LEIBOWITZ & ASSOCIATES, P.A.

MATTHEW L. LEIBOWITZ JOSEPH A. BELISLE SUITE 880 4400 BISCA YNE BOULEVARD MIAMI, FLORIDA 33137 TELEPHONE (305) 530-1322 TELECOPIER (305) 530-9417 E-MAIL jabelisle@broadlaw.com

April 9, 2012

Via Federal Express

Federal Communications Commission c/o U.S.Bank Government Lockbox #979089, SL-MO-C2-GL 1005 Convention Plaza St. Louis, MO 63101 (Attention: FCC Government Lockbox)

Re: Station WINK, Pine Island Center, FL Facility ID No. 48329 Application for License and Request for Program Test Authority

Ladies and Gentlemen:

Transmitted on behalf of Fort Myers Broadcasting Company please find an original plus two copies of an FCC Form 302-AM seeking a license for Station WINK(AM), Pine Island Center, Florida. Also enclosed is an FCC Form 159 and a check payable to the Federal Communications commission in the amount of \$1,365.00 for the fees associated with this application. Fort Myers Broadcasting Company is also requesting program test authority to operate Station WINK with the facilities specified in the license application.

Sincerely yours,

Joseph A. Belisle Counsel for Fort Myers Broadcasting Company

cc: Mr. Charles N. Miller Mr. Wayne Simons (for the Public File) Federal Communications Commission Washington, D. C. 20554

···· · —

rigie x

Approved by OMB 3060-0627 Expires 01/31/98

FOR
FCC
ONLY

FCC 302-AM APPLICATION FOR AM

BROADCAST STATION LICENSE

(Please read instructions before filling out form.

FILE NO. BMML- 201 JOY/DAET

1. PAYOR NAME (Last, First, Middle Initial)						
STATE OR COUNTRY (if fo	reign address)	ZIP CODE 33916				
CALL LETTERS WINK	OTHER FCC IDE	NTIFIER (if applicable)				
		✓ Yes No				
ì						
cational licensee	ther (Please explain)):				
на вррноввон. Ентегнее анов	ni dde in Odianin (O	-				
(C)						
TYPE CODE IN		FOR FCC USE ONLY				
\$ 635.00						
sult in a requirement to list mor	e than one Fee Type	e Code.				
(C)		FOR FCC USE ONLY				
\$ 730.00						
TOTAL AMOUNT REMITTED WITH TH	IS I	FOR FCC USE ONLY				
+						
THIS AMOUNT SHOULD EQUAL YOUR ENCLOSED \$ 1,365.00						
	FL CALL LETTERS WINK cational licensee O are applying for. Fee Type Co is application. Enter fee amount (C) FEE DUE FOR FEE TYPE CODE IN COLUMN (A) \$ 635.00 sult in a requirement to list more (C) \$ 730.00 TOTAL AMOUNT	CALL LETTERS OTHER FCC IDE WINK Cational licensee Other (Please explain) are applying for. Fee Type Codes may be found i is application. Enter fee amount due in Column (C (C) FEE DUE FOR FEE TYPE CODE IN COLUMN (A) \$ 635.00 Sult in a requirement to list more than one Fee Type (C) \$ 730.00 TOTAL AMOUNT REMITTED WITH THIS APPLICATION				

. ..

.

SECTION II - APPLICAN 1. NAME OF APPLICANT		and a second					
Fort Myers Broadcasting Com MAILING ADDRESS	pany						
2824 Palm Beach Boulevard			- Lephing Advisor				
CITY Fort Myers		STATE FL	ZIP CODE 33916				
2. This application is for:	•	· · · · · · · · · · · · · · · · · · ·					
	Commercial	Noncommercial					
	AM Directional	AM Non-Directional					
Call letters	Community of License Constru	uction Permit File No. Modification of Constru					
WINK	Pine Island Center, FL BP-2	0081103ACC Permit File No(s).	Construction Permit April 16, 2012				
3. Is the station n	ow operating pursuant to au	tomatic program test authority in	Yes 🖌 No				
accordance with 47 C.F							
If No, explain in an Exhi	ibit.		Exhibit No. II-3				
		set forth in the above described	V Yes No				
construction permit bee	n fully met?		Exhibit No.				
If No, state exceptions i	n an Exhibit.						
the grant of the underl	lying construction permit which	cause or circumstance arisen since would result in any statement or	Yes 🖌 No				
	representation contained in the construction permit application to be now incorrect?						
If Yes, explain in an Exi	nipit.		L				
	ed its Ownership Report (FCC F ce with 47 C.F.R. Section 73.36		Yes No				
			Does not apply				
If No, explain in an Exhi	bit.		Exhibit No.				
7. Has an adverse finding been made or an adverse final action been taken by any court or administrative body with respect to the applicant or parties to the application in a civil or criminal proceeding, brought under the provisions of any law relating to the following: any felony; mass media related antitrust or unfair competition; fraudulent statements to another governmental unit; or discrimination?							
If the answer is Yes, attach as an Exhibit a full disclosure of the persons and matters nvolved, including an identification of the court or administrative body and the proceeding (by dates and file numbers), and the disposition of the litigation. Where the requisite nformation has been earlier disclosed in connection with another application or as required by 47 U.S.C. Section 1.65(c), the applicant need only provide: (i) an identification of that previous submission by reference to the file number in the case of an application, the call letters of the station regarding which the application or Section 1.65 information was filed, and the date of filing; and (ii) the disposition of the previously reported matter.							

٠.

• •

FCC 302-AM (Page 2) August 1995

;

Pris >

•*•

8. Does the applicant, or any party to the application, have a petition on file to migrate to the expanded band (1605-1705 kHz) or a permit or license either in the existing band or expanded band that is held in combination (pursuant to the 5 year holding period allowed) with the AM facility proposed to be modified herein?

If Yes, provide particulars as an Exhibit.

The APPLICANT hereby waives any claim to the use of any particular frequency or of the electromagnetic spectrum as against the regulatory power of the United States because use of the same, whether by license or otherwise, and requests and authorization in accordance with this application. (See Section 304 of the Communications Act of 1934, as amended).

The APPLICANT acknowledges that all the statements made in this application and attached exhibits are considered material representations and that all the exhibits are a material part hereof and are incorporated herein as set out in full in

CERTIFICATION

1. By checking Yes, the applicant certifies, that, in the case of an individual applicant, he or she is not subject to a denial of federal benefits that includes FCC benefits pursuant to Section 5301 of the Anti-Drug Abuse Act of 1988, 21 U.S.C. Section 862, or, in the case of a non-individual applicant (e.g., corporation, partnership or other unincorporated association), no party to the application is subject to a denial of federal benefits that includes FCC benefits pursuant to that section. For the definition of a "party" for these purposes, see 47 C.F.R. Section 1.2002(b).

2. I certify that the statements in this application are true, complete, and correct to the best of my knowledge and belief, and are made in good faith.

_{Name} Wayne Simons	signature	Mp
™e	Date	Telephone Number
Vice President	4/5/2012	239-338-4325

WILLFUL FALSE STATEMENTS ON THIS FORM ARE PUNISHABLE BY FINE AND/OR IMPRISONMENT (U.S. CODE, TITLE 18, SECTION 1001), AND/OR REVOCATION OF ANY STATION LICENSE OR CONSTRUCTION

FCC NOTICE TO INDIVIDUALS REQUIRED BY THE PRIVACY ACT AND THE PAPERWORK REDUCTION ACT

The solicitation of personal information requested in this application is authorized by the Communications Act of 1934, as amended. The Commission will use the information provided in this form to determine whether grant of the application is in the public Interest. In reaching that determination, or for law enforcement purposes, it may become necessary to refer personal information contained in this form to another government agency. In addition, all information provided in this form will be available for public inspection. If information requested on the form is not provided, the application may be returned without action having been taken upon it or its processing may be delayed while a request is made to provide the missing information. Your response is required to obtain the requested authorization.

