

1776 K STREET NW WASHINGTON, DC 20006 PHONE 202.719.7000 FAX 202.719.7049

7925 JONES BRANCH DRIVE McLEAN, VA 22102 PHONE 703.905.2800 FAX 703.905.2820

www.wileyrein.com

ORIGINAL

BY HAND DELIVERY

November 26, 2012

Marlene H. Dortch, Esq. Secretary Federal Communications Commission 445 12th Street, SW Washington, DC 20554

Re: Amendment to Application for AM Broadcast Station License Using Method of Moments Model Multicultural Radio Broadcasting Licensee, LLC Station KSJX(AM), San Jose, California Facility Identifier Number 4118 File Number BMML-20121003ACV

Dear Ms. Dortch:

Transmitted herewith on behalf of Multicultural Radio Broadcasting Licensee, LLC ("Multicultural"), the licensee of Station KSJX(AM), is an amendment to its license application referred to above. This amendment is responsive to e-mail communication from a member of the Audio Division staff.

If there are any questions about this Amendment, please contact undersigned counsel to Multicultural Radio Broadcasting Licensee, LLC.

Sincerely,

Mark N. Lipp

Enclosure

cc:

Mr. Edward Lubetzky, Audio Division, Media Bureau, FCC

Mark N. Lipp 202.719.7503 mlipp@wileyrein.com

FILED/ACCEPTED

NOV 26 2012

Federal Communications Commission Office of the Secretary

FILED/ACCEPTED

Federal Communic	ations Commission
Washington, D. C.	20554

a. ""Ž."

Approved by OMB 3060-0627 Expires 01/31/98

NOV 2 6 2012

Federal Communications Commission Office of the Secretary

FCC 302-	AM
----------	----

APPLICATION FOR AM

BROADCAST STATION LICENSE

(Please read instructions before filling out form.

FOR COMMISSION USE ONLY FILE NO.

	г	ŧ	L	E	N

I

FOR FCC USE ONLY

SECTION I - APPLICANT FEE INFORMATION					
1. PAYOR NAME (Last, First, Middle Initial)					
Multicultural Radio Broadcasting Licensee, LLC					
MAILING ADDRESS (Line 1) (Maximum 35 characters) 27 William Street, 11th Floor					
MAILING ADDRESS (Line 2) (Maximum 35 characters)					
CITY New York	STATE OR COUNTRY (if fo New York	reign address)	ZIP CODE 10005		
TELEPHONE NUMBER (include area code) 212.431.4300	CALL LETTERS KSJX	OTHER FCC IDE 4118	NTIFIER (If applicable)		
2. A. Is a fee submitted with this application?	• • • • • • • • • • • • • • • • • • • •		Yes 🗸 No		
B. If No, indicate reason for fee exemption (see 47 C.F.R. Section			•		
Governmental Entity	cational licensee	her (Please explain	: Amendment		
C. If Yes, provide the following information:					
Enter in Column (A) the correct Fee Type Code for the service you Fee Filing Guide." Column (B) lists the Fee Multiple applicable for the	are applying for. Fee Type Co	des may be found i	n the "Mass Media Services		
	is application. Enter lee amou		<i>.</i>		
(A) (B)	(C)				
FEE TYPE FEE MULTIPLE	FEE DUE FOR FEE TYPE CODE IN COLUMN (A)		FOR FCC USE ONLY		
0 0 1	\$				
To be used only when you are requesting concurrent actions which rea	sult in a requirement to list mor	e than one Fee Typ	e Code.		
(A) (B)	(C)		· · · · · · · · · · · · · · · · · · ·		
	\$		FOR FCC USE ONLY		
	L				
ADD ALL AMOUNTS SHOWN IN COLUMN C, AND ENTER THE TOTAL HERE.	TOTAL AMOUNT REMITTED WITH TH APPLICATION	IS	FOR FCC USE ONLY		
THIS AMOUNT SHOULD EQUAL YOUR ENCLOSED REMITTANCE.	\$				

SECTION II - APPLICAN	T INFORMATION					
1. NAME OF APPLICANT Multicultural Radio Broadcas	sting Licensee, LLC					
MAILING ADDRESS 27 William Street, 11th Floo	r					
CITY New York			STATE New Y	ork	ZIP CODE 10005	
2. This application is for:	Commercial	. [Noncomm	nercial		
	AM Direc	tional		on-Directional		
Call letters	Community of License	Construct	ion Permit File No.	Modification of Construction	Expiration Date of La	st
KSJX	San Jose, CA		N/A	Permit File No(s). N/A	Construction Permit N/A	
3. Is the station na accordance with 47 C.F If No, explain in an Exhi	Yes Exhibit No. N/A	No				
4. Have all the terms construction permit been	s, conditions, and oblig n fully met?	ations se	et forth in the	above described	Yes	No
If No, state exceptions in	n an Exhibit.				N/A	
the grant of the underl	ges already reported, has ying construction permit d in the construction pern	which v	vould result in a	any statement or	Yes	No
If Yes, explain in an Exl	hibit.				Exhibit No. N/A	
-	ed its Ownership Report ce with 47 C.F.R. Section	•	•	ership	Yes✓ Does not applied	No
If No, explain in an Exhil	bit.				Exhibit No.	
7. Has an adverse finding been made or an adverse final action been taken by any court or administrative body with respect to the applicant or parties to the application in a civil or criminal proceeding, brought under the provisions of any law relating to the following: any felony; mass media related antitrust or unfair competition; fraudulent statements to another governmental unit; or discrimination?						No
involved, including an id (by dates and file numl information has been required by 47 U.S.C. So of that previous submiss the call letters of the st	ttach as an Exhibit a fu lentification of the court o bers), and the dispositio earlier disclosed in con ection 1.65(c), the applica sion by reference to the ation regarding which the of filing; and (ii) the dispos	r adminis n of the nection ant need file numb e applica	strative body an litigation. Wh with another a only provide: (i per in the case o tion or Section	d the proceeding ere the requisite pplication or as) an identification of an application, 1.65 information	Exhibit No.	

FCC 302-AM (Page 2) August 1995

* L

8. Does the applicant, or any party to the application, have a petition on file to migrate to the expanded band (1605-1705 kHz) or a permit or license either in the existing band or expanded band that is held in combination (pursuant to the 5 year holding period allowed) with the AM facility proposed to be modified herein?

If Yes, provide particulars as an Exhibit.

The APPLICANT hereby waives any claim to the use of any particular frequency or of the electromagnetic spectrum as against the regulatory power of the United States because use of the same, whether by license or otherwise, and requests and authorization in accordance with this application. (See Section 304 of the Communications Act of 1934, as amended).

The APPLICANT acknowledges that all the statements made in this application and attached exhibits are considered material representations and that all the exhibits are a material part hereof and are incorporated herein as set out in full in

CERTIFICATION

1. By checking Yes, the applicant certifies, that, in the case of an individual applicant, he or she is not subject to a denial of federal benefits that includes FCC benefits pursuant to Section 5301 of the Anti-Drug Abuse Act of 1988, 21 U.S.C. Section 862, or, in the case of a non-individual applicant (e.g., corporation, partnership or other unincorporated association), no party to the application is subject to a denial of federal benefits that includes FCC benefits pursuant to that section. For the definition of a "party" for these purposes, see 47 C.F.R. Section 1.2002(b).

2. I certify that the statements in this application are true, complete, and correct to the best of my knowledge and belief, and are made in good faith.

Name	Signature		D^{\cdot}
Yvonne S. Liu	the	,.	TIM
Title	Date	Telep	one Number
Secretary	11/26/2012	21:	2.431.4300

WILLFUL FALSE STATEMENTS ON THIS FORM ARE PUNISHABLE BY FINE AND/OR IMPRISONMENT (U.S. CODE, TITLE 18, SECTION 1001), AND/OR REVOCATION OF ANY STATION LICENSE OR CONSTRUCTION

FCC NOTICE TO INDIVIDUALS REQUIRED BY THE PRIVACY ACT AND THE PAPERWORK REDUCTION ACT

The solicitation of personal information requested in this application is authorized by the Communications Act of 1934, as amended. The Commission will use the information provided in this form to determine whether grant of the application is in the public interest. In reaching that determination, or for law enforcement purposes, it may become necessary to refer personal information contained in this form to another government agency. In addition, all information provided in this form will be available for public inspection. If information requested on the form is not provided, the application may be returned without action having been taken upon it or its processing may be delayed while a request is made to provide the missing information. Your response is required to obtain the requested authorization.

Public reporting burden for this collection of information is estimated to average 639 hours and 53 minutes per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the burden, can be sent to the Federal Communications Commission, Records Management Branch, Paperwork Reduction Project (3060-0627), Washington, D. C. 20554. Do NOT send completed forms to this address.

THE FOREGOING NOTICE IS REQUIRED BY THE PRIVACY ACT OF 1974, P.L. 93-579, DECEMBER 31, 1974, 5 U.S.C. 552a(e)(3), AND THE PAPERWORK REDUCTION ACT OF 1980, P.L. 96-511, DECEMBER 11, 1980, 44 U.S.C. 3507.

FCC 302-AM (Page 3) August 1995

Yes 🗸 No

\checkmark	Yes		No
--------------	-----	--	----

		LICATION ENGI	NEERING DATA	· · · · · · · · · · · · · · · · · · ·		3. · · ·	
Name of Applicat		Broadcasting	Licongoo I	TC			
L		ON APPLIED FOR	· · · · · · · · · · · · · · · · · · ·		<u>, </u>		
		JN AFFLIED FOR		·	•		
X S	Station License	;	X Direct Mea	surement of Pov	ver	а 2011 - 199	
1. Facilities auth			I			·	
Call Sign	File No. of Co (if applicable)	onstruction Permit	Frequency (kHz)	Hours of Oper	ation		kilowatts
KSJX	not appl		1500	unlimited	L	Night 5.0	Day 10.0
2. Station location	on						
State				City or Town			:
Californ	nia			San Jose		•	•
3. Transmitter lo	cation ·			· • • •			
State	County			City or Town		Street address	
CA	Sant	a Clara		San Jose	14. 	(or other identifica 501 Wooster	
4. Main studio lo	cation	· · · · · · · · · · · · · · · · · · ·			-		
State	County			City or Town		Street address	<i></i>
CA	Sant	a Clara		San Jose .		(or other identifica 501 Wooster	•
5. Remote contro	l ol point locatior	n (specify only if au	uthorized direction	al antenna)			-
State	County _			City or Town Street address			
CA	Sant	a Clara		San Jose(or other identification)501 Wooster St.			
		eet the requirement of the			· · ·	Exhi	lot Applicable bit No. Rpt .
8. Operating con	etante:	:			<u> </u>	* <u>.</u>	
	t or antenna cu	rrent (in amperes)	without	RF common po modulation for	day system	current (in ampere	s) without
Measured antenn		oint resistance (in	ohms) at	Measured ante		point reactance (i	n ohms) at
operating frequen			chino) at	operating frequ			-
Night 50.0	•	Day 50.0	•	Night +/-j0		Day +/-j0	1
Antenna indication	ns for direction			.,)0			
		Antenna i		Antenna mo		Antonna b	
Tower	rs	Phase reading(current			ase currents
1 0		Night 0	Day 0	Night	Day	Night	Day not
1 C		63.3	140.8	0.405	1.0	not required	required
2 3 N		unused	94.8	unused	1.02	- cyurred	u
4 W		-78.9	unused	0.521	unused		
				;			
Manufacturer and	type of antenn	a monitor:					1

Potomac Instruments AM-1901

FCC 302-AM (Page 4) August 1995

SECTION III - Page 2

9. Description of antenna system ((f directional antenna is used, the information requested below should be given for each element of the array. Use separate sheets if necessary.)

Type Radiator uniform cross section guyed towers	Overall height in meters of radiator above base insulator, or above base, if grounded.	above ground (without	Overall height in meters above ground (include obstruction lighting)	If antenna is either top loaded or sectionalized, describé fully in an Exhibit.	
*see item 11	59.44	60.4	60.4 (NO LIGHTING	Exhibit No. DNA	
Excitation	X Series	Shunt			

Geographic coordinates to nearest second. For directional antenna give coordinates of center of array. For single vertical radiator give tower location.

