

1776 K STREET NW WASHINGTON, DC 20006 PHONE 202.719.7000 FAX 202.719.7049

7925 JONES BRANCH DRIVE McLEAN, VA 22102 PHONE 703.905.2800 FAX 703.905.2820

www.wileyrein.com

5

OCT - 3 2012

FILED/ACCEPTED

Federal Communications Commission Office of the Secretary

## **BY HAND DELIVERY**

October 3, 2012

Marlene H. Dortch, Secretary Federal Communications Commission 445 12th Street, SW Washington, DC 20554 Mark N. Lipp 202.719.7503 mlipp@wileyrein.com

ORIGINAL

# THIL OC TO THE

Re: Application for AM Broadcast Station License Using Method of Moments Model Multicultural Radio Broadcasting Licensee, LLC Station KSJX(AM), San Jose, California Facility Identifier Number 4118

Dear Ms. Dortch:

Transmitted herewith on behalf of Multicultural Radio Broadcasting Licensee, LLC ("Multicultural"), the licensee of Station KSJX(AM) referenced above, is an application for license for its authorized directional antenna system using the Method of Moments model. The KSJX site, which was destroyed by fire, has been re-built according to its license BZ-950120AE. KSJX operates on 1500 kHz with a power of 10kW daytime and 5 kW nighttime, with different directional antenna parameters for day and night operation. The technical portion of this application and the engineering exhibits that support it were prepared by Multicultural's consulting engineer, Benjamin F. Dawson, III, P.E., of Hatfield & Dawson Consulting Engineers.

Please note that the filing fees associated with this application were paid in full today, October 3, 2012, using FCC Fee Filer. Copies of the Submission Confirmation, Payment Confirmation and the FCC Form 159 are included herein.

If there are any questions about this Application, please contact undersigned counsel to Multicultural Radio Broadcasting Licensee, LLC.

Sincerely,

Mark N. Lipp

Enclosure

13505358.1

| FILED/AUGEFIED | F | I | L | E | $\boldsymbol{\nu}$ | Ŋ | P | V | U | C | E | ٢ | I | E | U |  |
|----------------|---|---|---|---|--------------------|---|---|---|---|---|---|---|---|---|---|--|
|----------------|---|---|---|---|--------------------|---|---|---|---|---|---|---|---|---|---|--|

# OCT

|                                                              | Sol |
|--------------------------------------------------------------|-----|
| OCT - 3 2012                                                 |     |
| Federal Communications Commission<br>Office of the Secretary |     |

SNE

10/9/12

Federal Communications Commission Washington, D. C. 20554

e<sup>r:</sup>

Ċ

Approved by OMB 3060-0627 Expires 01/31/98

FOR FCC USE ONLY

## **FCC 302-AM** APPLICATION FOR AM

## **BROADCAST STATION LICENSE**

(Please read instructions before filling out form.

| FOR COMMISSION USE ONLY   |
|---------------------------|
| FILE NO. BMML. 2012003ACV |

| SECTION I - APPLICANT FEE INFORMATION                                                                                                                       |                                                 |                       |                   |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|-----------------------|-------------------|--|--|--|--|--|
| 1. PAYOR NAME (Last, First, Middle Initial)                                                                                                                 |                                                 |                       |                   |  |  |  |  |  |
| Wiley Rein, LLP                                                                                                                                             |                                                 |                       |                   |  |  |  |  |  |
| MAILING ADDRESS (Line 1) (Maximum 35 characters)                                                                                                            |                                                 |                       |                   |  |  |  |  |  |
| 1776 K Street, NW<br>MAILING ADDRESS (Line 2) (Maximum 35 characters)                                                                                       |                                                 |                       |                   |  |  |  |  |  |
| MAILING ADDRESS (LINE 2) (Maximum 35 Characters)                                                                                                            |                                                 |                       |                   |  |  |  |  |  |
| CITY<br>Washington                                                                                                                                          | STATE OR COUNTRY (if fo                         | oreign address)       | ZIP CODE<br>20006 |  |  |  |  |  |
| TELEPHONE NUMBER (include area code)         CALL LETTERS         OTHER FCC IDENTIFIER (If applicable)           202.719.7503         KSJX(AM)         4118 |                                                 |                       |                   |  |  |  |  |  |
| 2. A. Is a fee submitted with this application?                                                                                                             |                                                 | [                     | ✓ Yes No          |  |  |  |  |  |
| B. If No, indicate reason for fee exemption (see 47 C.F.R. Section                                                                                          |                                                 |                       |                   |  |  |  |  |  |
| Governmental Entity Noncommercial educ                                                                                                                      | cational licensee                               | ther (Please explain) | ):                |  |  |  |  |  |
| C. If Yes, provide the following information:                                                                                                               |                                                 |                       |                   |  |  |  |  |  |
| Enter in Column (A) the correct Fee Type Code for the service you a                                                                                         |                                                 |                       |                   |  |  |  |  |  |
| Fee Filing Guide." Column (B) lists the Fee Multiple applicable for thi                                                                                     | is application. Enter fee amou                  | int due in Column (C  | ).                |  |  |  |  |  |
|                                                                                                                                                             |                                                 |                       |                   |  |  |  |  |  |
| (A) (B)                                                                                                                                                     | (C)<br>FEE DUE FOR FE                           | E                     |                   |  |  |  |  |  |
| FEE TYPE FEE MULTIPLE                                                                                                                                       | TYPE CODE IN<br>COLUMN (A)                      |                       | FOR FCC USE ONLY  |  |  |  |  |  |
| M M R 0 0 1                                                                                                                                                 | \$ 635.00                                       |                       |                   |  |  |  |  |  |
|                                                                                                                                                             | Ψ 035.00                                        |                       |                   |  |  |  |  |  |
| To be used only when you are requesting concurrent actions which rea                                                                                        | sult in a requirement to list mo                | re than one Fee Typ   | e Code.           |  |  |  |  |  |
| (A) (B)                                                                                                                                                     | (C)                                             |                       |                   |  |  |  |  |  |
| M O R 0 0 1                                                                                                                                                 | \$ 730.00                                       |                       | FOR FCC USE ONLY  |  |  |  |  |  |
|                                                                                                                                                             |                                                 |                       |                   |  |  |  |  |  |
|                                                                                                                                                             |                                                 | L                     |                   |  |  |  |  |  |
| ADD ALL AMOUNTS SHOWN IN COLUMN C,                                                                                                                          | TOTAL AMOUNT<br>REMITTED WITH TH<br>APPLICATION | lis                   | FOR FCC USE ONLY  |  |  |  |  |  |
| AND ENTER THE TOTAL HERE.<br>THIS AMOUNT SHOULD EQUAL YOUR ENCLOSED                                                                                         | \$ 1,365.00                                     |                       |                   |  |  |  |  |  |
| REMITTANCE.                                                                                                                                                 |                                                 | I L                   |                   |  |  |  |  |  |
|                                                                                                                                                             |                                                 |                       |                   |  |  |  |  |  |

| SECTION II - APPLICANT INFORMATION                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |                     |                                                 |                                                |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|---------------------|-------------------------------------------------|------------------------------------------------|--|--|--|--|
| 1. NAME OF APPLICANT<br>Multicultural Radio Broadcasting Licensee, LLC                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |                     |                                                 |                                                |  |  |  |  |
| MAILING ADDRESS<br>27 William Street, 11th Floor                                                                                                                                                                                                                                                                                                                                                                       | r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           |                     |                                                 |                                                |  |  |  |  |
| CITY<br>New York                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           | STATE<br>New Y      | ′ork                                            | ZIP CODE<br>10005                              |  |  |  |  |
| 2. This application is for:                                                                                                                                                                                                                                                                                                                                                                                            | 2. This application is for:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                     |                                                 |                                                |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                        | AM Direc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | tional    | L_I AM N            | on-Directional                                  |                                                |  |  |  |  |
| Call letters                                                                                                                                                                                                                                                                                                                                                                                                           | Community of License                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Construct | ion Permit File No. | Modification of Construction Permit File No(s). | Expiration Date of Last<br>Construction Permit |  |  |  |  |
| KSJX                                                                                                                                                                                                                                                                                                                                                                                                                   | San Jose, California                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           | N/A                 | N/Å                                             | N/A                                            |  |  |  |  |
| 3. Is the station naccordance with 47 C.F                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | to autor  | natic program       | test authority in                               | Yes No<br>Exhibit No.                          |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                        | Sit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           |                     |                                                 |                                                |  |  |  |  |
| 4. Have all the terms construction permit bee                                                                                                                                                                                                                                                                                                                                                                          | s, conditions, and obligan fully met?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ations s  | et forth in the     | above described                                 | Yes No                                         |  |  |  |  |
| If No, state exceptions in                                                                                                                                                                                                                                                                                                                                                                                             | n an Exhibit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |                     |                                                 | N/A                                            |  |  |  |  |
| the grant of the under                                                                                                                                                                                                                                                                                                                                                                                                 | ges already reported, has<br>ying construction permit<br>d in the construction perm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | which v   | vould result in     | any statement or                                | Yes No                                         |  |  |  |  |
| If Yes, explain in an Ex                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | in appilo |                     |                                                 | Exhibit No.<br>N/A                             |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                        | ed its Ownership Report                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |                     | ership                                          | Yes No                                         |  |  |  |  |
| certification in accordan                                                                                                                                                                                                                                                                                                                                                                                              | ce with 47 C.F.R. Section                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 73.361    | 5(b)?               |                                                 | Does not apply                                 |  |  |  |  |
| lf No, explain in an Exhi                                                                                                                                                                                                                                                                                                                                                                                              | bit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           |                     |                                                 | Exhibit No.                                    |  |  |  |  |
| 7. Has an adverse finding been made or an adverse final action been taken by any court or administrative body with respect to the applicant or parties to the application in a civil or criminal proceeding, brought under the provisions of any law relating to the following: any felony; mass media related antitrust or unfair competition; fraudulent statements to another governmental unit; or discrimination? |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |                     |                                                 |                                                |  |  |  |  |
| involved, including an id<br>(by dates and file num<br>information has been<br>required by 47 U.S.C. S<br>of that previous submis-<br>the call letters of the st                                                                                                                                                                                                                                                       | another governmental unit; or discrimination?<br>If the answer is Yes, attach as an Exhibit a full disclosure of the persons and matters<br>involved, including an identification of the court or administrative body and the proceeding<br>(by dates and file numbers), and the disposition of the litigation. Where the requisite<br>information has been earlier disclosed in connection with another application or as<br>required by 47 U.S.C. Section 1.65(c), the applicant need only provide: (i) an identification<br>of that previous submission by reference to the file number in the case of an application,<br>the call letters of the station regarding which the application or Section 1.65 information<br>was filed, and the date of filing; and (ii) the disposition of the previously reported matter. |           |                     |                                                 |                                                |  |  |  |  |

FCC 302-AM (Page 2) August 1995

C<sup>1</sup> e

8. Does the applicant, or any party to the application, have a petition on file to migrate to the expanded band (1605-1705 kHz) or a permit or license either in the existing band or expanded band that is held in combination (pursuant to the 5 year holding period allowed) with the AM facility proposed to be modified herein?

If Yes, provide particulars as an Exhibit,

The APPLICANT hereby waives any claim to the use of any particular frequency or of the electromagnetic spectrum as against the regulatory power of the United States because use of the same, whether by license or otherwise, and requests and authorization in accordance with this application. (See Section 304 of the Communications Act of 1934, as amended).

The APPLICANT acknowledges that all the statements made in this application and attached exhibits are considered material representations and that all the exhibits are a material part hereof and are incorporated herein as set out in full in

#### CERTIFICATION

1. By checking Yes, the applicant certifies, that, in the case of an individual applicant, he or she is not subject to a denial of federal benefits that includes FCC benefits pursuant to Section 5301 of the Anti-Drug Abuse Act of 1988, 21 U.S.C. Section 862, or, in the case of a non-individual applicant (e.g., corporation, partnership or other unincorporated association), no party to the application is subject to a denial of federal benefits that includes FCC benefits pursuant to that section. For the definition of a "party" for these purposes, see 47 C.F.R. Section 1.2002(b).

2. I certify that the statements in this application are true, complete, and correct to the best of my knowledge and belief, and are made in good faith.

| Name          | Signature  | 100              |
|---------------|------------|------------------|
| Yvonne S. Liu | hich       | V.T. II.         |
| Title         | Date       | Telephone Number |
| Secretary     | 10/02/2012 | 212.431.4300     |

#### WILLFUL FALSE STATEMENTS ON THIS FORM ARE PUNISHABLE BY FINE AND/OR IMPRISONMENT (U.S. CODE, TITLE 18, SECTION 1001), AND/OR REVOCATION OF ANY STATION LICENSE OR CONSTRUCTION

FCC NOTICE TO INDIVIDUALS REQUIRED BY THE PRIVACY ACT AND THE PAPERWORK REDUCTION ACT

The solicitation of personal information requested in this application is authorized by the Communications Act of 1934, as amended. The Commission will use the information provided in this form to determine whether grant of the application is in the public interest. In reaching that determination, or for law enforcement purposes, it may become necessary to refer personal information contained in this form to another government agency. In addition, all information provided in this form will be available for public inspection. If information requested on the form is not provided, the application may be returned without action having been taken upon it or its processing may be delayed while a request is made to provide the missing information. Your response is required to obtain the requested authorization.

Public reporting burden for this collection of information is estimated to average 639 hours and 53 minutes per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the burden, can be sent to the Federal Communications Commission, Records Management Branch, Paperwork Reduction Project (3060-0627), Washington, D. C. 20554. Do NOT send completed forms to this address.

THE FOREGOING NOTICE IS REQUIRED BY THE PRIVACY ACT OF 1974, P.L. 93-579, DECEMBER 31, 1974, 5 U.S.C. 552a(e)(3), AND THE PAPERWORK REDUCTION ACT OF 1980, P.L. 96-511, DECEMBER 11, 1980, 44 U.S.C. 3507.

