CLEAR CHANNEL

Technical & Capital Management 2625 South Memorial Drive, Suite A Tulsa, OK 74129 Steve Davis SVP, Engineering and Capital Management SteveDavis@clearchannel.com

December 8, 2011

Via WASHINGTON EXPRESS

Ms. Marlene H. Dortch, Secretary Federal Communications Commission Media Bureau Services US Bank – Lockbox No. 979089 1002 Convention Plaza SL-MO-C2-GL Saint Louis, MO 63107-9000 FILED/ACCEPTI

DEC 122011 Federal Communications Commission Office of the Secretary

RE: CAPSTAR TX LLC. (FRN No. 0019362953) Application (Form 302-AM) for License WERC (AM), 960 kHz, Birmingham, AL; Facility ID No. 2112

Dear Ms. Dortch:

CAPSTAR TX LLC., the licensee of the above-referenced station, hereby submits an original and four copies of an application for license, submitted on FCC Form 302-AM.

Also enclosed is Form 159, Remittance Advice, with credit card payment of the \$1,365.00 filing fee.

Please direct communications concerning this application to the undersigned.

Respectfully submitted, CAPS R TX LLØ By: phen G. Davis

Scenior Vice President of Engineering and Capital Management

cc: WERC (AM) Public Inspection File

Troy Langham FCC Engineering Supervisor TroyLangham@clearchannel.com

FCCContact@clearchannel.com

Billie Layman FCC Administrator BillieLayman@clearchannel.com

Phone: (918) 664-4581

And

Federal Communications Commission Washington, D. C. 20554

1

7

Approved by OMB 3060-0627 Expires 01/31/98

FOR FCC USE ONLY

FCC 302-AM

APPLICATION FOR AM

BROADCAST STATION LICENSE

(Please read instructions before filling out form.

Bmmk-2011/2/2CVWHISh, FOR COMMISSION USE ONLY

FILE NO. BMMC-2011/212

SECTION I - APPLICANT FEE INFORMATION			
1. PAYOR NAME (Last, First, Middle Initial)			
CAPSTAR TX LLC			
MAILING ADDRESS (Line 1) (Maximum 35 characters)			
		and the second	
SUITE A			
CITY STULSA	STATE OR COUNTRY (if for OK	eign address)	ZIP CODE 74129
TELEPHONE NUMBER (include area code) (918) 664-4581	CALL LETTERS WERC	OTHER FCC IDEN FAC ID: 2112	NTIFIER (If applicable)
2. A. Is a fee submitted with this application?		[✓ Yes No
B. If No, indicate reason for fee exemption (see 47 C.F.R. Section			
Governmental Entity	ional licensee	ther (Please explain)	:
C. If Yes, provide the following information:			
Enter in Column (A) the correct Fee Type Code for the service you are	applying for Fee Type Co	des may be found i	n the "Mass Media Services
Fee Filing Guide." Column (B) lists the Fee Multiple applicable for this a	application. Enter fee amou	nt due in Column (C).
(A)(B)	(C)		
FEE TYPE FEE MULTIPLE	FEE DUE FOR FEE TYPE CODE IN	Ξ	FOR FCC USE ONLY
M M R 0 0 0 1	\$ 635.00		
		[
To be used only when you are requesting concurrent actions which resul	It in a requirement to list mor	e than one Fee Typ	e Code.
(A) (B)	(C)	[
	\$ 730.00		
ADD ALL AMOUNTS SHOWN IN COLUMN C,	TOTAL AMOUNT REMITTED WITH TH APPLICATION	IS	FOR FCC USE ONLY
THIS AMOUNT SHOULD EQUAL YOUR ENCLOSED	\$ 1,365.00		
REMITTANCE.			

SECTION II - APPLICAN	T INFORMATION							
1. NAME OF APPLICANT								
MAILING ADDRESS								
2625 S MEMORIAL DRIVE	, SUITE A							
CITY TULSA			STATE OK		ZIP CODE 74129			
2. This application is for:								
		tional		ion-Directional				
Call letters	Community of License	Construct	ion Permit File No.	Modification of Construction	Expiration Date of Last			
WERC				Permit File No(s).	Construction Permit			
I LINO		L		<u> </u>				
3. Is the station n	ow operating pursuant	to auto	matic program	test authority in	Yes No			
accordance with 47 C.F	R. Section 73,1620?				Exhibit No.			
If No, explain in an Exhi	ibit.							
4. Have all the term	s, conditions, and oblig	ations s	et forth in the	above described	Yes No			
construction permit bee	n fully met?				Exhibit No.			
If No, state exceptions i	n an Exhibit.							
5. Apart from the chan the grant of the under	ges already reported, ha	s any ca	use or circumst would result in	ance arisen since any statement or	Yes No			
representation containe	d in the construction perr	nit applic	ation to be now	incorrect?				
If Yes, explain in an Ex	hibit.				Exhibit No.			
6. Has the permittee fi	led its Ownership Report	(FCC Fo	orm 323) or own	ership	Yes No			
certification in accordan	ice with 47 C.F.R. Section	n 73.361	5(b)?		Doop not apply			
If No, explain in an Exhi	ibit.				Exhibit No.			
7. Has an adverse find	ling been made or an ad	verse fin	al action been to	aken by any court	Yes 🗸 No			
criminal proceeding, bro	ought under the provision	is of any	law relating to t	he following: any				
felony; mass media r another governmental u	elated antitrust or unfa unit: or discrimination?	ir compe	etition; fraudule	nt statements to				
• • • • • • • • • • • • • • • • • • • •								
If the answer is Yes, a	attach as an Exhibit a fu	ull disclo	sure of the pers	sons and matters				
(by dates and file num	bers), and the disposition	on of the	strative body and litigation W	here the requisite				
information has been	earlier disclosed in co	nnection	with another a	application or as				
required by 47 U.S.C. S	Section 1.65(c), the applic	ant need	d only provide: (i) an identification				
or that previous submis	sion by reference to the	Tile num	per in the case	of an application,				
was filed, and the date	of filing; and (ii) the dispo	sition of	the previously re	eported matter.				