North Latitude	3.7	21	28	West Longitude	0 121	52	17
----------------	-----	----	----	----------------	----------	----	----

Exhibit No. DNA

Exhibit No.

ON FILE

2

If not fully described above, attach as an Exhibit further details and dimensions including any other antenna mounted on tower and associated isolation circuits.

Also, if necessary for a complete description, attach as an Exhibit a sketch of the details and dimensions of ground system.

10. In what respect, if any, does the apparatus constructed differ from that described in the application for construction permit or in the permit?

No change from originally licensed system

11. Give reasons for the change in antenna or common point resistance.

No change -rebuild following destruction of site by fire

*ASR #s 1215674, 1215676, 1215678, 1215679 no lighting or marking required

I certify that I represent the applicant in the capacity indicated below and that have examined the foregoing statement of technical information and that it is true to the best of my knowledge and belief.

Name (Please Print or Type) Benj. F. Dawson III, P.E.	Signature (check appropriate box below)
Address (include ZIP Code) Hatfield & Dawson Consulting Engineers 9500 Greenwood Avenue North Seattle, WA 98103	Date November 20, 2012
	Telephone No/(Include Area Code) 206 783 9151

Technical Director	x	Registered Professional Engineer
Chief Operator		Technical Consultant

Other (specify) Consulting Engineer

FCC 302-AM (Page 5) August 1995

x

BENJAMIN F. DAWSON III, PE THOMAS M. ECKELS, PE STEPHEN S. LOCKWOOD, PE DAVID J. PINION, PE ERIK C. SWANSON, PE

Thomas S. Gorton, PE Michael H. Mehigan, PE HATFIELD & DAWSON CONSULTING ELECTRICAL ENGINEERS 9500 GREENWOOD AVE. N. SEATTLE, WASHINGTON 98103

TELEPHONE (206) 783-9151 FACSIMILE (206) 789-9834 E-MAIL hatdaw@hatdaw.com

> JAMES B. HATFIELD, PE CONSULTANT

Maury L. Hatfield, PE (1942-2009) Paul W. Leonard, PE (1925-2011)

Application for License

KSJX (AM)

San Jose, CA

1500 kHz

10.0 kW Day, 5.0 kW Night DA-2

Multicultural Radio Broadcasting Licensee, LLC September, 2012 Revised November, 2012

APPLICATION FOR LICENSE

RADIO STATION KSJX-AM San Jose, CA 1500 kHz, 10 kW Day, 5 kW Night, DA-2

Purpose of Application

Item 1 Tower Impedance Measurements and Verification of Method of Moments Model

Item 2 Derivation of Operating Parameters for Directional Antenna

- Item 3 Method of Moments Model Details for Towers Driven Individually
- Item 4 Method of Moments Model Details for Directional Antenna Pattern
- Item 5 Post Construction Array Geometry Statement
- Item 6 Sampling System Measurements
- Item 7 Reference Field Strength Measurements
- Item 8 Direct Measurement of Power
- Item 9 Antenna Monitor and Sampling System
- Item 10 Harmonic and Intermodulation Measurements
- Appendix A License BZ-950120AE
- Appendix B FCC Form 302-AM

Purpose of Application

This engineering exhibit supports an application for license for the authorized directional antenna system for radio station KSJX, San Jose, CA. KSJX operates on 1500 kHz with a power of 10 kW daytime and 5 kW nighttime, with different directional antenna parameters for day and night operation.

The most recent complete KSJX license document is BZ-950120AE, and a copy is included in this report as Exhibit A.

Information is provided herein demonstrating that the directional antenna parameters for the patterns authorized by the station license have been determined in accordance with the requirements of section 73.151(c) of the FCC Rules. The system has been adjusted to produce antenna monitor parameters within +/- 5 percent in ratio and +/- 3 degrees in phase of the modeled values, as required by the Rules.

All measurements used in this report were made by Robert Turner, Stephen Lockwood, or the undersigned.

Benjamin F. Dawson III, P.E.

Hatfield & Dawson Consulting Engineers

Item 1

Analysis of Tower Impedance Measurements to Verify Method of Moments Model - KSJX

Tower base impedance measurements were made at the locations of the outputs of the antenna coupling units and diplexing filtering equipment using a Hewlett Packard 8751A network analyzer in a calibrated measurement system. The other towers were open circuited at the same point where impedance measurements were made (the "reference points") for each of the measurements.

Circuit calculations were performed to relate the method of moments modeled impedances at the tower base feed points to those at the measurement locations as shown in the following table. The base conditions shown for each tower, which includes the stray capacitances were used in the moment method model as a load at ground level for the open circuited case. The towers each have a lighting choke used as a static drain inductor.

In addition to the page showing the schematic of the assumed circuit and tabulation of calculated values, a page showing the results of calculations using the NETBW circuit analysis program is included. These calculations show the impedance transformations and phase shifts between the tower base values produced by MININEC and the location of the current sample devices used to produce the antenna monitor input signals.

The following table shows the allowable range of modeled impedance values.

KSJX Tower Measurement Matrix:

Tower #	R open	Hi Limit	Lo Limit	X open	Hi Limit	Lo Limit
1	116.00	122.64	109.36	237.50	249.00	226.00
2	150.20	158.21	142.19	229.20	240.37	218.03
3	128.05	135.17	120.93	219.30	230.07	208.53
4	138.20	145.73	130.67	232.00	243.28	220.72

METHOD OF MO	MENTS MODEL			
Tower #1 C				
FREQUENCY	LOAD	LOAD	INPUT	INPUT
(KHZ)	RESISTANCE	REACTANCE	RESISTANCE	REACTANCE
1500	106.4	195.2	116.45	237.54
-1.537513				
Tower #2 E				
FREQUENCY	LOAD	LOAD	INPUT	INPUT
(KHZ)	RESISTANCE	REACTANCE	RESISTANCE	REACTANCE
1500	136.1	198.4	149.34	229.38
-1.967563		v.		
Tower #3 N				
FREQUENCY	LOAD	LOAD	INPUT	INPUT
(KHZ)	RESISTANCE	REACTANCE	RESISTANCE	REACTANCE
1500	117.4	191.05	128.43	219.74
-1.694145		-		
Tower #4 W				
FREQUENCY	LOAD	LOAD	INPUT	INPUT
(KHZ)	RESISTANCE	REACTANCE	RESISTANCE	REACTANCE
1500	124.34	201.47	136.69	232.62
-1.833124				

NETBW CALCULATION OF TOWER IMPEDANCE MEASUREMENTS TO VERIFY METHOD OF MOMENTS MODEL

TOWER	L ₁ Z	L ₂ Z	СZ	MODEL Z	INPUT Z	MEAS Z
#1 C	+j14420	+j37	-j3230	106.4 +j195.2	116.45 +j237.56	116.0 +j237.5
#2 E	+j14420	+j27	-j3230	136.1 +j198.4	149.34 +j229.38	150.2 +j229.2
#3 N	+j14420	+j24	-j3230	117.4 +j191.05	128.43 +j219.74	128.05 +j219.3
#4 \\	+11//20	1126	13230	124 24 +1201 47	136 60 ±1232 62	138 2 ±1232 0

 L_2 ,000000 C

Z MODELED

Item 2 Derivation of Operating Parameters for Directional Antenna - KSJX

The method of moments model of the array, following verification with the measured individual open circuited base impedances, was utilized for directional antenna calculations. Calculations were made to determine the complex voltage values for sources located at ground level under each tower of the array to produce current moment sums for the towers that, when normalized, equated to the theoretical field parameters of the authorized directional antenna patterns. With these voltage sources, the tower currents were calculated. Twenty segments were used for towers in the moment method model.

Hatfield & Dawson Consulting Engineers

NETBW CALCULATION OF OPERATING PARAMETERS FROM METHOD OF MOMENTS MODEL

DAYTIME PATTERN Tower #1 C

FREQUENCY (KHZ) 1500 -2.839545	LOAD RESISTANCE 193.32	LOAD REACTANCE 261.69	INPUT RESISTANCE 218.4882	INPUT REACTANCE 303.901
Tower #2 E		2000 - 20000 - 20000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 -	s	
FREQUENCY (KHZ) 1500 7323643	LOAD RESISTANCE -49.339	LOAD REACTANCE 300.32	INPUT RESISTANCE -57.09225	INPUT REACTANCE 348.6982
Tower #3 N				
FREQUENCY (KHZ) 1500 790005	LOAD RESISTANCE 55.788	LOAD REACTANCE 114.53	INPUT RESISTANCE 58.78417	INPUT REACTANCE 140.5306
<i>NIGHTTIME PA1</i> Tower #1 C	TERN			
FREQUENCY (KHZ) 1500 -1.480308	LOAD RESISTANCE 103.5	LOAD REACTANCE 154.16	INPUT RESISTANCE 110.9762	INPUT REACTANCE 193.3128
Tower #2 E				
FREQUENCY (KHZ) 1500 7515164	LOAD RESISTANCE 52.629	LOAD REACTANCE 147.88	INPUT RESISTANCE 56.35905	INPUT REACTANCE 178.9682
Tower #4 W		15		
FREQUENCY (KHZ) 1500 -4.3877	LOAD RESISTANCE 303.04	LOAD REACTANCE 210.7	INPUT RESISTANCE 333.0660	INPUT REACTANCE 221.5398

Hatfield & Dawson Consulting Engineers

DAY

TOWE	R MODEL	INPUT I MAG	MODEL PHASE	INPUT PHASE	NORMALIZED I _{MAG} PHASE
#1 C	6.4826	6.0978	16.6	19.44	1.0 <u>/ 0</u>
#2 E	2.8199	2.6214	161.0	160.27	0.430 <u>/ 140.8</u>
#3 N	6.3765	6.2118-	113.4	114.19	1.02 / 94.8

NIGHT

GHT	TOWER	MODEL I MAG	INPUT I MAG	MODEL PHASE	INPUT PHASE	NORMALIZED I MAG PHASE	
	#1 C	5.0440	4.8711	10.8	12.28	1.0 <u>/ 0</u>	
	#2 E	2.0422	1.9740	74.8	75.55	0.405 <u>/ 63.3</u>	
	#4 W	2.6618	2.5389-	289.0	293.39	0.521 <u>/ -78.9</u>	

Bob Allen, H&D

11/19/2012 11:31 AM

KZSF-KSJX CIRCUIT MOM TABLE.dwg

PDF FILE: kzsf-ksjx circuit mom table.pdf

HATFIELD & DAWSON CONSULTING ENGINEERS

RADIO STATION KSJX SAN JOSE, CA 09/201 rev 11/20/2012

TABLE FOR DERIVATION OF OPERATING PARAMETERS FROM METHOD OF MOMENT MODEL

Item 3

Method of Moments Model Details for Towers Driven Individually - KSJX

The array of towers was modeled using MININEC.

One wire was used to represent each tower. The top and bottom wire end points were specified using electrical degrees in the geographic coordinate system, using the theoretical directional antenna specifications. Each tower was modeled using 20 wire segments. As the towers are physically 107.1 degrees in electrical height, the segment length is 5.355 electrical degrees.

Each tower's modeled height relative to its physical height falls within the required range of 75 to 125 percent and each modeled radius falls within the required range of 80 percent to 150 percent of the radius of a circle having a circumference equal to the sum of the widths of the tower sides. The array consists of non-identical, uniform cross section towers having face widths of width of 18 inches.

Tower	Physical	Modeled	Modeled	Modeled	Percent of
	Height	Height	Percentage	Radius	Equivalent
	(degrees)	(degrees)	of Height	(meters)	Radius
1	107.1	116.5	108.78	0.218	100.0
2	107.1	117.75	109.94	0.218	100.0
3	107.1	115.75	108.08	0.218	100.0
4	107.1	118.0	110.18	0.218	100.0

The following pages show the details of the method of moments models for the individually driven towers.