> FCC 302-AM (Page 3) August 1995



| Exhibit | No. |
|---------|-----|
| <br>    | ~   |



| SECTION III - LICENSE APPLICATION E | NGINEERING DATA |
|-------------------------------------|-----------------|
|-------------------------------------|-----------------|

Name of Applicant

.

n e

Multicultural Radio Broadcasting Licensee, LLC

Х

PURPOSE OF AUTHORIZATION APPLIED FOR: (check one)

| X | Station License |  |
|---|-----------------|--|
|---|-----------------|--|

Direct Measurement of Power

| 1. Facilities authorized in construction permit |                                        |                                         |                              |                                             |                    |  |  |  |
|-------------------------------------------------|----------------------------------------|-----------------------------------------|------------------------------|---------------------------------------------|--------------------|--|--|--|
| Call Sign                                       | gn File No. of Construction Permit Fre |                                         | Frequency Hours of Operation |                                             | Power in kilowatts |  |  |  |
| KSJX                                            | (if applicable)                        | (kHz)                                   |                              | Night                                       | Day                |  |  |  |
| 1.50X                                           | not applicable                         | 1500                                    | unlimited                    | 5.0                                         | 10.0               |  |  |  |
| 2. Station location                             |                                        |                                         |                              |                                             |                    |  |  |  |
| State                                           |                                        |                                         | City or Town                 |                                             |                    |  |  |  |
| Californ                                        | nia                                    |                                         | San Jose                     |                                             |                    |  |  |  |
| 3. Transmitter lo                               | cation                                 |                                         |                              |                                             |                    |  |  |  |
| State                                           | County                                 |                                         | City or Town                 | Street address                              |                    |  |  |  |
| CA                                              | Santa Clara                            |                                         | San Jose                     | (or other identification                    | ,                  |  |  |  |
|                                                 | Sanca Clara                            |                                         | San Jose 501 Wooster St.     |                                             |                    |  |  |  |
| 4. Main studio lo                               | cation                                 |                                         |                              |                                             |                    |  |  |  |
| State County                                    |                                        |                                         | City or Town                 | Street address<br>(or other identification) |                    |  |  |  |
| CA                                              | Santa Clara                            |                                         | San Jose                     | 501 Wooster St.                             |                    |  |  |  |
| 5. Remote contro                                | ol point location (specify only if au  | thorized direction                      | al antenna)                  |                                             |                    |  |  |  |
| State                                           | County                                 |                                         | City or Town                 | Street address<br>(or other identification  | ation)             |  |  |  |
| CA Santa Clara                                  |                                        |                                         | San Jose                     | 501 Wooster St.                             |                    |  |  |  |
|                                                 |                                        | *************************************** |                              | L                                           |                    |  |  |  |

| 6. Has type-approved stereo generating equipment been installed?                 | Yes X No                 |
|----------------------------------------------------------------------------------|--------------------------|
| 7. Does the sampling system meet the requirements of 47 C.F.R. Section 73.68?    | X Yes No                 |
|                                                                                  | Not Applicable           |
| Attach as an Exhibit a detailed description of the sampling system as installed. | Exhibit No.<br>Eng. Rpt. |

| 8. Operating constants:                                  |                    |                              |                |                                                                                   |                    |              |  |  |  |
|----------------------------------------------------------|--------------------|------------------------------|----------------|-----------------------------------------------------------------------------------|--------------------|--------------|--|--|--|
| RF common point or antenna comodulation for night system | urrent (in ampere  | s) without                   |                | RF common point or antenna current (in amperes) without modulation for day system |                    |              |  |  |  |
| 10                                                       | 0.4                |                              |                | 14                                                                                | .49                |              |  |  |  |
| Measured antenna or common operating frequency           |                    | in ohms) at                  | operating freq |                                                                                   | point reactance (i | n ohms) at   |  |  |  |
| Night                                                    | Day                |                              | Night          |                                                                                   | Day                |              |  |  |  |
| 50.0 50.0                                                |                    |                              | +/-j0          | +/-j0 +/-j                                                                        |                    |              |  |  |  |
| Antenna indications for directional operation            |                    |                              |                |                                                                                   |                    |              |  |  |  |
| Towers                                                   | 1                  | a monitor<br>g(s) in degrees |                | onitor sample<br>ratio(s)                                                         | Antenna ba         | ase currents |  |  |  |
|                                                          | Night              | Day                          | Night          | Day                                                                               | Night              | Day          |  |  |  |
| 1 C                                                      | 0                  | 0                            | 1.0            | 1.0                                                                               | not                | not          |  |  |  |
| 2 E                                                      | 63.3               | 140.8                        | 0.405          | 0.43                                                                              | required           | required     |  |  |  |
| 3 N                                                      | unused             | 94.8                         | unused         | 1.02                                                                              |                    |              |  |  |  |
| 4 W -78.9 unused                                         |                    |                              | 0.522          | unused                                                                            |                    |              |  |  |  |
|                                                          |                    |                              |                |                                                                                   |                    |              |  |  |  |
| Manufacturer and type of anten                           | na monitor:<br>Pot | omac Instrum                 | ents AM-190    | 01                                                                                |                    |              |  |  |  |

#### SECTION III - Page 2

9. Description of antenna system ((f directional antenna is used, the information requested below should be given for each element of the array. Use separate sheets if necessary.)

| Type Radiator<br>uniform cross<br>section guyed<br>towers | Overall height in meters of<br>radiator above base<br>insulator, or above base, if<br>grounded. | Overall height in meters<br>above ground (without<br>obstruction lighting) | Overall height in meters<br>above ground (include<br>obstruction lighting) | If antenna is either top<br>loaded or sectionalized,<br>describe fully in an<br>Exhibit. |  |
|-----------------------------------------------------------|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------------------------|--|
| *see item 11                                              | 59.44                                                                                           | 60.4                                                                       | 60.4 (NO LIGHTING                                                          | Exhibit No.<br>DNA                                                                       |  |
| Excitation                                                | x Series                                                                                        | Shunt                                                                      |                                                                            |                                                                                          |  |

Excitation

Geographic coordinates to nearest second. For directional antenna give coordinates of center of array. For single vertical radiator give tower location.

Exhibit No. DNA

Exhibit No.

ON FILE

If not fully described above, attach as an Exhibit further details and dimensions including any other antenna mounted on tower and associated isolation circuits.

Also, if necessary for a complete description, attach as an Exhibit a sketch of the details and dimensions of ground system.

10. In what respect, if any, does the apparatus constructed differ from that described in the application for construction permit or in the permit?

No change from originally licensed system

11. Give reasons for the change in antenna or common point resistance.

No change -rebuild following destruction of site by fire

\*ASR #s 1215674, 1215676, 1215678, 1215679 no lighting or marking required

I certify that I represent the applicant in the capacity indicated below and that I have examined the foregoing statement of technical information and that it is true to the best of my knowledge and belief.

| Name (Please Print or Type)                                           | Signature (check appropriate box below) |
|-----------------------------------------------------------------------|-----------------------------------------|
| Benj. F. Dawson III, P.E.                                             | Mint tour the                           |
| Address (include ZIP Code)                                            | Date                                    |
| Hatfield & Dawson Consulting Engineers<br>9500 Greenwood Avenue North | September 28, 2012                      |
| Seattle, WA 98103                                                     | Telephone No. (Include Area Code)       |
|                                                                       | 206 783 9151                            |

| Technical Director | X | Registered Professional Engineer |
|--------------------|---|----------------------------------|
| Chief Operator     |   | Technical Consultant             |



FCC 302-AM (Page 5) August 1995

BENJAMIN F. DAWSON III, PE THOMAS M. ECKELS, PE STEPHEN S. LOCKWOOD, PE DAVID J. PINION, PE ERIK C. SWANSON, PE

¢.

THOMAS S. GORTON, PE MICHAEL H. MEHIGAN, PE HATFIELD & DAWSON CONSULTING ELECTRICAL ENGINEERS 9500 GREENWOOD AVE. N. SEATTLE, WASHINGTON 98103

TELEPHONE (206) 783-9151 FACSIMILE (206) 789-9834 E-MAIL hatdaw@hatdaw.com

> JAMES B. HATFIELD, PE CONSULTANT

Maury L. Hatfield, PE (1942-2009) Paul W. Leonard, PE (1925-2011)

## Application for License

KSJX (AM)

# San Jose, CA

1500 kHz

## 10.0 kW Day, 5.0 kW Night DA-2

Multicultural Radio Broadcasting Licensee, LLC September, 2012

## APPLICATION FOR LICENSE

## RADIO STATION KSJX-AM San Jose, CA 1500 kHz, 10 kW Day, 5 kW Night, DA-2

## Purpose of Application

Ċ

- Item 1 Tower Impedance Measurements and Verification of Method of Moments Model
- Item 2 Derivation of Operating Parameters for Directional Antenna
- Item 3 Method of Moments Model Details for Towers Driven Individually
- Item 4 Method of Moments Model Details for Directional Antenna Pattern
- Item 5 Post Construction Array Geometry Statement
- Item 6 Sampling System Measurements
- Item 7 Reference Field Strength Measurements
- Item 8 Direct Measurement of Power
- Item 9 Antenna Monitor and Sampling System
- Item 10 Harmonic and Intermodulation Measurements
- Appendix A License BZ-950120AE
- Appendix B FCC Form 302-AM

## **Purpose of Application**

This engineering exhibit supports an application for license for the authorized directional antenna system for radio station KSJX, San Jose, CA. KSJX operates on 1500 kHz with a power of 10 kW daytime and 5 kW nighttime, with different directional antenna parameters for day and night operation.

The most recent complete KSJX license document is BZ-950120AE, and a copy is included in this report as Exhibit A.

Information is provided herein demonstrating that the directional antenna parameters for the patterns authorized by the station license have been determined in accordance with the requirements of section 73.151(c) of the FCC Rules. The system has been adjusted to produce antenna monitor parameters within +/- 5 percent in ratio and +/- 3 degrees in phase of the modeled values, as required by the Rules.

All measurements used in this report were made by Robert Turner, Stephen Lockwood, or the undersigned.

Benjamin F. Dawson III, P.E.



Hatfield & Dawson Consulting Engineers

## Item 1

85

## Analysis of Tower Impedance Measurements to Verify Method of Moments Model - KSJX

Tower base impedance measurements were made at the locations of the outputs of the antenna coupling units and diplexing filtering equipment using a Hewlett Packard 8751A network analyzer in a calibrated measurement system. The other towers were open circuited at the same point where impedance measurements were made (the "reference points") for each of the measurements.

Circuit calculations were performed to relate the method of moments modeled impedances at the tower base feed points to those at the measurement locations as shown in the following table. The base conditions shown for each tower, which includes the stray capacitances were used in the moment method model as a load at ground level for the open circuited case. The towers each have a lighting choke used as a static drain inductor.

In addition to the page showing the schematic of the assumed circuit and tabulation of calculated values, a page showing the results of calculations using the NETBW circuit analysis program is included. These calculations show the impedance transformations and phase shifts between the tower base values produced by MININEC and the location of the current sample devices used to produce the antenna monitor input signals.

The following table shows the allowable range of modeled impedance values.

KSJX Tower Measurement Matrix:

| Tower # | R open | Hi Limit | Lo Limit | X open | Hi Limit | Lo Limit |
|---------|--------|----------|----------|--------|----------|----------|
| 1       |        |          | 109.36   | 237.50 | 249.00   | 226.00   |
| 2       | 150.20 | 158.21   | 142.19   | 229.20 | 240.37   | 218.03   |
| 3       | 128.05 | 135.17   | 120.93   | 219.30 | 230.07   | 208.53   |
| 4       | 138.20 | 145.73   | 130.67   | 232.00 | 243.28   | 220.72   |

# NETBW CALCULATION OF TOWER IMPEDANCE MEASUREMENTS TO VERIFY METHOD OF MOMENTS MODEL

Tower #1 C

C3 (6)

| FREQUENCY<br>(KHZ)<br>1500<br>-1.537513 | LOAD<br>RESISTANCE<br>106.4  | LOAD<br>REACTANCE<br>195.2  | INPUT<br>RESISTANCE<br>116.4541 | INPUT<br>REACTANCE<br>237.5446 |
|-----------------------------------------|------------------------------|-----------------------------|---------------------------------|--------------------------------|
| Tower #2 E                              |                              |                             |                                 |                                |
| FREQUENCY<br>(KHZ)<br>1500<br>-1.967563 | LOAD<br>RESISTANCE<br>136.1  | LOAD<br>REACTANCE<br>198.4  | INPUT<br>RESISTANCE<br>149.3363 | INPUT<br>REACTANCE<br>229.377  |
| Tower #3 N                              |                              |                             |                                 |                                |
| FREQUENCY<br>(KHZ)<br>1500<br>-1.694145 | LOAD<br>RESISTANCE<br>117.4  | LOAD<br>REACTANCE<br>191.05 | INPUT<br>RESISTANCE<br>128.4328 | INPUT<br>REACTANCE<br>219.7422 |
| Tower #4 W                              |                              |                             |                                 |                                |
| FREQUENCY<br>(KHZ)<br>1500<br>-1.833124 | LOAD<br>RESISTANCE<br>127.24 | LOAD<br>REACTANCE<br>183.14 | INPUT<br>RESISTANCE<br>138.2645 | INPUT<br>REACTANCE<br>228.886  |

HATFIELD & DAWSON CONSULTING ENGINEERS

TOWER

L<sub>1</sub>Z

L<sub>2</sub>Z

CΖ

£.

RADIO STATION KSJX

SAN JOSE, CA

INPUT Z

09/2012

meas Z

ANALYSIS OF TOWER IMPEDANCE MEASUREMENTS TO VERIFY METHOD OF MOMENTS MODEL

 ${\rm L}_2\,$  Includes hookup reactance and series filter stray inductance

 ${\rm L}^{\phantom{+}}_1$  INCLUDES STRAY CAPACITANCE AND LIGHTING CHOKE USED AS STATIC DRAIN

| #3 N<br>#4 W | +j14420 | +j43         | -j3230           | 127.24 +j183.14                 | 138.26 +j228.9                     | 138.2 +j232.0                   |
|--------------|---------|--------------|------------------|---------------------------------|------------------------------------|---------------------------------|
| #2 E<br>#3 N | +j14420 | +j27<br>+i24 | -j3230<br>-i3230 | 136.1 +j198.4<br>117.4 +j191.05 | 149.34 +j229.38<br>128.43 +j219.74 | 150.2 +j229.2<br>128.05 +j219.3 |
| #1 C         | +j14420 | +j37         | -j3230           | 106.4 +j195.2                   | 116.45 +j237.56                    | 116.0 +j237.5                   |

MODEL Z



# Item 2 Derivation of Operating Parameters for Directional Antenna - KSJX

0

The method of moments model of the array, following verification with the measured individual open circuited base impedances, was utilized for directional antenna calculations. Calculations were made to determine the complex voltage values for sources located at ground level under each tower of the array to produce current moment sums for the towers that, when normalized, equated to the theoretical field parameters of the authorized directional antenna patterns. With these voltage sources, the tower currents were calculated. Twenty segments were used for towers in the moment method model.

# NETBW CALCULATION OF OPERATING PARAMETERS FROM METHOD OF MOMENTS MODEL

*DAYTIME PATTERN* Tower #1 C

6° 63

| FREQUENCY<br>(KHZ)<br>1500<br>-2.839545 | LOAD<br>RESISTANCE<br>193.32  | LOAD<br>REACTANCE<br>261.69 | INPUT<br>RESISTANCE<br>218.4882  | INPUT<br>REACTANCE<br>303.901  |
|-----------------------------------------|-------------------------------|-----------------------------|----------------------------------|--------------------------------|
| Tower #2 E                              |                               |                             |                                  |                                |
| FREQUENCY<br>(KHZ)<br>1500<br>7323643   | LOAD<br>RESISTANCE<br>-49.339 | LOAD<br>REACTANCE<br>300.32 | INPUT<br>RESISTANCE<br>-57.09225 | INPUT<br>REACTANCE<br>348.6982 |
| Tower #3 N                              |                               |                             |                                  |                                |
| FREQUENCY<br>(KHZ)<br>1500<br>790005    | LOAD<br>RESISTANCE<br>55.788  | LOAD<br>REACTANCE<br>114.53 | INPUT<br>RESISTANCE<br>58.78417  | INPUT<br>REACTANCE<br>140.5306 |
| <i>NIGHTTIME PAT</i><br>Tower #1 C      | TERN                          |                             |                                  |                                |
| FREQUENCY<br>(KHZ)<br>1500<br>-1.480308 | LOAD<br>RESISTANCE<br>103.5   | LOAD<br>REACTANCE<br>154.16 | INPUT<br>RESISTANCE<br>110.9762  | INPUT<br>REACTANCE<br>193.3128 |
| Tower #2 E                              |                               |                             |                                  |                                |
| FREQUENCY<br>(KHZ)<br>1500<br>7515164   | LOAD<br>RESISTANCE<br>52.629  | LOAD<br>REACTANCE<br>147.88 | INPUT<br>RESISTANCE<br>56.35905  | INPUT<br>REACTANCE<br>178.9682 |
| Tower #4 W                              |                               |                             |                                  |                                |
| FREQUENCY<br>(KHZ)<br>1500<br>-4.389215 | LOAD<br>RESISTANCE<br>303.04  | LOAD<br>REACTANCE<br>210.7  | INPUT<br>RESISTANCE<br>332.2941  | INPUT<br>REACTANCE<br>237.9933 |



| DAY | TOWER | MODEL<br>I MAG | INPUT<br>I MAG | MODEL<br>PHASE | INPUT<br>PHASE | NORMALIZED<br>I MAG PHASE |
|-----|-------|----------------|----------------|----------------|----------------|---------------------------|
|     | #1 C  | 6.4826         | 6.0978         | 16.6           | 19.44          | 1.0 <u>/ 0</u>            |
|     | #2 E  | 2.8199         | 2.6214         | 161.0          | 160.27         | 0.430 <u>/ 140.8</u>      |
|     | #3 N  | 6.3765         | 6.2118         | 113.4          | 114.19         | 1.02 <u>/ 94.8</u>        |

NIGHT

c\*3 65

| GHT | TOWER | MODEL<br><sup>I</sup> MAG | INPUT<br>I MAG | MODEL<br>PHASE | INPUT<br>PHASE | NORMALIZED<br>I <sub>MAG</sub> PHASE |
|-----|-------|---------------------------|----------------|----------------|----------------|--------------------------------------|
|     | #1 C  | 5.0440                    | 4.8711         | 10.8           | 12.28          | 1.0 <u>/ 0</u>                       |
|     | #2 E  | 2.0422                    | 1.9740         | 74.8           | 75.55          | 0.405 <u>/ 63.3</u>                  |
|     | #4 W  | 2.6618                    | 2.542          | 289.0          | 293.39         | 0.522 <u>/ -78.9</u>                 |

HATFIELD & DAWSON

TABLE FOR DERIVATION OF OPERATING PARAMETERS FROM METHOD OF MOMENT MODEL

CONSULTING ENGINEERS

RADIO STATION KSJX

SAN JOSE, CA

09/2012

## Item 3

## Method of Moments Model Details for Towers Driven Individually - KSJX

The array of towers was modeled using MININEC.