8. Does the applicant, or any party to the application, have a petition on file to migrate to the expanded band (1605-1705 kHz) or a permit or license either in the existing band or expanded band that is held in combination (pursuant to the 5 year holding period allowed) with the AM facility proposed to be modified herein?

If Yes, provide particulars as an Exhibit.

The APPLICANT hereby waives any claim to the use of any particular frequency or of the electromagnetic spectrum as against the regulatory power of the United States because use of the same, whether by license or otherwise, and requests and authorization in accordance with this application. (See Section 304 of the Communications Act of 1934, as amended).

The APPLICANT acknowledges that all the statements made in this application and attached exhibits are considered material representations and that all the exhibits are a material part hereof and are incorporated herein as set out in full in

CERTIFICATION

1. By checking Yes, the applicant certifies, that, in the case of an individual applicant, he or she is not subject to a denial of federal benefits that includes FCC benefits pursuant to Section 5301 of the Anti-Drug Abuse Act of 1988, 21 U.S.C. Section 862, or, in the case of a non-individual applicant (e.g., corporation, partnership or other unincorporated association), no party to the application is subject to a denial of federal benefits that includes FCC benefits pursuant to that section. For the definition of a "party" for these purposes, see 47 C.F.R. Section 1.2002(b).

2. I certify that the statements in this application are true, complete, and correct to the best of my knowledge and belief, and are made in good faith.

_{Name} Stephen G. Davis	storature A
™e Senior Vice President Engineering	Date 72/12/11 (918) 664-4581

WILLFUL FALSE STATEMENTS ON THIS FORM ARE PUNISHABLE BY FINE AND/OR IMPRISONMENT (U.S. CODE, TITLE 18, SECTION 1001), AND/OR REVOCATION OF ANY STATION LICENSE OR CONSTRUCTION

FCC NOTICE TO INDIVIDUALS REQUIRED BY THE PRIVACY ACT AND THE PAPERWORK REDUCTION ACT

The solicitation of personal information requested in this application is authorized by the Communications Act of 1934, as amended. The Commission will use the information provided in this form to determine whether grant of the application is in the public interest. In reaching that determination, or for law enforcement purposes, it may become necessary to refer personal information contained in this form to another government agency. In addition, all information provided in this form will be available for public inspection. If information requested on the form is not provided, the application may be returned without action having been taken upon it or its processing may be delayed while a request is made to provide the missing information. Your response is required to obtain the requested authorization.

Public reporting burden for this collection of information is estimated to average 639 hours and 53 minutes per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the burden, can be sent to the Federal Communications Commission, Records Management Branch, Paperwork Reduction Project (3060-0627). Washington, D. C. 20554. Do NOT send completed forms to this address.

THE FOREGOING NOTICE IS REQUIRED BY THE PRIVACY ACT OF 1974, P.L. 93-579, DECEMBER 31, 1974, 5 U.S.C. 552a(e)(3), AND THE PAPERWORK REDUCTION ACT OF 1980, P.L. 96-511, DECEMBER 11, 1980, 44 U.S.C. 3507.

	Yes	No

Exhibit No.

I Yes L

SECTION III - LICENSE APPLICATION ENGINEERING DATA Name of Applicant

CAPSTAR TX, LLC

PURPOSE OF A	UTHORIZATION APPLIED FOR	: (check one)			
	Station License	Direct Me	asurement of Power		
1. Facilities auth	orized in construction permit				
Call Sign	File No. of Construction Permit	Frequency	Hours of Operation	Power	in kilowatts
WERC	(if applicable)	(kHz) 960	Unlimited	Night 5.0	Day 5.0
2. Station location	n				
State			City or Town		
AL			Birmingham		
3. Transmitter lo	cation				
State	County		City or Town	Street address	iantian)
AL	Jefferson		Birmingham	2400 Arkadelphia	Rd.
4. Main studio lo	cation				
State	County		City or Town	Street address	Tention)
AL	Jefferson	_	Birmingham	600 Beacon Pky	vy. W., Suite 400
5. Remote control	ol point location (specify only if a	uthorized directio	onal antenna)		
State	County		City or Town	Street address	
AI	Jefferson		Birmingham	600 Beacon Pk	wy. W., Suite 400

6. Has type-approved stereo generating equipment been installed?	
--	--

ł

7. Does the sampling system meet the requirements of 47 C.F.R. Sec	Section 73.68?
--	----------------

t

Attach as an Exhibit a detailed description of the sampling system as installed.

8. Operating constants:							
RF common point or antenna cu modulation for night system 10.39	urrent (in ampere	es) without	RF common modulation fo 10.0	RF common point or antenna current (in amperes) without modulation for day system 10.0			
Measured antenna or common point resistance (in ohms) at operating frequency Night Day 50.0			Measured antenna or common point reactance (in ohms) at operating frequency Night Day			ohms) at	
30.0			-J2.U		-]5.0		
Antenna indications for direction	nal operation						
Towers	Antenna monitor Phase reading(s) in degrees		Antenna m currer	Antenna monitor sample current ratio(s)		se currents	
	Night	Day	Night	Day	Night	Day	
Tower 1 (S) ASR 1059883	0	N/A	100	N/A			
Tower 2 (N) ASR 1059884	+87.4	N/A	111.9	N/A			
	<u> </u>						
			<u> </u>		[]		
Manufacturer and type of anten	na monitor: F	Potomac Instrume	ents AM-19(204)			

FCC 302-AM (Page 4) August 1995

SECTION III - Page 2

9. Description of antenna system ((f directional antenna is used, the information requested below should be given for each element of the array. Use separate sheets if necessary.)