KSJX Tower 1 Driven, Towers 2, 3 & 4 Open Circuit at Current Transformer Location

C:\Muticultural Stations\KSJX and KZSF Rebuild\NEW 6-7-2012 Analysis\ksjx-1c 06-14-2012 12:54:57

GEOMETRY Wire coordinates in degrees; other dimensions in meters Environment: perfect ground

		+			\$-·	
wire	caps	Distance	Angle	Z	radius	segs
1	none	0 .	0	0	.218	20
		0	0	116.5		5.1
2	none	135.	61.	0	.218	20
		135.	61.	117.75		
3	none	90.	341.	0	.218	20
		90.	341.	115.75		
4	none	100.	251.	0	.218	20
		100.	251.	118.		
				•		

Number of wires = 4 current nodes = 80

	mini	mum	max	imum
Individual wires	wire	value	wire	value
segment length	3	5.7875	4	5.9
radius	1	.218	1	.218

-	TRICAL DESCR uencies (MHZ)		~		
	frequency		no. of	segment length	(wavelengths)
no.	lowest	step	steps	minimum	maximum
1	1.5	0	1	.0160764	.0163889

Sources

source 1	-	sector 1	magnitude 1.	phase 0		type voltage	
Lumped	loads				-		

		resistance	reactance	inductance	capacitance	passive
load	node	(ohms)	(ohms)	(mH)	(uF)	circuit
1	21	0	-4,165.	0	0	0
2	61	0	-4,164.	0	0	0
3	41	0	-4,164.	0	0	0

:\Muticultural Stations\KSJX and KZSF Rebuild\NEW 6-7-2012 Analysis\ksjx-1c 06-14-2012 12:54:57 IMPEDANCE normalization = 50. resist react phase VSWR freq imped S11 S12 (MHZ) (ohms) (ohms) (ohms) dB dB (deg) source = 1; node 1, sector 1 9.6576 -1.8052 1.5 106.4 195.21 222.32 61.4 -4.6839 C:\Muticultural Stations\KSJX and KZSF Rebuild\NEW 6-7-2012 Analysis\ksjx-1c 06-14-2012 12:54:57 CURRENT rms Frequency = 1.5 MHZ Input power = .00107629 watts Efficiency = 100. % coordinates in degrees current phase mag real imaginarv Z Х Y (deg) no. (amps) (amps) (amps) 0 0 0 3.18E-03 298.6 GND 1.52E-03 -2.79E-03 0 0 5.825 3.6E-03 294.9 2 1.52E-03 -3.26E-03 3 0 3.84E-03 293. 0 11.65 1.5E-03 -3.53E-03 4 0 0 17.475 4.01E-03 291.6 1.48E-03 -3.73E-03 0 0 4.13E-03 290.5 5 23.3 1.45E-03 -3.87E-03 0 29.125 -3.96E-03 6 0 4.2E-03 289.5 1.4E-03 7 0 0 34.95 4.21E-03 288.7 1.35E-03 -3.99E-03 40.775 -3.97E-03 8 0 0 4.18E-03 288. 1.29E-03 9 0 0 46.6 4.1E-03 287.4 1.22E-03 -3.91E-03 3.97E-03 286.8 10 0 0 52.425 1.15E-03 -3.8E-03 0 0 58.25 3.8E-03 286.3 -3.65E-03 11 1.07E-03 12 0 0 64.075 3.59E-03 285.8 9.81E-04 -3.46E-03 13 0 0 69.9 3.34E-03 285.4 8.88E-04 -3.22E-03 14 0 0 75.725 3.05E-03 285. 7.9E-04 -2.95E-03 2.73E-03 284.6 15 0 0 81.55 6.88E-04 -2.64E-03 0 0 87.375 2.37E-03 284.3 -2.29E-03 16 5.84E-04 0 0 1.98E-03 283.9 4.76E-04 -1.92E-03 17 93.2 0 -1.51E-03 18 0 99.025 1.56E-03 283.6 3.66E-04 19 0 0 104.85 1.1E-03 283.3 2.54E-04 -1.07E-03 20 0 0 110.675 6.11E-04 283. 1.38E-04 -5.96E-04 END 0 0 116.5 0 0 0 0 65.4493 -118.0744.72E-05 110.9 -1.69E-05 4.41E-05 GND 0 22 65.4493 -118.0745.8875 1.81E-04 110.9 -6.47E-05 1.69E-04 65.4493 -118.074 11.775 2.64E-04 110.9 -9.43E-05 2.47E-04 23 24 65.4493 -118.07417.6625 3.32E-04 110.8 -1.18E-04 3.1E-04 25 65.4493 -118.074 3.87E-04 110.8 -1.37E-04 3.61E-04 23.55 26 65.4493 -118.07429.4375 4.31E-04 110.7 -1.53E-04 4.03E-04 27 65.4493 -118.074 35.325 4.65E-04 110.7 -1.64E-04 4.35E-04 28 65.4493 -118.074 41.2125 4.89E-04 110.6 -1.72E-04 4.58E-04 29 65.4493 -118.074 47.1 5.04E-04 110.6 -1.77E-04 4.72E-04 -1.79E-04 4.77E-04 30 65.4493 -118.074 52.9875 5.1E-04 110.5 5.06E-04 110.4 31 65.4493 -118.074 58.875 -1.77E-04 4.74E-04 32 65.4493 -118.074 64.7625 4.94E-04 110.4 -1.72E-04 4.63E-04 33 65.4493 -118.07470.65 4.72E-04 110.3 -1.64E-04 4.43E-04 65.4493 -118.07476.5375 4.42E-04 110.2 -1.53E-04 4.15E-04 34

Hatfield & Dawson Consulting Engineers

35 36 37 38 40 END 42 43 44 45 46 47 48 50 51 52 53 55 55	65.4493 65.4493 65.4493 65.4493 65.4493 65.4493 85.0967	-118.074 -118.074 -118.074 -118.074 -118.074 -118.074 -118.074 29.3011 29.3011 29.3011 29.3011 29.3011 29.3011 29.3011 29.3011 29.3011 29.3011 29.3011 29.3011 29.3011 29.3011 29.3011 29.3011 29.3011	82.425 88.3125 94.2 100.088 105.975 111.863 117.75 0 5.7875 11.575 17.3625 23.15 28.9375 34.725 40.5125 46.3 52.0875 57.875 63.6625 69.45 75.2375 81.025 86.8125	$\begin{array}{c} 4.04E-04\\ 3.59E-04\\ 3.05E-04\\ 2.45E-04\\ 1.76E-04\\ 9.94E-05\\ 0\\ 5.51E-05\\ 2.1E-04\\ 3.06E-04\\ 3.83E-04\\ 4.46E-04\\ 4.96E-04\\ 5.35E-04\\ 5.63E-04\\ 5.81E-04\\ 5.81E-04\\ 5.66E-04\\ 5.41E-04\\ 4.63E-04\\ 4.1E-04\\ \end{array}$	110.1 110. 109.9 109.8 109.7 0 157.3 157.3 157.3 157.3 157.3 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2	-1.39E-04 -1.23E-04 -1.04E-04 -8.32E-05 -5.97E-05 -3.35E-05 0 -5.09E-05 -1.94E-04 -2.82E-04 -3.53E-04 -4.11E-04 -4.58E-04 -5.34E-04 -5.35E-04 -5.22E-04 -4.99E-04 -5.22E-04 -4.67E-04 -3.78E-04	$\begin{array}{c} 3.37E-04\\ 2.87E-04\\ 2.3E-04\\ 1.66E-04\\ 9.36E-05\\ 0\\ 2.12E-05\\ 8.1E-05\\ 1.18E-04\\ 1.48E-04\\ 1.72E-04\\ 1.92E-04\\ 2.07E-04\\ 2.25E-04\\ 2.25E-04\\ 2.25E-04\\ 2.25E-04\\ 2.2E-04\\ 2.2E-04\\ 1.97E-04\\ 1.8E-04\\ 1.8E-04\\ \end{array}$	
57	85.0967	29.3011	92.6	3.49E-04		-3.22E-04		
58	85.0967	29.3011	98.3875	2.8E-04	157.2	-2.58E-04		
59	85.0967	29.3011	104.175	2.02E-04	157.3	-1.86E-04	7.8E-05	
60	85.0967	29.3011	109.963	1.14E-04	157.3	-1.05E-04		
END	85.0967	29.3011	115.75	0	0	0	0	
GND 62	-32.5568 -32.5568	94.5519 94.5519	0 5.9		143.	-4.93E-05		
62	-32.5568	94.5519	11.8	2.37E-04 3.46E-04		-1.89E-04 -2.76E-04		
64	-32.5568	94.5519	17.7	4.34E-04		-3.46E-04		
65	-32.5568	94.5519	23.6	5.05E-04		-4.03E-04		
66	-32.5568	94.5519	29.5	5.63E-04		-4.49E-04		
67	-32.5568	94.5519	35.4	6.08E-04		-4.84E-04		•-
68	-32.5568	94.5519	41.3	6.4E-04	142.8	-5.09E-04	3.87E-04	
69	-32,5568	94.5519	47.2	6.59E-04	142.8	-5.25E-04	3.99E-04	
70	-32.5568	94.5519	53.1	6.66E-04	142.7	-5.3E-04	4.03E-04	
71	-32.5568	94.5519	59.	6.61E-04	142.7	-5.26E-04		
72	-32.5568	94.5519	64.9	6.44E-04	142.7	-5.12E-04		
73	-32.5568	94.5519	70.8	6.16E-04	142.6	-4.9E-04	3.74E-04	
74 75	-32.5568	94.5519	76.7	5.77E-04	142.6	-4.58E-04		
75	-32.5568 -32.5568	94.5519 94.5519	82.6 88.5	5.27E-04 4.67E-04	142.6 142.6	-4.19E-04 -3.71E-04	3.2E-04	
70	-32.5568	94.5519	94.4	4.87E-04 3.97E-04	142.5	-3.15E-04		
78	-32.5568	94.5519	100.3	3.18E-04	142.5	-2.53E-04		+
79	-32.5568	94.5519	106.2	2.29E-04	142.5	-1.82E-04	1.4E-04	
80	-32.5568	94.5519	112.1	1.29E-04			7.87E-05	
END	-32.5568	94.5519	118.	0	0	0	0	

Hatfield & Dawson Consulting Engineers

KSJX Tower 2 Driven, Towers 1, 3 & 4 Open Circuit at Current Transformer Location

C:\Muticultural Stations\KSJX and KZSF Rebuild\NEW 6-7-2012 Analysis\ksjx-1c 06-14-2012 12:52:09

IMPEDANC	E						
normalization = 50.							
freq	resist	react	imped	phase	VSWR	S11	S12
(MHZ)	(ohms)	(ohms)	(ohms)	(deg)		dB	dB
source =	1; node	21, sect	tor l ·				
1.5	136.1	198.4	240.6	55.6	8.7598	-1.9918	-4.3433

KSJX Tower 3 Driven, Towers 1, 2& 4 Open Circuit at Current Transformer Location

C:\Muticultural Stations\KSJX and KZSF Rebuild\NEW 6-7-2012 Analysis\ksjx-1c 06-14-2012 12:58:07

IMPEDANC	CΕ	e.				4	
normalization = 50 .							
freq	resist	react	imped	phase	VSWR	S11	S12
(MHZ)	(ohms)	(ohms)	(ohms)	(deg)		dB	dB
source =	= 1; node	41, sect	or 1				
1.5	117.4	191.05	224.24	58.4	8.8792	-1.9648	-4.3901

KSJX Tower 4 Driven, Towers 1, 2 & 3 Open Circuit at Current Transformer Location

C:\Muticultural Stations\KSJX and KZSF Rebuild\NEW 6-7-2012 Analysis\ksjx-1c 11-20-2012 10:24:20