One wire was used to represent each tower. The top and bottom wire end points were specified using electrical degrees in the geographic coordinate system, using the theoretical directional antenna specifications. Each tower was modeled using 20 wire segments. As the towers are physically 107.1 degrees in electrical height, the segment length is 5.355 electrical degrees.

Each tower's modeled height relative to its physical height falls within the required range of 75 to 125 percent and each modeled radius falls within the required range of 80 percent to 150 percent of the radius of a circle having a circumference equal to the sum of the widths of the tower sides. The array consists of non-identical, uniform cross section towers having face widths of width of 18 inches.

| Tower | Physical Modeled |           | Modeled    | Modeled  | Percent of |
|-------|------------------|-----------|------------|----------|------------|
|       | Height           | Height    | Percentage | Radius   | Equivalent |
|       | (degrees)        | (degrees) | of Height  | (meters) | Radius     |
| 1     | 107.1            | 116.5     | 108.78     | 0.218    | 100.0      |
| 2     | 107.1            | 117.75    | 109.94     | 0.218    | 100.0      |
| 3     | 107.1            | 115.75    | 108.08     | 0.218    | 100.0      |
| 4     | 107.1            | 118.9     | 110.18     | 0.218    | 100.0      |

The following pages show the details of the method of moments models for the individually driven towers.

# KSJX Tower 1 Driven, Towers 2, 3 & 4 Open Circuit at Current Transformer Location

5

3

41

0

C:\Muticultural Stations\KSJX and KZSF Rebuild\NEW 6-7-2012 Analysis\ksjx-1c 06-14-2012 12:54:57

GEOMETRY Wire coordinates in degrees; other dimensions in meters Environment: perfect ground wire caps Distance Angle Ζ radius seqs none O 0 1 0 .218 20 0 0 116.5 none 135. 2 61. 0 .218 20 135. 61. 117.75 3 none 90. 341. 0 .218 20 341. 90. 115.75 none 100. 4 251. 0 .218 20 100. 251. 118. Number of wires = 4 current nodes = 80 minimum maximum Individual wires wire value wire value segment length 3 5.7875 4 5.9 radius 1 .218 1 .218 ELECTRICAL DESCRIPTION Frequencies (MHZ) frequency no. of segment length (wavelengths) no. lowest step steps minimum maximum 1.5 0 1 .0160764 .0163889 1 Sources source node sector magnitude phase type 1. 1 1 1 0 voltage Lumped loads resistance reactance inductance capacitance passive load node (ohms) (ohms) (mH) (uF) circuit 21 -4,165. 1 0 0 0 0 2 61 0 -4,164. 0 0 0

-4,164.

Hatfield & Dawson Consulting Engineers

0

0

0

:\Muticultural Stations\KSJX and KZSF Rebuild\NEW 6-7-2012 Analysis\ksjx-1c 06-14-2012 12:54:57 IMPEDANCE normalization = 50. freq resist react imped phase VSWR S12 S11 (ohms) (ohms) (ohms) (MHZ) (deg) dB dB 1; node 1, sector 1 source = 1.5 106.4 195.21 222.32 61.4 9.6576 -1.8052 -4.6839 C:\Muticultural Stations\KSJX and KZSF Rebuild\NEW 6-7-2012 Analysis\ksjx-1c 06-14-2012 12:54:57 CURRENT rms = 1.5 MHZ Frequency Input power = .00107629 watts Efficiency = 100. % coordinates in degrees current maq phase real imaginary Υ Ζ no. Х (amps) (deg) (amps) (amps) -2.79E-03 GND 0 0 0 3.18E-03 298.6 1.52E-03 2 0 0 5.825 3.6E-03 294.9 1.52E-03 -3.26E-03 3 0 0 11.65 3.84E-03 293. -3.53E-03 1.5E-03 4 0 17.475 4.01E-03 291.6 0 1.48E-03 -3.73E-03 5 0 0 23.3 4.13E-03 290.5 1.45E-03 -3.87E-03 6 0 0 29.125 4.2E-03 289.5 1.4E-03 -3.96E-03 7 0 0 34.95 4.21E-03 288.7 1.35E-03 -3.99E-03 8 0 40.775 0 4.18E-03 288. 1.29E-03 -3.97E-03 9 0 0 46.6 4.1E-03 287.4 1.22E-03 -3.91E-03 10 52.425 0 0 3.97E-03 286.8 1.15E-03 -3.8E-03 3.8E-03 286.3 11 0 0 58.25 1.07E-03 -3.65E-03 9.81E-04 12 0 0 64.075 3.59E-03 285.8 -3.46E-03 13 0 0 69.9 3.34E-03 285.4 8.88E-04 -3.22E-03 0 14 0 75.725 3.05E-03 285. 7.9E-04 -2.95E-03 15 0  $\cap$ 81.55 2.73E-03 284.6 6.88E-04 -2.64E-03 16 0 0 87.375 2.37E-03 284.3 5.84E-04 -2.29E-03 17 0 0 93.2 1.98E-03 283.9 4.76E-04 -1.92E-03 18 0 0 99.025 1.56E-03 283.6 3.66E-04 -1.51E-03 19 0 1.1E-03 0 104.85 283.3 2.54E-04 -1.07E-03 -5.96E-04 20 0 110.675 6.11E-04 283. 1.38E-04 Ω END 0 0 116.5 0 0 Ω GND 65.4493 -118.074 4.72E-05 110.9 -1.69E-05 4.41E-05 0 65.4493 22 -118.074 5.8875 1.81E-04 110.9 -6.47E-05 1.69E-04 23 65.4493 -118.074 11.775 2.64E-04 110.9 -9.43E-05 2.47E-04 24 65.4493 -118.074 17.6625 3.32E-04 110.8 -1.18E-04 3.1E-04 25 65.4493 -118.074 23.55 3.87E-04 110.8 -1.37E-04 3.61E-04 -1.53E-04 4.03E-04 26 65.4493 -118.074 29.4375 4.31E-04 110.7 27 65.4493 -118.074 35.325 4.65E-04 110.7 -1.64E-04 4.35E-04 28 65.4493 4.89E-04 110.6 -118.074 41.2125 -1.72E-04 4.58E-04 29 65.4493 -118.074 47.1 5.04E-04 110.6 -1.77E-04 4.72E-04 30 65.4493 -118.074 52.9875 5.1E-04 110.5 -1.79E-04 4.77E-04 31 65.4493 -118.07458.875 5.06E-04 110.4 -1.77E-04 4.74E-04 65.4493 32 -118.074 64.7625 4.94E-04 110.4 -1.72E-04 4.63E-04 65.4493 -1.64E-04 4.43E-04 33 -118.074 70.65 4.72E-04 110.3 34 65.4493 -118.074 4.42E-04 110.2 76.5375 -1.53E-04 4.15E-04

5.

| 35<br>36<br>37<br>38<br>40<br>END<br>42<br>43<br>44<br>45<br>46<br>47<br>48<br>49<br>50<br>51<br>52<br>53<br>54<br>55 | 65.4493<br>65.4493<br>65.4493<br>65.4493<br>65.4493<br>65.4493<br>65.4493<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967 | -118.074<br>-118.074<br>-118.074<br>-118.074<br>-118.074<br>-118.074<br>-118.074<br>29.3011<br>29.3011<br>29.3011<br>29.3011<br>29.3011<br>29.3011<br>29.3011<br>29.3011<br>29.3011<br>29.3011<br>29.3011<br>29.3011<br>29.3011<br>29.3011<br>29.3011<br>29.3011<br>29.3011<br>29.3011 | 82.425<br>88.3125<br>94.2<br>100.088<br>105.975<br>111.863<br>117.75<br>0<br>5.7875<br>11.575<br>17.3625<br>23.15<br>28.9375<br>34.725<br>40.5125<br>46.3<br>52.0875<br>57.875<br>63.6625<br>69.45<br>75.2375<br>81.025 | 4.46E-04<br>4.96E-04<br>5.35E-04<br>5.63E-04<br>5.79E-04<br>5.85E-04<br>5.81E-04<br>5.66E-04<br>5.41E-04 | 110.1 110. 109.9 109.8 109.7 0 157.3 157.3 157.3 157.3 157.3 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 | $\begin{array}{c} -1.39E-04\\ -1.23E-04\\ -1.04E-04\\ -8.32E-05\\ -5.97E-05\\ -3.35E-05\\ 0\\ -5.09E-05\\ -1.94E-04\\ -2.82E-04\\ -3.53E-04\\ -4.11E-04\\ -4.58E-04\\ -5.34E-04\\ -5.34E-04\\ -5.35E-04\\ -5.35E-04\\ -5.35E-04\\ -5.22E-04\\ -4.99E-04\\ -4.67E-04\\ -4.27E-04\\ \end{array}$ | 3.37E-04<br>2.87E-04<br>2.3E-04<br>1.66E-04<br>9.36E-05<br>0<br>2.12E-05<br>8.1E-05<br>1.18E-04<br>1.48E-04<br>1.72E-04<br>2.07E-04<br>2.25E-04<br>2.25E-04<br>2.25E-04<br>2.2E-04<br>1.97E-04 |
|-----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 56                                                                                                                    | 85.0967                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 29.3011                                                                                                                                                                                                                                                                                | 86.8125                                                                                                                                                                                                                 | 4.03E-04<br>4.1E-04                                                                                      | 157.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                | 1.59E-04                                                                                                                                                                                       |
| 57                                                                                                                    | 85.0967                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 29.3011                                                                                                                                                                                                                                                                                | 92.6                                                                                                                                                                                                                    | 3.49E-04                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -3.22E-04                                                                                                                                                                                                                                                                                      | 1.35E-04                                                                                                                                                                                       |
| 58                                                                                                                    | 85.0967                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 29.3011                                                                                                                                                                                                                                                                                | 98.3875                                                                                                                                                                                                                 | 2.8E-04                                                                                                  | 157.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -2.58E-04                                                                                                                                                                                                                                                                                      | 1.08E-04                                                                                                                                                                                       |
| 59                                                                                                                    | 85.0967                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 29.3011                                                                                                                                                                                                                                                                                | 104.175                                                                                                                                                                                                                 |                                                                                                          | 157.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                | 7.8E-05                                                                                                                                                                                        |
| 60                                                                                                                    | 85.0967                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 29.3011                                                                                                                                                                                                                                                                                | 109.963                                                                                                                                                                                                                 | 1.14E-04                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -1.05E-04                                                                                                                                                                                                                                                                                      | 4.39E-05                                                                                                                                                                                       |
| END                                                                                                                   | 85.0967                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 29.3011                                                                                                                                                                                                                                                                                | 115.75                                                                                                                                                                                                                  | 0                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                              |
| GND                                                                                                                   | -32.5568                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 94.5519                                                                                                                                                                                                                                                                                | 0                                                                                                                                                                                                                       |                                                                                                          | 143.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                | 3.71E-05                                                                                                                                                                                       |
| 62                                                                                                                    | -32.5568                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 94.5519                                                                                                                                                                                                                                                                                | 5.9                                                                                                                                                                                                                     | 2.37E-04                                                                                                 | 143.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -1.89E-04                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                |
| 63                                                                                                                    | -32.5568                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 94.5519                                                                                                                                                                                                                                                                                | 11.8                                                                                                                                                                                                                    | 3.46E-04                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -2.76E-04                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                |
| 64                                                                                                                    | -32.5568                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 94.5519                                                                                                                                                                                                                                                                                | 17.7                                                                                                                                                                                                                    |                                                                                                          | 142.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -3.46E-04                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                |
| 65                                                                                                                    | -32.5568                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 94.5519                                                                                                                                                                                                                                                                                | 23.6                                                                                                                                                                                                                    | 5.05E-04                                                                                                 | 142.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -4.03E-04                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                |
| 66<br>67                                                                                                              | -32.5568<br>-32.5568                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 94.5519<br>94.5519                                                                                                                                                                                                                                                                     | 29.5<br>35.4                                                                                                                                                                                                            | 5.63E-04                                                                                                 | 142.9<br>142.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                | 3.4E-04                                                                                                                                                                                        |
| 68                                                                                                                    | -32.5568                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 94.5519                                                                                                                                                                                                                                                                                | 41.3                                                                                                                                                                                                                    | 6.08E-04<br>6.4E-04                                                                                      | 142.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -4.84E-04<br>-5.09E-04                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                |
| 69                                                                                                                    | -32.5568                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 94.5519                                                                                                                                                                                                                                                                                | 47.2                                                                                                                                                                                                                    | 6.59E-04                                                                                                 | 142.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -5.25E-04                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                |
| 70                                                                                                                    | -32.5568                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 94.5519                                                                                                                                                                                                                                                                                | 53.1                                                                                                                                                                                                                    | 6.66E-04                                                                                                 | 142.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -5.3E-04                                                                                                                                                                                                                                                                                       | 4.03E-04                                                                                                                                                                                       |
| 71                                                                                                                    | -32.5568                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 94.5519                                                                                                                                                                                                                                                                                | 59.                                                                                                                                                                                                                     | 6.61E-04                                                                                                 | 142.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -5.26E-04                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                |
| 72                                                                                                                    | -32.5568                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 94.5519                                                                                                                                                                                                                                                                                | 64.9                                                                                                                                                                                                                    | 6.44E-04                                                                                                 | 142.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -5.12E-04                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                |
| 73                                                                                                                    | -32.5568                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 94.5519                                                                                                                                                                                                                                                                                | 70.8                                                                                                                                                                                                                    | 6.16E-04                                                                                                 | 142.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -4.9E-04                                                                                                                                                                                                                                                                                       | 3.74E-04                                                                                                                                                                                       |
| 74                                                                                                                    | -32.5568                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 94.5519                                                                                                                                                                                                                                                                                | 76.7                                                                                                                                                                                                                    | 5.77E-04                                                                                                 | 142.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                | 3.5E-04                                                                                                                                                                                        |
| 75                                                                                                                    | -32.5568                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 94.5519                                                                                                                                                                                                                                                                                | 82.6                                                                                                                                                                                                                    | 5.27E-04                                                                                                 | 142.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                | 3.2E-04                                                                                                                                                                                        |
| 76                                                                                                                    | -32.5568                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 94.5519                                                                                                                                                                                                                                                                                | 88.5                                                                                                                                                                                                                    | 4.67E-04                                                                                                 | 142.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -3.71E-04                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                |
| 77                                                                                                                    | -32.5568                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 94.5519                                                                                                                                                                                                                                                                                | 94.4                                                                                                                                                                                                                    | 3.97E-04                                                                                                 | 142.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -3.15E-04                                                                                                                                                                                                                                                                                      | 2.42E-04                                                                                                                                                                                       |
| 78                                                                                                                    | -32.5568                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 94.5519                                                                                                                                                                                                                                                                                | 100.3                                                                                                                                                                                                                   | 3.18E-04                                                                                                 | 142.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -2.53E-04                                                                                                                                                                                                                                                                                      | 1.94E-04                                                                                                                                                                                       |
| 79                                                                                                                    | -32.5568                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 94.5519                                                                                                                                                                                                                                                                                | 106.2                                                                                                                                                                                                                   | 2.29E-04                                                                                                 | 142.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -1.82E-04                                                                                                                                                                                                                                                                                      | 1.4E-04                                                                                                                                                                                        |
| 80                                                                                                                    | -32.5568                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 94.5519                                                                                                                                                                                                                                                                                | 112.1                                                                                                                                                                                                                   | 1.29E-04                                                                                                 | 142.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -1.02E-04                                                                                                                                                                                                                                                                                      | 7.87E-05                                                                                                                                                                                       |
| END                                                                                                                   | -32.5568                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 94.5519                                                                                                                                                                                                                                                                                | 118.                                                                                                                                                                                                                    | 0                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                              |
|                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                         |                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                |

1971 E.

.