Public reporting burden for this collection of information is estimated to average 639 hours and 53 minutes per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the burden, can be sent to the Federal Communications Commission, Records Management Branch, Paperwork Reduction Project (3050-0627), Washington, D. C. 20554. Do NOT send completed forms to this address,

THE FOREGOING NOTICE IS REQUIRED BY THE PRIVACY ACT OF 1974, P.L. 83-579, DECEMBER 31, 1974, 5 U.S.C. 552a(e)(3), AND THE PAPERWORK REDUCTION ACT OF 1980, P.L. 96-511, DECEMBER 11, 1980, 44 U.S.C. 3507.

> FCC 302-AM (Page 3) August 1995

No

Exhibit No.

11	Yes		No
		in the second	

Fort Myers Broadcasting Company Station WINK Pine Island Center, Florida April 2012 License Application

Exhibit No. II-3

1. 1

Request for Program Test Authority

Station WINK is not operating under automatic program test authority because it has a directional antenna system. The engineering statement from Ronald D. Rackley P.E. of duTreil, Lundin & Rackley Inc. included within this application demonstrates compliance with all applicable technical requirements for licensing WINK's newly-constructed facilities. Therefore the applicant requests grant of program test authority.

du Treil, Lundin & Rackley, Inc.

APPLICATION FOR LICENSE INFORMATION RADIO STATION WINK PINE ISLAND CENTER, FLORIDA

1

APRIL 2, 2012

1200 KHZ 50 KW - D 1.0 KW - N (STA 2.2 KW - N) DA-2

APPLICATION FOR LICENSE INFORMATION RADIO STATION WINK PINE ISLAND CENTER, FLORIDA

ł

1

1200 KHZ 50 KW - D 1.0 KW - N (STA 2.2 KW - N) DA-2

Table of Contents

Executive Summary

Item 1	Analysis of Tower Impedance Measurements to Verify Method of Moments Model
Item 2	Derivation of Operating Parameters for Daytime Directional Antenna
Item 3	Derivation of Operating Parameters for Nighttime Directional Antenna
Item 4	Method of Moments Model Details for Towers Driven Individually
Item 5	Method of Moments Model Details for Daytime Directional Antenna
Item 6	Method of Moments Model Details for Nighttime Directional Antenna
Item 7	Sampling System Measurements
Item 8	Reference Field Strength Measurements
Item 9	Direct Measurement of Power
Item 10	Antenna Monitor
Item 11	RFR Protection
Item 12	Summary of Certified Array Geometry
Appendix A	Certified Post Construction Array Geometry

Executive Summary - WINK

87

This engineering exhibit supports an application for license for the newly constructed daytime directional antenna system of radio station WINK in Pine Island Center, Florida. WINK is presently licensed to operate fulltime on 1200 kilohertz with 10 kilowatts in the daytime and 1 kilowatt at night, employing different directional antenna patterns day and night. WINK operates with 2.2 kilowatts and a directional antenna at night to overcome Cuban interference under a "Special Temporary Authorization" ("STA"). Construction Permit BP-20081103ACC authorizes operation daytime with 50 kilowatts and a new directional antenna system. The nighttime licensed and STA directional antenna patterna patterns remain unchanged.

The new towers and ground system for the daytime directional antenna system have been constructed in accordance with the terms of the construction permit and specifications that were provided in the application for construction permit. New directional antenna phasing and coupling equipment has been installed for both the new daytime and previously existing nighttime STA directional antenna systems and it has been adjusted to produce the authorized directional antenna patterns.

Tower 2 supports an STL receiving antenna near its top. A coaxial transmission line that is bonded to tower potential connects the antenna to an isocoupler at the base of the tower, through which the signal is carried on to receiving equipment.

Information is provided herein demonstrating that the directional antenna parameters for both the new daytime and existing nighttime STA patterns have been determined in accordance with the requirements of section 73.151(c) of the FCC Rules. The antenna system has been adjusted to produce antenna monitor parameters within +/- 5 percent in ratio and +/- 3 degrees in phase of the modeled values, as required by the Rules.

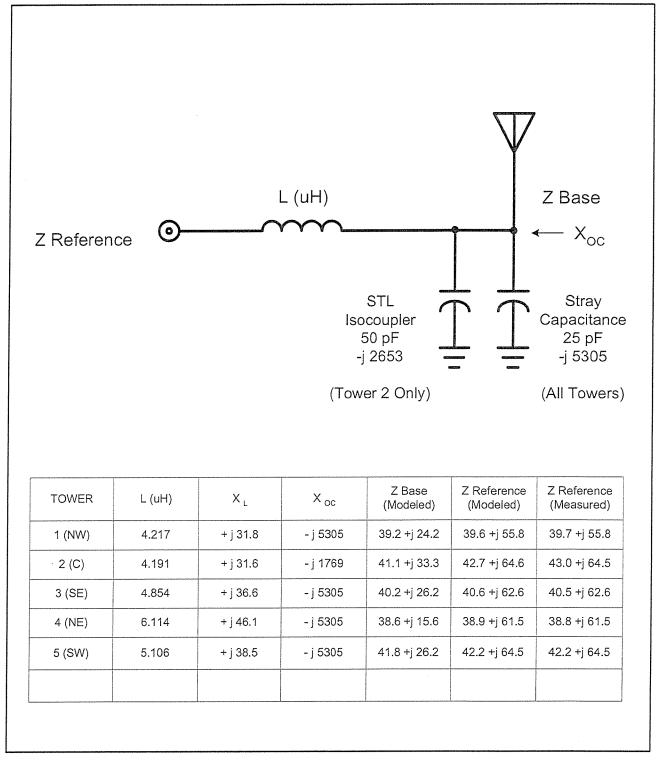
Information regarding direct measurement of power and radiofrequency radiation protection measures at the site is also included herein.

Program test authority for the nighttime directional antenna is hereby requested.

Donald Dadly

Ronald D. Rackley, P.E. April 2, 2012

Analysis of Tower Impedance Measurements to Verify Method of Moments Model - WINK


Tower base impedance measurements were made at the final J-plugs within the antenna tuning units ("ATUs") using a Hewlett-Packard 8751A network analyzer and a Tunwall Radio directional coupler in a calibrated measurement system. The other towers were all open circuited at the same points where impedance measurements were made for them (the "reference points") for each of the measurements.

The reference point at each tower is adjacent to the sampling transformer of the antenna monitor system at the output of the ATU enclosure. The current passes directly from that point over conductors through the enclosure insulator and on to the tower above the base insulator. There are no adjustable shunt components following the sampling transformers. An assumed value for the sum of the base insulator and base region stray capacitances across the ATU output was employed in the base circuit calculations for each tower. In addition, an assumed capacitance representing the STL isocoupler across the base of tower 2 was included in the analysis. The static drain coils across the five tower bases have high impedances that do not require consideration, as evidenced by the fact that satisfactory analysis was possible with typical base shunt capacitances and all other assumptions well within the range limitations of the FCC Rules. Circuit calculations were performed to relate the method of moments modeled impedances of the tower feedpoints to the ATU output measurement (reference) points as shown on the following pages. The Xoc shown for each tower, which was calculated for the assumed base conditions, was used in the method of moments model as a load at ground level for the open circuited case.

