SUPPLEMENTAL INFORMATION RELATIVE TO APPLICATION FOR LICENSE INFORMATION RADIO STATION WINK PINE ISLAND CENTER, FLORIDA

1200 KHZ 50 KW - D 1.0 KW - N (STA 2.2 KW - N) DA-2

This engineering exhibit provides supplemental information with regard to the "Application for License Information" exhibit prepared by the undersigned, dated April 2, 2012, in support of an application for license for the newly constructed daytime directional antenna system of radio station WINK in Pine Island Center, Florida. The pending application, file number BMML20120410AEI, provides information concerning the new daytime directional antenna pattern as well as the STA nighttime directional antenna pattern that is authorized for use by WINK.

Information with regard to the licensed nighttime pattern that is presently superseded by the STA nighttime pattern is provided herein. The directional antenna parameters have been determined in accordance with the requirements of section 73.151(c) of the FCC Rules, using information on the antenna system that was provided in the previous engineering exhibit. Should the STA operating authority expire while the licensed WINK nighttime directional antenna pattern remains in effect, operation may be initiated with it following readjustment of the antenna system to produce antenna monitor parameters within +/- 5 percent ratio and +/- 3 degrees phase of the modeled values shown on the tabulation of the attached item 3(A).

As it is impossible to make field strength measurements on the licensed nighttime directional antenna pattern while WINK operates with the STA nighttime pattern, a waiver of the reference point measurement requirements of 47 CFR 73.151(c)(3) is requested. The measurements may be made and placed in the station's public file following readjustment of the nighttime antenna system from the STA to the licensed operating parameters should that ever become necessary.

Ronald D. Rackley, P.E. May 15, 2012

Derivation of Operating Parameters for Licensed Nighttime Directional Antenna - WINK

The method of moments model of the array, following verification with the measured individual open circuited base impedances, was utilized for directional antenna calculations. Calculations were made to determine the complex voltage values for sources located at ground level under each tower of the array to produce current moment sums for the towers that, when normalized, equated to the theoretical field parameters of the authorized directional antenna pattern. With these voltage sources, the tower currents were calculated. The currents at the ATU unit outputs, where the antenna monitor samples are taken, were calculated from the method of moments tower currents for directional antenna operation using WCAP circuit modeling with the assumptions that were derived from the single tower measurements on the array and the method of moments calculated tower operating impedances. In each of the following WCAP tabulations, node 2 represents the reference point and node 3 represents the tower feedpoint. Node 0 represents ground potential. The tower operating impedances are represented by complex loads from node 3 to ground (R 3 -0). It should be noted that the calculated reference point current magnitudes and phases appear in the first and fourth columns following the drive current sources (10-1)). As the current transformers and sampling lines are identical, the antenna monitor ratios and phases corresponding to the theoretical parameters were calculated directly from the modeled reference point currents.

Tower	Modeled Current Pulse	Modeled Current Magnitude @ Toroid (amperes)	Modeled Current Phase @ Toroid (degrees)	Modeled Antenna Monitor Ratio	Modeled Antenna Monitor Phase (degrees)
1	1	4.7350	2.29	1.212	+121.4
2	21	3.9070	-119.090	1.000	0

Tower 1 Licensed Night-DA Base Circuit Analysis

WESTBERG CIRCUIT ANALYSIS PROGRAM

FILE NAME = WINK1DNL.TXT

I	473.5040	0	1	2.2930	.0000	.0000
R	1.0000	1	2	.0000	.0000	.0000
L	4.2170	2	3	.0000	.0000	.0000
С	.0000	3	0	.0000	.0000	.0000
R	17.8650	3	0	3.5207	.0000	.0000
ΕX	.0000	0	0	.0000	.0000	.0000