Type Radiator 4-sided self supporting towers (2)	Overall height in meters of radiator above base insulator, or above base, if grounded. 1-85.8, 2-84.6	Overall height in meters above ground (without obstruction lighting) 1-86.0, 2-85.0	Overall height in meters above ground (include obstruction lighting) 1-87.0, 2-85.6	If antenna is either top loaded or sectionalized, describe fully in an Exhibit. Exhibit No.
Excitation	Series	Shunt		

Shunt

Geographic coordinates to nearest second. For directional antenna give coordinates of center of array. For single vertical radiator give tower location.

North Latitude 33	0	32	'	02	**	West Longitude 86	0	51	•	07	a
						L					

If not fully described above, attach as an Exhibit further details and dimensions including any other antenna mounted on tower and associated isolation circuits.

Exhibit No. ENGINEERING Exhibit No.

Also, if necessary for a complete description, attach as an Exhibit a sketch of the details and dimensions of ground system.

10. In what respect, if any, does the apparatus constructed differ from that described in the application for construction permit or in the permit? NONE

11. Give reasons for the change in antenna or common point resistance.

Daytime non-directional power determined at phasor common point meter.

Ð

No other change to Daytime non-directional operation from Tower 1(S), ASR 1059833.

:

I certify that I represent the applicant in the capacity indicated below and that I have examined the foregoing statement of technical information and that it is true to the best of my knowledge and belief.

Name (Please Print or Type) Randall L. Mullinax	Signature (check appropriate box below)
Address (include ZIP Code) 2859 Cascade Dr.	Date December 7, 2011
Gainesville, GA 30504	Telephone No. (Include Area Code) 770-534-1065
Technical Director	Registered Professional Engineer
Chief Operator	Technical Consultant
Other (specify)	
FCC 302-AM (Page 5) August 1995	CLEAR ALL PAGES

ENGINEERING EXHIBIT APPLICATION FOR DIRECT POWER MEASURMENT CAPSTAR TX LLC RADIO STATION WERC BIRMINGHAM, ALBAMA

December 7, 2011

960 KHz 5.0 KW-U DA-N

1

ł

Table of Contents

_

.

	Page
Engineering Statement	3
Description of Radiators	4
Description of Sampling System	5
Measured Matrix Impedances and WCAP Corrections	6
Calculated Impedances and WCAP Calculations	7-11
Nighttime Directional Operating Parameters Derived from Modeled Currents	12
Nighttime Directional Calculated Voltages and Currents	13-15
Nighttime WCAP Calculations	16
Measured and Calculated Sampling Line Characteristics	17
Sampling Transformer Calibration	18
Environmental Statement	19
Reference Point Data	20
Tower 1(S) Vertical Sketch	21

2

:

Engineering Statement

This application is being filed to relicense the existing operations of WERC(AM), Birmingham, AL with the nighttime directional operation to be relicensed under the recent changes to 47 CFR 73.151 allowing performance verification by computer modeling and sampling system verification. The ground system and radiators remain as authorized in the current station license BZ-19930209AA. All measurements included in this application were made by the undersigned between June 29 and July 28, 2011 unless otherwise noted.

Analysis of this antenna system was performed using the computer program Expert MININEC Broadcast Professional version 14.5 by EM Scientific Inc. The antenna model was tuned to produce the same matrix impedances as those measured by varying the electrical height of the radiators and by adding shunt capacitive loads and series inductance using the Westberg circuit analysis program WCAP.

Once the model was tuned to match the measured matrix impedances, the array synthesis module of the MININEC program was used to calculate the proper base drive voltages to generate the fields necessary to form the required pattern for nighttime operation. The current distribution was calculated for each radiator and given that the sampling system utilizes base current sampling devices the operating parameters calculated from the resulting currents as each base node.

t

Randall L. Mullinax December 7, 2011

Description of Radiators

1

The WERC radiators are four-sided self supporting structures that taper in side width from the base as the height above ground increases. Both towers have a face width of 609.6 cm at the base decreasing to 54.6 cm at the top. The towers are physically similar differing slightly both in height and cross sectional area. The physical electrical height of Tower 1(S) is 98.8° at 960 kHz and Tower 2(N) is 97.5°. Each radiator has 4 base insulators which are assumed to have a nominal capacitance of 25pF each (for a total of 100pF per radiator).

Each radiator was modeled using 11 wire segments, with each segment representing 100% of the average physical radius at the height of the center of that segment. It should be noted however, that all radii are well within the required 80 to 150% of a circle radius having a circumference equal to the sum of the widths of the tower sides (4 in this case) at the bottom and top of each individual segment. The total modeled height and the modeled height of all segments for both radiators are also well within the 75 to 125% requirement, relative to the appropriate physical heights.

The "Problem Definition Evaluation" function of the MINIMEC program shows no errors for either radiator but does return several "warnings" as is typical with large base self supporting towers using the "wedding cake" type of modeling geometry. Based on previous filings these "warnings" are believed to have no impact upon the accuracy of the "method of moments" model (ref. WEXY, Wilton Manors, FL amendment BMML-20100317ABW).

t

Description of Sampling System

The sampling system consists of equal lengths of $\frac{1}{2}$ " solid outer jacket coaxial cable connected to a Delta Model TCT-1HV toroidal current transformer near the base of Tower 1(S) and a Delta Model TCT-1 toroidal current transformer near the base of Tower 2(N). The sample lines are buried over their entire length. The antenna monitor is a Potomac Instruments Model AM-19(204).

A small STL antenna is mounted on Tower 1(S) and is isolated using a coaxial isolation coil that is located inside the ATU cabinet. The coax to the STL antenna is bonded to the tower feed and runs through the Delta Electronics Model TCT-1HV toroidal current transformer as does the tower light wiring. Since both the isolation coil and the lighting choke are connected in the circuit prior to the TCT-1HV sample toroid, they do not impact the sample current that is sensed by the toroid. To facilitate all measurements, the STL coax was removed from the isolation coil and the tower light wiring was removed from the lighting choke (both were floating). There are no antennas mounted on Tower 2(N) but again, the tower light wiring runs through the Delta Electronics Model TCT-1 toroidal current transformer with the tower feed and the tower light wiring was disconnected from the lighting choke for all measurements.