GEOMETRY Wire coordinates in degree Environment: perfect groun	es; other dimensions nd	in meters
wire caps Distance An 1 none 0 0 0 0		radius segs .218 20
2 none 135. 63	$\begin{array}{ccc} 1. & 0 \\ 1. & 117.75 \end{array}$.218 20
3 none 90. 34	41. 0	.218 20
4 none 100. 25	41. 115.75 51. 0 51. 118.	.218 20
Number of wires current nodes	= 4 = 80	· · ·
m: Individual wires wire segment length 3 radius 1	inimum e value 5.7875 .218	maximum wire value 4 5.9 1 .218
ELECTRICAL DESCRIPTION Frequencies (MHz) frequency no. lowest step 1 1.5 0	no. of segment steps minimum 1 .016076	
Sources source node sector mag 1 61 1 1.	gnitude phase 0	type voltage
Lumped loads		
resistance load node (ohms) 1 21 0 2 41 0 3 1 0	reactance induc (ohms) (mH) -4,165. 0 -4,164. 0 -4,165. 0	ctance capacitance passive (uF) circuit 0 0 0 0 0 0 0 0
C:\Muticultural Stations\F 11-20-2012 10:24:20	KSJX and KZSF Rebuild	NEW 6-7-2012 Analysis\ksjx-1c
IMPEDANCE		

norma	lization	= 50.					
freq	resist	react	imped	phase	VSWR	S11	S12
(MHz)	(ohms)	(ohms)	(ohms)	(deg)	3	dB	dB
source =	1; node	61, sect	tor 1	-			
1.5	124.34	201.47	236.75	58.3	9.3106	-1.873	-4.5553

C:\Muticultural Stations\KSJX and KZSF Rebuild\NEW 6-7-2012 Analysis\ksjx-1c 11-20-2012 10:24:20

			-				
CURREN		5 Mile	31		ż		
Freque Input		.5 MHz 0,000. watt	s				
Effici		00. %					
curren	nates in d t	uegrees .		mag	phase	real	imaginary
no.	х	Y	Z	(amps)	(deg)	(amps)	(amps)
GND 2	0 0	0 0	0 5.825	.173689	146.3 146.3	144572 552519	.0962646 .368077
3	0	0	11.65	.966682	146.3	804302	.536257
4 5	0 0	0	17.475 23.3	1.21098 1.41056	146.3 146.3	-1.00725 -1.17286	.672239 .783635
6	0	0	29.125	1.57095	146.2	-1.30574	.873459
7 8	0 0	0	34.95 40.775	1.69456 1.78265	$146.2 \\ 146.2$	-1.40793 -1.48053	.943004 .992918
9	0	õ	46.6	1.83603	146.1	-1.52422	1.02359
10 11	0 0	0	52.425 58.25	1.85536	146.1 146.	-1.53963 -1.52734	1.03534 1.0285
12	0	õ	64.075	1.79478	146.	-1.48807	1.00345
13 14	0 0	0 0	69.9 75.725	1.71658 1.60779	146. 145.9	-1.4226 -1.33184	.960656
15	0	0	81.55	1.46956	145.9	-1.21678	.900659
16 17	0	0 0	87.375 93.2	1.30305	$145.9 \\ 145.8$	-1.0784 917583	.731428 .623321
18	0	0	99.025	.888795	145.8	734827	.499987
19 20	0 0	0	104.85 110.675	.640871 .361208	$145.7 \\ 145.7$	529561 298292	.360945 .203698
END	0	0 _	116.5	0	0	0	0
GND 22	65.4493 65.4493	-118.074 -118.074	0 5.8875	.127122	2.3 2.2	.127024 .488114	5.01E-03 .0190369
23	65.4493	-118.074	11.775	.71286	2.2	.712338	.027269
24 25	65.4493 65.4493	-118.074 -118.074	17.6625 23.55	.89469 1.04405	2.1	.894064 1.04336	.0334454
26	65.4493	-118.074	29.4375	1.1649	2.	1.16417	.0411331
27 28	65.4493 65.4493	-118.074 -118.074	35.325 41.2125	1.2589 1.32686	2. 1.9	1.25816	.0429766 .043634
29	65.4493	-118.074	47.1	1.36926	1.8	1.36858	.0432064
30 31	65.4493 65.4493	-118.074 -118.074	52.9875 58.875	1.38644 1.37879	1.7 1.6	1.38581 ° 1.37822	.0418006 .0395307
32	65.4493	-118.074	64.7625	1.34673	1.6	1.34623	.0365204
33 34	65.4493 65.4493	-118.074 -118.074	70.65 76.5375	$1.29081 \\ 1.21164$	$1.5 \\ 1.4$	1.29039 1.2113	.0329029 .0288196
35	65.4493	-118.074	82.425	1.10994	1.3	1.10967	.0244191
36 37	65.4493 65.4493	-118.074 -118.074	88.3125 94.2	.986394 .841631	1.2° 1.	.986194 .841492	.0198563 .0152914
38	65.4493	-118.074	100.088	.675905	.9	.675817	.0108867
39 40	65.4493 65.4493	-118.074 -118.074	105.975 111.863	.488484 .275915	.8 .7	.488437 .275896	6.8E-03 3.2E-03
END	65.4493	-118.074	117.75	0	0	0	0
GND 42	85.0967 85.0967	29.3011 29.3011	0 5.7875	.156707 .597227	107.9 107.9	0482706 183721	.149088 .568267
43	85.0967	29.3011	11.575	.869057	107.9	266735	.827111
44 45	85.0967 85.0967	29.3011 29.3011	17.3625 23.15	1.08842 1.26773	107.8 107.8	333142 386816	1.03618 1.20727
46	85.0967	29.3011	28.9375	1.41195	107.7	429357	1.34509
47	85.0967	29.3011	34.725	1.5233	107.6	461521	1.4517

Hatfield & Dawson Consulting Engineers

	•		*		S			
48 49 50 52 53 55 56 57 59 60 DD2 34 56 70 72 74 56 77 77 76 77 77 77 77 77 77 7	85.0967 85.0568 832.5568 832	29.3011 29.3011 29.3011 29.3011 29.3011 29.3011 29.3011 29.3011 29.3011 29.3011 29.3011 29.3011 29.3011 29.3011 29.3011 29.3011 29.3011 94.5519	40.5125 46.3 52.0875 57.875 63.6625 69.45 75.2375 81.025 86.8125 92.6 98.3875 104.175 109.963 115.75 0 5.9 11.8 17.7 23.6 29.5 35.4 41.3 47.2 53.1 59. 64.9 70.8 76.7 82.6 88.5 94.4 100.3 20.5 35.4 41.3 47.2 53.1 59.6 5	7.88613 6.8505 5.72191 4.50373	107.6 107.5 107.4 107.3 107.3 107.2 107.1 106.9 106.8 106.7 106.6 106.5 0 301.7 297.4 293.5 292.2 293.5 292.2 293.5 292.2 293.5 292.2 293.5 292.2 293.5 292.2 293.5 292.2 293.5 292.2 293.5 292.2 293.5 292.2 293.5 292.2 293.5 292.2 293.5 292.2 293.5 292.2 293.5 292.2 293.5 292.2 293.5 292.2 293.5 292.2 293.5 292.2 293.5 288.4 288.4 285.6 285.2 284.8 284.4	483757 496388 499702 494001 479602 456858 426151 387884 342463 290256 231511 166147 09318460 4.70988 4.69468 4.69468 4.57387 4.46928 4.57387 4.46928 4.33637 4.17624 3.99025 3.77999 3.5472 3.29386 3.02201 2.7338 2.43155 2.11739 1.79349 1.46166 1.12312	1.52815 1.5751 1.59307 1.58257 1.54421 1.47868 1.38676 1.26931 1.12719 .96113 .771446 .557309 .314789 0 -7.63178 -9.05905 -9.8896 -10.5029 -10.5029 -10.9405 -11.2197 -11.3492 -11.3492 -11.3492 -11.3492 -11.3492 -11.18 -10.8903 -10.4701 -9.92457 -9.25959 -8.4814 -7.59655 -6.61156 -5.53207 -4.36144	
78 79 80	-32.5568 -32.5568 -32.5568	94.5519 94.5519 94.5519	100.3 106.2 112.1	4.50373 3.19304 1.77009	284.4 284.1 283.8	1.12312 .777567 .42086	-4.36144 -3.09691 -1.71933	
END	-32.5568	94.5519	118.	0	0	0	0	

Hatfield & Dawson Consulting Engineers

Method of Moments Model Details for Directional Antenna- KZSF

Item 4

The array of towers was modeled using MININEC with the individual tower characteristics that were verified by the individual tower impedance measurements. Calculations were made to determine the complex voltage values for sources located at ground level under each tower of the array to produce current moment sums for the towers that, when normalized, equated to the theoretical field parameters of the authorized directional antenna pattern. The following pages contain details of the method of moments models of the directional antenna patterns.

Tower	Wire	Base Node
1	. 1	1
2	2	21
3	- 3	41
4	4	61

Hatfield & Dawson Consulting Engineers

KSJX Driven Array - Day

C:\Muticultural Stations\KSJX and KZSF Rebuild\NEW 6-7-2012 Analysis\ksjx-1c-driven day 06-14-2012 14:12:08

GEOMETRY Wire coordinates in degrees; other dimensions in meters Environment: perfect ground

				· · · · · · · · · · · · · · · · · · ·	•	
wire	caps	Distance	Angle	Ζ	radius	segs
1	none	0	0	0	.218	20
		0	0	116.5		
2	none	135.	61.	0	.218	20
		135.	61.	117.75		
3	none	90.	341.	0	.218	20
		90.	341.	115.75		
4	none	100.	251.	0	.218	20
		100.	251.	118.		

Number of wires = 4 current nodes = 80

	max	maximum		
Individual wires	wire	value	wire	value
segment length	3	5.7875	· 4	5.9
radius	1	.218	1	.218

ELECTRICAL DESCRIPTION

Frequ	encies (M	IHZ)	•		
	frequency		no. of	segment length	n (wavelengths)
no.	lowest	step	steps	minimum	maximum
1	1.5	0	1	.0160764	.0163889
					đ
Sourc	es				
sourc	e node	sector	magnitude	phase	type
1	1	1	2,978.97	70.1	voltage
2	21	1	1,212.2	260.3	voltage
3	41	1	1,147.35	177.4	voltage
Tumus	ما امم مام				
тпшре	d loads		÷		· · · · · · · · · · · · · · · · · · ·

resistance	reactance	inductance	capacitance	passive
load node (ohms)	(ohms)	(mH)	(uF)	circuit
1 61 0	384.4	0	0	0

C:\Muticultural Stations\KSJX and KZSF Rebuild\NEW 6-7-2012 Analysis\ksjx-1c-driven day 06-14-2012 14:12:08

IMPEDANCE normalization = 50. freq resist react imped phase VSWR S11 S12 (ohms) (MHZ) (ohms) (ohms) (deg) dB dB source = 1; node 1, sector 1 1.5 193.32 261.69 325.35 53.5 11.12 -1.5665 -5.18842; node 21, sector 1 source = 1.5 -49.339 300.32 304.35 99.3 * * * * source = 3; node 41, sector 1 1.5 55.788 114.53 6.5621 127.39 64. -2.6681 - 3.3818C:\Muticultural Stations\KSJX and KZSF Rebuild\NEW 6-7-2012 Analysis\ksjx-1c-driven day 06-14-2012 14:12:08 CURRENT rms = 1.5 MHZ Frequency Input power = 10,000. watts Efficiency = 100. % coordinates in degrees current maq phase real imaginary no. Х Y 7. (amps) (deg) (amps) (amps) 0 0 GND 0 6.48259 6.21388 16.6 1.84707 2 0 0 5.825 7.66022 10.2 7.5396 1.35401 3 0 0 11.65 8.37931 7.1 8.31529 1.03384 0 0 17.475 .758789 4 8.92717 4.9 8.89486 5 0 0 9.33108 3.2 9.31683 23.3 .515468 29.125 6 0 0 9.60207 9.59741 1.8 .298818 7 0 .106949 0 34.95 9.74505 9.74447 . 6 8 0 0 40.775 9.76321 359.6 9.76302 -.0607753 9 0 0 46.6 9.65912 358.8 9.65696 -.204453 0 0 52.425 9.43582 10 358. 9.43026 -.323966 11 0 0 58.25 9.09661 357.4 9.08694 -.419148 12 0 0 64.075 8.64531 356.8 8.63141 -.489873 0 13 0 69.9 8.08655 356.2 8.06876 -.5361 0 0 75.725 14 7.42529 355.7 7.4043 -.557893 15 0 0 81.55 6.6667 355.2 6.64352 -.5554130 0 87.375 354.8 16 5.81613 5.79203 -.528885 17 0 0 93.2 4.87807 354.4 4.85455 -.478513 99.025 18 0 0 3.85508 354. 3.83382 -.4043 2.74417 -.305584 19 0 0 104.85 353.6 2.7271 20 0 0 110.675 1.52776 353.2 1.51715 -.179798END 0 0 116.5 0 0 0 0 -118.074 GND 65.4493 0 2.81992 161. -2.66581 .919449 65.4493 22 -118.074 5.8875 3.39071 162.6 -3.23509 1.01544 -3.56937 23 65.4493 -118.074 11.775 3.72591 163.3 1.06863 -118.07424 65.4493 17.6625 3.97635 163.9 -3.81977 1.10486 25 65.4493 -118.074 23.55 4.15838 164.3 -4.00275 1.12699 4.27875 26 65.4493 -118.074 29.4375 164.6 -4.12513 1.13623 164.9 27 65.4493 -118.074 35.325 1.1332 4.34077 -4.19024 28 65.4493 -118.074 41.2125 4.34645 165.1 -4.20012 1.11831 29 65.4493 -118.0744.29745 165.3 47.1 -4.156411.09194 30 65.4493 -118.07452.9875 4.19533 165.4 -4.06066 1.05444 31 65.4493 -118.07458.875 4.04182 165.6 -3.91457 1.0062