In addition to the page showing the schematic of the assumed circuit and tabulation of calculated values, pages showing the results of calculations using the WCAP network analysis program from Westberg Consulting are provided. WCAP performs such calculations using nodal analysis, as do other modern circuit analysis programs such as the commonly available ones based on SPICE software.

In each of the WCAP tabulations, node 2 represents the ATU output reference point and node 3 represents the tower feedpoint. Node 0 represents ground potential. The numerals in the file names shown on the tabulations correspond to the tower numbers. It should be noted that the calculated reference point impedances appear under the "TO NODE IMPEDANCE" columns of the WCAP tabulations, following the phantom 1.0 ohm resistors (R 1 - 2) that were included in series with the drive current sources (I 0 -1)) to provide calculation points for the impedances. The tower base impedances from the method of moments model are represented by complex loads from node 3 to ground (R 3 - 0). The shunt capacitances shown for the towers on the schematic were used for the calculations, although they only appear to the nearest 0.0001 microfarad on the WCAP printout due to rounding.

The modeled and measured base impedances at the ATU output jacks with the other towers open circuited at their filter unit output jacks agree within +/- 2 ohms and +/- 4 percent for resistance and reactance, as required by the FCC Rules.

2

į.

ANALYSIS OF TOWER IMPEDANCE MEASUREMENTS TO VERIFY METHOD OF MOMENTS MODEL

RADIO STATION WINK PINE ISLAND CENTER, FLORIDA 1200 KHZ 50 KW-D 1.0 KW-N (STA 2.2 KW-N) DA-2

du Treil, Lundin & Rackley, Inc. Sarasota, Florida

Tower 1 Individually Driven Base Circuit Analysis

WESTBERG CIRCUIT ANALYSIS PROGRAM

FILE NAME = winkloc.txt

I	1.0000	0	1	.0000	.0000	.0000
R	1.0000	1	2	.0000	.0000	.0000
L	4.2170	2	3	.0000	.0000	.0000
С	.0000	3	0	.0000	.0000	.0000
R	39.2280	3	0	24.1710	.0000	.0000
ΕX	.0000	0	0	.0000	.0000	.0000

FREQ = 1.200

\$. \$*

NODE	VOLT MAG	VOLT PHASE
1	68.9851	53.9617
2	68.4016	54.6390
3	46,2864	31.2144

				BRANCH	VOLTAGE	BRANCH	CURREN	T FROM NODE	IMPEDANCE	TO NODE	IMPEDANCE
				MAG	PHASE	MAG	PHASE	RESISTANCE	REACTANCE	RESISTANCE	REACTANCE
R	1-	2	1.000	1.00	.000	1.00	.000	40.59	55.78	39.59	55.78
L	2-	3	4.217	31.80	90.000	1.00	.000	39.59	55.78	39.59	23.99
С	3-	0	.000	46.29	31.214	.01	121.214	.00	-5305.17	.00	.00
R	3-	0	39.228	46.29	31.214	1.00	426	39.23	24.17	.00	.00

Tower 2 Individually Driven Base Circuit Analysis

FILE NAME = wink2oc.txt

ĩ	1.0000	0	1	.0000	.0000	.0000
R	1.0000	1	2	.0000	.0000	.0000
L	4.1910	2	3	.0000	.0000	.0000
С	.0001	3	0	.0000	.0000	.0000
R	41.1190	3	0	33.3200	.0000	.0000
ΕX	.0000	0	0	.0000	.0000	.0000

FREQ = 1.200

NODE	VOLT MAG	VOLT PHASE
1	77.9433	55.9076
2	77.3872	56.5208
3	53.9256	37.6613

				BRANCH	VOLTAGE	BRANCH	CURREN	T FROM NODE	IMPEDANCE	TO NODE	IMPEDANCE
				MAG	PHASE	MAG	PHASE	RESISTANCE	REACTANCE	RESISTANCE	REACTANCE
R	1-	2	1.000	1.00	.000	1.00	.000	43.69	64.55	42.69	64.55
Ŀ	2-	3	4.191	31.60	90.000	1.00	.000	42.69	64.55	42.69	32.95
С	3-	0	.000	53.93	37.661	.03	127.661	.00	-1768.39	.00	.00
R	3-	0	41.119	53.93	37.661	1.02	-1.358	41.12	33.32	.00	.00

Tower 3 Individually Driven Base Circuit Analysis

WESTBERG CIRCUIT ANALYSIS PROGRAM

FILE NAME = wink3oc.txt

I	1.0000	0	1	.0000	.0000	.0000
R	1.0000	1	2	.0000	.0000	.0000
L	4.8540	2	3	.0000	.0000	.0000
С	.0000	3	0	.0000	.0000	.0000
R	40.2210	3	0	26.1550	.0000	.0000
ΕX	.0000	0	0	.0000	.0000	.0000

FREQ = 1.200

Ъ.

Ę

NODE	VOLT MAG	VOLT PHASE
1	75.1499	56.3717
2	74.6007	57.0113
3	48.2135	32.5987

				BRANCH	VOLTAGE	BRANCH	CURREN	T FROM NODE	IMPEDANCE	TO NODE	IMPEDANCE
				MAG	PHASE	MAG	PHASE	RESISTANCE	REACTANCE	RESISTANCE	REACTANCE
R	1-	2	1.000	1.00	.000	1.00	.000	41.62	62.57	40.62	62.57
L	2-	З	4.854	36.60	90.000	1.00	.000	40.62	62.57	40.62	25.98
С	3-	0	.000	48,21	32.599	.01	122.599	.00	-5305.17	.00	.00
R	3-	0	40.221	48.21	32.599	1.00	437	40.22	26.15	.00	.00

Tower 4 Individually Driven Base Circuit Analysis

WESTBERG CIRCUIT ANALYSIS PROGRAM

FILE NAME = wink4oc.txt

I	1.0000	0	1	.0000	.0000	.0000
R	1.0000	1	2	.0000	.0000	.0000
L	6.1140	2	3	.0000	.0000	.0000
С	.0000	3	0	.0000	.0000	.0000
R	38.6210	3	0	15.6160	.0000	.0000
ΕX	.0000	0	0	.0000	.0000	.0000

FREQ = 1.200

1	NODE		VOLT MAG	VOLT PH	ASE						
	1		73.2613	57.05	00						
	2		72.7223	57.71	12						
	3		41.7805	21.59	71						
				BRANCH	VOLTAGE	BRANCH	URREN'I	FROM NODE	IMPEDANCE	TO NODE	IMPEDANCE
				MAG	PHASE	MAG	PHASE F	RESISTANCE	REACTANCE	RESISTANCE	REACTANCE
R	1-	2	1.000	1.00	.000	1.00	.000	39.85	61.48	38.85	61.48
L	2-	3	6.114	46.10	90.000	1.00	.000	38.85	61.48	38.85	15.38
С	3-	0	.000	41.78	21.597	.01	111.597	.00	-5305.17	.00	.00
R	3-	0	38.621	41.78	21.597	1.00	418	38.62	15.62	.00	.00

Tower 5 Individually Driven Base Circuit Analysis

WESTBERG CIRCUIT ANALYSIS PROGRAM

FILE NAME = wink5oc.txt

I	1,0000	0	1	.0000	.0000	.0000
R	1.0000	1	2	.0000	.0000	.0000
L	5.1060	2	3	.0000	.0000	.0000
С	.0000	3	0	.0000	.0000	.0000
R	41.8260	3	0	26.2250	.0000	.0000
ΕX	.0000	0	0	.0000	.0000	.0000