Measured Matrix Impedances and WCAP Corrections

Tower 1(S) driven with Tower 2(N) floated $51.4 + j29.6\Omega$

Tower 2(N) driven with Tower 1(S) floated $44.3 + j28.3\Omega$

TOWER	ZMODEL	ZIN (MODEL)	Zin (Measured)	L(µH)	XL	Хс
1(S)	50.7 +j12.8	51.5 +j29.6	51.4 +j29.6	3.04	+j18.34	-j1658
2(N)	44.0 +j6.3	44.3 +j28.3	44.3 +j28.3	3.85	+j23.22	-j1658

All measurements were made with an Agilent Technologies Model 4396B vector network analyzer with external directional coupler in a calibrated measurement system.

Calculated Impedances and WCAP Calculations

C:\Backup\My Documents\Markets\Birmingham\WERC MOM Design\BPro Files\t1dt2o-e 07-27-2011 21:30:56

GEOMETRY

:

Wire coordinates in degrees; other dimensions in meters Environment: perfect ground

wire	caps	Distance	Angle	Z	radius	segs
1	none	0	0	0	3,5887	1
		0	0	9.45		
2	none	0	0	9.45	3.0046	1
		0	0	18.9		
3	none	0	0	18.9	2.4204	1
		0	0	28.35		
4	none	0	0	28.35	1.9326	1
		0	0	37.8		
5	none	0	0	37.8	1.6235	1
		0	0	47.25		
6	none	0	0	47.25	1.3964	1
		0	0	56.7		
7	none	0	0	56.7	1.1695	1
		0	0	66.15		
8	none	0	0	66.15	.9424	1
		0	0	75.6		
9	none	0	0	75.6	.7154	1
		0	0	85.05		
10	none	0	0	85.05	.4748	1
		0	0	94.5		
11	none	0	0	94.5	.3477	1
		0	0	103.95		
12	none	110.7	10.	0	3.5776	1
		110.7	10.	9.22		
13	none	110.7	10.	9.22	2.9713	1
		110.7	10.	18.44		
14	none	110.7	10.	18.44	2.4327	1
		110.7	10.	27.66		
15	none	110.7	10.	27.66	2.0637	1
		110.7	10.	36.88		
16	none	110.7	10.	36.88	1.7964	1
		110.7	10.	46.1		
17	none	110.7	10.	46.1	1.5291	1
		110.7	10.	55.32		
18	none	110.7	10.	55.32	1.2618	1
		110.7	10.	64.54		
19	none	110.7	10.	64.54	.9945	1
• •		110.7	10.	73.76		
20	none	110.7	10.	73.76	.7272	1
~ 1		110.7	10.	82.98		
21	none	110.7	10.	82.98	.4706	1
~~		110.7	10.	92.2		
22	none	110.7	10.	92.2	.3477	1
		110.7	10.	101.42		

t

.96 50.749	12.794	52.337	14.1	1.2888	-17.9		
(MHz) (ohms)	(ohms)	(Ohms)	(deg)		đB	đB	
freq resist	react	imped	phase	vswr	S11	S12	
normalization	= 50.						
IMPEDANCE							
1					1		
18-2011 18:38:	58		- Januari (III				
C:\Backup\My Doc	uments\Mark	ets\Birmi	ngham\WF	RC MOM D	esion\BPr	o Files\t1dt2o-e	11-
1 12 0		-1,658.	U		0	0	
load node (oh	ms)	(ohms)	(mH	[)	(uF)	circuit	
res	istance	reactance	ind	luctance	capacita	nce passive	
Lumped loads							
			·		Voltenge		
1 1	$1 \qquad 1$	ircude			voltage		
sources	octor mag	i tudo	nhago		+1 mo		
A							
1 .96	0	1	.0256	111	.02625		
no. lowest	step	steps	minin	ium	maximum		
frequency		no. o	f segme	nt lengt	h (wavele	ngths)	
Frequencies (MHz)						
ELECTRICAL DESCR	TPTTON						
radius	11	.3477		1	3.5887		
segment length	21	9.2199	9	9	9.45001		
Individual wires	wire	value		wire	value		
	mir	imum		ma	ximum		
curren	t nodes =	22					
Number of wires		22					
		~~					

C:\Backup\My Documents\Markets\Birmingham\WERC MOM Design\BPro Files\t2dt1o-e 07-26-2011 22:55:17

GEOMETRY

Wire coordinates in degrees; other dimensions in meters Environment: perfect ground

wire	caps	Distance	Angle	Z	radius	seas
1	none	0	0	0	3.5887	20g2 1
		0	0	9.45		-
2	none	0	0	9.45	3.0046	1
		0	0	18.9		-
3	none	0	0	18.9	2.4204	1
		0	0	28.35		
4	none	0	0	28.35	1,9326	1
		0	0	37.8		-
5	none	0	0	37.8	1.6235	1
		0	0	47.25		-
6	none	0	0	47.25	1.3964	1
		0	0	56.7		
7	none	0	0	56.7	1.1695	1
		0	0	66.15		
8	none	0	0	66.15	.9424	1
		0	0	75.6		
9	none	0	0	75.6	.7154	1
		0	0	85.05		
10	none	0	0	85.05	.4748	1
		0	0	94.5		
11	none	0	0	94.5	.3477	1
		0 :	0	103.95	:	
12	none	110.7	10.	0	3.5776	1
		110.7	10.	9.22		
13	none	110.7	10.	9.22	2.9713	1
		110.7	10.	18.44		
14	none	110.7	10.	18.44	2.4327	1
		110.7	10.	27.66		
15	none	110.7	10.	27.66	2.0637	1
		110.7	10.	36.88		
16	none	110.7	10.	36.88	1.7964	1
		110.7	10.	46.1		
17	none	110.7	10.	46.1	1.5291	1
		110.7	10.	55.32		
18	none	110.7	10.	55.32	1.2618	1
		110.7	10.	64.54		
19	none	110.7	10.	64.54	.9945	1
		110.7	10.	73.76		
20	none	110.7	10.	73.76	.7272	1
		110.7	10.	82.98		
21	none	110.7	10.	82.98	.4706	1
		110.7	10.	92.2		
22	none	110.7	10.	92.2	.3477	1
		110.7	10.	101.42		