Hatfield & Dawson Consulting Engineers

					•		
32	65.4493	-118.074	64.7625	3.83881	165.7	-3.72001	.947649
33	65.4493	-118.074	70.65	3.58841	165.8	-3.47902	.879263
34	65.4493	-118.074	76.5375	3.29291	165.9	-3.19387	.801531
35	65.4493	-118.074	82.425	2.95473	166.	-2.86691	.714992
36	65.4493	-118.074	88.3125	2.57622	166.1	-2.50047	.620136
37	65.4493	-118.074	94.2	2.15946	166.1	-2.09656	.517382
38	65.4493	-118.074	100.088	1.70558	166.2	-1.65633	.406927
39	65.4493	-118.074	105.975	1.21332	166.2	-1.17854	.288395
40	65.4493	-118.074	111.863	.674924	166.3	655714	.159879
END	65.4493	-118.074	117.75	0	0.	0	0
GND	85.0967	29.3011	0	6.37648	113.4	-2.52944	5.85332
42	85.0967	29.3011	5.7875	6.85418	111.4	-2.49658	6.38333
43	85.0967	29.3011	11.575	7.10641	110.2	-2.45732	6.66804
44	85.0967	29.3011	17.3625	7.26226	109.3	-2.40527	6.85239
45	85.0967	29.3011	23.15	7.33573	108.6	-2.34001	6.9525
46	85.0967	29.3011	28.9375	7.33299	108.	-2.26166	6.97551
47	85.0967	29.3011	34.725	7.25755	107.4	-2.17061	6.92535
48	85.0967	29.3011	40.5125	7.11203	106.9	-2.06743	6.80491
49	85.0967	29.3011	46.3	6.89893	106.4	-1.95283	6.61678
50	85.0967	29.3011	52.0875	6.62085	106.	-1.82763	6.3636
51	85.0967	29.3011 -	57.875	6.28065	105.6	-1.69277	6.04823
52	85.0967	29.3011	63.6625	5.8815	105.3	-1.54928	5.67378
53	85.0967	29.3011	69.45	5.42683	104.9	-1.39822	5.24361
54	85.0967	29.3011	75.2375	4.92029	104.6	-1.24075	4.76128
55	85.0967	29.3011	81.025	4.36564	104.3	-1.07799	4.23046
56	85.0967	29.3011	86.8125	3.76649	104.	911031	3.65465
57	85.0967	29.3011	92.6	3.12597	103.7	740834	3.03691
58	85.0967	29.3011	98.3875	2.44583	103.4	568012	2.37896
59	85.0967	29.3011	104.175	1.72446	103.2	392445	1.67922
60	85.0967	29.3011	109.963	.951252	102.9	212057	.927315
END	85.0967	29.3011	115.75	0 · .	0	0	0
GND	-32.5568	94.5519	0	1.61485	78.3	.326568	1.58148
62	-32.5568	94.5519	5.9	1.18526	78.3	.239387	1.16083
63	-32.5568	94.5519	11.8	.90562	78.4	.181933	.887157
64	-32.5568	94.5519	17.7	.665305	78.6	.13188	.652103
65	-32.5568	94.5519	23.6	.452687	78.9	.0869521	.444258
66	-32.5568	94.5519	29.5 -	.263429	79.9	.046363	.259317
67	-32.5568	94.5519	35.4	.096173	84.1	9.9E-03	.0956619
68	-32.5568	94.5519	41.3	.0523129	244.6	0224107	
69	-32.5568	94.5519	47.2	.176934	253.4	050455	169587
70	-32.5568	94.5519	53.1	.281157	254.7		271224
71	-32.5568	94.5519	59.	.364175	255.2	0931046	
72	-32.5568	94.5519	64.9	.425829	255.4	107402	412062
73	-32.5568	94.5519	70.8	.466082	255.5	116847	451197
74	-32.5568	94.5519	76.7	.484998	255.5	121346	469572
75	-32.5568	94.5519	82.6	.482733	255.5	120836	467365
76	-32.5568	94.5519	88.5	.459508	255.5	115269	444815
77	-32.5568	94.5519	94.4 -	.41553	255.4	104592	402152
78	-32.5568	94.5519	100.3	.35085	255.4	0887072	
79	-32.5568	94.5519	106.2	.26495	255.3	0673554	
80	-32.5568	94.5519	112.1	.155686	255.2	0398388	
END	-32.5568	94.5519	118.	0	0	0	0

Hatfield & Dawson Consulting Engineers

KSJX Driven Array - Night

C:\Muticultural Stations\KSJX and KZSF Rebuild\NEW 6-7-2012 Analysis\ksjx-1c-driven nite 06-14-2012 14:28:15

KZSF 1370 San Jose

GEOMETRY Wire coordinates in degrees; other dimensions in meters Environment: perfect ground

wire	caps	Distance /	Angle	Z		radius	segs
1	none	0	0	0		.218	2Õ
		0	0	116.5	×		
2	none	135.	61.	0		.218	20
		135.	61.	117.75			
3	none	90.	341.	0		.218	20
		90.	341.	115.75			
4	none	100.	251.	0		.218	20
		100.	251.	118.			
					1		

Number of wires = 4 current nodes = 80

	mini	mum	maximum		
Individual wires	wire	value	wire	value	
segment length	3	5.7875	4	5.9	
radius	1	.218	1	.218	

	IRICAL DESCRI lencies (MHZ)	PTION	-	1 2 7	
	frequency		no. of	segment length	(wavelengths)
no.	lowest	step	steps	minimum	maximum
1	1.5	0	1	.0160764	.0163889

				· · ·		
Source	S					
source	node	sector	magnitude	phase	type	
1	1	1	1,323.9	66.9	voltage	
2	21	1	453.122	145.2	voltage	
3	61	1	1,388.76 -	323.8	voltage	
				•		
Lumped	loads					
		resistance		inductance	capacitance	*
load	node	(ohms)	(ohms)	(mH)	(uF)	circuit
T	41	0	396.17	U	0	0

C:\Muticultural Stations\KSJX and KZSF Rebuild\NEW 6-7-2012 Analysis\ksjx-1c-driven nite 06-14-2012 14:28:15

IMPEDANCE normalization = 50. freq resist react imped phase VSWR S11 S12 (MHZ) (ohms) (ohms) (ohms) (deg) dB dB source = 1; node 1, sector 1 1.5 103.5 154.16 185.68 56.1 7.0023 -2.4979-3.59132; node 21, sector 1 source = 1.5 52.629 147.88 156.97 70.4 10.215 -1.706-4.8831 source = 3; node 61, sector 1 1.5 303.04 210.7 369.09 34.8 9.0452 -1.9284-4.4544 Parallel combination of all sources. 37.0563 60.4969 58.5 3.8028 1.5 70.9439 -4.6781 -1.8082 C:\Muticultural Stations\KSJX and KZSF Rebuild\NEW 6-7-2012 Analysis\ksjx-lc-driven nite 06-14-2012 14:28:15 CURRENT rms Frequency = 1.5 MHZ Input power = 5,000. watts Efficiency = 100. % coordinates in degrees current mag phase real imaginary no. Х Υ Ζ (amps) (deg) (amps) (amps) 0 GND 0 0 5.04403 10.8 4.95505 .943255 2 0 0 5.825 .690954 5.56689 7.1 5.52385 3 0 0 11.65 5.86338 5.2 5.83962 .527264 0 4 0 17.475 6.06861 .386775 3.7 6.05627 5 0 0 23.3 .262611 6.19636 2.4 6.1908 6 0 0 29.125 6.25243 1.4 6.25058 .15215 7 0 0 34.95 6.23977 .5 6.23953 .0543915 8 0 0 40.775 6.16048 359.7 6.1604 -.0310242 9 0 0 359. 46.6 6.01648 6.01558 -.104177 10 0 0 52.425 5.80984 358.4 5.80749 -.165033 11 0 0 58.25 5.54284 357.8 5.53873 -.213521 64.075 12 0 0 5.21811 357.3 5.21214 -.249585 13 0 0 -.273201 69.9 4.83854 356.8 4.83082 14 0 0 75.725 4.40726 356.3 4.39808 -.284393 15 0 0 81.55 3.92751 355.9 3.91729 -.283224 0 87.375 16 0 3.4025 355.5 3.39178 -.269789 17 0 0 93.2 2.83494 355.1 2.8244 -.24417118 0 0 99.025 2.2264 354.7 2.21682 -.206355 0 0 19 104.85 1.57534 354.3 1.5676 -.155995 20 0 Ω 110.675 .871909 354. .867064 -.0917844 END 0 0 116.5 0 0 Ω 0 1.97065 GND 65.4493 -118.074 0 2.04219 74.8 .535788 22 65.4493 -118.0745.8875 72.9 2.24311 .659071 2.1441 65.4493 23 -118.074 11.775 2.35379 71.9 .73188 2.23711 65.4493 24 -118.07417.6625 2.42784 71.1 .786883 2.29678 25 65.4493 -118.07423.55 2.47112 70.4 .827639 2.3284 26 65.4493 -118.07429.4375 2.48617 69.9 .855597 2.3343 27 65.4493 -118.07435.325 2.47434 69.4 .87145 2.31581 28 65.4493 -118.07441.2125 2.43664 68.9 .875624 2.27388