FREQ = 1.200

€. }

NODE	VOLT MAG	VOLT PHASE
1	77.6684	56.1704
2	77.1162	56.7876
3	49.6113	31.6339

				BRANCH	VOLTAGE	BRANCH	CURREN	T FROM NODE	IMPEDANCE	TO NODE	IMPEDANCE
				MAG	PHASE	MAG	PHASE	RESISTANCE	REACTANCE	RESISTANCE	REACTANCE
R	1-	2	1.000	1.00	.000	1.00	.000	43.24	64.52	42.24	64.52
L	2-	3	5.106	38.50	90.000	1.00	.000	42.24	64.52	42.24	26.02
С	3-	0	.000	49.61	31.634	.01	121.634	.00	-5305.17	.00	.00
R	3-	0	41.826	49.61	31.634	1.00	454	41.83	26.23	.00	.00

Derivation of Operating Parameters for Daytime Directional Antenna - WINK

The method of moments model of the array, following verification with the measured individual open circuited base impedances, was utilized for directional antenna calculations. Calculations were made to determine the complex voltage values for sources located at ground level under each tower of the array to produce current moment sums for the towers that, when normalized, equated to the theoretical field parameters of the authorized directional antenna pattern. With these voltage sources, the tower currents were calculated. The currents at the ATU unit outputs, where the antenna monitor samples are taken, were calculated from the method of moments tower currents for directional antenna operation using WCAP circuit modeling with the assumptions that were derived from the single tower measurements on the array and the method of moments calculated tower operating impedances. In each of the following WCAP tabulations, node 2 represents the reference point and node 3 represents the tower feedpoint. Node 0 represents ground potential. The tower operating impedances are represented by complex loads from node 3 to ground (R 3 -0). It should be noted that the calculated reference point current magnitudes and phases appear in the first and fourth columns following the drive current sources (I 0 -1)). As the current transformers and sampling lines are identical, the antenna monitor ratios and phases corresponding to the theoretical parameters were calculated directly from the modeled reference point currents.

Tower	Modeled Current Pulse	Modeled Current Magnitude @ Toroid (amperes)	Modeled Current Phase @ Toroid (degrees)	Modeled Antenna Monitor Ratio	Modeled Antenna Monitor Phase (degrees)
1	1	16.4224	+7.46	0.528	-1.4
3	21	22.9532	+148.50	0.738	+139.6
4	31	31.1189	+8.89	1.000	0.0
5	41	18.8488	+99.41	0.606	+90.5

Tower 1 Day-DA Base Circuit Analysis

WESTBERG CIRCUIT ANALYSIS PROGRAM

FILE NAME = winkldad.txt

I	1642.2500	0	1	7.4600	.0000	.0000
R	1.0000	1	2	.0000	.0000	.0000
L	4.2170	2	3	.0000	.0000	.0000
С	.0000	3	0	.0000	.0000	.0000
R	69.9530	3	0	45.5910	.0000	.0000
ΕX	.0000	0	0	.0000	.0000	.0000

FREQ = 1.200

ş

8

NODE	VOLT MAG	VOLT PHASE
1	173103.5000	54.2579
2	171983.4000	54.6567
3	138301.4000	39.7918

				BRANCH	VOLTAGE	BRANCH	CURREN	T FROM NODE	IMPEDANCE	TO NODE	IMPEDANCE
				MAG	PHASE	MAG	PHASE I	RESISTANCE	REACTANCE	RESISTANCE	REACTANCE
R	1-	2	1.000	1642.24	7.460	1642.24	7.460	72.16	76.84	71.16	76.84
L	2-	3	4.217	52216.04	97.460	1642.25	7.460	71.16	76.84	71.16	45.04
С	3-	0	.000	138301.40	39.792	26.07	129.792	.00	-5305.17	.00	.00
R	3-	0	69.953	138301.40	39.792	1656.34	6.698	69.95	45.59	.00	.00

Tower 3 Day-DA Base Circuit Analysis

WESTBERG CIRCUIT ANALYSIS PROGRAM

FILE NAME = wink3dad.txt

I	2295.3200	0	1	148.5000	.0000	.0000
R	1.0000	1	2	.0000	.0000	.0000
L	4.8540	2	3	.0000	.0000	.0000
С	.0000	3	0	.0000	.0000	.0000
R	-27.8790	3	0	17.3950	.0000	.0000
ΕX	.0000	0	0	.0000	.0000	.0000

FREQ = 1.200

NODE VOLT MAG VOLT PHA	SE
1 138441.0000 -94.840	9
2 139486.0000 -93.998	3
3 75672.8600 -63.159	9

				BRANC	H VOLTAGE	BRANCH	URREN	T FROM NODE	IMPEDANCE	TO NODE	IMPEDANCE
				MAG	PHASE	MAG	PHASE	RESISTANCE	REACTANCE	RESISTANCE	REACTANCE
R	1-	2	1.000	2295.32	148.500	2295.32	148.500	-27.06	53.90	-28.06	53.90
L	2-	3	4.854	84004.82	-121.500	2295.32	148.500	-28.06	53.90	-28.06	17.30
С	3-	0	.000	75672.86	-63.160	14.26	26.840	.00	-5305.17	.00	.00
R	3-	0	-27.879	75672.86	-63.160	2302.84	148.802	-27.88	17.39	.00	.00

Currents are multiplied X 100 for improved resolution.

Tower 4 Day-DA Base Circuit Analysis

WESTBERG CIRCUIT ANALYSIS PROGRAM

FILE NAME = wink4dad.txt

I	3111.8900	0	1	8.8900	.0000	.0000
R	1.0000	1	2	.0000	.0000	.0000
L	6.1140	2	3	.0000	.0000	.0000
С	.0000	3	0	.0000	.0000	.0000
R	36.2300	3	0	16.4610	.0000	.0000
ΕX	.0000	0	0	.0000	.0000	.0000

FREQ = 1.200

ş.

ę

NODE	VOLT MAG	VOLT PHASE
1	226371.7000	67.9009
2	224785.3000	68.5809
3	124217.7000	32.9320

				BRANCH	VOLTAGE	BRANCH	CURREN	T FROM NODE	IMPEDANCE	TO NODE	IMPEDANCE
				MAG	PHASE	MAG	PHASE	RESISTANCE	REACTANCE	RESISTANCE	REACTANCE
R	1-	2	1.000	3111.89	8.890	3111.89	8.890	37.45	62.36	36.45	62.36
L	2-	3	6.114	143453.40	98.890	3111.89	8.890	36.45	62.36	36.45	16.26
С	3-	0	.000	124217.70	32.932	23.41	122.932	.00	-5305.17	.00	.00
R	3-	0	36.230	124217.70	32.932	3121.50	8.498	36.23	16.46	.00	.00

Tower 5 Day-DA Base Circuit Analysis

WESTBERG CIRCUIT ANALYSIS PROGRAM

FILE NAME = wink5dad.txt

I	1884.8800	0	1	99.4100	.0000	.0000
R	1,0000	1	2	.0000	.0000	.0000
L	5,1060	2	3	.0000	.0000	.0000
С	.0000	3	0	.0000	.0000	.0000
R	28.8350	3	0	12.2410	.0000	.0000
ΕX	.0000	0	0	.0000	.0000	.0000

FREQ = 1.200

NODE	VOLT MAG	VOLT PHASE
1	110862.6000	158.7789
2	109914.2000	159.6244
3	59180.8600	122.1000

				BRANC	H VOLTAGE	BRANCH	I CURREN	T FROM NODE	IMPEDANCE	TO NODE	IMPEDANCE
				MAG	PHASE	MAG	PHASE	RESISTANCE	REACTANCE	RESISTANCE	REACTANCE
R	1-	2	1.000	1884.88	99.410	1884.88	99.410	29.97	50.61	28.97	50.61
L	2-	3	5.106	72564.74	-170.590	1884.88	99.410	28.97	50.61	28.97	12.11
С	3-	0	.000	59180.86	122.100	11.16 -	147.900	.00	-5305.17	.00	.00
R	3-	0	28.835	59180.86	122.100	1889.21	99.098	28.83	12.24	.00	.00

Currents are multiplied X 100 for improved resolution.