Number of	wires current	= nodes =	22 22			
		mii	limum _	max	imum	
Individua	l wires	wire	value	wire	value	
segment 1	ength	21	9.21999	9	9.45001	
radius		11	.3477	1	3.5887	
ELECTRICA	L DESCRI	PTION				
frequenci	es (Mrz)		ma af	accord langth	(• • • •
IIeg	uency		110. OL	segment rength	(waverengti	15)
no. lowe	SC	scep	steps	minimum	maximum	
1.96		0	T	.0256111	.02625	
Sources						
source no	de sec	ctor magn	itude	phase	type	
1 1	2 1	1.		0	voltage	
Lumped lo	ads					
	resis	stance	reactance	inductance	capacitance	passive
load nod	e (ohms	5)	(ohms)	(mH)	(uF)	circuit
1 1	0		-1,658.	0	0	0
C•\Backup	My Docum	onte\Marl	rete\Birmin	Tham WERC MOM Do	cion\BBro Fi	loc\+2d+10-0

C:\Backup\My Documents\Markets\Birmingham\WERC MOM Design\BPro Files\t2dt1o-e 11-18-2011 19:29:49

IMPEDANCE

r.

norma	alization	= 50.	:				
freq	resist	react	imped	phase	VSWR	S11	S12
(MHz)	(ohms)	(ohms)	(ohms)	(deg)		đB	đB
source =	= 1; nođe	12, sec	tor 1				
.96	44.013	6.2509	44.455	8.1	1.2023	-20.737	-3.7E-02

10

WCAP Calculations - Tower 1(S) Driven with Tower 2(N) Floated

WESTBERG CIRCUIT ANALYSIS PROGRAM

FILE NAME = WERC1D20.TXT

I	1.0000	0	1	0.0000	0.0000	0.0000
R	1.0000	1	2	0.0000	0.0000	0.0000
L	3.0400	2	3	0.0000	0.0000	0.0000
С	0.0001	3	0	0.0000	0.0000	0.0000
R	50.7490	3	0	12.7940	0.0000	0.0000
EX	0.0000	0	0	0.0000	0.0000	0.0000

FREQ = 0.960

N	ODE		VOLT MAG	VOLT PH	ASE						
	1		60.2835	29.45	29						
	2		59.4147	29.92	71						
	3		52.7188	12.38	27						
				BRANCH	VOLTAGE	BRANCH	CURRENT	FROM NODE	IMPEDANCE	TO NODE	IMPEDANCE
				MAG	PHASE	MAG	PHASE	RESISTANCE	REACTANCE	RESISTAN	ICE REACTANCE
		VSWR									
R	1-	2	1.000	1.00	0.000	1.00	0.000	52.49	29.64	51.49	29.64
L	2-	3	3.040	18.34	90.000	1.00	0.000	51.49	29.64	51.49	11.30
С	3-	0	0.000	52.72	12.383	0.03	102.383	0.00	-1657.86	0.00	-1657.86
R	3-	0	50.749	52.72	12.383	1.01	-1.767	50.75	12.79	50.75	12.79

WCAP Calculations - Tower 2(N) Driven with Tower 1(S) Floated

WESTBERG CIRCUIT ANALYSIS PROGRAM

FILE NAME = WERC2D10.TXT

I	1.0000	0	1	0.0000	0.0000	0.000 0
R	1.0000	1	2	0.0000	0.0000	0.0000
L	3.8500	2	3	0.0000	0.0000	0.0000
С	0.0001	3	0	0.0000	0.0000	0.0000
R	44.0130	3	0	6.2509	0.0000	0.0000
EX	0.0000	0	0	0.0000	0.0000	0.0000

FREQ = 0.960

:

N)DE		VOLT MAG	VOLT PH	ASE						
	L		53.4349	32.00	01						
:	2		52.5895	32.57	75						
:	3		44.6071	6.55	68						
				BRANCH	VOLTAGE	BRANCH	CURRENT	FROM NODE	IMPEDANCE	TO NODE	IMPEDANCE
				MAG	PHASE	MAG	PHASE	RESISTANCE	REACTANCE	RESISTAN	ICE REACTANCE
	,	VSWR									
R	1-	2	1.000	1.00	0.000	1.00	0.000	45.32	28.32	44.32	28.32
L	2-	3	3.850	23.22	90.000	1.00	0.000	44.32	28.32	44.32	5.09
С	3-	0	0.000	44.61	6.557	0.03	96.557	0.00	-1657.86	0.00	-1657.86
R	3-	0	44.013	44.61	6.557	1.00	-1.526	44.01	6.25	44.01	6.25

:

Nighttime Directional Operating Parameters Derived from Modeled Currents

t

TOWER	Modei Current Pulse	Model Current Magnitude (amperes)	Model Current Phase (degrees)	Model Drive Impedance (ohms)	Model Drive Power (watts)
1(S)	1	6.89	+23.6	84.3 +j17.5	4002
2(N)	12	7.64	+113.4	17.0 +j1.2	992

TOWER	Drive Impedance At Toroid (ohms)	Current Magnitude At Toroid (amperes)	Current Phase At Toroid (degrees)	Antenna Monitor Ratio	Antenna Monitor Phase (degrees)
1(S)	85.9 +j31.6	6.83	+26.543	100	0
2(N)	17.0 +j24.3	7.64	+113.987	111.9	+87.4