Hatfield & Dawson Consulting Engineers

29	65.4493	-118.074	47.1	2.37394	68.5	.868437	2.20939
30	65.4493	-118.074	52.9875	2.28716	68.2	.850185	2.12327
31	65.4493	-118.074	58.875	2.1773	67.8	.821201	2.0165
32	65.4493	-118.074	64.7625	2.04549	67.5	.781839	1.89017
33	65.4493	-118.074	70.65	1.89291	67.2	.732509	1.74543
34	65.4493	-118.074	76.5375	1.72085	67.	.673646	1.58352
35	65.4493	-118.074	82.425	1.53065	66.7	.605713	1.40571
36	65.4493	-118.074	88.3125	1.3236	66.4	.529171	1.21322
37	65.4493	-118.074	94.2	1.10082	66.2	.444414	1.00712
38	65.4493	-118.074	100.088	.862951	66.	.351655	.78805
39	65.4493	-118.074	105,975	.609457	65.7	.250607	.555548
40	65.4493	-118.074	111.863	.336609	65.5	.139648	.306275
END	65.4493	-118.074	117.75	0	0	0	0 .
GND	85.0967	29.3011	0 "	.631207	41.2	.474759	.415964
42	85.0967	29.3011	5.7875	.460278	41.2	.346147	.303378
43	85.0967	29.3011	11.575	.34979	41.3	.262902	.230728
44	85.0967	29.3011	17.3625	.255256	41.4	.191576	.168685
45	85.0967	29.3011	23.15	.172005	41.6	.12867	.114148
46	85.0967	29.3011	28.9375	.0982471	42.1	.0728597	.0659087
47	85.0967	29.3011	34.725	.0333194	44.8	.0236443	.0234761
48	85.0967	29.3011	40.5125	.0233512	214.9	0191529	0133583
49	85.0967	29.3011	46.3	.0713096	218,8	0555748	0446821
50	85.0967	29.3011	52.0875	.110929	219.5	0856163	0705338
51	85.0967	29.3011	57.875	.142159	219.8	109268	0909383
52	85.0967	29.3011	63.6625	.165025	219.9	126542	105926
53	85.0967	29.3011	69.45	.179587	220.	137481	115543
54	85.0967	29.3011	75.2375	.185946	220.1	142166	119853
55	85.0967	29.3011	81.025	.184244	220.2	140709	11894
56	85.0967	29.3011	86.8125	.174642	220.3	133245	112897
57	85.0967	29.3011	92.6	.1573	220.3	119906	101813
58	85.0967	29.3011	98.3875	.132315	220.4	10078	0857365
59	85.0967	29.3011	104.175	.0995675	220.4	0757843	0645788
60	85.0967	29.3011	109.963	.0583271		0443699	0378599
END	85.0967	29.3011	115.75	0	0	0	0
GND	-32.5568	94.5519	0 -	2.66182	289.	.866159	-2.51696
62	-32.5568	94.5519	5.9	3.08626	278.7	.46658	-3.05078
63	-32.5568	94.5519	11.8	3.37016	273.6	.211117	-3.36354
64	-32.5568	94.5519	17.7	3.59693	269.9	-3.68E-03	-3.59693
65	-32.5568	94.5519	23.6	3.77117	267.1	18875	-3.76644
66	-32.5568	94.5519	29.5	3.89417	264.9	348263	-3.87856
67	-32.5568	94.5519	35.4	3.96611	263.	483853	-3.93649
68	-32.5568	94.5519	41.3	3.9871	261.4	596173	-3.94228
69 70	-32.5568	94.5519	47.2	3.9574	260.	685468	-3.89758
70	-32.5568	94.5519	53.1	3.8776	258.8	751844	-3.80401
71	-32.5568	94.5519	59.	3.74866	257.7	795394	-3.6633
72	-32.5568	94.5519	64.9 -	3.57189	256.8	816284	-3.47737
73	-32.5568	94.5519	70.8	3.34894	255.9	814756	-3.24831
74 75	-32.5568	94.5519	76.7	3.0817	255.1	79117	-2.97841
75 76	-32.5568	94.5519 94.5519	82.6	2.7723	254.4	745965	-2.67005
	-32.5568 -32.5568		88.5 94.4	2.42288	253.7	679636	-2.3256
77 78	-32.5568	94.5519 94.5519		2.03531 1.61071	253.1 252.5	592627	-1.94712
78 79	-32.5568	94.5519	100.3 106.2	1.14789	252.5	485154 356691	-1.5359
80	-32.5568	94.5519 94.5519	106.2	.639562	251.9	204649	-1.09107 605936
END	-32.5568	94.5519		.039502 0			
сиD	-32.3368	94.0019	118.	U	0	0	0

Hatfield & Dawson Consulting Engineers

KSJX - Tower 3 Detuning

C:\Muticultural Stations\KSJX and KZSF Rebuild\NEW 6-7-2012 Analysis\ksjx-1c-detuning3 06-14-2012 14:26:27

KZSF 1370 San Jose

GEOMETRY Wire coordinates in degrees; other dimensions in meters Environment: perfect ground

wire	caps	Distance	Angle	Z	radius	segs
1	none	0	0	0	.218	20
		0	0	116.5		
2	none	135.	61.	0 ; **	.218	20
		135.	61.	117.75		
3	none	90.	341.	0	.218	20
		90.	341.	115.75	her	
4	none	100.	251.	0	.218	20
		100.	251	118.		
		*				

Number of wires = 4 current nodes = 80

	mini	mum	۰.	max	imum
Individual wires	wire	value		wire	value
segment length	3	5.7875		4	5.9
radius	1	.218		1	.218

	RICAL DESC encies (MH					•
	frequency			no. of	segment lengt	
no	lowest	step		steps	minimum	maximum
1 :	1.5	0		1	.0160764	.0163889
Source	es e node	sector	mognitu	30	nhaaa	h
Source	e node	sector	magnitud	le	phase	type
1	1	1	1,323.9		66.9	voltage
2	21	1	453.122		145.2	voltage
3	41	1	354.066		311.3	voltage
4	61	1	1,388.70	s -	323.8	voltage
-1	UT.	1	r, 000. /	5	525.0	vortage.

C:\Muticultural Stations\KSJX and KZSF Rebuild\NEW 6-7-2012 Analysis\ksjx-1c-detuning3 06-14-2012 14:26:27

IMPEDANC norma	E lization :	= 50.			7# 2		4
(MHZ)	resist (ohms) 1; node	(ohms)	(ohms)	phase (deg)		S11 dB	S12 dB
	103.5	•		56.1	6.9966	-2.5	-3.5886
	2; node 52.589				10.222	-1.7049	-4.8854
	3; node 2.0548			270.3	1,552.	-1.1E-02	-25.894
source = 1.5	4; node 303.03		or 1 368.93	34.8	9.0377	-1.9301	-4.4515

Parallel combination of all sources. 1.5 51.0133 65.6595 83.1476 52.2 3.3962 -5.2711 -1.531 25

KSJX - Tower 4 Detuning

C:\Muticultural Stations\KSJX and KZSF Rebuild\NEW 6-7-2012 Analysis\ksjx-1c-detuning4 06-14-2012 13:52:13

KZSF 1370 San Jose

GEOMETRY Wire coordinates in degrees; other dimensions in meters Environment: perfect ground

wire	-	Distance	Angle	Z	radius	segs
1	none	0	0 -	0	.218	20
		0	0	116.5	t	
2	none		61.	0	.218	20
		135.	61.	117.75		
3	none	90.	341.	0	.218	20
		90.	3,41.	115.75		
4	none	100.	251.	0	.218	20
		100.	251.	118.		

Number of wires = 4 current nodes = 80

	minimum		maximum	
Individual wires	wire	value	wire	value
segment length	3	5.7875	4	5.9
radius	1	.218	1	.218

ELECTRICAL DESCRIPTION Frequencies (MHZ)

TTCA		112)			
	frequency		no. of	-	gth (wavelengths)
no.	lowest	step	steps	minimum	maximum
1	1.5	0	1	.0160764	.0163889
			<i>i</i>	T	
Sour	ces				
sour	ce node	sector	magnitude	phase	type
1	1	1	2,978.97	70.1	voltage
2	21	1	1,212.2	260.3	voltage
3	41	1	1,147.35	177.4	voltage
4	61	1	878.916	348.6	voltage

C:\Muticultural Stations\KSJX and KZSF Rebuild\NEW 6-7-2012 Analysis\ksjx-1c-detuning4 06-14-2012 13:52:13

IMPEDANCE						
normalization	= 50.					
freq resist				VSWR	S11	S12
(MHZ) (ohms)			(deg)		dB	dB
source = 1; node	•					
1.5 193.36	261.36	325.12	53.5	11.101	-1.5691	-5.1823
		-				
source = 2; node						
1.5 -49.483	300.78	304.82	99.3	****	**** .	* * * *
course - 2, pode	11					
source = 3 ; node			C A 1		0 0001	0 0040
1.5 55.731	114.53	127.37	64.I	6.5669	-2.6661	-3.3842
source = 4; node	61 sect	or 1				
1.5 5.0165			270 7	500 17	-2 95-02	-21 760
1.0 0.0100	504.4	504.45	210.1	555.11	2.96-02	-21.709

Item 5 Summary of Post Construction Certified Array Geometry- KSJX

Because the KSJX antenna system was previously licensed and there has been no change in the theoretical antenna parameters, a post-construction survey is not required per the FCC Public Notice DA 09-2340. (October 29, 2009)

Item 6

Sampling System Measurements - KSJX

Impedance measurements were made of the antenna monitor sampling system using an AIM network analyzer in a calibrated measurement system. The measurements were made looking into the antenna monitor ends of the sampling lines for two conditions – with and without the sampling lines connected to the sampling transformers at the antenna tuning units.

The following table shows the frequency closest to the carrier frequency where series resonance – zero reactance corresponding with low resistance – was found. As frequencies of resonance occur at odd multiples of 90 degrees electrical length, the sampling line length at the resonant frequency below carrier frequency – which is the closest one to the carrier frequency – was found to be 270 electrical degrees. The electrical length at carrier frequency appearing in the table below was calculated by ratioing the carrier frequency to the resonant frequency.

Tower	Sampling Line	Sampling Line Electrical	1500 kHz
	Open-Circuited	Length at 1500 kHz	Measured Impedance with
	Resonance (kHz)	Degrees	Sample Transformer
			Connected
1	1146.35	353.30	50.24 -j1.1
2	1145.55	353.54	50.89-j1.3
3	1145.50	353.56	50.42-j1.4
4	1144.1	353.99	50.89-j0.9

The sampling line lengths meet the requirement that they be equal in length within 1 electrical degree.

In order to determine the characteristic impedance values of the sampling lines, open-circuited measurements were made with frequencies offset to produce +/- 45 degrees of electrical
length from resonance. The characteristic impedance was calculated using the following formula, where R1 +j X1 and R2 +j X2 are the measured impedances at the +45 and -45 degree offset frequencies, respectively:

Tower	-45° Offset	-45°	+45° Offset	+45°	Calculated
	Frequency	Measured	Frequency	Measured	Characteristic
	(kHz)	Impedance	(kHz)	Impedance	Impedance
		(Ohms)	н. – <u>и</u>	(Ohms)	(Ohms)
1	955.29	5.30 -j50.05	1337.41	7.94+j50.1	50.53
2	954.59	5.38 -j50.25	1334.48	8.0+j50.01	50.59
3	954.58	5.25-j50.22	1336.42	7.84+j50.0	50.55
4	953.42	5.38-j50.17	1334.78	8.03+j50.1	50.60

$$Zo = [(R_1^2 + X_1^2)^{\frac{1}{2}} \times (R_2^2 + X_2^2)^{\frac{1}{2}}]^{\frac{1}{2}}$$

The sampling line measured characteristic impedances meet the requirement that they be equal within 2 ohms.

Hatfield & Dawson Consulting Engineers

Item 7

Reference Field Strength Measurements - KSJX

Reference field strength measurements were made along radials at the azimuths with radiation value limits specified on the station license and, additionally, on the radial of the line of the towers in the maximum. The transmitter power was at 5.4 kW (antenna common point current 10.4 Amps) nighttime and 10.5 kW (antenna common point current 14.49 Amps) daytime for these measurements.

Measurements were made using a Potomac Instruments field strength meter, model FIM-41. This meter has been recently checked against other more recently calibrated meters and found to be well within its normal tolerances.

The measured field strengths and descriptions and GPS coordinates for the reference measurement points are shown on the following pages.

Hatfield & Dawson Consulting Engineers

31 -

KSJX Day Reference Points

		Ref	erence Fi	eld Strength M	easurements -	Daytime
Radial	Point	Distance (km)	Field (mv/m)	Coordinate	es (NAD 83)	Description
· .	1	2.66	185	37-22.901	121 52.133	SW Corner; Flickenger & Imwalle
6.5	2	2.80	200	37 22.961	121 52.130	2105 Charger Drive
	3	2.94	190	37 23.039	121 52.125	2146 Hikido
	1	1.65	290	37 22.237	121 51.782	SW Corner; Mabury & Educational Park Drive
28.5	2	2.28	252	37 22.553	121 51.623	824 Jackson
	3	3.11	152	37 22.911	121 51,359	Rear; 989 Gilcrest
	1	2.01	460	37 21.171	121 51.044	SW Corner; McCreary & Stowe
105.5	2	2.19	425	37 21.148	121 50.918	180 Oakland
	3	2.39	320	37 21.117	121 50.778	222 Sunset
	1	1.34	520	37 20.892	121 51.76 ⁸	1394 Shortridge
138	2	. 1.45	410	37 20.852	121 51.720	1405 E. San Fernando
	3	1.55	460	37 20.809	121 51.667	1419 Whitten
	1	0.77	980	37 21.088	121 52.581	396 20th Street
207	2	0.98	470	37 20.985	121 52.650	340 18th Street
	3	1.21	1325	37_20.884	121 52.728	SE Corner; 16th Street & Julian
	1	[~] 3.36	140	37 23.007	121 53.696	Shopping Center; Murphy & Oakland Road
325.5	2	3.85	175	37 23.182	121 53.824	200 feet East; Oakland Road & McKay
	3	4.06	152	37 23.268	121 53.913	100 feet East; Oakland Road & Wayne

KSJX, San Jose 1500 kHz - 10,000 Watts; DA-D

Measurements were made September 18, 2012 by Robert F. Turner Potomac Instruments FIM-41, SN 1205 calibrated 16 July, 1999. KSJX Night Reference Points

.