Derivation of Operating Parameters for Nighttime Directional Antenna - WINK

The method of moments model of the array, following verification with the measured individual open circuited base impedances, was utilized for directional antenna calculations. Calculations were made to determine the complex voltage values for sources located at ground level under each tower of the array to produce current moment sums for the towers that, when normalized, equated to the theoretical field parameters of the authorized directional antenna pattern. With these voltage sources, the tower currents were calculated. The currents at the ATU unit outputs, where the antenna monitor samples are taken, were calculated from the method of moments tower currents for directional antenna operation using WCAP circuit modeling with the assumptions that were derived from the single tower measurements on the array and the method of moments calculated tower operating impedances. In each of the following WCAP tabulations, node 2 represents the reference point and node 3 represents the tower feedpoint. Node 0 represents ground potential. The tower operating impedances are represented by complex loads from node 3 to ground (R 3 -0). It should be noted that the calculated reference point current magnitudes and phases appear in the first and fourth columns following the drive current sources (I 0 -1)). As the current transformers and sampling lines are identical, the antenna monitor ratios and phases corresponding to the theoretical parameters were calculated directly from the modeled reference point currents.

Tower	Modeled Current Pulse	Modeled Current Magnitude @ Toroid (amperes)	Modeled Current Phase @ Toroid (degrees)	Modeled Antenna Monitor Ratio	Modeled Antenna Monitor Phase (degrees)
1	1	4.9806	1.40	0.568	+121.1
2	21	8.7728	-119.71	1.000	0
3	31	4.0936	112.07	0.467	-128.2

Tower 1 Night-DA Base Circuit Analysis

WESTBERG CIRCUIT ANALYSIS PROGRAM

FILE NAME = winkldan.txt

I	498.0560	0	1	1.4030	.0000	.0000
R	1.0000	1	2	.0000	.0000	.0000
ĩ	4.2170	2	3	.0000	.0000	.0000
С	.0000	3	0	.0000	.0000	.0000
R	9.5281	3	0	6231	.0000	.0000
ΕX	.0000	0	0	.0000	.0000	.0000

FREQ = 1.200

¢.

NODE	VOLT MAG	VOLT PHASE
1	16378.7500	72.7355
2	16226.2000	74.4018
3	4755.0980	-2.4414

				BRANCH	VOLTAGE	BRANCH	CURREN	T FROM NODE	IMPEDANCE	TO NODE	IMPEDANCE
				MAG	PHASE	MAG	PHASE	RESISTANCE	REACTANCE	RESISTANCE	REACTANCE
R	1-	2	1.000	498.06	1.403	498.06	1.403	10.53	31.16	9.53	31.16
L	2-	3	4.217	15835.91	91.403	498.06	1.403	9.53	31.16	9.53	64
С	3-	0	.000	4755.10	-2.441	.90	87.559	.00	-5305.17	.00	.00
R	3-	0	9.528	4755.10	-2.441	498.00	1.300	9.53	62	.00	.00

Tower 2 Night-DA Base Circuit Analysis

WESTBERG CIRCUIT ANALYSIS PROGRAM

FILE NAME = wink2dan.txt

I	877.2790	0	1	240.2940	.0000	.0000
R	1.0000	1	2	.0000	.0000	.0000
L	4.1910	2	3	.0000	.0000	.0000
С	.0001	3	0	.0000	.0000	.0000
R	26.9260	3	0	42.5190	.0000	.0000
EΧ	.0000	0	0	.0000	.0000	.0000

FREQ = 1.200

NODE	VOLT MAG	VOLT PHASE
1	70401.8200	-51.0912
2	70086.7000	-50.4234
3	45233.6300	-62.9447

				BRANC	H VOLTAGE	BRANC	CH CURREN	T FROM NODE	IMPEDANCE	TO NODE	IMPEDANCE
				MAG	PHASE	MAG	PHASE	RESISTANCE	REACTANCE	RESISTANCE	REACTANCE
R	1-	2	1.000	877.28	-119.706	877.28	-119.706	29.26	74.72	28.26	74.72
L	2-	3	4.191	27721.49	-29.706	877.28	-119.706	28.26	74.72	28.26	43.13
С	3-	0	.000	45233.63	-62.945	25.58	27.055	.00	-1768.39	.00	.00
R	3-	0	26.926	45233.63	-62.945	898.78	-120.600	26.93	42.52	.00	.00

Currents are multiplied X 100 for improved resolution.

Tower 3 Night-DA Base Circuit Analysis

WESTBERG CIRCUIT ANALYSIS PROGRAM

FILE NAME = wink3dan.txt

I	409.3620	0	1	112.0660	.0000	.0000
R	1.0000	1	2	.0000	.0000	.0000
L	4.8540	2	3	.0000	.0000	.0000
С	.0000	3	0	.0000	.0000	.0000
R	-12.1450	3	0	99.6620	.0000	.0000
EX	.0000	0	0	.0000	.0000	.0000

FREQ = 1.200

ŧ.

÷

NODE	VOLT MAG	VOLT PHASE
1	56748.3600	-153.1280
2	56784.1300	-152.7164
3	41886.4100	-150.8524

				BRANC	H VOLTAGE	BRANCH	CURREN	T FROM NODE	IMPEDANCE	TO NODE	IMPEDANCE
				MAG	PHASE	MAG	PHASE :	RESISTANCE	REACTANCE	RESISTANCE	REACTANCE
R	1-	2	1.000	409.36	112.066	409.36	112.066	-11.61	138.14	-12.61	138.14
L	2-	3	4.854	14981.95	-157.934	409.36	112.066	-12.61	138.14	-12.61	101.54
С	3-	0	.000	41886.41	-150.852	7.90	-60.852	.00	-5305.17	.00	.00
R	3-	0	-12.145	41886.41	-150.852	417.20	112.200	-12.15	99.66	.00	.00

Currents are multiplied X 100 for improved resolution.

Method of Moments Model Details for Towers Driven Individually - WINK

The array of towers was modeled using Expert MININEC Broadcast Professional Version 14.5. One wire was used to represent each tower. The tower geometry was specified using the geographic coordinate system. Each tower was modeled using 10 wire segments. Towers 1, 2 and 3 are physically 85.6 degrees in electrical height and their segment length is 8.56 electrical degrees. Towers 4 and 5 are physically 83.5 degrees in electrical height and their segment length is 8.35 electrical degrees.

The individual tower characteristics were adjusted to provide a match of their modeled impedances, when presented to a circuit model which included branches representing the shunt capacitances and feedline hookup inductances, with the base impedances that were measured at the output jacks of the filter units while the other towers of the array were open circuited. The method of moments model assumed loads at ground level having the reactances that were calculated for them using the base circuit models for the open circuited towers of the array.

Each tower's modeled height relative to its physical height falls within the required range of 75 to 125 percent and each modeled radius falls within the required range of 80 percent to 150 percent of the radius of a circle having a circumference equal to the sum of the widths of the tower sides. The array consists of triangular uniform cross section towers. Towers 1, 2 and 3 have a face width of 18 inches and towers 4 and 5 have a face width 0f 30 inches.