:

ł

Nighttime Directional Calculated Voltages and Currents

C:\Backup\My Documents\Markets\Birmingham\WERC MOM Design\BPro Files\WERCda-e 07-26-2011 23:25:28

MEDIUM WAVE ARRAY SYNTHESIS FROM FIELD RATIOS

Frequency = .96 MHz field ratio tower magnitude phase (deg) 1. 0 1 2 107.8 .91 VOLTAGES AND CURRENTS - rms source voltage current node magnitude phase (deg) magnitude phase (deg) 35.3 1 593.822 6.89398 23.6 12 130.097 117.5 7.6396 113.3 Sum of square of source currents = 211.781 Total power = 5,000. watts TOWER ADMITTANCE MATRIX admittance real (mhos) imaginary (mhos) Y(1, 1) .0133087 -.00301443 Y(1, 2) .00178959 .0091828 Y(2, 1).00178884 .00918209 Y(2, 2).0159368 -.00184176 TOWER IMPEDANCE MATRIX t impedance real (ohms) imaginary (ohms) Z(1, 1)50.911 12.2533 Z(1, 2) 4.82956 -30.15 Z(2, 1)4.82806 -30.153 Z(2, 2) 44.1735 5.7078 ELECTRICAL DESCRIPTION Frequencies (MHz) frequency segment length (wavelengths) no. of no. lowest minimum step steps maximum 1 .96 0 1 .0256111 .02625 Sources source node sector magnitude phase type 1 839.792 35.3 voltage 1 1 2 12 1 183.985 117.5 voltage IMPEDANCE normalization = 50. freq resist react imped phase VSWR S11 S12 (MHz) (ohms) (ohms) (ohms) dB đB (deg) source = 1; node 1, sector 1 .96 84.347 17.457 86.135 11.7 -10.922 -.36628 1.7948 source = 2; node 12, sector 1 .96 16.985 1.2306 2.9458 -6.1407 -1.2101 17.029 4.1

GEOMETRY Wire coordinates in degrees; other dimensions in meters Environment: perfect ground

wire	caps	Distance	Angle	Z	radius	segs
1	none	0	0	0	3.5887	1
		0	0	9.45		
2	none	0	0	9.45	3.0046	1
		0	0	18.9		
3	none	0	0	18.9	2.4204	1
		0	0	28.35		
4	none	0	0	28.35	1.9326	1
		0	0	37.8		
5	none	0	0	37.8	1.6235	1
		0	0	47.25		
6	none	0	0	47.25	1.3964	1
		0	0	56.7		
7	none	0	0	56.7	1.1695	1
		0	0	66.15		
8	none	0	0	66.15	.9424	1
		0	0	75.6		
9	none	0	0	75.6	.7154	1
		0	0	85.05		
10	none	0	0	85.05	.4748	1
		0	0	94.5		
11	none	0	0	94.5	.3477	1
		0	0	103.95		
12	none	110.7	10.	0	3.5776	1
		110.7	10.	9.22		
13	none	110.7	10.	9.22	2.9713	1
		110.7 !	10.	18.44		
14	none	110.7	10.	18.44	2.4327	1
		110.7	10.	27.66		
15	none	110.7	10.	27.66	2.0637	1
		110.7	10.	36.88		
16	none	110.7	10.	36.88	1.7964	1
		110.7	10.	46.1		
17	none	110.7	10.	46.1	1.5291	1
		110.7	10.	55.32		
18	none	110.7	10.	55.32	1.2618	1
		110.7	10.	64.54		
19	none	110.7	10.	64.54	.9945	1
		110.7	10.	73.76		
20	none	110.7	10.	73.76	.7272	1
		110.7	10.	82.98		
21	none	110.7	10.	82.98	.4706	1
		110.7	10.	92.2		
22	none	110.7	10.	92.2	.3477	1
		110.7	10.	101.42		
Numbe	r of v	vires	= 22			
	c	current nodes	= 22			

	mini	.mum	maximum		
Individual wires	wire	value	wire	value	
segment length	21	9.21999	9	9.45001	
radius	11	.3477	1	3.5887	

14

:

CURRENT	rms								
Frequer	ncy = .90	6 MHz							
Input p	Input power = 5,000. watts								
Efficie	ency = 100	D. %							
coordin	nates in de	egrees							
current	:			mag	phase	real	imaginary		
no.	х	Y	Z	(amps)	(deq)	(amps)	(amps)		
1	0	0	0	6.89352	23.6	6.31664	2,76056		
END	0	0	9.45	7.61356	6.3	7.56704	.840362		
2,11	0	0	9.45	7.61356	6.3	7.56704	.840362		
END	0 0	0	18.9	7.5986	29	7.58861	389435		
2.12	0 0	0	18 9	7 5986	2.9	7 58861	389435		
END	0	ů	28 35	7 30505	1	7 39594	013536		
2.73	0	Õ	20.35	7 30505	.1	7 30501	013536		
	0	0	20.33	6 07020	• I 2 E 0 1	6 07541	.01332603		
D T A	0	0	37.0	6.97929	350.L	6.97541 C 07541	434003		
204	0	0	37.0	6.9/929	328.1	6.9/541	232083		
END	0	0	47.25	6.36817	350.5	6.35607	392332		
205	0	0	47.25	6.36817	356.5	6.35607	392332		
END	0	0	56.7	5.57492	355.1	5.55455	476165		
2 J 6	0	0	56.7	5.57492	355.1	5.55455	476165		
END	0	0	66.15	4.63313	353.9	4.60712	490205		
2J7	0	0	66.15	4.63313	353.9	4.60712	490205		
END	0	0	75.6	3.57827	352.9	3.55084	442251		
2J8	0	0	75.6	3.57827	352.9	3.55084	442251		
END	0	0	85.05	2.44842	352.	2.42453	341155		
2J9	0	0	85.05	2.44842	352.	2.42453	341155		
END	0	0	94.5	1.31142	351.2	1.29598	200644		
2J10	0	0	94.5	1.31142	351.2	1.29598	200644		
END	0	0	103.95	0	0	0	0		
12	109.018	-19.2228	0	7.63892	113.4	-3.02842	7.01297		
END	109.018	-19.2228	9.22 !	7.59172	109.5	-2.5404	7.15406		
2J12	109.018	-19.2228	9.22	7.59172	109.5	-2.5404	7.15406		
END	109.018	-19,2228	18.44	7.33491	108.7	-2.35089	6.94796		
2,713	109.018	-19.2228	18.44	7 33491	108 7	-2.35089	6 94796		
END	109 018	-19 2228	27 66	6 9281/	107 9	-2 13096	6 59228		
2.71/	109.010	-19 2220	27.66	6 92814	107.9	-2 13096	6 59228		
	100.010	_10 2220	36 99	6 37447	107.3	-2.13050	6 08622		
2 1 1 5	100.010	-10 2220	36.99	6 37447	107.3	1 00510	6 09622		
ENTD	100 010	10 2220	16 1	0.37447 E 670E	106 0	-1.03010	0.00022 E 42020		
	109.018	-19.2220	40.1	5.0795	100.0	-1.03702	5,43020		
2010	109.018	-19.2228	40.1	5.0795	106.8	-1.03/02	5.43828		
END	109.018	-19.2228	55.34	4.86944	106.3	-1.36526	4.6/414		
2017	109.018	-19.2228	55.32	4.86944	106.3	-1.36526	4.67414		
END	109.018	-19.2228	64.54	3.97118	105.9	-1.08479	3.82015		
2J18	109.018	-19.2228	64.54	3.97118	105.9	-1.08479	3.82015		
END	109.018	-19.2228	73.76	3.01522	105.5	803744	2.90612		
2J19	109.018	-19.2228	73.76	3.01522	105.5	803744	2.90612		
END	109.018	-19.2228	82.98	2.03768	105.1	530841	1.96732		
2J20	109.018	-19.2228	82.98	2.03768	105.1	530841	1.96732		
END	109.018	-19.2228	92.2	1.08471	104.8	276699	1.04883		
2J21	109.018	-19.2228	92.2	1.08471	104.8	276699	1.04883		
END	109.018	-19.2228	101.42	0	0	0	0		

.

:

Nighttime WCAP Calculations

Tower 1(S)

WESTBERG CIRCUIT ANALYSIS PROGRAM

FILE NAME = WERC1NIT.NIT

6.8300	0	1	26.5430	0.0000	0.0000
1.0000	1	2	0.0000	0.0000	0.0000
3.0400	2	3	0.0000	0.0000	0.0000
0.0001	3	0	0.0000	0.0000	0.0000
84.3470	3	0	17.4570	0.0000	0.0000
0.0000	0	0	0.0000	0.0000	0.0000
	6.8300 1.0000 3.0400 0.0001 84.3470 0.0000	6.8300 0 1.0000 1 3.0400 2 0.0001 3 84.3470 3 0.0000 0	6.8300 0 1 1.0000 1 2 3.0400 2 3 0.0001 3 0 84.3470 3 0 0.0000 0 0	6.8300 0 1 26.5430 1.0000 1 2 0.0000 3.0400 2 3 0.0000 0.0001 3 0 0.0000 84.3470 3 0 17.4570 0.0000 0 0.0000 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

FREQ = 0.960

	NODE		VOLT MAG	VOLT PH	ASE						
	1		631.6187	46.49	85						
	2		625.2031	46.71	21						
	3		593.7753	35.292	28						
				BRANCH	VOLTAGE	BRANCH	CURRENT	FROM NODE	IMPEDANCE	TO NODE IM	PEDANCE
				MAG	PHASE	MAG	PHASE	RESISTANCE	REACTANCE	RESISTANCE	REACTANCE
		VSWR									
R	1-	2	1.000	6.83	26.543	6.83	26.543	86.92	31.56	85.92	31.56
L	2-	3	3.040	125.24	116.543	6.83	26.543	85.92	31.56	85.92	13.22
С	3	0	0.000	593.78	35.293	0.36	125.293	0.00 -	1657.86	0.00	-1657.86
R	3-	0	84.347	593.78	35.293	6.89	23.600	84.35	17.46	84.35	17.46

1

Tower 2(N)

WESTBERG CIRCUIT ANALYSIS PROGRAM

FILE NAME = WERC2NIT.NIT

т	7 6380	Ω	1	113 9870	0 0000	0 0000
7	7.0500	v	-	113.3070	0.0000	0.0000
R	1.0000	1	2	0.0000	0.0000	0.0000
L	3.8500	2	3	0.0000	0.0000	0.0000
С	0.0001	3	0	0.0000	0.0000	0.0000
R	16.9850	3	0	1.2306	0.0000	0.0000
EΧ	0.0000	0	0	0.0000	0.0000	0.0000

FREQ = 0.960

N	IODE		VOLT MAG	VOLT P	HASE						
	1	2	230.8916	167.4	225						
	2	:	226.4246	168.9	750						
	3	:	130.1613	117.5	435						
				BRANC	H VOLTAGE	BRANCH	I CURRENT	FROM NODE	IMPEDANCE	TO NODE]	MPEDANCE
				MAG	PHASE	MAG	PHASE	RESISTANCE	REACTANCE	RESISTANC	E REACTANCE
	ν	SWR									
R	1-	2	1.000	7.64	113.987	7.64	113.987	18.01	24.28	17.01	24.28
L	2-	3	3.850	177.37	-156.013	7.64	113.987	17.01	24.28	17.01	1.06
С	3-	0	0.000	130.16	117.544	0.08 -	-152.456	0.00	-1657.86	0.00	-1657.86
R	3-	0	16.985	130.16	117.544	7.64	113.400	16.98	1.23	16.98	1.23