	1977 - 19	Refe	rence Fie	ld Strength Me	asurements - N	lighttime
Radial	Point	Distance (km)	Field (mv/m)	Coordinate	es (NAD 83)	Description
	1	2.08	75	37 22.220	121 51.277	2303 Ashglen
54.5	2	2.29	65	37_22.279	121 51.194	591 Breezyglen Court
n an garaith Bhailte B	• 3	2.46	45	37 22.333	121 51,117	2459 Ridgeglen Way
	1	1.44	110	37 21.303	121 51.396	95 Melrose
102	2	1.58	44	37 21.282	121 51.310	67 Balboa
	3	1.68	142	37 21.277	121 51.251	NW Corner; Beverly & Magellen
	1	1.63	47	37 21.088	121 51.357	1669 Shortridge
115.5	2	1.75	44	37 21.060	121 51.278	1685 E. San Fernando
	3	1.85	74	37 21.029	121 51.221	NW Corner; King & Whitten
	1	1.05	680	37 20.995	121 52.626	320 18th Street
203	2	1.27	430	37 20.835	121 52.688	254 16th Street
¥1.	3	. 1.51	310	37 20.718	121 52.753	188 14th Street
	1	0.73	940	37 21.275	121 52.797	563 19th Street
243.5	2	0.92	510	37 21.240	121 52.911	Driveway 570 17th Street
	3	1.12	780	37 21.181	121 53.027	Opposite 570 15th Street
	1	0.85	1020	37 21.401	121 52.881	SE Corner; 21st & Marianellict
290	2	[~] 1.15	640	37 21.679	121 53.090	871 19th Street
	3	1.46	580	37 21.718	121 53.271	SE Corner; Berryessa & N17th Street

KSJX, San Jose 1500 kHz - 5000 Watts; DA-N

Measurements were made September 18, 2012 by Robert F. Turner Potomac Instruments FIM-41, SN 1205 calibrated 16 July, 1999.

Item 8

Direct Measurement of Power - KSJX

Common point impedance measurements were made using a Hewlett Packard 8751A network analyzer in a calibrated measurement system. The measurements were made at the phasor cabinet input jack adjacent to the common point current meter that is used to determine operating power. The impedance measured at this point was adjusted to a value of 50 +/- j0.

Hatfield & Dawson Consulting Engineers

36

Item 9

Antenna Monitor and Sampling System - KSJX

The antenna monitor is a Potomac Instruments model AM-1901. The sample transformers are connected through equal lengths of $\frac{3}{6}$ inch foam heliax solid outer conductor transmission lines (Andrew LDF cable) to the antenna monitor. The two sample lines are routed to the towers such that they are subject to similar environmental conditions.

The antenna monitor was checked by placing the amplified network analyzer output through a sample transformer. A "T" connector was placed on the sample transformer and the two outputs of the "T" were fed into the antenna monitor inputs 1 & 2. Both inputs read 0 degrees and a ratio of 100.

The sample transformers were tested by feeding their outputs configured as described above into the A and B inputs of the network analyzer.

All transformers TCT-1 0.5 V/A

Serial #	2152	940	939	2158
Magnitude	0.989	0.986	1.009	reference
Phase	+0.088	+0.014	+0.77	reference

These values are well within the manufacturer's rated tolerance of +/- 2% amplitude and +/- 2 degrees phase.

Hatfield & Dawson Consulting Engineers

37

Diplex Harmonic Measurement Worksheet

		e					16 - A	1. 	Ĵ.
Station 1	KSJX	Frequency	1500	KHz	Power	10000	Mode	DA	A-D
Station 2	KZSF	Frequency	1370	KHz	Power	5000	Mode	DA	A-1
Date	08/30/12	Time	8:15 AM	Stati	on 1 Field	Strength	850	m	7/m
	Harmonic Ca	alculations		Notes	Reading	in mV/m	Value	FCC	Limit
. 1	F1 + F2	28	70 🐘 🔬	-	e 0.0	40	-86.5	-80	dBc
2	F1 + 2(F2)	42	40		~ 0.0	10 👘	-98.6	-80	dBc 👔
3	F2 + 2(F1)	43	70		0.0	35	-87.7	-80	dBc
4	2(F1) - F2	16	30	1. v	0.0	13	-96.3	-80	dBc 🖏
5	2(F2)	27	40		0.0	30	-89.0	-80	dBc
6	2(F2) - F1	12	40	2				-80	dBc
7	2(F1) - 2(F2)	26	50 -	1				-80	dBc
8	2(F1) + 2(F2)	57	40	1				-80	dBc
9	2(F1)	30	00		0.0	25	-90.6	-80	dBc
10	3(F1)	45	00		0.0	13	-96.3	-80	dBc
11	3(F1)-F2	31	30		0.0	15	-95.1	-80	dBc
12	3(F2)	41	10		0.0	10	-98.6	-80	dBc
13	3(F2)-F1	26	10		0.0	17	-94.0	-80	dBc
14	3(F1)-(2)F2	17	60	•	<u>,</u> 0.0	20	-92.6	-80	dBc
15	3(F2)-(2)F1	11	10	2	~~	,		-80	dBc
				1	Frequency	v exceeds l	FIM capabil	ities	
		-		2	Frequency	v cannot be	e measured/	Other stati	on presen
				3	No Signal	Present			
					*				

Measurement Location: GPS: 37º 21.151 / 121º 53.017 - East side of Bakesto Park. Approximately 0.75 miles from KSJX at 243-degrees true.

Diplex Harmonic Measurement Worksheet

	Station 1	KSJX	Frequency	1500	KHz	Power	5000	Mode	DA-N	Z.
	Station 2	KZSF	Frequency	1370	KHz	Power	5000	Mode	DA-1	-1
	Date	09/18/12	Time	10:30 AM	Statio	Station 1 Field Strength	Strength	750	Vm V	mV/m
		Harmonic Calculations	alculations		Notes	Reading in mV/m	in mV/m	Value	FCC	FCC Limit
	٢	F1 + F2	32	2870		0.050	50	-83.5	-80	dBc
	. 2	F1 + 2(F2)	42	4240		0.040	40	-85.5	-80	dBc
	3	F2 + 2(F1)	343	4370		0.019	19	-91.9	-80	dBc
	4	2(F1) - F2	16	1630		0.016	16	-93.4	-80	dBc
	5	2(F2)	27	2740		0.027	27	-88.9	-80	dBc
	9	2(F2) - F1	12	1240	2	•		• 	-80	dBc
	7	2(F1) - 2(F2)	2	260	1		, 4		-80	dBc
	8	2(F1) + 2(F2)	22	5740	1		1		-80	dBc
	6	2(F1)	30	3000		0.018	18	-92.4	-80	dBc
	10	3(F1)	45	4500		0.014	14	-94.6	-80	dBc
	11 .	3(F1)-F2	31	3130		0.024	24	-89.9	-80	dBc
	12	3(F2)	41	4110		0.016	16	-93.4	- ⁻ 80	dBc
I	13	3(F2)-F1	26	2610		0.026	26	-89.2	-80	dBc
I	14	3(F1)-(2)F2	17	1760		0.022	22	-90.7	-80	dBc
	15	3(F2)-(2)F1		1110	5				-80	dBc
	•		•		1	Frequency	exceeds F	Frequency exceeds FIM capabilities	ties	in the second
					2	Frequency	cannot be	Frequency cannot be measured/Other station present	Other static	n present
				*	Э	No Signal Present	Present	,		
]

Measurement Location: GPS: 37° 21.151 / 121° 53.017 - East side of Bakesto Park. Approximately 0.75 miles from KSJX at 243-degrees true.

-15

APPENDIX A:

License Document BL-950203AA

40

APPENDIX B: FCC Form 302-AM

Hatfield & Dawson Consulting Engineers

UNITED STATES OF AMERICA FEDERAL COMMUNICATIONS COMMISSION

File No.

:BZ-950120AE

e e

May 1988	FEDERAL COMMUNICATIONS (
	AM BROADCAST STATION	LICENSE Call Sign : KSJX
LICENSEE:	Baycom San Jose, L	P
 Community of License. : Sam Transmitter location : 501 Sam North Latitude : West Longitude : Antenna and ground system: Attached 		 3. Transmitter(s): Type Accepted. See Sections 73.1660, 73.1665 and 73.1670 of the Commission's rules) 4. Main Studio Location: (see Section 73.1125) 1420 Koll Circle San Jose, CA 5. Remote control location 1420 Koll Circle San Jose, CA 5. An Jose, CA
. Obstruction marking and lighting spec	ifications - FCC Form 715, paragraphs:	1, 3, 11 & 21
. Frequency :	<u>1500</u> kHz <u>10.0</u> Day	<u>5.0</u> Night
Antenna input power (kW) : 10.5 Day	 Non-directional antenna : current Directional antenna : 	14.23 amperes: resistance 52.0 ohms.
5.4 Night	 Non-directional antenna: current Directional antenna 	t <u>10.19</u> amperes: resistance <u>52.0</u> ohms.
0. Hours of operation : BP-880212	AH	

Conditions.

÷.

.

1. ٠.

FCC Form 352

Subject to the provisions of the Communications Act of 1934, as amended, subsequent Acts, Treatles, and Commission rules made thereunder, and further subject to conditions set forth in this license,¹ the LICENSEE is hereby authorized to use and operate the radio transmitting apparatus herein described for the purpose of broadcasting for the term ending 3 A.M. Local Time · · · December 1, 1997 4

٦.	
	The Commission reserves the right during said license period of ferminating this license or making effective any change, or modification of this license which may be necessary to comply with any decision of the Commission prior to the Commission prior to the Commission prior to the Commission of this license period.
	The license is issued on the licensee's representation that the statements contained in the licensee's application are inte and that the undertaking therein contained so far as they are consistent
	herewith, will be carried out in good faith. The licensee shall, during the term of this license, render such broadcasting service as will serve the public interest, convenience, or necessity to the full
1	extent of the privileges herein conferred.
	This license shall not vest in the licenses any right to operate the station nor any right in the use of the frequency designated in the license beyond the term hereol, nor in any other manner than
1	authorized herein. Neither the license nor the right granted hereunder shall be assigned or otherwise transferred in violation of the Communications Act of 1934, as amended. This license is subject to the right 1 or control by the Government of the United States conferred by section 606 of the Communications Act of 1934, as amended.
	te ne tent to control by the covention of the control by sector cool in the constraincations Act of 1904, as afficiated,
	化学会 经济税 网络斯勒尔 化合物 化合物合金 化分析 化合物合物 医鼻子 医结束 化合物 化分析 化合物合物 化合物合物 化合物合物
	EAL:rao
	FEDERAL
•	This license consists of this page and pages 2, 3. & 4 COMMUNICATIONS
1	COMMISSION

FCC Form 353-A June 1980

File No.: BZ-950120AE

Call Sign: KSJX

DESCRIPTION OF DIRECTIONAL ANTENNA SYSTEM

No. and Type of Elements: Four uniform cross-section, guyed, series-excited steel radiators. A communications-type omnidirectional antenna is side-mounted at the top of E(#2) tower. Theoretical RMS: 710.91 mV/m, Night; 959.17 mV/m, Day. Augmented RMS: 788.8 mV/m, Night. 1023.47 mV/m, Day All values @ 1 km. Q = 31.62, Day; 22.36, Night.