TOWER	Physical Height (degrees)	Modeled Height (degrees)	Modeled Percent of Height	Modeled Radius (meters)	Percent Equivalent Radius
1	85.6	91.1	106.4	0.218	100
2	85.6	93.2	108.9	0.218	100
3	85.6	91.6	107.0	0.218	100
4	83.5	89.3	106.9	0.364	100
5	83.5	91.3	109.3	0.364	100

The following pages show the details of the method of moments models for the individually driven towers. The numerals in the file names shown on the tabulations correspond to the tower numbers.

Tower 1 Driven Individually

į

¢'

C:\MB	PRO14.	5\WINK1OC	03-29-2012	05:31:42			
IMPED no freq (MHz)	rmaliza rea	ation = 50. sist reac nms) (ohm	t imped	phase (deg)	VSWR	S11 dB	S12 dB
• •	e = 1;	; node 1, s		31.6	1.8021	-10.865	3713
GEOME	TRY						
		nates in de : perfect g	grees; other round	dimension	is in met	ers	
wire 1	caps I none (Angle O O	Z O 91.1	ra .2	dius 18	segs 10
2	none 6		130. 130.	0 93.2	.2	18	10
3	none 1		130. 130. 130.	93.2 0 91.6	.2	18	10
4	none 1	44.3	100.1	0	.3	64	10
5	none 8	.44.3 34.6 34.6	100.1 218.5 218.5	89.3 0 91.3	. 3	64	10
Numbe	r of wi cu	.res Irrent node	= 5 s = 50				
			minimum			kimum	
	idual w nt leng s		wire value 4 8.93 1 .218	•	wire 2 4	value 9.32 .364	
ELECTI	RICAL E	ESCRIPTION					
-	encies freguen		no.	of segme	nt length	n (wavele	ngths)
no.	lowest 1.2	step 0	step 1		um	maximum .025888	
Source	es e node	sector	magnitude	phase		type	
1	1	1	1.	0		voltage	
Lumpeo	d loads	resistanc	e reactanc	e ind	uctance	capacita	nce passive
load		(ohms)	(ohms)	(mH		(uF)	circuit
1 2	11 21	0 0	-1,769. -5,305.	0 0		0 0	0 0
3 4	31 41	0	-5,305. -5,305.	0		0	0
T	77	0	5,505.	U		~	v

Tower 2 Driven Individually

ŝ

C:\ME	BPRO14.	5\WINK2OC	03-29-2012	2 05:35:15			
IMPED							
freq (MHz)	re: (ol		ct imped ns) (ohms	d phase s) (deg)	VSWR	S11 dB	S12 dB
1.2	41		32 🥤 52.92	24 39. L 07:51:38	2.1028	-8.9851	5865
GEOME							
		nates in de : perfect q		ner dimensior	ıs in met	ers	
		Distance	Angle	Z		dius	segs
1	none ()	0	0 91.1	.2	18	10
2	none 6		130.	0	.2	18	10
2		50.	130. 130.	93.2 0	.2	10	10
3	none 1 1	.20.	130.	91.6	• 4	10	10
4	none 1		100.1	0	.3	64	10
5	none 8	.44.3 34.6	100.1 218.5	89.3 0	.3	64	10
0		34.6	218.5	91.3			
Numbe	r of wi cu	res rrent node					
	idual w nt leng s		4 8.	lue 93 18	ma: wire 2 4	ximum value 9.32 .364	
Freque	encies	ESCRIPTION (MHz)		-		(
	frequen lowest	step		o. of segme teps minim		n (wavele maximum	
	1.2	0		1 .0248	056	.025888	9 .
1 Source	1.2 es	0			056		9
1 Source	1.2	0	magnitude 1.		056	.025888 type voltage	9 .
1 Source source 1	1.2 es e node	0 sector 1	magnitude 1.	phase O		type voltage	
1 Source source 1 Lumpeo	1.2 es e node 11	0 sector 1	magnitude 1.	phase O ance ind	uctance	type voltage	9 nce passive circuit
1 Source source 1 Lumpeo load 1	1.2 es e node 11 d loads node 1	0 sector 1 resistanc (ohms) 0	magnitude 1. e react (ohms -5,30	phase O ance ind) (mH 5. O	uctance	type voltage capacita (uF) 0	nce passive circuit 0
1 Source source 1 Lumpee load	1.2 es e node 11 d loads node	0 sector 1 resistanc (ohms)	magnitude 1. e react (ohms	phase 0 ance ind) (mH 5. 0 5. 0	uctance	type voltage capacita (uF)	nce passive circuit

Tower 3 Driven Individually

é

C:\MBPR014.5\WINK3OC 03-29-2012 05:37:35 IMPEDANCE normalization = 50. phase VSWR S11 S12 imped freq resist react (MHz) (ohms) (ohms) (ohms) (deg) dB dB source = 1; node 21, sector 1 1.2 40.221 26.155 47.978 1.846 -10.537 -.40179 33. C:\MBPR014.5\WGCL3OC 05-25-2011 07:54:23 GEOMETRY Wire coordinates in degrees; other dimensions in meters Environment: perfect ground wire caps Distance Angle 1 none 0 0 Z 0 radius seqs 1 none 0 .218 10 0 0 91.1 130. 130. 130. 130. 0 none 60. 2 .218 10 93.2 0 91.6 60. 3 none 120. .218 10 120. 0 100.1 4 none 144.3 .364 10 144.3 100.1 89.3 none 84.6 .364 5 218.5 0 10 91.3 84.6 218.5 Number of wires = 5 current nodes = 50 minimum maximum Individual wires wire value wire value 2 segment length 4 8.93 9.32 .218 radius 1 4 .364 ELECTRICAL DESCRIPTION Frequencies (MHz) frequency no. of segment length (wavelengths) no. lowest steps minimum maximum step 1 1.2 0 1 .0248056 .0258889 Sources sector magnitude source node phase type 21 1 1. 0 voltage 1 Lumped loads inductance capacitance passive resistance reactance load node (ohms) (ohms) (mH) (uF) circuit -5,305. 1 1 0 0 0 0 2 11 0 -1,769. 0 0 0 3 31 0 -5,305. 0 0 0 0 0 4 41 0 -5,305. Ω

Tower 4 Driven Individually

ŕ

C:\ME	BPRO14.	5\WINK4OC	03-29-2	012	05:39:29				
IMPEI		ation = 50.							
freq (MHz)	res (ol	sist read nms) (ohm	ns) (o		phase (deg)	VSWR	S11 dB	S12 dB	/
1.2	38.	; node 31, .621 15.6 5\WGCL4OC	516 41	.658	22. 07:56:53	1.5469	-13.362	205	V
	coordin	nates in de : perfect <u>c</u>		other (dimension	s in met	ers		
wire		Distance	Angle		Z		dius	segs	
1	none (0 0		0 91.1	• 2	18	10	
2	none 6		130.		0	.2	18	10	
3	none 1	50. .20. .20.	130. 130. 130.		93.2 0 91.6	. 2	18	10	
4	none 1	44.3	100.1		0	.3	64	10	
5	none 8	.44.3 34.6 34.6	100.1 218.5 218.5		89.3 0 91.3	.3	64	10	
Numbe	r of wi cu	res rrent node	= 5 s = 5()					
			minimu				ximum		
	idual w nt leng		wire 4	value 8.93		wire 2	value 9.32		
radiu			1	.218		4	.364		
Frequ	encies				<i>c</i>	<i>(</i> ,)			
no.	frequen lowest 1.2	.cy step 0		no. c steps 1	-	ım	h (wavelen maximum .0258889	-	
Sourc									
sourc 1	e node 31	sector 1	magnitu 1.	ıde	phase 0		type voltage		
Lumpe	d loads								
load	node	resistanc (ohms)		(ctance (ms)	e indu (mH)	ctance	capacitar (uF)	nce pass circ	
1	1	0	-5,	305.	0		0	0	
2 3	11 21	0 0		769. 305.	0 0		0 0	0 0	
4	41	0		305.	0		0	0	

