367 • Haddon Heights, NJ 08035 Engineering Report – Page 38 Antenna System Proof of Performance Method of Moments Modeling KYPA – Los Angeles, CA Multicultural Radio Broadcasters Licensee, LLC November 2011

Field Intensity Reference Locations

The computer modeling standards provide for reference measurements for the main lobe of the antenna system and each of the pattern minima.

 Table 11 - Reference Field intensity measurements.

These measurements were made with the antenna adjusted for the common point current and antenna parameters listed above. The 4° radial and the 143° radials are the nulls of the pattern, and the 73.5° and 253.5° are substantial major lobes. This simple pattern only requires four reference radials.

KYPA 1230 KHz. Los Angeles, CA 1000 W DA-1 Array Center N34° 5' 9.3" W118° 16' 27.6" (NAD 83) Array Center N34° 5' 9.2" W118° 16' 24.4" (NAD 27)

Reference Field Strength Measurements

Radial	Point	Distance (km)	Field (mv/m)	Coordinates (NAD 83)		Description
4°	. 1	1.34	100	34 05 52.5	118 15 24.0	At Stop Sign. Corner of Bancroft and Hidalgo.
	2	1.59	150	34 06 00.3	118 15 23.3	N side Brier Ave on sidewalk in driveway at # 2203.
	3	1.90	150	34 06 10.8	118 15 22.4	On Water Meter cover, S side India St opposite # 2243.
	1	0.82	305	34 05 16.5	118 14 57.0	NW side Valentine St opposite #2012 at "No Stopping" sign.
73.5°	2	0.98	280	34 05 22.5	118 14 38.1	Midway along rock wall SW side in 2000 block of Avon St.
	3	1.33	155	34 05 21.4	118 14 37.8	East End of Avon Park Ter (Right Fork) at curb marker 1408.
	1	1.02	205	34 04 42.8	118 15 03.8	South side of Scott Ave opposite fork with Elysian Park Dr.
143° .	2	1.40	100	34 04 33.0	118 14 55.2	W side Stadium Way opp big tree at entrance to Barlow Hospital.
	3	1.65	115	34 04 26.7	118 14 48.8	SE side N Boylson St opposite light pole.
	1	0.94	215	34 05 00.6	118 16 02.7	Middle of street in front of 1418 McCollum.
253.5°	2	1.06	180	34 04 59.6	118 16 07.2	In driveway at 1359 N Benton Way.
	3	1.19	125	34 04 58.5	118 16 12.2	Middle of street in front of 1315 Angelus Ave.

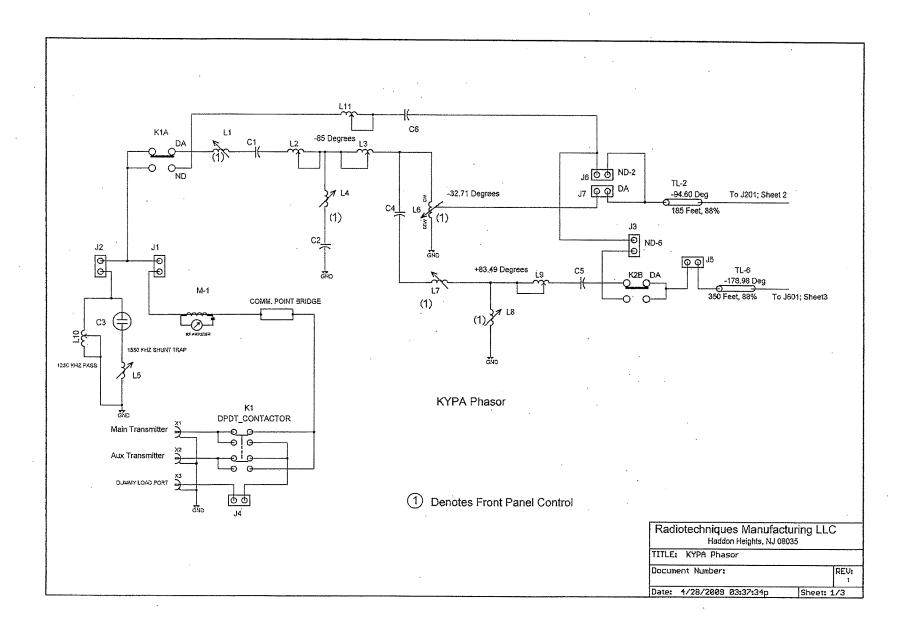
Measurements were made November 27, 2011 by George D Butch using Potomac Instruments FIM-41, SN 1432 calibrated 29 July, 1998.

where the second second second

402 Tenth Avenue • PO Box 367 • Haddon Heights, NJ 08035 Engineering Report – Page 39 Antenna System Proof of Performance Method of Moments Modeling KYPA – Los Angeles, CA Multicultural Radio Broadcasters Licensee, LLC November 2011