### KSJX Tower 2 Driven, Towers 1, 3 & 4 Open Circuit at Current Transformer Location

5

>

q:

C:\Muticultural Stations\KSJX and KZSF Rebuild\NEW 6-7-2012 Analysis\ksjx-1c 06-14-2012 12:52:09

| IMPEDANC<br>norma | CE<br>Alization    | = 50.  |       |                |        |           |           |
|-------------------|--------------------|--------|-------|----------------|--------|-----------|-----------|
| (MHZ)             | resist<br>(ohms)   | (ohms) |       | phase<br>(deg) | VSWR   | S11<br>dB | S12<br>dB |
|                   | = 1; node<br>136.1 | •      | 240.6 | 55.6           | 8.7598 | -1.9918   | -4.3433   |

### KSJX Tower 3 Driven, Towers 1, 2& 4 Open Circuit at Current Transformer Location

C:\Muticultural Stations\KSJX and KZSF Rebuild\NEW 6-7-2012 Analysis\ksjx-1c 06-14-2012 12:58:07

IMPEDANCE normalization = 50. phase resist react S12 imped VSWR S11 freq (ohms) (ohms) (ohms) dB dB (MHZ) (deg) source = 1; node 41, sector 1 1.5 117.4 191.05 224.24 58.4 8.8792 -1.9648 -4.3901

## KSJX Tower 4 Driven, Towers 1, 2 & 3 Open Circuit at Current Transformer Location

C:\Muticultural Stations\KSJX and KZSF Rebuild\NEW 6-7-2012 Analysis\ksjx-1c 06-14-2012 13:00:22

IMPEDANCE normalization = 50. phase VSWR S11 S12 freq resist react imped (ohms) (ohms) (MHZ) (ohms) (deg) dB dB source = 1; node 61, sector 1 127.24 1.5 183.14 223.01 55.2 8.0861 -2.1594 -4.0696

# Item 4 Method of Moments Model Details for Directional Antenna- KZSF

The array of towers was modeled using MININEC with the individual tower characteristics that were verified by the individual tower impedance measurements. Calculations were made to determine the complex voltage values for sources located at ground level under each tower of the array to produce current moment sums for the towers that, when normalized, equated to the theoretical field parameters of the authorized directional antenna pattern. The following pages contain details of the method of moments models of the directional antenna patterns.

| Tower | Wire | Base Node |
|-------|------|-----------|
| 1     | 1    | 1         |
| 2     | 2    | 21        |
| 3     | 3    | 41        |
| 4     | 4    | 61        |

## KSJX Driven Array - Day

67 (C

|                                                                                                                | C:\Muticultural Stations\KSJX and KZSF Rebuild\NEW 6-7-2012<br>Analysis\ksjx-lc-driven day 06-14-2012 14:12:08 |                           |                                              |                                 |                                          |                              |  |  |
|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|---------------------------|----------------------------------------------|---------------------------------|------------------------------------------|------------------------------|--|--|
| GEOME<br>Wire<br>Envir                                                                                         | coordin                                                                                                        | ates in deg<br>perfect gr | rees; other d<br>ound                        | imensions ir                    | n meters                                 |                              |  |  |
| wire<br>1                                                                                                      | none O                                                                                                         |                           | Angle<br>0                                   | Z<br>O                          | radius<br>.218                           | segs<br>20                   |  |  |
| 2                                                                                                              | 0<br>none 1<br>1                                                                                               |                           | 0<br>61.<br>61.                              | 116.5<br>0<br>117.75            | .218                                     | 20                           |  |  |
| 3                                                                                                              | none 9                                                                                                         |                           | 341.<br>341.                                 | 0 115.75                        | .218                                     | 20                           |  |  |
| 4                                                                                                              | none 1                                                                                                         |                           | 251.<br>251.                                 | 0<br>118.                       | .218                                     | 20                           |  |  |
| Numbe                                                                                                          | r of wi<br>cu                                                                                                  | res<br>rrent nodes        | = 4<br>= 80                                  |                                 |                                          |                              |  |  |
|                                                                                                                | idual w<br>nt leng<br>s                                                                                        |                           | minimum<br>Vire value<br>3 5.7875<br>1 .218  |                                 | maximum<br>wire value<br>4 5.9<br>1 .218 |                              |  |  |
| Frequ<br>no.                                                                                                   | RICAL D<br>encies<br>frequen<br>lowest<br>1.5                                                                  |                           | no. o<br>steps<br>1                          |                                 | ength (wavel.<br>maximu<br>.01638        | m                            |  |  |
| Sourc<br>sourc<br>1<br>2<br>3                                                                                  | es<br>e node<br>1<br>21<br>41                                                                                  | 1<br>1                    | magnitude<br>2,978.97<br>1,212.2<br>1,147.35 | phase<br>70.1<br>260.3<br>177.4 | type<br>voltage<br>voltage<br>voltage    |                              |  |  |
| Lumpe                                                                                                          | Lumped loads                                                                                                   |                           |                                              |                                 |                                          |                              |  |  |
| load<br>1                                                                                                      | node<br>61                                                                                                     | resistance<br>(ohms)<br>O | reactance<br>(ohms)<br>384.4                 | inducta<br>(mH)<br>O            | urce capacit<br>(uF)<br>0                | ance passive<br>circuit<br>0 |  |  |
| C:\Muticultural Stations\KSJX and KZSF Rebuild\NEW 6-7-2012<br>Analysis\ksjx-1c-driven day 06-14-2012 14:12:08 |                                                                                                                |                           |                                              |                                 |                                          |                              |  |  |

IMPEDANCE normalization = 50. react freq resist imped phase VSWR S11 S12 (ohms) (MHZ) (ohms) (ohms) (deg) dB dB source = 1; node 1, sector 1 1.5 193.32 261.69 325.35 53.5 11.12 -1.5665 -5.1884source = 2; node 21, sector 1 -49.339 300.32 1.5 304.35 99.3 \*\*\*\* \*\*\*\* \*\*\*\* source = 3; node 41, sector 155.788 114.53 127.39 1.5 64. 6.5621 -2.6681 -3.3818 C:\Muticultural Stations\KSJX and KZSF Rebuild\NEW 6-7-2012 Analysis\ksjx-1c-driven day 06-14-2012 14:12:08 CURRENT rms Frequency = 1.5 MHZ Input power = 10,000. watts Efficiency = 100. % coordinates in degrees current phase real mag imaginary no. Х Y Ζ (deg) (amps) (amps) (amps) GND 0 0 0 6.48259 16.6 6.21388 1.84707 0 0 5.825 10.2 7.5396 2 7.66022 1.35401 3 0 1.03384 0 11.65 8.37931 7.1 8.31529 4 0 0 17.475 8.92717 4.9 8.89486 .758789 5 0 23.3 9.33108 0 3.2 9.31683 .515468 9.60207 9.59741 6 0 0 29.125 1.8 .298818 7 0 0 34.95 9.74505 .6 9.74447 .106949 8 0 40.775 9.76321 359.6 9.76302 0 -.0607753 9 0 0 46.6 9.65912 358.8 9.65696 -.204453 10 0 9.43582 0 52.425 358. 9.43026 -.323966 357.4 11 0 0 58.25 9.09661 9.08694 -.419148 12 0 8.64531 356.8 0 64.075 8.63141 -.489873 13 0 0 69.9 8.08655 356.2 8.06876 -.5361 14 0 75.725 7.42529 0 355.7 7.4043 -.557893 15 0 0 81.55 6.6667 355.2 6.64352 -.555413 16 0 0 87.375 5.81613 354.8 5.79203 -.528885 17 0 0 93.2 4.87807 354.4 4.85455 -.4785130 18 0 99.025 3.85508 354. 3.83382 -.404319 0 0 104.85 2.74417 353.6 2.7271 -.305584 20 0 0 110.675 1.52776 353.2 1.51715 -.179798 END 0 0 116.5 0 0 0 0 GND 65.4493 -118.074 0 2.81992 161. -2.66581 .919449 22 65.4493 -118.074 5.8875 162.6 -3.23509 3.39071 1.01544 163.3 23 65.4493 -118.074 11.775 3.72591 -3.56937 1.06863 24 65.4493 -118.074 17.6625 3.97635 163.9 -3.81977 1.10486 25 65.4493 -118.074 23.55 4.15838 164.3 -4.00275 1.12699 26 65.4493 -118.074 29.4375 4.27875 164.6 -4.12513 1.13623 -118.074 27 65.4493 35.325 4.34077 164.9 -4.19024 1.1332 65.4493 -118.074 28 -4.20012 41.2125 4.34645 165.1 1.11831 -4.15641 29 65.4493 -118.074 47.1 4.29745 165.3 1.09194 30 65.4493 -118.074 52.9875 4.19533 165.4 -4.06066 1.05444 31 65.4493 -118.074 58.875 4.04182 165.6 -3.91457 1.0062