Tower 5 Driven Individually

ş

÷

C:\MBPR014.5	WINK5OC 03	3-29-2012	05:41:25				
freq res (MHz) (oh	ms) (ohms)		phase (deg)	VSWR	S11 dB	S12 dB	
source = 1; 1.2 41.	node 41, se 826 26.225		32.1	1.8076	-10.823	37506	1
GEOMETRY Wire coordin Environment:			dimension	s in met	ers		
wire caps D 1 none O	istance	Angle O	Z 0		dius 18	segs 10	
0 2 none 6		0 130. 130.	91.1 0 93.2	.2	18	10	
3 none 1		130.	95.2 0 91.6	.2	18	10	
4 none 1		100.1	0 89.3	.3	64	10	
5 none 8		218.5 218.5	0 91.3	.3	64	10	
Number of wi cu	res rrent nodes	= 5 = 50					
Individual w segment leng radius	ires wi			ma wire 2 4	ximum value 9.32 .364		
ELECTRICAL D Frequencies frequen no. lowest	(MHz) cy step	no. step		um	h (wavele maximum .025888		
1 1.2	0	1	.0248	056	.020000	9	
Sources source node 1 41		agnitude	phase 0		type voltage		
Lumped loads	resistance	reactanc	o ind	uctance	capacita	nce passi	Ve
load node 1 1 2 11 3 21 4 31	(ohms) 0 0 0 0	(ohms) -5,305. -1,769. -5,305. -5,305.	e 111d (mH 0 0 0 0		(uF) 0 0 0 0	circu 0 0 0 0	

Method of Moments Model Details for Daytime Directional Antenna - WINK

The array of towers was modeled using Expert MININEC Broadcast Professional Version 14.5 with the characteristics that were verified by the individual tower impedance measurements. Calculations were made to determine the complex voltage values for sources located at ground level under each tower of the array to produce current moment sums for the towers that, when normalized, equated to the theoretical field parameters of the authorized directional antenna pattern. The following pages contain details of the method of moments model of the directional antenna pattern.

Tower 2 of the array, which is not used by the daytime pattern, was detuned by terminating it with a load reactance at its base (node 11) as shown in the tabulation. The detuning reactance, +j 546, is the opposite sign value of the imaginary component of the method of moments modeled operating impedance for the daytime directional antenna with a field ratio of zero specified for the unused tower. In order to provide +j 546 ohms at the tower base through its ATU-to-base circuit model, the detuning inductance was adjusted to +j 386 for tower 2 at its ATU output jack reference point.

Tower	Wire	Base Node
1	1	1
2	2	11
3	3	21
4	4	31
5	5	41

It should be noted that voltages and currents shown on the tabulations that are not specified as "rms" values are the corresponding peak values.

C:\MBPR014.5\WINKDAD 03-29-2012 07:02:20 MEDIUM WAVE ARRAY SYNTHESIS FROM FIELD RATIOS Frequency = 1.2 MHz field ratio tower magnitude phase (deg) 0 1 1. 0 2 0 151.5 1.318 3 4 1.762 4.3 1.08 95.5 5 VOLTAGES AND CURRENTS - rms current source voltage phase (deg) 6.7 node magnitude phase (deg) magnitude 1,383.05 39.8 16.5826 995.649 15.8 1.82405 1 995.649 107. 11 756.746 296.8 23.0164 148.8 21 8.5 31 1,242.21 32.9 31.227 122.1 18.8924 99.1 41 591.816 Sum of square of source currents = 4,280.21Total power = 50,000. watts

÷

NOTE: The array synthesis calculations (above) were performed to solve for the base voltage drives required to produce the specified field parameters, including the detuned condition for tower 2 which is unused in the daytime. The base impedances were calculated and the model was revised to have voltage drives only for the towers of the daytime directional antenna pattern, towers 1, 3, 4 and 5, and a detuning reactance to ground for tower 2. The detuning reactance is equal in magnitude and opposite in sign to the reactive component of the operating impedance that was determined using the voltage sources from the array synthesis calculations. The final model does not include a voltage source for tower 2 because its base voltage is developed across the detuning reactance. The specified detuning reactance represents how the tower was detuned for normal operation. The following information is from the final model.

GEOMETRY

6

			in deg fect gi		other	dime	ension	ns in me	ters	
wire 1	caps none	Dista O O	nce	Angle 0 0	2	Z 0 91	.1		adius 218	segs 10
2	none	-		130. 130.		0	.2		218	10
3	none	120. 120.		130. 130. 130.		0			218	10
4	none	144.3 144.3		100.1		0	.6 .3		364	10
5	none	144.5 84.6 84.6		218.5 218.5		0	.3		364	10
Numbe	er of v		t nodes	= 5	0					
				minim	um			ma	aximum	
	vidual ent ler			ire 4	value 8.93			wire 2	e value 9.32	
radiu		igen		1	.218			4	.364	
1 Sourc sourc 1 2 3	1.2 es e node 1 21 31	: se 1 1		magnit 1,955. 1,070. 1,756.	93 2	p) 3 2	.0248 nase 9.8 96.8 2.9	056	.025888 type voltage voltage voltage	39
4	41	1		836.95			22.1		voltage	
Lumpe	d load		stance	rea	actanc	e	ind	uctance	capacita	nce passiv
load 1	node 11	(ohm 0	is)		hms) 5.72		(mH 0)	(uF) 0	circui 0
IMPED	ANCE									
no	rmaliz	ation	= 50.							
(MHz)	(0	hms)	react (ohms)	(oł		phas (deg		VSWR	S11 dB	S12 dB
			1, sec 45.591		498	33.1		2.267	-8.2275	70785
			21, se 17.395			148.		****	* * * *	* * * *
			31, se 16.461			24.4		1.6471	-12.236	26763
			41, se 12.241			23.		1.8838	-10.272	42837