FREQ = 1.200

NODE	VOLT MAG	VOLT PHASE
1	18939.6700	64.1141
2	18720.7200	65.3917
3	8627.5260	13.2485

				BRANCH	VOLTAGE	BRANCH	CURREN	T FROM NODE	IMPEDANCE	TO NODE	IMPEDANCE
				MAG	PHASE	MAG	PHASE	RESISTANCE	REACTANCE	RESISTANCE	REACTANCE
R	1-	2	1.000	473.50	2.293	473.50	2.293	18.89	35.26	17.89	35.26
L	2-	3	4.217	15055.26	92.293	473.50	2.293	17.89	35.26	17.89	3.46
С	3-	0	.000	8627.53	13.248	1.63	103.248	.00	-5305.17	.00	.00
R	3-	0	17.865	8627.53	13.248	473.82	2.100	17.86	3.52	.00	.00

Tower 2 Licensed Night-DA Base Circuit Analysis

WESTBERG CIRCUIT ANALYSIS PROGRAM

FILE NAME = WINK2DNL.TXT

I	390.7000	0	1	240.9100	.0000	.0000
R	1.0000	1	2	.0000	.0000	.0000
L	4.1910	2	3	.0000	.0000	.0000
С	.0001	3	0	.0000	.0000	.0000
R	35.8380	3	0	75.0000	.0000	.0000
ΕX	.0000	0	0	.0000	.0000	.0000

FREQ = 1.200

NODE	VOLT MAG	VOLT PHASE
1	45406.6900	-49.2559
2	45273.4800	-48.7918
3	33906.7500	-55.8427

				BRANC	H VOLTAGE	BRAN	CH CURREN	T FROM NODE	IMPEDANCE	E TO NODE	IMPEDANCE
				MAG	PHASE	MAG	PHASE	RESISTANCE	REACTANCE	RESISTANCE	REACTANCE
R	1-	2	1.000	390.70	-119.090	390.70	-119.090	40.07	109.09	39.07	109.09
L	2-	3	4.191	12345.88	-29.090	390.70	-119.090	39.07	109.09	39.07	77.49
С	3-	0	.000	33906.75	-55.843	19.17	34.157	.00	-1768.39	.00	.00

Currents are multiplied X 100 for improved resolution.

Method of Moments Model Details for Licensed Nighttime Directional Antenna - WINK

The array of towers was modeled using Expert MININEC Broadcast Professional Version 14.5 with the characteristics that were verified by the individual tower impedance measurements. Calculations were made to determine the complex voltage values for sources located at ground level under each tower of the array to produce current moment sums for the towers that, when normalized, equated to the theoretical field parameters of the authorized directional antenna pattern. The following pages contain details of the method of moments model of the directional antenna pattern.

Towers 3, 4 and 5 of the array, which are inactive in the licensed nighttime pattern, were detuned in the model by terminating them with load reactances at their bases (nodes 21, 31 and 41) as shown in the tabulation. The detuning reactances, +j 531 for tower 3, +j 472 for tower 4 and +j 479 for tower 5, are the opposite sign values of the imaginary components of the method of moments modeled operating impedances for the licensed nighttime directional antenna with field ratios of zero specified for the unused towers. In order to provide the detuning reactance at each tower base through its ATU-to-base circuit model, the detuning inductances are required to be +j 446 for tower 3, +j 387 for tower 4 and +j 401 for tower 5 at their respective ATU output jack reference points.

Tower	Wire	Base Node		
1	1	1		
2	2	11		
3	3	21		
4	4	31		
5	5	41		

It should be noted that voltages and currents shown on the tabulations that are not specified as "rms" values are the corresponding peak values. C:\MBPR014.5\WINKDANL 05-15-2012 14:30:13

MEDIUM WAVE ARRAY SYNTHESIS FROM FIELD RATIOS

Frequency = 1.2 MHz field ratio tower magnitude phase (deg) 1 1. 0 2 -123.6 1. 3 0 0 4 0 0 5 0 0 VOLTAGES AND CURRENTS - rms source voltage current
 node
 magnitude
 phase (deg)
 magnitude

 1
 86.4031
 13.2
 4.74338

 11
 340.223
 304.1
 4.09304
phase (deg) 2. 304.1 239.6 .391228 21 207,978 256.8 348.3 31 161.63 232.3 .342546 322.5 41 89.5364 268.6 .187079 359.4 Sum of square of source currents = 79.116Total power = 1,000. watts