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 32<br>33 | 65.4493<br>65.4493 | -118.074<br>-118.074 | 64.7625<br>70.65 | 3.83881<br>3.58841 | 165.7<br>165.8 | -3.72001<br>-3.47902 | .947649<br>.879263 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------------------|----------------------|------------------|--------------------|----------------|----------------------|--------------------|
| 35         65.4493         -118.074         82.425         2.95473         166.         -2.85047         .620136           36         65.4493         -118.074         94.2         2.15946         166.1         -2.09556         .517382           38         65.4493         -118.074         100.088         1.70558         166.2         -1.65533         .406927           39         65.4493         -118.074         110.863         .674924         166.3        655714         .159879           END         65.4493         -118.074         117.75         0         0         0         0           GRD         85.0967         29.3011         5.7875         6.85418         111.4         -2.492548         6.38333           43         85.0967         29.3011         17.3625         7.26226         109.3         -2.45732         6.68204           44         85.0967         29.3011         23.15         7.33299         108.         -2.26166         6.97551           47         85.0967         29.3011         34.725         7.25755         107.4         -2.170616         6.92553           47         85.0967         29.3011         52.0857         6.22085         106.4       |          |                    |                      |                  |                    |                |                      |                    |
| 36         65.4493         -118.074         88.3125         2.57622         166.1         -2.50474         .620136           37         65.4493         -118.074         100.088         1.70558         166.2         -1.65633         .406927           38         65.4493         -118.074         105.975         1.21332         166.2         -1.17544         .288395           40         65.4493         -118.074         117.75         0         0         0         0           GND         85.0967         29.3011         0         6.37648         113.4         -2.49658         6.38333           43         85.0967         29.3011         17.3625         7.26226         109.3         -2.40527         6.68239           44         85.0967         29.3011         28.9375         7.33573         108.6         -2.3016         6.9255           46         85.0967         29.3011         34.725         7.25755         107.4         -2.17061         6.92535           47         85.0967         29.3011         54.125         7.11203         106.9         -2.64743         6.40491           98         5.0967         29.3011         57.85         6.2085         105.3            |          |                    |                      |                  |                    |                |                      |                    |
| 38         65.4493         -118.074         100.088         1.70558         166.2         -1.65633         .406927           39         65.4493         -118.074         111.863         .674924         166.3        655714         .159879           END         65.4493         -118.074         117.75         0         0         0         0           GND         85.0967         29.3011         5.7875         6.85418         111.4         -2.49658         6.38333           43         85.0967         29.3011         17.3625         7.26226         109.3         -2.40527         6.85239           45         85.0967         29.3011         28.375         7.33273         108.6         -2.34001         6.92535           46         85.0967         29.3011         34.725         7.1103         106.9         -2.06743         6.80491           49         85.0967         29.3011         57.875         6.2085         106.4         -1.95283         6.61678           50         85.0967         29.3011         57.875         6.2085         105.6         -1.69277         6.04823           51         85.0967         29.3011         57.875         6.2085         106.4           |          | 65.4493            | -118.074             |                  |                    |                |                      |                    |
| 39         65.4493         -118.074         105.975         1.2132         166.2         -1.71854         .28395           40         65.4493         -118.074         111.863         .674924         166.3        655714         .159879           6ND         85.0967         29.3011         0         6.37648         113.4         -2.249573         6.66804           43         85.0967         29.3011         11.755         7.10641         110.2         -2.45732         6.66804           44         85.0967         29.3011         23.15         7.3373         108.6         -2.34001         6.9255           46         85.0967         29.3011         23.15         7.3373         108.6         -2.245732         6.66804           47         85.0967         29.3011         23.15         7.33299         108.         -2.17061         6.92535           48         85.0967         29.3011         52.0875         6.62065         105.4         -1.82763         6.6423           50         85.0967         29.3011         52.0875         6.2065         105.4         -1.54248         5.67378           53         85.0967         29.3011         52.4755         107.4         -1.1 |          |                    | -118.074             |                  | 2.15946            | 166.1          | -2.09656             | .517382            |
| 40         65.4493         -118.074         111.663         .674924         166.3        655714         .159879           END         65.4493         -118.074         117.75         0         0         0         0         0           GND         85.0967         29.3011         5.7875         6.85418         111.4         -2.249532         6.66804           44         85.0967         29.3011         17.3625         7.26226         109.3         -2.40527         6.6804           44         85.0967         29.3011         28.9375         7.33573         108.6         -2.245166         6.97551           47         85.0967         29.3011         28.9375         7.1203         106.9         -2.06743         6.80491           48         85.0967         29.3011         46.5125         7.11203         106.4         -1.95283         6.61678           50         85.0967         29.3011         57.875         6.2805         105.6         -1.82763         6.3636           51         85.0967         29.3011         63.6625         5.8815         105.3         -1.69277         6.04823           52         85.0967         29.3011         75.2375         4.2605510         |          |                    |                      |                  |                    |                | -1.65633             |                    |
| END65.4493-118.074117.7500000GND85.096729.301106.37648113.4-2.529445.85324285.096729.301117.36257.16641110.2-2.475226.68044385.096729.301117.36257.2626109.3-2.405276.852394585.096729.301123.157.33573108.6-2.340016.95254685.096729.301134.7257.25755107.4-2.170616.923354885.096729.301146.36.89893106.4-1.952836.616785085.096729.301152.08756.62085105.6-1.62776.048235185.096729.301163.66255.8815105.3-1.549285.673785385.096729.301169.455.42683104.9-1.396225.243615485.096729.301181.0254.36564104.3-1.077994.230465585.096729.301181.0254.36564104.3-1.077994.230465685.096729.301181.0254.36564104.3-1.077994.230465785.096729.3011102.54.36564104.3-1.077994.230465885.096729.3011109.963.95122102.9-212057.927315500000000685.0967                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |                    |                      |                  |                    |                |                      |                    |
| GND85.096729.301106.37648113.4-2.529445.853324285.096729.301111.5756.685418111.4-2.496586.383334385.096729.301111.5757.10641110.2-2.495786.680044485.096729.301128.03757.332991082.405276.852394585.096729.301128.03757.332991082.201666.975514785.096729.301140.5257.25755107.4-2.170616.925354885.096729.301140.5257.25755107.4-2.170616.925354985.096729.301152.08756.620851061.827636.36365185.096729.301152.08756.620851061.827636.36365185.096729.301152.08755.42683104.9-1.398225.243615385.096729.301175.23754.92029104.6-1.240754.761285485.096729.301186.8253.7649104.3-1.077994.230465585.096729.301192.63.12597103.7-7408343.036915885.096729.3011104.751.7246103.2-3324511.679226085.096729.3011104.751.7246103.2-3324511.679226085.096729.3011104.751.72461103.2-32                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |                    |                      |                  |                    |                |                      |                    |
| 4285.096729.30115.78756.85418111.4 $-2.49658$ 6.383334385.096729.301111.5757.10641110.2 $-2.45732$ 6.666044485.096729.301123.157.33573108.6 $-2.34001$ 6.95254685.096729.301128.93757.33299108.6 $-2.26166$ 6.975514785.096729.301134.7257.5755107.4 $-2.17061$ 6.922554885.096729.301140.51257.11203106.9 $-2.06743$ 6.804914985.096729.301152.08756.62085105.6 $-1.82763$ 6.36365085.096729.301152.08756.28065105.6 $-1.69277$ 6.048235285.096729.301163.66555.42683104.9 $-1.39822$ 5.243615385.096729.301186.81253.76649104. $-1.124075$ 4.761285485.096729.301186.81253.76649104. $-911031$ 3.654655785.096729.3011104.1751.72446103.2 $322456$ 1.679226085.096729.3011104.1751.72446103.2 $322456$ 1.5814862-32.556894.551901.6148578.3.3255681.5814863-32.556894.551911.8.9056278.4.181933.88715764-32.556894.55195.91.16                                                                                                                                                                                                                                                                                                                                                                                       |          |                    |                      |                  |                    |                |                      |                    |
| 43       85.0967       29.3011       11.575       7.10641       110.2       -2.45732       6.6604         44       85.0967       29.3011       23.15       7.33573       108.6       -2.40527       6.85239         45       85.0967       29.3011       23.15       7.33573       108.6       -2.240527       6.85239         46       85.0967       29.3011       28.9375       7.33573       108.6       -2.26166       6.97551         47       85.0967       29.3011       40.5125       7.11203       106.9       -2.06743       6.80491         49       85.0967       29.3011       52.0875       6.28065       105.6       -1.62273       6.3636         50       85.0967       29.3011       57.875       6.28065       105.6       -1.69277       6.04823         52       85.0967       29.3011       63.6625       5.8815       105.3       -1.54928       5.67378         53       85.0967       29.3011       81.025       4.36564       104.6       -1.24075       4.76128         54       85.0967       29.3011       80.8125       3.7649       104.6       -1.24075       4.76128         55       85.0967       29.3011                                                                           |          |                    |                      |                  |                    |                |                      |                    |
| 44       85.0967       29.3011       17.3625       7.26226       109.3       -2.40527       6.85239         45       85.0967       29.3011       23.15       7.33573       108.6       -2.34001       6.9525         46       85.0967       29.3011       28.375       7.33299       108.       -2.26166       6.97551         47       85.0967       29.3011       40.5125       7.11203       106.9       -2.06743       6.80491         49       85.0967       29.3011       46.3       6.89893       106.4       -1.95283       6.61678         50       85.0967       29.3011       57.875       6.28065       105.6       -1.62777       6.04823         52       85.0967       29.3011       69.45       5.42683       104.9       -1.39822       5.24361         54       85.0967       29.3011       81.025       4.36564       104.3       -1.07799       4.23046         55       85.0967       29.3011       86.8125       3.7649       104.      911031       3.65465         57       85.0967       29.3011       104.175       1.72446       103.2      392445       1.67922         60       85.0967       29.3011                                                                                     |          |                    |                      |                  |                    |                |                      |                    |
| 4585.096729.301123.157.3373108.6-2.340016.95254685.096729.301128.93757.332991082.261666.975514785.096729.301140.51257.11203106.9-2.067436.804914985.096729.301140.51257.11203106.9-2.067436.804914985.096729.301152.08756.620851061.827636.36365085.096729.301157.8756.28065105.6-1.692776.048235285.096729.301163.66255.8815105.3-1.549285.673785385.096729.301175.23754.92029104.6-1.240754.761285485.096729.301181.0254.36664104.3-1.077994.230465685.096729.301192.63.12597103.77408343.036915885.096729.301192.63.12597103.77408343.036915885.096729.3011104.751.72446103.23924451.679226085.096729.3011109.963.951252102.9212057.9273156185.096729.3011109.963.951252102.9212057.92731562-32.556894.55195.91.6148578.3.3265681.5814863-32.556894.551917.7.66530578.61                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |                    |                      |                  |                    |                |                      |                    |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          | 85.0967            | 29.3011              |                  | 7.33573            |                | -2.34001             |                    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |                    |                      |                  |                    | 108.           | -2.26166             | 6.97551            |
| $ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |                    |                      |                  |                    |                |                      |                    |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |                    |                      |                  |                    |                |                      |                    |
| 51       85.0967       29.3011       57.875       6.28065       105.6       -1.69277       6.04823         52       85.0967       29.3011       63.6625       5.8815       105.3       -1.54928       5.67378         53       85.0967       29.3011       69.45       5.42683       104.9       -1.39822       5.24361         54       85.0967       29.3011       81.025       4.36564       104.3       -1.07799       4.23046         55       85.0967       29.3011       86.8125       3.76649       104.      911031       3.65465         57       85.0967       29.3011       92.6       3.12597       103.7      740834       3.03691         58       85.0967       29.3011       104.175       1.72446       103.2      392445       1.67922         60       85.0967       29.3011       109.963       .951252       102.9      212057       .927315         END       85.0967       29.3011       115.75       0       0       0       0       0         64       -32.5568       94.5519       0       1.61485       78.3       .326568       1.58148         62       -32.5568       94.5519       17                                                                                                  |          |                    |                      |                  |                    |                |                      |                    |
| 52       85.0967       29.3011       63.6625       5.8815       105.3       -1.54928       5.67378         53       85.0967       29.3011       69.45       5.42683       104.9       -1.39822       5.24361         54       85.0967       29.3011       75.2375       4.92029       104.6       -1.24075       4.76128         55       85.0967       29.3011       81.025       4.3664       104.3       -1.07799       4.23046         56       85.0967       29.3011       86.8125       3.76649       104.      911031       3.65465         57       85.0967       29.3011       92.6       3.12597       103.7      740834       3.03691         58       85.0967       29.3011       104.175       1.72446       103.2      392445       1.67922         60       85.0967       29.3011       109.963       .951252       102.9      212057       .927315         610       85.0967       29.3011       115.75       0       0       0       0       0         62       -32.5568       94.5519       0       1.61485       78.3       .326568       1.58148         62       -32.5568       94.5519       17                                                                                                  |          |                    |                      |                  |                    |                |                      |                    |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |                    |                      |                  |                    |                |                      |                    |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |                    |                      |                  |                    |                |                      |                    |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |                    |                      |                  |                    |                |                      |                    |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          | 85.0967            | 29.3011              |                  | 4.36564            | 104.3          | -1.07799             | 4.23046            |
| 5885.096729.301198.38752.44583103.45680122.378965985.096729.3011104.1751.72446103.23924451.679226085.096729.3011109.963.951252102.9212057.927315END85.096729.3011115.750000GND-32.556894.551901.6148578.3.2393871.1608362-32.556894.55195.91.1852678.3.2393871.1608363-32.556894.551917.7.66530578.6.13188.65210364-32.556894.551923.6.45268778.9.0869521.44425866-32.556894.551929.5.26342979.9.046363.25931767-32.556894.551935.4.09617384.19.9E-03.095661968-32.556894.551947.2.176934253.405045516958770-32.556894.551953.1.281157254.7074073527122471-32.556894.551959364175255.2093104635207372-32.556894.551970.7.484998255.5116847.44258273-32.556894.551970.7.484998255.5112346.46057274-32.556894.551970.8.466082255.5112346.460572 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                          |          |                    |                      |                  |                    |                |                      |                    |
| 5985.096729.3011104.1751.72446103.23924451.679226085.096729.3011109.963.951252102.9212057.927315END85.096729.3011115.750000GND-32.556894.551901.6148578.3.3265681.5814862-32.556894.55195.91.1852678.3.2393871.1608363-32.556894.551917.7.66530578.6.13188.65210364-32.556894.551923.6.45268778.9.0869521.44425866-32.556894.551929.5.26342979.9.046363.25931767-32.556894.551935.4.09617384.19.9E-03.095661968-32.556894.551941.3.0523129244.60224107047269569-32.556894.551953.1.281157254.7074073527122470-32.556894.551959364175255.2.093104635207372-32.556894.551959364175255.511684745119774-32.556894.551970.8.466082255.512036646736575-32.556894.551970.7.484998255.512083646736576-32.556894.551970.3.35085255.4104592442152 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                           |          |                    |                      |                  |                    |                |                      |                    |
| 6085.096729.3011109.963.951252102.9212057.927315END85.096729.3011115.750000GND-32.556894.551901.6148578.3.3265681.5814862-32.556894.55195.91.1852678.3.2393871.1608363-32.556894.551911.8.9056278.4.181933.88715764-32.556894.551923.6.45268778.9.0869521.44425865-32.556894.551929.5.26342979.9.046363.25931767-32.556894.551935.4.09617384.19.9E-03.095661968-32.556894.551941.3.0523129244.60224107047269569-32.556894.551953.1.281157255.2093104635207370-32.556894.551959364175255.2093104635207372-32.556894.551970.8.466082255.5116847.44216273-32.556894.551976.7.484998255.51234646736574-32.556894.551982.6.482733255.512083646736575-32.556894.551988.5.459508255.5112083646736576-32.556894.551988.5.459508255.5120836467365<                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |                    |                      |                  |                    |                |                      |                    |
| END85.096729.3011115.750000GND-32.556894.551901.6148578.3.3265681.5814862-32.556894.55195.91.1852678.3.2393871.1608363-32.556894.551911.8.9056278.4.181933.88715764-32.556894.551917.7.66530578.6.13188.65210365-32.556894.551923.6.45268778.9.0869521.44425866-32.556894.551929.5.2642979.9.046363.25931767-32.556894.551935.4.09617384.19.9E-03.095661968-32.556894.551941.3.0523129244.60224107047269569-32.556894.551953.1.281157254.7074073527122471-32.556894.551959364175255.2093104635207372-32.556894.551970.8.466082255.5116847.45119774-32.556894.551976.7.484998255.5120836.46736576-32.556894.551982.6.452508255.5120836.46736576-32.556894.551988.5.459508255.5120836.46736576-32.556894.551988.5.459508255.4104592.402152 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                       |          |                    |                      |                  |                    |                |                      |                    |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |                    |                      |                  |                    |                |                      |                    |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |                    |                      |                  |                    |                | -                    | -                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |                    |                      |                  |                    |                |                      |                    |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |                    |                      |                  | .90562             | 78.4           | .181933              | .887157            |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |                    |                      |                  |                    |                |                      |                    |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |                    |                      |                  |                    |                |                      |                    |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |                    |                      |                  |                    |                |                      |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |                    |                      |                  |                    |                |                      |                    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |                    |                      |                  |                    |                |                      |                    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |                    |                      |                  |                    |                |                      |                    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |                    |                      |                  |                    |                |                      |                    |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |                    | 94.5519              | 64.9             | .425829            | 255.4          | 107402               | 412062             |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |                    |                      |                  |                    |                |                      |                    |
| 76-32.556894.551988.5.459508255.511526944481577-32.556894.551994.4.41553255.410459240215278-32.556894.5519100.3.35085255.408870723394579-32.556894.5519106.2.26495255.3067355425624680-32.556894.5519112.1.155686255.20398388150503                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |                    |                      |                  |                    |                |                      |                    |
| 77-32.556894.551994.4.41553255.410459240215278-32.556894.5519100.3.35085255.408870723394579-32.556894.5519106.2.26495255.3067355425624680-32.556894.5519112.1.155686255.20398388150503                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |                    | 94.5519              |                  |                    |                |                      |                    |
| 78-32.556894.5519100.3.35085255.408870723394579-32.556894.5519106.2.26495255.3067355425624680-32.556894.5519112.1.155686255.20398388150503                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |                    |                      |                  |                    | 255.5          |                      |                    |
| 79 -32.5568 94.5519 106.2 .26495 255.30673554256246<br>80 -32.5568 94.5519 112.1 .155686 255.20398388150503                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |                    |                      |                  |                    |                |                      |                    |
| 80 -32.5568 94.5519 112.1 .155686 255.20398388150503                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |                    |                      |                  |                    |                |                      |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |                    |                      |                  |                    |                |                      |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |                    |                      |                  |                    |                |                      |                    |

el<sup>1</sup> éle

Hatfield & Dawson Consulting Engineers

17

## **KSJX Driven Array - Night**

C:\Muticultural Stations\KSJX and KZSF Rebuild\NEW 6-7-2012 Analysis\ksjx-lc-driven nite 06-14-2012 14:28:15

KZSF 1370 San Jose

vr1 6

GEOMETRY Wire coordinates in degrees; other dimensions in meters Environment: perfect ground

| wire | caps | Distance | Angle | Z      | radius | segs |
|------|------|----------|-------|--------|--------|------|
| 1    | none | 0        | 0     | 0      | .218   | 20   |
|      |      | 0        | 0     | 116.5  |        |      |
| 2    | none | 135.     | 61.   | 0      | .218   | 20   |
|      |      | 135.     | 61.   | 117.75 |        |      |
| 3    | none | 90.      | 341.  | 0      | .218   | 20   |
|      |      | 90.      | 341.  | 115.75 |        |      |
| 4    | none | 100.     | 251.  | 0      | .218   | 20   |
|      |      | 100.     | 251.  | 118.   |        |      |
|      |      |          |       |        |        |      |

Number of wires = 4 current nodes = 80

|                  | mini | mum    | max  | imum  |
|------------------|------|--------|------|-------|
| Individual wires | wire | value  | wire | value |
| segment length   | 3    | 5.7875 | 4    | 5.9   |
| radius           | 1    | .218   | 1    | .218  |

| wavelengths) |
|--------------|
| aximum       |
| 0163889      |
| a            |

| Source<br>source<br>1<br>2<br>3 |            | sector<br>1<br>1<br>1    | magnitude<br>1,323.9<br>453.122<br>1,388.76 | phase<br>66.9<br>145.2<br>323.8 | type<br>voltage<br>voltage<br>voltage |                         |
|---------------------------------|------------|--------------------------|---------------------------------------------|---------------------------------|---------------------------------------|-------------------------|
| Lumped                          | loads      |                          |                                             |                                 |                                       |                         |
| load<br>1                       | node<br>41 | resistanc<br>(ohms)<br>O | e reactance<br>(ohms)<br>396.17             | inductance<br>(mH)<br>O         | capacitance<br>(uF)<br>0              | passive<br>circuit<br>0 |

C:\Muticultural Stations\KSJX and KZSF Rebuild\NEW 6-7-2012 Analysis\ksjx-lc-driven nite 06-14-2012 14:28:15