Height above Insulators: 59.44 m (107.06°)

Overall Height: 60.35 m

Spacing and Orientation: From reference tower #1, tower #2 is spaced 74.98 m (135°) on a line bearing 61° True; tower #3 is spaced 50.0 m (90°) on a line bearing 341° True; tower #4 is spaced 55.55 m (100°) True on a line bearing 251° True.

Non-Directional Antenna: None used.

Ground System consists of 120-equally spaced buried copper radials plus 7.32m by 7.32m ground screen about the base of each tower. Each radial is 60.96 m in length except where limited by property boundary. Overalapping radials shortened and bonded to copper straps.

THEORETICA	L SPECI				
Towers:		#1(C)	#2(E)	#3(N)	#4(W
Phasing:	Night:	. 0°	69°	5	-98°
	Day:	0°	165°	107°	
Field Ratio:	Night:	1.00	0.40	ting ganger ting gang an t	0.65
	Day:	1.00	0.45	0.73	
OPERATING	SPECIFIC	CATIONS		r	
Phase Indicat	tion*:			•	
	Night:	0°	70°		-83°
	Day:	0°	80.5°	67.5°	
Antenna Base	e , i i i				
Current Ratio					
	Night:	1.000	0.35		0.639
	Day:	1.000	0.636	1.205	
Antenna Mon	itor Sam	ple			in de la sinteriore. La sinteriore
Current Ratio	t 1		de sed 📫 🖓	a da a la sete	
	Night:	1.000	0.345		0.645
	Day:	0.5	0.335	0.605	

As indicated by Potomac Instruments AM-19 (204) Antenna Monitor. Antenna sampling system approved under Section 73.68 (b) of the Rules.

BZ-931206AD

DESCRIPTION OF AND FIELD INTENSITY AT MONITORING POINTS:

Direction of 51° True North. From the transmitter site drive NE on McKee Road 2.5 miles to White Road. Turn left (NW) on White Road for 0.35 mile to Patt Avenue. Turn left (SW) on Patt Avenue and continue 0.35 mile to the Painter School play area. Enter the play area (through the parking lot) and the monitor point lies approximately 25 feet beyond the parking lot, into the hard surfaced play area. Distance to the array from this point is 2.02 miles. The field intensity measured at this point should not exceed 14.8 mV/m, Nighttime.

Direction of 101° True North. From the transmitter site go NE on McKee Road 1.2 miles to Jackson Avenue and turn right (SE). Proceed 1.55 miles to Story Road and turn left (NE). Proceed 0.6 mile to McGinness and turn right (SE). Proceed 0.15 mile to Sussex and turn right (SW). Proceed 0.1 mile on Sussex to monitor point on north side of Sussex between 2729 and 2735 at the curb. Distance to the array is 2.67 miles. The field intensity measured at this point should not exceed <u>39.4 mV/m</u>.

Direction of 111° True North. From the transmitter site go NE on McKee Road 1.2 miles to Jackson Avenue and turn right (SE). Proceed 1.55 miles to Story Road and turn left (NE). Proceed 0.4 mile to the intersection of Capitol Expressway. Turn right (SE) on the expressway and proceed one mile to the intersection of Cunningham Avenue. Turn left (NE) on Cunningham Avenue and proceed 0.15 mile to Wonderama Drive. Turn left (NW) on Wonderama Drive and proceed 0.1 mile to the corner of Supreme Drive. Take the measurement on the east side of Wonderama Drive at the P.G. & E. underground utility vault (#J-568) opposite the school athletic field and fifty feet north of street lamp (#11C Distance to the array from this point is 3.35 miles. The 155). field intensity measured at this point should not exceed 33.9 mV/m, Nighttime.

Direction of 5° True North. From the transmitter site go NE on McKee Road 1.95 miles to Capitol Avenue. Turn left (NW) on Capitol Avenue and continue 2.1 miles to Old Post Way. Turn left (NW) 0.1 mile to fire hydrant #8628, on the south side of Old Post Way, at the corner of Old Park Place. The distance to the array from this fire hydrant is 2.33 miles. The field intensity measured at this point should not exceed <u>96.4 mV/m</u>, Daytime.

Direction of 31° True North. From the transmitter site go NE on McKee Road 1.95 miles to Capitol AVenue. Turn left (NW) on Capitol Avenue and continue 1.0 miles to the East Side Union High

KSJX

BZ-931206AD

4

DESCRIPTION TO AND FIELD INTENSITY AT MONITORING POINTS (cont'd):

KSJX

district building. This monitor point is over a P.G. & E. underground utility vault, located on the sidewalk along the east side of Capitol Avenue in front of the East Side Union High School building, approximately 48 feet south of street lamp #8N310. Distance to the array from this point is 1.9 miles. The field intensity measured at this point should not exceed <u>90.1 mV/m</u>, <u>Daytime</u>.

Direction of 325° True North. From the transmitter site go NW on US 101 (Bayshore Freeway) approximately 1.6 miles to 13th Street/Oakland Road (Old Oakland Highway). Turn right (N) and drive approximately 1.3 miles to Murphy Avenue. Turn right (NE) and proceed 0.05 mile to monitor point on right side of Murphy Avenue. The distance to the array is 2.05 miles. The field intensity measured at this point should not exceed 53.3 mV/m, Daytime.

SECTION III - L Name of Applicat	ICENSE APPLICATION ENGI	NEERING DATA	· · · · · · · · · · · · · · · · · · ·			
	al Radio Broadcasting	Licensee I	LC			
L	UTHORIZATION APPLIED FOR			>		
		-		·		<u>.</u>
X	Station License	X Direct Mea	surement of Pov	wer	•	
1. Facilities auth	orized in construction permit	1				·····
Call Sign	File No. of Construction Permit (if applicable)		Hours of Oper	ation		kilowatts
KSJX	not applicable	(kHz) 1500	unlimited	1	Night 5.0	Day 10.0
2. Station location	n n	• · · · · · · · · · · · · · · · · · · ·		·		
State			City or Town	• .	,	
Californ	nia	•	San Jose		•	-
3. Transmitter lo	cation					· · · · · · · · · · · · · · · · · · ·
State	County		City or Town	:	Street address	
CA	Santa Clara		San Jose	-5	(or other identifica 501 Wooster	
4. Main studio lo	cation	· · · · · · · · · · · · · · · · · · ·	1	-	JUI WOOSCEI	56.
State	County	· · · · ·	City or Town		Street address	
CA	Santa Clara		San Jose «		(or other identifica	•
5 Remote contro	of point location (specify only if a	uthorized direction			501 Wooster	St.
State	County	denomized direction	City or Town		Street address	
CA	Santa Clara	*	San Jose		(or other identifica	,
					501 Wooster	St.
	oved stereo generating equipme pling system meet the requireme	4 , 84 a	ection 73.68?		X Ye	
			λ.			Iot Applicable
		•				
Attach as an Ex	hibit a detailed description of the	sampling system	as installed.			bit No. Rpt.
8. Operating con	stants:					
RF common point modulation for nig		without	RF common po modulation for	day system	current (in amperes	s) without
Macaurad antann	10.4	at use) at			1.49	
operating frequen	a or common point resistance (in cy Day	i onms) at	operating frequence		point reactance (i Day	n ohms) at
50.0	50.0		+/-j0		+/-j0	•
Antenna indication	ns for directional operation				~~~	
	Antenna		Antenna mo		Antenna h	ase currents
Tower		· · · · · · · · · · · · · · · · · · ·	current			
1 C	Night 0	Day 0	Night 1.0	Day 1.0	Night not	Day not
2 E		140.8	0.405	0.43	required	required
3 N	unused	94.8	unused	1.02		
4 W	-78.9	unused	0.521	unused		
	·			······		
Manufacturer and	type of antenna monitor:					I

Potomac Instruments AM-1901

SECTION III - Page 2

9. Description of antenna system ((f directional antenna is used, the information requested below should be given for each element of the array. Use separate sheets if necessary.)

niform cross section guyed cowers *see item 11	Overall height in meters of radiator above base insulator, or above base, if grounded. 59.44	Overall height in meters above ground (without obstruction lighting) 60.4	Overall height in meters above ground (include obstruction lighting) 60.4 (NO LIGHTING	If antenna is either top loaded or sectionalized, describé fully in an Exhibit. Exhibit No. DNA
	55,44			
Excitation	× Series	Shunt		
Geographic coordinate ower location.	s to nearest second. For direc	ctional antenna give coordina	ites of center of array. For sin	gle vertical radiator give
North Latitude	37 [°] 21 [′]	28 West Longit	ude 0 121 52	17
f not fully described a antenna mounted on to	bove, attach as an Exhibit fur ower and associated isolation o	ther details and dimensions circuits.	including any other	Exhibit No. DNA
Also, if necessary for dimensions of ground	r a complete description, atta system.	ach as an Exhibit a sketch	of the details and	Exhibit No. ON FILE
permit?	f any, does the apparatus cons		ribed in the application for con	struction permit or in th
No change	Trom originary inc	enseu system		
No change	e from originally lic	ensed system	e viti -	. sf
11. Give reasons for	the change in antenna or comr	non point resistance.		. d
11. Give reasons for	the change in antenna or comr -rebuild following	non point resistance.		. #
11. Give reasons for No change *ASR #s 1 no light:	the change in antenna or comr rebuild following 1215674, 1215676, 123 ing or marking requis	mon point resistance. destruction of sit 15678, 1215679 red	e by fire	
11. Give reasons for No change *ASR #s 1 no light:	the change in antenna or comr -rebuild following	mon point resistance. destruction of sit 15678, 1215679 red ity indicated below and that	e by fire	ng statement of technic
11. Give reasons for No change *ASR #s 1 no light:	the change in antenna or comr - rebuild following 1215674, 1215676, 123 ing or marking requin ent the applicant in the capac t is true to the best of my know	mon point resistance. destruction of sit 15678, 1215679 red ity indicated below and that ledge and belief.	e by fire Thave examined the foregoin heck appropriate box below)	T
11. Give reasons for No change *ASR #s 1 no light: I certify that I represe information and that it Name (Please Print o	the change in antenna or comr - rebuild following 1215674, 1215676, 123 ing or marking requin ent the applicant in the capac t is true to the best of my know	mon point resistance. destruction of sit 15678, 1215679 red ity indicated below and that ledge and belief.	e by fire Thave examined the foregoin heck appropriate box below)	ng statement of technic
 11. Give reasons for No change *ASR #s 1 no light: I certify that I represe information and that it Name (Please Print of Benj, F. Daw Address (include ZIP 	the change in antenna or comme -rebuild following 1215674, 1215676, 121 ing or marking requir ent the applicant in the capac t is true to the best of my know or Type) vson III, P.E. Code)	mon point resistance. destruction of sit 15678, 1215679 red ity indicated below and that ledge and belief. Signature (c Date	e by fire Thave examined the foregoin heck appropriate box below)	T
 11. Give reasons for No change *ASR #s 1 no light: I certify that I represe information and that it Name (Please Print of Benj. F. Daw Address (include ZIP Hatfield & I 	the change in antenna or comme -rebuild following 1215674, 1215676, 123 ing or marking requin ent the applicant in the capac t is true to the best of my know or Type) wson III, P.E. Code) Dawson Consulting Eng- bod Avenue North	mon point resistance. destruction of sit 15678, 1215679 red ity indicated below and that ledge and belief. Signature (c Date Nove	e by fire Thave examined the foregoin hock appropriate box below) Multiple ember 20, 2012 No (Include Area Code)	mA
 11. Give reasons for No change *ASR #s 1 no light: I certify that I represe information and that it Name (Please Print C Benj. F. Daw Address (include ZIP Hatfield & I 9500 Greenwood) 	the change in antenna or comme -rebuild following 1215674, 1215676, 123 ing or marking requin ent the applicant in the capac t is true to the best of my know or Type) wson III, P.E. Code) Dawson Consulting Eng- bod Avenue North	mon point resistance. destruction of sit 15678, 1215679 red ity indicated below and that ledge and belief. Signature (c Date Nove	e by fire Thave examined the foregoin hock appropriate box below) Multiple ember 20, 2012 No (Include Area Code)	T

Chief Operator

X

Other (specify) Consulting Engineer

FCC 302-AM (Page 5) August 1995 **Technical Consultant**

a,