16

.

t

Measured and Calculated Sampling Line Characteristics

Measured open circuit resonant frequency at odd multiple of ¼ wavelength nearest the carrier frequency:

Tower 1(S) 572.4 kHz $\frac{1}{4}\lambda(90^{\circ})$

Tower 2 (N) 571.9 kHz 1/4 λ(90°)

Measured impedance 1/8 wavelength above and below open circuit resonant frequency:

Tower 1(S)	858.60 kHz	3.23 +j50.10 Ω	+1/8 λ
	286.20 kHz	0.44 –j50.40 Ω	-1/8 λ
Tower 2 (N)	857.85 kHz	3.22 +j50.09 Ω	+1/8 λ
	285.95 kHz	0.45 –i50.64 Ω	-1/8 λ

Calculated characteristic impedance using formula $Z_o = ((R_1^2 + X_1^2)^{1/2} * (R_2^2 + X_2^2)^{1/2})^{1/2}$:

:

Tower 1(S) 50.31 Ω

Tower 2(N) 50.42 Ω

1

Calculated electrical length at f carrier :

Tower 1(S) L = (f carrier / f resonant) * 90° = (960 kHz / 572.40 kHz) * 90° = 150.94°

Tower 2 (N) L = (f carrier / f resonant) * 90° = (960 kHz / 571.90 kHz) * 90° = 151.08°

Measured impedance at f carrier at the input of the sampling line with the sampling device connected:

Tower 1(S) 48.7 +j0.0Ω

Tower 2 (N) 49.0 -j0.2Ω

All measurements above made with an Agilent Model 4396B vector network analyzer with an external directional coupler in a calibrated measurement system.

17

Sampling Transformer Calibration

Calibration of the toroidal current transformers was confirmed using two different methods. In both cases, the transformers were set up adjacent to each other on a common conductor. The results of both measurements are listed below.

In Method 1, the signal from the generator output of the vector network analyzer (Agilent model 4396B) was connected to a conductor running through both transformers which was then terminated with a 50 Ω load. The network analyzer was set to measure in "transmission" mode and the output of the Tower 1(S) reference toroidal current transformer (Delta Model TCT-1HV) was connected to the network analyzer "B" receiver input. A "response" calibration was performed, calibrating the network analyzer for the amplitude and phase characteristics of the reference transformer. The output of the Tower 2(N) toroidal current transformer (Delta Model TCT-1) was then connected to the input of the "B" receiver of the analyzer and the amplitude and phase characteristics were recorded.

In Method 2, both toroidal current transformers were connected between the output of the transmitter and the input to the phasor common point. The outputs of the transformers were connected to the input of the antenna monitor (Potomac Instruments Model AM-19(204) using short equal lengths of transmission line. The amplitude and phase relationship between the transformers was measured by the antenna monitor in conventional fashion with the transmitter operating at a power level of approximately 5 kW.

	<u>Metho</u>	<u>od 1</u>	Method 2		
	Indicated Phase	Indicated Radio	Indicated Phase	Indicated Radio	
Tower 1 (S)	0°	100.0	0°	100.0	
Tower 2 (N)	-0.04°	100.1	0°	100.2	

The manufacturer specifies these devices to be accurate to within +/-2% absolute magnitude and $+/-2^\circ$ absolute phase.

Environmental Statement

The WERC radiators are surrounded by a secured fences restricting access by unauthorized personnel and signs are posted in the vicinity of the radiators, warning of potential radio frequency hazards at the site. The minimum distance to the fence for each radiator is 4.3 meters. Based on the charts and graphs supplied in Supplement A, Edition 97-01 to OET bulletin 65, Edition 97-01 the applicant certifies that the distance to the fences from the radiators complies with FCC OET65 regarding human exposure to non-ionizing electromagnetic radiation.

t

ł

Reference Point Data

ł

Reference Points were measured by Michael Golchert on August 4-5, 2011 using Potomac Instruments Model FIM-4100, serial number 133, field intensity meter.

<u>Azimuth</u>	Description	<u>Distance</u>	<u>Coordinates</u>	<u>Measurement</u>
10°T	Daniel Payne Dr. & Danied Payne Ind. Drive, NW corner at Fiber optic Marker	3.18km	N33°33'43.3" W86°50'45.5"	65.1 mV/m
	Across from 3509 Walker Chapel Rd., South side	8.91km	N33°36'46.1" W86°50'06.6"	7.50 mV/m
	Across from 865 Odum Circle, South side	12.87km	N33°38'52.8" W86°49'39.6"	3.31 mV/m
60°T	6 meters South of RR tracks on 25th St. N, in front of R & M Equipment Rental	3.40km	N33°32'57.1" W86°49'12.5"	46.3 mV/m
	32nd St N & Shuttlesworth Dr, North edge of crosswalk	5.23km	N33°33'26.9" W86°48'11.1"	14.3 mV/m
	Across from 4316 Jackson, North side	7.46km	N33°34'02.7" W86°46'55.9"	14.2 mV/m
190°T	In front of 1212 4th Ave. W	3.12km	N33°30'22.4" W86°51'28.0"	211 mV/m
	In front of 1433 Woodland	4.34km	N33°29'43.4" W86°51'36.3"	162 mV/m
	In front of 1280 Mims St.	6.49km	N33°28'34.8" W86°51'50.1"	57.9 mV/m
320°T	808 Brandy Lane, Driveway apron	4.23km	N33°33'47.1" W86°52'52.7"	12.1 mV/m
	Across from 652 Forestwood Road	5.20km	N33°34'10.8" W86°53'17.0"	11.0 mV/m
	10 meters West of mailbox at 520 Collette, South side under tree	7.38km	N33°34'50.3" W86°53'56.3"	7.38 mV/m

:

WERC, Birmingham, AL Tower 1(S) Vertical Sketch ASR No. 1059883 Not to Scale

ř,