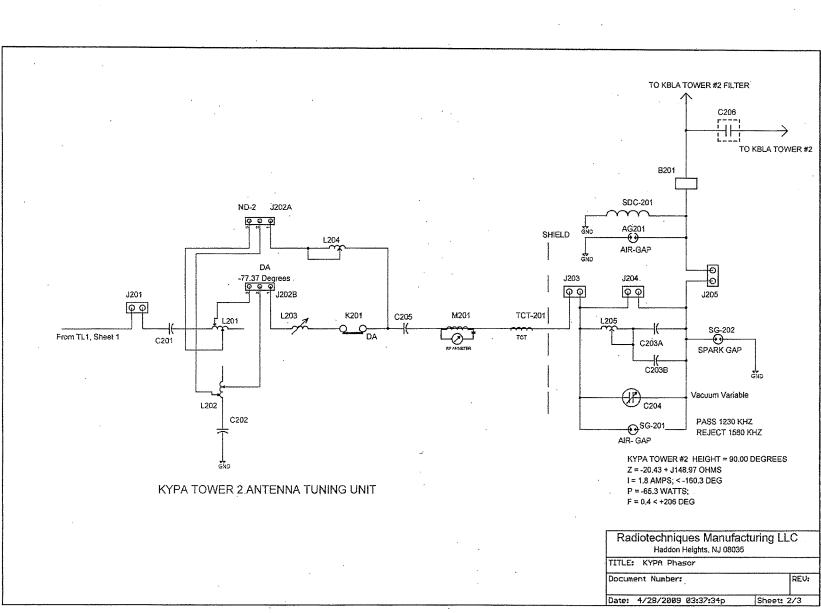
RF Exposure Guidelines

Exhibit 19 of BP-20050228ACB showed that the existing fencing met all requirements for human exposure to non-ionizing radiation. There have been no changes to the fences since that application was filed, hence the installation meets the FCC requirements with respect to fencing. The site is host to KBLA and KYPA, which are co-owned. Station procedures require that both stations are silenced or reduce power whenever work within the fenced area would cause a risk of excessive exposure.

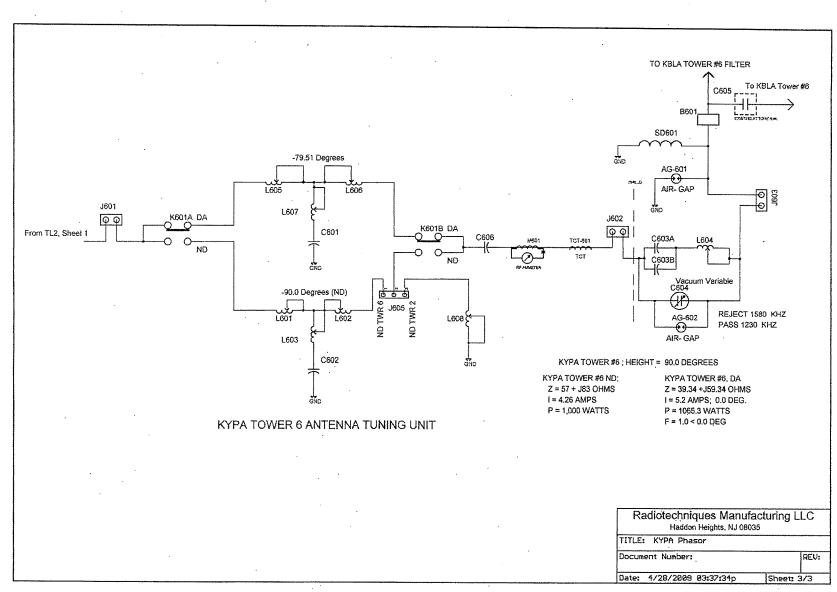

In the case that one of the stations were to be transferred to another owner, the licensee agrees to include in the lease for use of towers mutual agreement to reduce power or silence both stations when work is required in the fenced area that could cause a risk of excessive exposure.

Program Test Authority

This application requests program test authority at 1.0 kW unlimited.


Phasor Schematics

The following pages are schematic drawings of the KYPA Phasing Equipment.



4/28/2009 03:39:09p f=0.60 y:\MFG\EAGLE\projects\KYPA Phaser\KYPA Phasor.sch (Sheet: 1/3)

4/28/2009 03:39:09p f=0.60 y:\MFG\EAGLE\projects\KYPA Phaser\KYPA Phasor.sch (Sheet: 3/3)

RADOTECHNQUE

402 Tenth Avenue • PO Box 367 • Haddon Heights, NJ 08035 Engineering Report – Page 40 Antenna System Proof of Performance Method of Moments Modeling KYPA – Los Angeles, CA Multicultural Radio Broadcasters Licensee, LLC November 2011

Engineer's Statement

This is to certify that this report has been prepared by myself. It is correct and accurate of my own knowledge, except where stated otherwise, and where that is so, the information is correct to the best of my knowledge and belief.

I further certify that I am a Licensed Professional Engineer in the State of New Jersey, with a BSEE degree from the Newark College of Engineering of NJIT, and that I am regularly engaged in the practice of radio engineering with the firm of Radiotechniques Engineering, LLC, with offices at 402 Tenth Avenue, Haddon Heights, NJ. I am a member of the AFCDE, Senior member of the IEEE and SBE and hold a FCC General Radiotelephone Operator License. My qualifications are a matter of record with the FCC.

Edward Scholen

November 2011

Edward A. Schober, PE