NOTE: The array synthesis calculations (above) were performed to solve for the base voltage drives required to produce the specified field parameters, including detuned conditions for towers 3, 4 and 5 which are unused in the nighttime licensed directional antenna pattern. The base impedances were calculated and the model was revised to have voltage drives only for the towers of the nighttime directional antenna pattern, towers 1, and 2 and detuning reactances to ground for towers 3, 4 and 5. The detuning reactances are equal in magnitude and opposite in sign to the reactive components of the operating impedances that were determined using the voltage sources from the array synthesis calculations. The final model does not include voltage sources for towers 3, 4 and 5 because their base voltages are developed across the detuning reactances. The specified detuning reactances represent how the towers are detuned for normal operation. The following information is from the final model. GEOMETRY Wire coordinates in degrees; other dimensions in meters Environment: perfect ground

wire	caps	Distance	Angle	Z	radius	segs
1	none	0	0	0	.218	10
		0	0	91.1		
2	none	60.	130.	0	.218	10
		60.	130.	93.2		
3	none	120.	130.	0	.218	10
		120.	130.	91.6		
4	none	144.3	100.1	0	.364	10
		144.3	100.1	89.3		
5	none	84.6	218.5	0	.364	10
		84.6	218.5	91.3		

Number of wires = 5 current nodes = 50

	mini	mum	max	imum
Individual wires	wire	value	wire	value
segment length	4	8.93	2	9.32
radius	1	.218	4	.364

ELECTRICAL DESCRIPTION

Frequencies (MHz) frequency no. of segment length (wavelengths) no. lowest step steps minimum maximum .0248056 .0258889 1 1.2 0 1 Sources source node sector magnitude phase type 1 1 1 122.192 13.2 voltage 2 11 1 481.149 304.1 voltage Lumped loads resistance reactance inductance capacitance passive load node (ohms) (ohms) (mH) (uF) circuit 1 21 0 531.43 0 0 0 2 471.84 31 0 0 0 0 0 3 41 478.55 0 0 0

IMPEDANCE

normalization = 50.

freq	resist	react	imped	phase	VSWR	S11	S12
(MHz)	(ohms)	(ohms)	(ohms)	(deg)		dB	dB
source =	1; node	1, sector	r 1				
1.2	17.865	3.5207	18.209	11.1	2.8147	-6.4532	-1.1143
source =	2; node	11, secto	or 1				
1.2	35.957	75.072	83.239	64.4	5.0463	-3.4886	-2.5795