IMPEDANCE normalization = 50. freq react resist imped phase VSWR S11 S12 (MHZ) (ohms) (ohms) (ohms) (deg) dB dB source = 1; node 1, sector 1 103.5 154.16 1.5 185.68 56.1 7.0023 -2.4979 -3.5913 source = 2; node 21, sector 1 1.5 52.629 147.88 156.97 70.4 10.215 -1.706 -4.8831source = 3; node 61, sector 1 1.5 303.04 210.7 369.09 34.8 9.0452 -1.9284 -4.4544 Parallel combination of all sources. 1.5 37.0563 60.4969 70.9439 58.5 3.8028 -4.6781 -1.8082 C:\Muticultural Stations\KSJX and KZSF Rebuild\NEW 6-7-2012 Analysis\ksjx-1c-driven nite 06-14-2012 14:28:15 CURRENT rms = 1.5 MHZ Frequency Input power = 5,000. watts Efficiency = 100. % coordinates in degrees current mag phase real imaginary no. Х Y Ζ (amps) (deg) (amps) (amps) 0 GND 0 0 5.04403 10.8 4.95505 .943255 5.52385 2 0 0 5.825 5.56689 7.1 .690954 3 0 0 11.65 5.86338 5.2 5.83962 .527264 4 0 0 17.475 6.06861 3.7 6.05627 .386775 5 0 6.19636 6.1908 0 23.3 2.4 .262611 6 0 Ω 29.125 6.25243 1.4 6.25058 .15215 7 0 0 34.95 6.23977 6.23953 .0543915 . 5 -.0310242 8 0 0 40.775 6.16048 359.7 6.1604 9 0 0 46.6 6.01648 359. 6.01558 -.10417752.425 10 0 5.80984 358.4 5.80749 0 -.165033 11 0 0 58.25 5.54284 357.8 5.53873 -.213521 12 0 64.075 5.21811 357.3 5.21214 0 -.249585 0 13 0 69.9 4.83854 356.8 4.83082 -.273201 14 0 0 75.725 4.40726 356.3 4.39808 -.284393 15 0 0 3.92751 81.55 355.9 3.91729 -.283224 87.375 -.269789 16 0 0 3.4025 355.5 3.39178 17 0 0 93.2 2.83494 355.1 2.8244 -.244171 99.025 18 0 0 2.2264 354.7 2.21682 -.206355 19 1.57534 354.3 1.5676 0 0 104.85 -.155995 20 110.675 .871909 354. -.0917844 0 0 .867064 END 0 0 0 116.5 0 0 0 -118.074 0 .535788 GND 65.4493 2.04219 74.8 1.97065 22 65.4493 -118.074 5.8875 2.24311 72.9 .659071 2.1441 23 65.4493 -118.074 11.775 2.35379 71.9 .73188 2.23711 65.4493 71.1 .786883 24 -118.074 17.6625 2.42784 2.29678 25 65.4493 -118.074 23.55 2.47112 70.4 .827639 2.3284 65.4493 26 -118.07429.4375 2.48617 69.9 .855597 2.3343 27 65.4493 -118.074 35.325 2.47434 69.4 .87145 2.31581 28 65.4493 -118.0742.43664 68.9 .875624 41.2125 2.27388

e

| 29<br>30<br>31<br>32<br>33<br>34<br>35<br>36<br>37<br>38<br>40<br>40<br>42<br>43<br>44<br>45<br>46<br>7<br>52<br>53<br>55<br>57<br>89<br>60<br>D<br>D<br>23<br>46<br>51<br>253<br>55<br>57<br>89<br>60<br>D<br>D<br>26<br>36<br>67<br>89<br>70<br>71<br>72<br>73<br>74<br>77 | 65.4493<br>65.4493<br>65.4493<br>65.4493<br>65.4493<br>65.4493<br>65.4493<br>65.4493<br>65.4493<br>65.4493<br>65.4493<br>65.4493<br>65.4493<br>65.4493<br>65.4493<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967<br>85.0967 | $\begin{array}{c} -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\ -118.074\\$ | 47.1<br>52.9875<br>58.875<br>64.7625<br>70.65<br>76.5375<br>82.425<br>88.3125<br>94.2<br>100.088<br>105.975<br>11.863<br>117.75<br>0<br>5.7875<br>11.575<br>17.3625<br>23.15<br>28.9375<br>34.725<br>40.5125<br>46.3<br>52.0875<br>57.875<br>63.6625<br>69.45<br>75.2375<br>81.025<br>86.8125<br>92.6<br>98.3875<br>1025<br>86.8125<br>92.6<br>98.3875<br>10.575<br>10.575<br>10.575<br>10.575<br>10.575<br>10.575<br>10.5125<br>86.8125<br>92.6<br>98.3875<br>10.575<br>0.59<br>11.8<br>17.72<br>0.59<br>11.8<br>17.72<br>3.6<br>29.5<br>35.4<br>41.3<br>47.2<br>53.1<br>59.64.9<br>70.8<br>76.7 | .0233512<br>.0713096<br>.110929<br>.142159<br>.165025<br>.179587<br>.185946<br>.184244<br>.174642<br>.1573<br>.132315<br>.0995675<br>.0583271<br>0<br>2.66182<br>3.08626<br>3.37016<br>3.59693<br>3.77117<br>3.99611<br>3.9871<br>3.9574<br>3.8776<br>3.74866<br>3.57189<br>3.34894<br>3.0817 | 214.9<br>218.8<br>219.5<br>219.8<br>219.9<br>220.<br>220.1<br>220.2<br>220.3<br>220.3<br>220.4<br>220.4<br>220.4<br>220.4<br>220.5<br>0<br>289.<br>278.7<br>273.6<br>269.9<br>267.1<br>264.9<br>263.<br>261.4<br>260.<br>258.8<br>255.9<br>255.1 | 0856163<br>109268<br>126542<br>137481<br>142166<br>140709<br>133245<br>119906<br>10078<br>0757843<br>0443699<br>0<br>.866159<br>.46658<br>.211117<br>-3.68E-03<br>18875<br>348263<br>483853<br>596173<br>685468<br>751844<br>795394<br>816284<br>814756<br>79117 | -3.47737<br>-3.24831<br>-2.97841 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| 71<br>72<br>73                                                                                                                                                                                                                                                               | -32.5568<br>-32.5568<br>-32.5568                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 94.5519<br>94.5519<br>94.5519                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 59.<br>64.9<br>70.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.74866<br>3.57189<br>3.34894                                                                                                                                                                                                                                                                 | 257.7<br>256.8<br>255.9                                                                                                                                                                                                                          | 795394<br>816284<br>814756                                                                                                                                                                                                                                       | -3.6633<br>-3.47737<br>-3.24831  |
| ע או בי                                                                                                                                                                                                                                                                      | 52.5500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 24.0012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TTO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | U                                                                                                                                                                                                                                                                                             | U                                                                                                                                                                                                                                                | v                                                                                                                                                                                                                                                                | U                                |

er i è

# Hatfield & Dawson Consulting Engineers

20

## KSJX - Tower 3 Detuning

C:\Muticultural Stations\KSJX and KZSF Rebuild\NEW 6-7-2012 Analysis\ksjx-1c-detuning3 06-14-2012 14:26:27

KZSF 1370 San Jose

65 Ø

GEOMETRY Wire coordinates in degrees; other dimensions in meters Environment: perfect ground

| wire | caps | Distance | Angle | Z      | radius | segs |
|------|------|----------|-------|--------|--------|------|
| 1    | none | 0        | 0     | 0      | .218   | 20   |
|      |      | 0        | 0     | 116.5  |        |      |
| 2    | none | 135.     | 61.   | 0      | .218   | 20   |
|      |      | 135.     | 61.   | 117.75 |        |      |
| 3    | none | 90.      | 341.  | 0      | .218   | 20   |
|      |      | 90.      | 341.  | 115.75 |        |      |
| 4    | none | 100.     | 251.  | 0      | .218   | 20   |
|      |      | 100.     | 251.  | 118.   |        |      |
|      |      |          |       |        |        |      |

Number of wires = 4 current nodes = 80

|                  | mini | mum    | max  | imum  |
|------------------|------|--------|------|-------|
| Individual wires | wire | value  | wire | value |
| segment length   | 3    | 5.7875 | 4    | 5.9   |
| radius           | 1    | .218   | 1    | .218  |

ELECTRICAL DESCRIPTION Frequencies (MHZ)

| rrequ | frequency |      | no. of | segment length | (wavelengths) |
|-------|-----------|------|--------|----------------|---------------|
| no.   | lowest    | step | steps  | minimum        | maximum       |
| 1     | 1.5       | 0    | 1      | .0160764       | .0163889      |
| Sour  | ces       |      |        |                |               |

| DOULOCI |      |        |           |       |         |
|---------|------|--------|-----------|-------|---------|
| source  | node | sector | magnitude | phase | type    |
| 1       | 1    | 1      | 1,323.9   | 66.9  | voltage |
| 2       | 21   | 1      | 453.122   | 145.2 | voltage |
| 3       | 41   | 1      | 354.066   | 311.3 | voltage |
| 4       | 61   | 1      | 1,388.76  | 323.8 | voltage |
|         |      |        |           |       |         |

| C:\Muticultural Stations\KSJX and KZSF Rebuild\NEW 6-7-2012<br>Analysis\ksjx-lc-detuning3 06-14-2012 14:26:27 |                                                        |        |       |        |          |            |
|---------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--------|-------|--------|----------|------------|
| freq res:<br>(MHZ) (ohr                                                                                       | tion = 50.<br>ist react<br>ms) (ohms)<br>node 1, secto | (ohms) |       |        |          | S12<br>dB  |
|                                                                                                               | .5 154.06                                              |        | 56.1  | 6.9966 | -2.5     | -3.5886    |
|                                                                                                               | node 21, sect<br>589 147.88                            |        | 70.4  | 10.222 | -1.7049  | -4.8854    |
|                                                                                                               | node 41, sect<br>548 -396.17                           |        | 270.3 | 1,552. | -1.1E-02 | -25.894    |
|                                                                                                               | node 61, sect<br>.03 210.44                            |        | 34.8  | 9.0377 | -1.9301  | -4.4515    |
|                                                                                                               | oination of al<br>.0133 65.65                          |        | -     | 2 3.3  | 962 -5.2 | 711 -1.531 |

d\ \$9

## **KSJX - Tower 4 Detuning**

C:\Muticultural Stations\KSJX and KZSF Rebuild\NEW 6-7-2012 Analysis\ksjx-1c-detuning4 06-14-2012 13:52:13

KZSF 1370 San Jose

eri 🚸

GEOMETRY Wire coordinates in degrees; other dimensions in meters Environment: perfect ground

| wire | caps | Distance | Angle | Z      | radius | segs |
|------|------|----------|-------|--------|--------|------|
| 1    | none | 0        | 0     | 0      | .218   | 20   |
|      |      | 0        | 0     | 116.5  |        |      |
| 2    | none | 135.     | 61.   | 0      | .218   | 20   |
|      |      | 135.     | 61.   | 117.75 |        |      |
| 3    | none | 90.      | 341.  | 0      | .218   | 20   |
|      |      | 90.      | 341.  | 115.75 |        |      |
| 4    | none | 100.     | 251.  | 0      | .218   | 20   |
|      |      | 100.     | 251.  | 118.   |        |      |
|      |      |          |       |        |        |      |

Number of wires = 4 current nodes = 80

|                  | mini | mum    | max  | imum  |
|------------------|------|--------|------|-------|
| Individual wires | wire | value  | wire | value |
| segment length   | 3    | 5.7875 | 4    | 5.9   |
| radius           | 1    | .218   | 1    | .218  |

| Frequence no. | RICAL DES<br>encies (M<br>frequency<br>lowest<br>1.5 | IHΖ)   |          | no. of<br>steps<br>1 | segment length<br>minimum<br>.0160764 | n (wavelengths)<br>maximum<br>.0163889 |
|---------------|------------------------------------------------------|--------|----------|----------------------|---------------------------------------|----------------------------------------|
| Sourc         |                                                      |        |          |                      |                                       |                                        |
| source        | e node                                               | sector | magnitud | le                   | phase                                 | type                                   |
| 1             | 1                                                    | 1      | 2,978.97 |                      | 70.1                                  | voltage                                |
| 2             | 21                                                   | 1      | 1,212.2  |                      | 260.3                                 | voltage                                |
| 3             | 41                                                   | 1      | 1,147.35 |                      | 177.4                                 | voltage                                |
| 4             | 61                                                   | 1      | 878.916  |                      | 348.6                                 | voltage                                |

C:\Muticultural Stations\KSJX and KZSF Rebuild\NEW 6-7-2012 Analysis\ksjx-1c-detuning4 06-14-2012 13:52:13

| IMPEDANC | E<br>lization | = 50.               |        |       |         |           |           |
|----------|---------------|---------------------|--------|-------|---------|-----------|-----------|
| (MHZ)    | (ohms)        | react (ohms)        | (ohms) | -     | VSWR    | S11<br>dB | S12<br>dB |
|          |               | 1, secto            |        | 53 5  | 11 101  | -1.5691   | -5 1823   |
| 1.0      | 190.00        | 201.00              | 020.12 | 55.5  | 11.101  | 1.0001    | 5.1025    |
|          |               | 21, sect<br>300.78  |        | 99.3  | * * * * | * * * *   | * * * *   |
|          |               | 41, sect<br>114.53  |        | 64.1  | 6.5669  | -2.6661   | -3.3842   |
|          |               | 61, secto<br>-384.4 |        | 270.7 | 599.17  | -2.9E-02  | -21.769   |

et) (t

# Item 5 Summary of Post Construction Certified Array Geometry- KSJX

 $e_{i}^{(n)}$ 

47

Because the KSJX antenna system was previously licensed and there has been no change in the theoretical antenna parameters, a post-construction survey is not required per the FCC Public Notice DA 09-2340. (October 29, 2009)

# Item 6 Sampling System Measurements - KSJX

Impedance measurements were made of the antenna monitor sampling system using an AIM network analyzer in a calibrated measurement system. The measurements were made looking into the antenna monitor ends of the sampling lines for two conditions – with and without the sampling lines connected to the sampling transformers at the antenna tuning units.

The following table shows the frequency closest to the carrier frequency where series resonance – zero reactance corresponding with low resistance – was found. As frequencies of resonance occur at odd multiples of 90 degrees electrical length, the sampling line length at the resonant frequency below carrier frequency – which is the closest one to the carrier frequency – was found to be 270 electrical degrees. The electrical length at carrier frequency appearing in the table below was calculated by ratioing the carrier frequency to the resonant frequency.

| Tower | Sampling Line   | Sampling Line Electrical | 1500 kHz                |
|-------|-----------------|--------------------------|-------------------------|
|       | Open-Circuited  | Length at 1500 kHz       | Measured Impedance with |
|       | Resonance (kHz) | Degrees                  | Sample Transformer      |
|       |                 |                          | Connected               |
| 1     | 1146.35         | 353.30                   | 50.24 -j1.1             |
| 2     | 1145.55         | 353.54                   | 50.89-j1.3              |
| 3     | 1145.50         | 353.56                   | 50.42-j1.4              |
| 4     | 1144.1          | 353.99                   | 50.89-j0.9              |

The sampling line lengths meet the requirement that they be equal in length within 1 electrical degree.

In order to determine the characteristic impedance values of the sampling lines, open-circuited measurements were made with frequencies offset to produce +/- 45 degrees of electrical

length from resonance. The characteristic impedance was calculated using the following formula, where R1 +j X1 and R2 +j X2 are the measured impedances at the +45 and -45 degree offset frequencies, respectively:

63

5.5

$$Z_0 = [(R_1^2 + X_1^2)^{\frac{1}{2}} \times (R_2^2 + X_2^2)^{\frac{1}{2}}]^{\frac{1}{2}}$$

The sampling line measured characteristic impedances meet the requirement that they be equal within 2 ohms.

# Item 7 Reference Field Strength Measurements - KSJX

45

Reference field strength measurements were made along radials at the azimuths with radiation value limits specified on the station license and, additionally, on the radial of the line of the towers in the maximum. The transmitter power was at 5.4 kW (antenna common point current 10.4 Amps) nighttime and 10.5 kW (antenna common point current 14.49 Amps) daytime for these measurements.

Measurements were made using a Potomac Instruments field strength meter, model FIM-41.

The measured field strengths and descriptions and GPS coordinates for the reference measurement points are shown on the following pages.

Day table


|        |       | Ref              | erence Fie      | eld Strength M | easurements - | Daytime                                       |
|--------|-------|------------------|-----------------|----------------|---------------|-----------------------------------------------|
| Radial | Point | Distance<br>(km) | Field<br>(mv/m) | Coordinate     | es (NAD 83)   | Description                                   |
|        | 1     | 2.66             | 185             | 37 22.901      | 121 52.133    | SW Corner; Flickenger & Imwalle               |
| 6.5    | 2     | 2.80             | 200             | 37 22.961      | 121 52.130    | 2105 Charger Drive                            |
|        | 3     | 2.94             | 190             | 37 23.039      | 121 52.125    | 2146 Hikido                                   |
|        | 1     | 1.65             | 290             | 37 22.237      | 121 51.782    | SW Corner; Mabury & Educational<br>Park Drive |
| 28.5   | 2     | 2.28             | 252             | 37 22.553      | 121 51.623    | 824 Jackson                                   |
|        | 3     | 3.11             | 152             | 37 22.911      | 121 51.359    | Rear; 989 Gilcrest                            |
|        | 1     | 2.01             | 460             | 37 21.171      | 121 51.044    | SW Corner; McCreary & Stowe                   |
| 105.5  | 2     | 2.19             | 425             | 37 21.148      | 121 50.918    | 180 Oakland                                   |
|        | 3     | 2.39             | 320             | 37 21.117      | 121 50.778    | 222 Sunset                                    |
|        | 1     | 1.34             | 520             | 37 20.892      | 121 51.768    | 1394 Shortridge                               |
| 138    | 2     | 1.45             | 410             | 37 20.852      | 121 51.720    | 1405 E. San Fernando                          |
|        | 3     | 1.55             | 460             | 37 20.809      | 121 51.667    | 1419 Whitten                                  |
|        | 1     | 0.77             | 980             | 37 21.088      | 121 52.581    | 396 20th Street                               |
| 207    | 2     | 0.98             | 470             | 37 20.985      | 121 52.650    | 340 18th Street                               |
|        | 3     | 1.21             | 1325            | 37 20.884      | 121 52.728    | SE Corner; 16th Street & Julian               |
|        | 1     | 3.36             | 140             | 37 23.007      | 121 53.696    | Shopping Center; Murphy &<br>Oakland Road     |
| 325.5  | 2     | 3.85             | 175             | 37 23.182      | 121 53.824    | 200 feet East; Oakland Road &<br>McKay        |
|        | 3     | 4.06             | 152             | 37 23.268      | 121 53.913    | 100 feet East; Oakland Road &<br>Wayne        |

# KSJX, San Jose 1500 kHz - 10,000 Watts; DA-D

et i

65

Measurements were made September 18, 2012 by Robert F. Turner Potomac Instruments FIM-41, SN 1205 calibrated 16 July, 1999.

KSJX Night Reference Points



|        |       | Refe             | erence Fie      | ld Strength Me | asurements - N | lighttime                              |
|--------|-------|------------------|-----------------|----------------|----------------|----------------------------------------|
| Radial | Point | Distance<br>(km) | Field<br>(mv/m) | Coordinate     | es (NAD 83)    | Description                            |
|        | 1     | 2.08             | 75              | 37 22.220      | 121 51.277     | 2303 Ashglen                           |
| 54.5   | 2     | 2.29             | 65              | 37 22.279      | 121 51.194     | 591 Breezyglen Court                   |
|        | 3     | 2.46             | 45              | 37 22.333      | 121 51.117     | 2459 Ridgeglen Way                     |
|        | 1     | 1.44             | 110             | 37 21.303      | 121 51.396     | 95 Meirose                             |
| 102    | 2     | 1.58             | 44              | 37 21.282      | 121 51.310     | 67 Balboa                              |
|        | 3     | 1.68             | 142             | 37 21.277      | 121 51.251     | NW Corner; Beverly & Magellen          |
|        | 1     | 1.63             | 47              | 37 21.088      | 121 51.357     | 1669 Shortridge                        |
| 115.5  | 2     | 1.75             | 44              | 37 21.060      | 121 51.278     | 1685 E. San Fernando                   |
|        | 3     | 1.85             | 74              | 37 21.029      | 121 51.221     | NW Corner; King & Whitten              |
|        | 1     | 1.05             | 680             | 37 20.995      | 121 52.626     | 320 18th Street                        |
| 203    | 2     | 1.27             | 430             | 37 20.835      | 121 52.688     | 254 16th Street                        |
|        | 3     | 1.51             | 310             | 37 20.718      | 121 52.753     | 188 14th Street                        |
|        | 1     | 0.73             | 940             | 37 21.275      | 121 52.797     | 563 19th Street                        |
| 243.5  | 2     | 0.92             | 510             | 37 21.240      | 121 52.911     | Driveway 570 17th Street               |
|        | 3     | 1.12             | 780             | 37 21.181      | 121 53.027     | Opposite 570 15th Street               |
|        | 1     | 0.85             | 1020            | 37 21.401      | 121 52.881     | SE Corner; 21st & Marianellict         |
| 290    | 2     | 1.15             | 640             | 37 21.679      | 121 53.090     | 871 19th Street                        |
|        | 3     | 1.46             | 580             | 37 21.718      | 121 53.271     | SE Corner; Berryessa & N17th<br>Street |

# KSJX, San Jose 1500 kHz - 5000 Watts; DA-N

x53

¢.

Measurements were made September 18, 2012 by Robert F. Turner Potomac Instruments FIM-41, SN 1205 calibrated 16 July, 1999.

# Item 8

e

## **Direct Measurement of Power - KSJX**

Common point impedance measurements were made using a Hewlett Packard 8751A network analyzer in a calibrated measurement system. The measurements were made at the phasor cabinet input jack adjacent to the common point current meter that is used to determine operating power. The impedance measured at this point was adjusted to a value of 50 +/- j0.

### Item 9

### Antenna Monitor and Sampling System - KSJX

The antenna monitor is a Potomac Instruments model AM-1901. The sample transformers are connected through equal lengths of  $\frac{3}{6}$  inch foam heliax solid outer conductor transmission lines (Andrew LDF cable) to the antenna monitor. The two sample lines are routed to the towers such that they are subject to similar environmental conditions.

The antenna monitor was checked by placing the amplified network analyzer output through a sample transformer. A "T" connector was placed on the sample transformer and the two outputs of the "T" were fed into the antenna monitor inputs 1 & 2. Both inputs read 0 degrees and a ratio of 100.

The sample transformers were tested by feeding their outputs configured as described above into the A and B inputs of the network analyzer.

All transformers TCT-1 0.5 V/A

| Serial #  | 2152   | 940    | 939   | 2158      |
|-----------|--------|--------|-------|-----------|
| Magnitude | 0.989  | 0.986  | 1.009 | reference |
| Phase     | +0.088 | +0.014 | +0.77 | reference |

These values are well within the manufacturer's rated tolerance of +/- 2% amplitude and +/- 2 degrees phase.

Harmonic measurements page 1

Hatfield & Dawson Consulting Engineers

| Station 2 k<br>Date 09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Contraction of the local division of the loc | famanka -             | 2221     |       |                                 | 2002      | anon                                               | Y A          | N-PA      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|----------|-------|---------------------------------|-----------|----------------------------------------------------|--------------|-----------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | KZSF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Frequency             | 1370     | KHz   | Power                           | 5000      | Mode                                               | DA-1         | -         |
| NO SCHERE AND AND ADDRESS OF AN AND ADDRESS OF ADDRESS | 09/18/12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Time                  | 10:30 AM | Stati | <b>Station 1 Field Strength</b> | Strength  | 750                                                | M<br>M       | mV/m      |
| Hai                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | rmonic C:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Harmonic Calculations |          | Notes | Reading in mV/m                 | n mV/m    | Value                                              | FCC          | FCC Limit |
| 1 F1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | F1 + F2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 28                    | 2870     |       | 0.050                           | 50        | -83.5                                              | -80          | dBc       |
| 2 F1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | F1 + 2(F2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 42                    | 4240     |       | 0.040                           | 40        | -85.5                                              | -80          | dBc       |
| 3 F2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | F2 + 2(F1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 43                    | 4370     |       | 0.019                           | 19        | -91.9                                              | -80          | dBc       |
| 4 2(F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2(F1) - F2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 16                    | 1630     |       | 0.016                           | 16        | -93.4                                              | -80          | dBc       |
| 5 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2(F2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 27                    | 2740     |       | 0.027                           | 27        | -88.9                                              | -80          | dBc       |
| 6 2(F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2(F2) - F1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 12                    | 1240     | 2     |                                 |           |                                                    | -80          | dBc       |
| 7 2(F1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2(F1) - 2(F2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5                     | 260      | -     |                                 |           |                                                    | -80          | dBc       |
| 8 2(F1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2(F1) + 2(F2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 22                    | 5740     | -     |                                 |           |                                                    | -80          | dBc       |
| 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2(F1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 30                    | 3000     |       | 0.018                           | 18        | -92.4                                              | -80          | dBc       |
| 10 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3(F1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 45                    | 4500     |       | 0.014                           | 14        | -94.6                                              | -80          | dBc       |
| 11 3(1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3(F1)-F2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 31                    | 3130     |       | 0.024                           | 24        | -89.9                                              | -80          | dBc       |
| 12 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3(F2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 41                    | 4110     |       | 0.016                           | 16        | -93.4                                              | -80          | dBc       |
| 13 3(F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3(F2)-F1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 26                    | 2610     |       | 0.026                           | 26        | -89.2                                              | -80          | dBc       |
| 14 3(F <sup>-</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3(F1)-(2)F2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 17                    | 1760     |       | 0.022                           | 22        | -90.7                                              | -80          | dBc       |
| 15 3(F2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3(F2)-(2)F1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       | 1110     | 2     |                                 |           |                                                    | -80          | dBc       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |          | 1     | Frequency                       | exceeds F | Frequency exceeds FIM capabilities                 | ties         |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |          | 2     | Frequency                       | cannot be | Frequency cannot be measured/Other station present | Other static | n presen  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |          | ю     | No Signal Present               | Present   |                                                    |              |           |

**Diplex Harmonic Measurement Worksheet** 

e: c

Measurement Location: GPS: 37° 21.151 / 121° 53.017 - East side of Bakesto Park. Approximately 0.75 miles from KSJX at 243-degrees true.

# Diplex Harmonic Measurement Worksheet

10) , b,

| Station 1             | KSJX          | Frequency    | 1500  | KHz     | Power               | 10000     | Mode        | DA          | A-D       |
|-----------------------|---------------|--------------|-------|---------|---------------------|-----------|-------------|-------------|-----------|
| Station 2             | KZSF          | Frequency    | 1370  | KHz     | Power               | 5000      | Mode        | DA          | A-1       |
| Date                  | 08/30/12      | Time 8:15 AM |       | Stati   | on 1 Field Strength |           | 850         | m           | //m       |
| Harmonic Calculations |               |              | Notes | Reading | in mV/m             | Value     | FCC         | Limit       |           |
| ⊀ <b>1</b>            | F1 + F2       | 28           | 70    |         | 0.0                 | 40        | -86.5       | -80         | dBc       |
| A 2                   | F1 + 2(F2)    | 42           | 40    |         | 0.0                 | 10        | -98.6       | -80         | dBc       |
| λ 3                   | F2 + 2(F1)    | 4370         |       |         | 0.0                 | 35        | -87.7       | -80         | dBc       |
| <b>λ</b> 4            | 2(F1) - F2    | 1630         |       |         | 0.0                 | 13        | -96.3       | -80         | dBc       |
| 5                     | 2(F2)         | 2740         |       |         | 0.0                 | 30        | -89.0       | -80         | dBc       |
| л 6                   | 2(F2) - F1    | 1240         |       | 2       |                     |           |             | -80         | dBc       |
| 7                     | 2(F1) - 2(F2) | 260          |       | 1       |                     |           |             | -80         | dBc       |
| 8                     | 2(F1) + 2(F2) | 5740         |       | 1       |                     |           |             | -80         | dBc       |
| 9                     | 2(F1)         | 3000         |       |         | 0.0                 | 25        | -90.6       | -80         | dBc       |
| 10                    | 3(F1)         | 45           | 4500  |         | 0.0                 | 13        | -96.3       | -80         | dBc       |
| 11                    | 3(F1)-F2      | 31           | 30    |         | 0.0                 | 15        | -95.1       | -80         | dBc       |
| 12                    | 3(F2)         | 41           | 10    |         | 0.0                 | 10        | -98.6       | -80         | dBc       |
| 13                    | 3(F2)-F1      | 26           | 10    |         | 0.0                 | 17        | -94.0       | -80         | dBc       |
| 14                    | 3(F1)-(2)F2   | 17           | 60    |         | 0.0                 | 20        | -92.6       | -80         | dBc       |
| 15                    | 3(F2)-(2)F1   | 11           | 10    | 2       |                     |           |             | -80         | dBc       |
|                       |               |              |       | 1       | Frequency           | exceeds H | FIM capabil | ities       |           |
|                       |               |              |       | 2       | Frequency           | cannot be | e measured/ | Other stati | on presen |
|                       |               |              |       | 3       | No Signal           | Present   |             |             |           |

Measurement Location: GPS: 37° 21.151 / 121° 53.017 - East side of Bakesto Park. Approximately 0.75 miles from KSJX at 243-degrees true.

APPENDIX A: License Document BL-950203AA

APPENDIX B: FCC Form 302-AM

es es

Hatfield & Dawson Consulting Engineers

|     |    | ÷., |                                   |
|-----|----|-----|-----------------------------------|
| ÷., |    |     | UNITED STATES OF AMERICA          |
|     |    | 5   |                                   |
| ٠.  |    |     | FEDERAL COMMUNICATIONS COMMISSION |
| ÷., | ÷. |     | LE LE COMMONICATIONS COMMISSION   |
|     |    |     |                                   |

FCC Form 352 May 1988

÷.

÷٠

2.

۰.

AM BROADCAST STATION LICENSE

Call Sign : KSJX

File No.