CURRE	NT rms						
Frequ	ency $= 1$.	2 MHz					
Input	power = $1,$	000. watts	3				
Effic	iency = 10)0. %					
coord	inates in c	degrees					
curre	nt			mag	nhase	real	imaginary
no	X	v	7	(ampe)	(dog)	(ampg)	(ampa)
CND	0	1	0	(amps)	(uey)	(amps)	(amps)
GND	0	0	0 11	4./301/	2.1	4.73513	.109018
2	0	0	9.11	4.69/92	1.2	4.69686	.0997051
3	0	0	18.22	4.54538	.7	4.54508	.0524211
4	0	0	27.33	4.28635	.2	4.28632	.0143621
5	0	0	36.44	3.92643	359.8	3.9264	0156781
6	0	0	45.55	3.47299	359.4	3.47279	0376779
7	0	0	54.66	2.93477	359.	2.93432	0511731
8	0	0	63.77	2.32111	358.6	2.32045	0554902
9	0	0	72.88	1.63998	358.3	1,63923	0497983
10	0	0	81.99	89223	357.9	891622	- 0329437
END	0	0	91 1	0	0	0	0
CND	-30 5673	- 45 9627	0	4 00125	220 7	2 05054	2 52240
10	-30.5073	-45.9027	0 22	4.00125	239.1	-2.05954	-3.52348
12	-38.56/3	-45.9627	9.32	4.28545	238.1	-2.26438	-3.63836
13	-38.5673	-45.9627	18.64	4.29544	237.2	-2.3276	-3.61014
14	-38.5673	-45.9627	27.96	4.16366	236.5	-2.29716	-3.47262
15	-38.5673	-45.9627	37.28	3.90109	236.	-2.1819	-3.23385
16	-38.5673	-45.9627	46.6	3.51703	235.6	-1.98829	-2.90107
17	-38.5673	-45.9627	55.92	3.02135	235.2	-1.72281	-2.48203
18	-38.5673	-45.9627	65.24	2.42438	235.	-1.39215	-1.98483
19	-38.5673	-45,9627	74.56	1.7351	234 7	-1 00219	-1 4164
20	-38 5673	-45 9627	83 88	954861	23/ 5	- 55/323	- 777497
20 50	-38 5673	-15 9627	03.00	.994001	234.3	554525	//40/
CND	-38.3073	-43.9027	93.2	0		0	0
GND	-//.1345	-91.9253	0	.391426	346.9	.381293	0884865
22	-//.1345	-91.9253	9.16	.219307	346.8	.213529	0500072
23	-77.1345	-91.9253	18.32	.106567	346.	.103402	0257769
24	-77.1345	-91.9253	27.48	.019795	336.	.0180794	-8.06E-03
25	-77.1345	-91.9253	36.64	.0463137	174.8	0461202	4.23E-03
26	-77.1345	-91.9253	45.8	.0909783	172.6	0902213	.0117124
27	-77.1345	-91.9253	54.96	.11544	172.5	114461	.0149991
28	-77.1345	-91.9253	64.12	.11972	172.9	118803	.0147895
29	-77 1345	-91 9253	73 28	103674	173 4	- 102994	0118577
30	-77 1345	-01 0253	82 11	0665066	171	- 0661442	· 01103/7
END	-77 1245	01 0253	02.44	.0005000	1/4. 0	0001442	0.936-03
CND	-77.1345	-91.9200	91.0	0	0	0	0
GND	-25.3054	-142.064	0	.342633	322.4	.271499	209011
32	-25.3054	-142.064	8.93	.184799	322.4	.146404	112768
33	-25.3054	-142.064	17.86	.0880999	322.3	.0696945	0538912
34	-25.3054	-142.064	26.79	.014283	320.7	.0110602	-9.04E-03
35	-25.3054	-142.064	35.72	.0404717	143.4	0324941	.0241266
36	-25.3054	-142.064	44.65	.0774764	143.2	0620065	.0464519
37	-25.3054	-142.064	53.58	.0973265	143.2	0778991	.0583453
38	-25.3054	-142.064	62.51	.100367	143.2	0803943	0600861
39	-25 3054	-142 064	71 44	0867501	1/3 3	- 0695535	0518448
10	-25 3054	-142.064	90 37	0560507	112.0	.0055555	0224465
4U TIMD	-23.3034	-142.004	00.37	.0500567	143.4	04498/9	.0334465
END	-25.3054	-142.064	89.3	0	0	0	0
GND	-66.2086	52.664/	0	.18/135	358.6	.187083	-4.42E-03
42	-66.2086	52.6647	9.13	.09884	358.6	.0988091	-2.47E-03
43	-66.2086	52.6647	18.26	.0453138	358.	.0452857	-1.6E-03
44	-66.2086	52.6647	27.39	5.33E-03	346.6	5.18E-03	-1.24E-03
45	-66.2086	52.6647	36.52	.0238232	183.	0237898	-1.26E-03
46	-66.2086	52.6647	45.65	.0426446	182.	0426175	-1.52E-03
47	-66.2086	52,6647	54.78	.0519758	182	- 0519/27	-1 85F-03
4.8	-66 2086	52 6617	63 01	05227/1	182 2	- 0503007	-2 00E-03
10	-66 2000	50 6617	72 01	.0323741	102.0	0525527	-2.UOE-US
49	-00.2000	52.0047	13.04	.0443342	102.0	0442884	-2.UZE-U3
JU	-00.2086	52.064/	02.1/	.0280/24	⊥∀Ј.	0280345	-1.46E-03
END	-66.2086	52.6647	91.3	0	0	0	0