:BZ-950120AE

| 1.                                                                  | Community of License : San                   | José, CA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <ol> <li>Transmitter(s): Type Accepted. See Sections 7<br/>73.1665 and 73.1670 of the Commission's rules)</li> <li>Main Studio Location: (See Section 73.1125)</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                   | 3.1660,                                |
|---------------------------------------------------------------------|----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| 2.                                                                  |                                              | Wooster<br>Jose, CA                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1420 Koll Circle<br>San Jose, CA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                        |
|                                                                     | North Latitude :<br>West Longitude :         | 37° 21' 28"<br>121° 52' 17"                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5. Remote control location<br>1420 Koll Circle<br>San Jose, CA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                        |
| 6.                                                                  | Antenna and ground system:<br>Attached       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                        |
|                                                                     |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                        |
|                                                                     |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | •                                      |
| 7.                                                                  | Obstruction marking and lighting spec        | ifications - FCC Form 715, paragraph                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>⊧</b> 1, 3, 11 & 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                        |
| 8.                                                                  | Frequency::                                  | 1500 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                      |
| 9.                                                                  | Nominal power (kW) :                         | 10.0 Day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5.0 Night                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                        |
|                                                                     | Antenna input power (kW) :                   | <u></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                        |
|                                                                     | 10.5 Day                                     | <ul> <li>Non-directional antenna : curre</li> <li>Directional antenna :</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                          | nt <u>14.23</u> amperes: resistance <u>52.(</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ) oh                                   |
|                                                                     | 5.4 Night                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                        |
|                                                                     |                                              | <ul> <li>Non-directional antenna: curre</li> <li>Directional antenna :</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                           | nt 10.19 amperes: resistance 52.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ) oh                                   |
|                                                                     |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                        |
| 10.                                                                 | Hours of operation : BP-880212               | АН                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                        |
| •                                                                   | Hours of operation : BP-880212<br>Conditions | AH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                        |
| •                                                                   |                                              | AH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                        |
| •                                                                   |                                              | AH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                        |
| 11.                                                                 | Conditions                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                        |
| 11.<br>Subj                                                         | Conditions                                   | ations Act of 1934, as amended, subs<br>n this license, <sup>1</sup> the LICENSEE is her                                                                                                                                                                                                                                                                                                                                                                                                    | equent Acts, Treatles, and Commission rules made the by authorized to use and operate the radio transmither a A.M. Local Time                                                                                                                                                                                                                                                                                                                                                                                                                               | pereund<br>ing                         |
| 11.<br>Subj                                                         | Conditions                                   | ations Act of 1934, as amended, subs<br>n this license, <sup>1</sup> the LICENSEE is her                                                                                                                                                                                                                                                                                                                                                                                                    | eby authorized to use and operate the radio transmitt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | pereund                                |
| 11.<br>Subj<br>and<br>appr                                          | Conditions                                   | ations Act of 1934, as amended, subs<br>n this license, <sup>1</sup> the LiCENSEE is here<br>of broadcasting for the term ending<br>ind of terminating this license or making effective any<br>tring held under the rules of the Commission prior to<br>the statements contained in the licensee's application                                                                                                                                                                              | eby authorized to use and operate the radio transmit<br>3 A.M. Local Time<br>change, or modification of this license which may be necessary to comply<br>the commencement of this license period.<br>J are true and that the undertaking there in contained so far as they use con-                                                                                                                                                                                                                                                                         | ing<br>with any                        |
| 11.<br>Subj<br>and<br>appr<br>dec<br>Th<br>dec<br>Th<br>exti<br>aut | Conditions                                   | ations Act of 1934, as amended, subs<br>n this license, <sup>1</sup> the LICENSEE is here<br>of broadcasting for the term ending<br>ind of terminating this license or making effective any<br>ring hold under the rules of the Commission prior to<br>the statements contained in the licensee's application<br>it, during the term of this license, render such broadc<br>ate the station nor any right in the use of the frequen<br>hereunder shall be assigned or otherwise transferred | eby authorized to use and operate the radio transmitt<br>3 A.M. Local Time<br>change, or modification of this license which may be necessary to comply<br>the commencement of this license period.<br>are true and that the undertakings therein contained so far as they are con<br>asting service as will serve the public interest, convenience, or necessity to<br>by designated in the license beyond the term hereof, nor in any other mannu<br>in violation of the Communications Act of 1934, as amended. This formes                               | ing<br>with any<br>sistent<br>the full |
| 11.<br>Subj<br>and<br>appa<br>dec<br>Tr<br>her<br>exti<br>aut       | Conditions                                   | ations Act of 1934, as amended, subs<br>n this license, <sup>1</sup> the LICENSEE is here<br>of broadcasting for the term ending<br>ind of terminating this license or making effective any<br>ring hold under the rules of the Commission prior to<br>the statements contained in the licensee's application<br>it, during the term of this license, render such broadc<br>ate the station nor any right in the use of the frequen<br>hereunder shall be assigned or otherwise transferred | eby authorized to use and operate the radio transmitt<br>3 A.M. Local Time<br>change, or modification of this license which may be necessary to comply<br>the commencement of this license period,<br>are true and that the undertakings therein contained so far as they are con<br>asting service as will serve the public interest, convenience, or necessity to<br>be designated in the license beyond the term hereot, nor in any other manni<br>in violation of the Communications Act of 1934, as arrended. This license<br>Act of 1934, as amended. | ing<br>with any<br>sistent<br>the full |

FCC Form 353-A June 1980

File No.: BZ-950120AE

Call Sign: KSJX

# DESCRIPTION OF DIRECTIONAL ANTENNA SYSTEM

No. and Type of Elements: Four uniform cross-section, guyed, series-excited steel radiators. A communications-type omnidirectional antenna is side-mounted at the top of E(#2) tower. Theoretical RMS: 710.91 mV/m, Night; 959.17 mV/m, Day. Augmented RMS: 788.8 mV/m, Night. 1023.47 mV/m, Day All values @ 1 km. Q = 31.62, Day; 22.36, Night.

Height above Insulators: 59.44 m (107.06°)

Overall Height: 60.35 m

Spacing and Orientation: From reference tower #1, tower #2 is spaced 74.98 m (135°) on a line bearing 61° True; tower #3 is spaced 50.0 m (90°) on a line bearing 341° True; tower #4 is spaced 55.55 m (100°) True on a line bearing 251° True.

Non-Directional Antenna: None used.

Ground System consists of 120-equally spaced buried copper radials plus 7.32m by 7.32m ground screen about the base of each tower. Each radial is 60.96 m in length except where limited by property boundary. Overalapping radials shortened and bonded to copper straps.

### THEORETICAL SPECIFICATIONS

| Towers:                       |                | #1(C)                   | #2(E)          | #3(N)     | #4(W)    |
|-------------------------------|----------------|-------------------------|----------------|-----------|----------|
| Phasing:                      | Night:<br>Day: | 0°<br>0°                | 69°<br>165°    | <br>107°  | -98°<br> |
| Field Ratio:                  |                | 1.00<br>1.00<br>CATIONS | 0.40<br>0.45   | 0.73      | 0.65     |
| Phase Indicat                 | Night:<br>Day: | 0°<br>0°                | 70°<br>80.5°   | 67.5°     | -83°<br> |
| Antenna Base<br>Current Ratio |                |                         |                |           |          |
|                               | Night:<br>Day: | 1.000<br>1.000          | 0.35<br>0.636  | 1.205     | 0.639    |
| Antenna Mon<br>Current Ratio  |                | ple                     |                |           |          |
|                               | Night:<br>Day: | 1.000<br>0.5            | 0.345<br>0.335 | <br>0.605 | 0.645    |

As indicated by Potomac Instruments AM-19 (204) Antenna Monitor. Antenna sampling system approved under Section 73.68 (b) of the Rules.

#### BZ-931206AD

# DESCRIPTION OF AND FIELD INTENSITY AT MONITORING POINTS:

Direction of 51° True North. From the transmitter site drive NE on McKee Road 2.5 miles to White Road. Turn left (NW) on White Road for 0.35 mile to Patt Avenue. Turn left (SW) on Patt Avenue and continue 0.35 mile to the Painter School play area. Enter the play area (through the parking lot) and the monitor point lies approximately 25 feet beyond the parking lot, into the hard surfaced play area. Distance to the array from this point is 2.02 miles. The field intensity measured at this point should not exceed <u>14.8 mV/m, Nighttime.</u>

Direction of 101° True North. From the transmitter site go NE on McKee Road 1.2 miles to Jackson Avenue and turn right (SE). Proceed 1.55 miles to Story Road and turn left (NE). Proceed 0.6 mile to McGinness and turn right (SE). Proceed 0.15 mile to Sussex and turn right (SW). Proceed 0.1 mile on Sussex to monitor point on north side of Sussex between 2729 and 2735 at the curb. Distance to the array is 2.67 miles. The field intensity measured at this point should not exceed <u>39.4 mV/m</u>.

Direction of 111° True North. From the transmitter site go NE on McKee Road 1.2 miles to Jackson Avenue and turn right (SE). Proceed 1.55 miles to Story Road and turn left (NE). Proceed 0.4 mile to the intersection of Capitol Expressway. Turn right (SE) on the expressway and proceed one mile to the intersection of Cunningham Avenue. Turn left (NE) on Cunningham Avenue and proceed 0.15 mile to Wonderama Drive. Turn left (NW) on Wonderama Drive and proceed 0.1 mile to the corner of Supreme Drive. Take the measurement on the east side of Wonderama Drive at the P.G. & E. underground utility vault (#J-568) opposite the school athletic field and fifty feet north of street lamp (#110 Distance to the array from this point is 3.35 miles. 155). The field intensity measured at this point should not exceed 33.9 mV/m, Nighttime.

**Direction of 5° True North.** From the transmitter site go NE on McKee Road 1.95 miles to Capitol Avenue. Turn left (NW) on Capitol Avenue and continue 2.1 miles to Old Post Way. Turn left (NW) 0.1 mile to fire hydrant #8628, on the south side of Old Post Way, at the corner of Old Park Place. The distance to the array from this fire hydrant is 2.33 miles. The field intensity measured at this point should not exceed 96.4 mV/m, Daytime.

Direction of 31° True North. From the transmitter site go NE on McKee Road 1.95 miles to Capitol AVenue. Turn left (NW) on Capitol Avenue and continue 1.0 miles to the East Side Union High

KSJX

#### BZ-931206AD

#### KSJX

# DESCRIPTION TO AND FIELD INTENSITY AT MONITORING POINTS (cont'd):

district building. This monitor point is over a P.G. & E. underground utility vault, located on the sidewalk along the east side of Capitol Avenue in front of the East Side Union High School building, approximately 48 feet south of street lamp #8N310. Distance to the array from this point is 1.9 miles. The field intensity measured at this point should not exceed <u>90.1 mV/m</u>, <u>Daytime</u>.

Direction of 325° True North. From the transmitter site go NW on US 101 (Bayshore Freeway) approximately 1.6 miles to 13th Street/Oakland Road (Old Oakland Highway). Turn right (N) and drive approximately 1.3 miles to Murphy Avenue. Turn right (NE) and proceed 0.05 mile to monitor point on right side of Murphy Avenue. The distance to the array is 2.05 miles. The field intensity measured at this point should not exceed 53.3 mV/m, Daytime.

| SECTION III - LICENSE APPLICATION ENGINEERIN | G DATA |
|----------------------------------------------|--------|
|----------------------------------------------|--------|

# Name of Applicant

 $\varphi = P_{1} - P_{1}^{2}$ 

Multicultural Radio Broadcasting Licensee, LLC

# PURPOSE OF AUTHORIZATION APPLIED FOR: (check one)

| X Station License | Х | Station License | 2 |
|-------------------|---|-----------------|---|
|-------------------|---|-----------------|---|

X Direct Measurement of Power

| 1. Facilities auth  | orized in construction permit         |                       |                    |                                             |             |  |
|---------------------|---------------------------------------|-----------------------|--------------------|---------------------------------------------|-------------|--|
| Call Sign           | File No. of Construction Permit       | Frequency             | Hours of Operation | Power in                                    | kilowatts   |  |
| KSJX                | (if applicable)<br>not applicable     | ( <b>kHz)</b><br>1500 | unlimited          | Night 5.0                                   | Day<br>10.0 |  |
| 2. Station location | 'n                                    |                       |                    |                                             |             |  |
| State               |                                       |                       | City or Town       |                                             |             |  |
| Californ            | California                            |                       |                    |                                             |             |  |
| 3. Transmitter lo   | cation                                |                       |                    |                                             |             |  |
| State               | County                                |                       | City or Town       | Street address<br>(or other identification) |             |  |
| CA                  | Santa Clara                           |                       | San Jose           | 501 Wooster St.                             |             |  |
| 4. Main studio lo   | cation                                |                       |                    |                                             |             |  |
| State               | County                                |                       | City or Town       | Street address<br>(or other identification) |             |  |
| CA                  | Santa Clara                           |                       | San Jose           | 501 Wooster St.                             |             |  |
| 5. Remote contro    | ol point location (specify only if au | thorized direction    | al antenna)        |                                             |             |  |
| State               | County                                |                       | City or Town       | Street address<br>(or other identific       | ation)      |  |
| CA                  | Santa Clara                           |                       | San Jose           | 501 Wooster                                 | ,           |  |
|                     |                                       |                       |                    |                                             |             |  |

| ,  | Attach as an Exhibit a detailed description of the sampling system as installed. | Exhibit N<br>Eng. Rr | lo.<br>ot. |      |
|----|----------------------------------------------------------------------------------|----------------------|------------|------|
|    |                                                                                  | Not A                | Applica    | able |
| 7. | Does the sampling system meet the requirements of 47 C.F.R. Section 73.68?       | X Yes                |            | No   |
| 6. | Has type-approved stereo generating equipment been installed?                    | Yes                  | X          | No   |

| 8. Operating constants:                                                      |                                                                                   |        |                                                                             |        |                       |          |
|------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|--------|-----------------------------------------------------------------------------|--------|-----------------------|----------|
| RF common point or antenna cu<br>modulation for night system                 | RF common point or antenna current (in amperes) without modulation for day system |        |                                                                             |        |                       |          |
| 10                                                                           | 14.49                                                                             |        |                                                                             |        |                       |          |
| Measured antenna or common point resistance (in ohms) at operating frequency |                                                                                   |        | Measured antenna or common point reactance (in ohms) at operating frequency |        |                       |          |
| Night Day                                                                    |                                                                                   |        | Night Day                                                                   |        |                       |          |
| 50.0                                                                         | 50.0                                                                              |        | +/-j0                                                                       |        | +/-j0                 |          |
| Antenna indications for directional operation                                |                                                                                   |        |                                                                             |        |                       |          |
| Towers                                                                       | Antenna monitor<br>Phase reading(s) in degrees                                    |        | Antenna monitor sample<br>current ratio(s)                                  |        | Antenna base currents |          |
|                                                                              | Night                                                                             | Day    | Night                                                                       | Day    | Night                 | Day      |
| 1 C                                                                          | 0                                                                                 | 0      | 1.0                                                                         | 1.0    | not                   | not      |
| 2 E                                                                          | 63.3                                                                              | 140.8  | 0.405                                                                       | 0.43   | required              | required |
| 3 N                                                                          | unused                                                                            | 94.8   | unused                                                                      | 1.02   |                       |          |
| 4 W                                                                          | -78.9                                                                             | unused | 0.522                                                                       | unused |                       |          |
|                                                                              |                                                                                   |        |                                                                             |        |                       |          |
|                                                                              |                                                                                   |        |                                                                             |        |                       |          |
| Manufacturer and type of antenna monitor:<br>Potomac Instruments AM-1901     |                                                                                   |        |                                                                             |        |                       |          |

### **SECTION III - Page 2**

 $\mathbb{C}=\mathbb{P}^{p_{1}p_{2}}=\mathbb{Z}$ 

9. Description of antenna system ((f directional antenna is used, the information requested below should be given for each element of the array. Use separate sheets if necessary.)

| Type Radiator<br>uniform cross<br>section guyed<br>towers | Overall height in meters of<br>radiator above base<br>insulator, or above base, if<br>grounded. | above ground (without | Overall height in meters<br>above ground (include<br>obstruction lighting) | If antenna is either top<br>loaded or sectionalized,<br>describe fully in an<br>Exhibit. |  |
|-----------------------------------------------------------|-------------------------------------------------------------------------------------------------|-----------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------------------------|--|
| *see item 11                                              | 59.44                                                                                           | 60.4                  | 60.4 (NO LIGHTING                                                          | Exhibit No.<br>DNA                                                                       |  |
| Excitation                                                | × Series                                                                                        | Shunt                 |                                                                            |                                                                                          |  |

Excitation

Geographic coordinates to nearest second. For directional antenna give coordinates of center of array. For single vertical radiator give tower location.

| North Latitude | 0<br>37 | 21 | 28 | West Longitude | 0<br>121 | 52 | 17" |
|----------------|---------|----|----|----------------|----------|----|-----|
|                |         |    |    | L              |          |    |     |

If not fully described above, attach as an Exhibit further details and dimensions including any other antenna mounted on tower and associated isolation circuits.

Exhibit No. DNA

Exhibit No.

ON FILE

Also, if necessary for a complete description, attach as an Exhibit a sketch of the details and dimensions of ground system.

10. In what respect, if any, does the apparatus constructed differ from that described in the application for construction permit or in the permit?

No change from originally licensed system

11. Give reasons for the change in antenna or common point resistance.

No change -rebuild following destruction of site by fire

\*ASR #s 1215674, 1215676, 1215678, 1215679 no lighting or marking required

I certify that I represent the applicant in the capacity indicated below and that I have examined the foregoing statement of technical information and that it is true to the best of my knowledge and belief.

| Name (Please Print or Type)                      |                                    |  |  |  |  |
|--------------------------------------------------|------------------------------------|--|--|--|--|
| Benj. F. Dawson III, P.E.                        |                                    |  |  |  |  |
| Address (include ZIP Code)                       | Date                               |  |  |  |  |
| Hatfield & Dawson Consulting Engineers           | September 28, 2012                 |  |  |  |  |
| 9500 Greenwood Avenue North<br>Seattle, WA 98103 | Telephone No. (Include Area Code)  |  |  |  |  |
|                                                  | 206 783 9151                       |  |  |  |  |
| Technical Director                               | X Registered Professional Engineer |  |  |  |  |
| Chief Operator                                   | Technical Consultant               |  |  |  |  |
| X Other (specify) Consulting Engineer            |                                    |  |  |  |  |

FCC 302-AM (Page 5) August 1995