Wire coordinates in degrees; other dimensions in meters

CURREI	NT rms						
Freque		.2 MHz					
	power = 50 iency = 10),000. watt)0. %	is.				
	inates in d						
currei				mag	phase	real	imaginary
no.	Х	Y	Z	(amps)	(deg)	(amps)	(amps)
GND	0	0	0	16.5634	6.7	16.4501	1.93419
2	0	0	9.11	17.0062	3.6	16.9731	1.06128
3	0	0	18.22	16.842	1.7	16.8346	.496514
4	0	0	27.33	16.191	.2	16.1909	.0669718 248322
5 6	0 0	0 0	36.44 45.55	15.0811 13.5394	359.1 358.1	15.0791 13.5317	457248
7	0	0	54.66	11.5975	357.2	11.5837	564375
8	0	Ő	63.77	9.28885	356.5	9.27112	573537
9	0	0	72.88	6.64174	355.8	6.62379	487942
10	0	0	81.99	3.65527	355.2	3.64228	307935
END	0	0	91.1	0	0	0	0
GND	-38.5673	-45.9627	0	1.82441	105.9	499657	1.75466
12	-38.5673	-45.9627	9.32 18.64	.99515 .460838	105.8 104.9	270505 118359	.95768 .445379
13 14	-38.5673 -38.5673	-45.9627 -45.9627	27.96	.0602595		6.22E-04	.0602563
14	-38.5673	-45.9627	37.28	.236193	292.6	.0906727	218095
16	-38.5673	-45.9627	46.6	.426732	290.9	.152335	398615
17	-38.5673	-45.9627	55.92	.521527	290.8	.185127	487563
18	-38.5673	-45.9627	65.24	.525622	291.	.188359	490713
19	-38.5673	-45.9627	74.56	.443702	291.3	.161299	413345
20	-38.5673	-45.9627	83.88	.277841	291.7	.102577	258212
END	-38.5673	-45.9627	93.2	0	0 148.8	0 -19.6896	0 11.9425
GND 22	-77.1345 -77.1345	-91.9253 -91.9253	0 9.16	23.0284 23.0922	140.0	-20.0058	11.5333
23	-77.1345	-91.9253	18.32	22.504		-19.6491	10.9701
24	-77.1345	-91.9253	27.48	21.3427		-18.7451	10.2045
25	-77.1345	-91.9253	36.64	19.6424		-17.3325	9.24171
26	-77.1345	-91.9253	45.8	17.4424	152.3	-15.45	8.09524
27	-77.1345	-91.9253	54.96	14.7887	152.7	-13.1413	6.78316
28	-77.1345	-91.9253	64.12	11.7301	153.	-10.4518	5.325
29	-77.1345	-91.9253	73.28 82.44	8.30877 4.53036	153.3 153.5	-7.42082 -4.05478	3.73726 2.02062
30 END	-77.1345 -77.1345	-91.9253 -91.9253	91.6	0	0	0	0
GND	-25.3054	-142.064	0	31.215	8.5	30.8749	4.59517
32	-25.3054	-142.064	8.93	31.3725	6.5	31.1708	3.55126
33	-25.3054	-142.064	17.86	30.6261	5.3	30.4932	2.85077
34	-25.3054	-142.064	26.79	29.1101	4.4	29.0232	2.24821
35	-25.3054	-142.064	35.72	26.8669	3.7	26.8117	1.72108
36	-25.3054	-142.064	44.65	23.944	3.	23.9107	1.26325 .873756
37 38	-25.3054 -25.3054	-142.064 -142.064	53.58 62.51	20.3958 16.2784	2.5 1.9	20.3771 16.269	.552936
39	-25.3054	-142.064	71.44	11.6349	1.5	11.631	.301132
40	-25.3054	-142.064	80.37	6.45449	1.	6.45341	.118163
END	-25.3054	-142.064	89.3	0	0	0	0
GND	-66.2086	52.6647	0	18.8921	99.1	-2.98717	18.6545
42	-66.2086	52.6647	9.13	18.9107	97.5	-2.46733	18.7491
43	-66.2086	52.6647	18.26	18.4141	96.5	-2.09198	18.2949
44	-66.2086	52.6647	27.39	17.4664	95.7	-1.74449	17.3791
45	-66.2086 -66.2086	52.6647 52.6647	36.52 45.65	16.0919 14.3188	95.1 94.4	-1.41659 -1.10884	16.0294 14.2758
46 47	-66.2086	52.6647	45.65 54.78	12.1795	94.4 93.9	824825	12.1515
48	-66.2086	52.6647	63.91	9.70734	93.4	56911	9.69064
49	-66.2086	52.6647	73.04	6.92822	92.9	346129	6.91957
50	-66.2086	52.6647	82.17	3.83636	92.4	159183	3.83305
END	-66.2086	52.6647	91.3	0	0	0	0

ě.

4

Method of Moments Model Details for Nighttime Directional Antenna - WINK

The array of towers was modeled using Expert MININEC Broadcast Professional Version 14.5 with the characteristics that were verified by the individual tower impedance measurements. Calculations were made to determine the complex voltage values for sources located at ground level under each tower of the array to produce current moment sums for the towers that, when normalized, equated to the theoretical field parameters of the authorized directional antenna pattern. The following pages contain details of the method of moments model of the directional antenna pattern.

Towers 4 and 5 of the array, which are not used by the nighttime pattern, were detuned by terminating them with load reactances at their bases (nodes 31 and 41) as shown in the tabulation. The detuning reactances, +j 466 for tower 4 and +j 480 for tower 5, are the opposite sign values of the imaginary components of the method of moments modeled operating impedances for the nighttime directional antenna with field ratios of zero specified for the unused towers. In order to provide the detuning reactance at each tower base through its ATU-to-base circuit model, the detuning inductances were adjusted to +j 382 for tower 4 and +j 402 for tower 5 at their respective ATU output jack reference points.

Tower	Wire	Base Node
1	1	1
2	2	11
3	3	21
4	4	31
5	5	41

It should be noted that voltages and currents shown on the tabulations that are not specified as "rms" values are the corresponding peak values.

C:\MBPR014.5\WINKDAN 03-30-2012 14:10:41 MEDIUM WAVE ARRAY SYNTHESIS FROM FIELD RATIOS Frequency = 1.2 MHz field ratio tower magnitude phase (deg) 1 1. 0 1.998 -123.3 2 3 1. 0 -246.5 0 4 0 0 5 VOLTAGES AND CURRENTS - rms source voltage current nodemagnitudephase (deg)magnitude147.5579357.64.9793211452.4297.18.98671 phase (deg) 1.3 47.5579 357.0 297.1 239.4 21 418.924 209.1 4.17067 112.2 186.6 31232.1224176.1038 .497829 277.2 240.5 .15838 332. Sum of square of source currents = 246.444Total power = 2,200. watts

6

NOTE: The array synthesis calculations (above) were performed to solve for the base voltage drives required to produce the specified field parameters, including detuned conditions for towers 4 and 5 which are unused in the nighttime. The base impedances were calculated and the model was revised to have voltage drives only for the towers of the nighttime directional antenna pattern, towers 1, 2 and 3 and detuning reactances to ground for towers 4 and 5. The detuning reactances are equal in magnitude and opposite in sign to the reactive components of the operating impedances that were determined using the voltage sources from the array synthesis calculations. The final model does not include voltage sources for towers 4 and 5 because their base voltages are developed across the detuning reactances. The specified detuning reactances represent how the towers were detuned for normal operation. The following information is from the final model.

GEOMETRY

4

wire	caps	Distan	ce	Angle		Z	ra	dius	segs
1	none	0		0		0	.2	18	10
2	none	0 60.		0 130.		91.1 0	.2	18	10
		60.		130.		93.2			
3	none	120. 120.		130. 130.		0 91.6	.2	18	10
4	none	144.3		100.1		0	.3	64	10
F		144.3		100.1		89.3	2	<i>C</i> 4	1.0
5	none	84.6		218.5 218.5		0 91.3	.3	64	10
Numbo	r of w	iroo		= 5					
nunide		urrent	nodes		D				
				minimu	m		mai	ximum	
	idual		W	ire	value		wire		
segme: radiu	nt len	gth		4 1	8.93 .218		2 4	9.32 .364	
ELECTI	RICAL	DESCRIP	TION						
Freque	encies	(MHz)	TION			~			
Freque	encies freque	(MHz) ncy			no. o	-	ent length		-
Freque	encies	(MHz) ncy	PTION step 0		no. o steps 1	-	านฑ	h (wavel maximu .02588	m
Freque no.	encies freque lowest 1.2	(MHz) ncy	step		steps	minin	านฑ	maximu	m
Freque no. 1 Source	encies freque lowest 1.2 es e node	(MHz) ncy sec	step 0 tor	magnitu	steps 1	minim .0248 phase	านฑ	maximur .025888 type	m
Freque no. 1 1 Source 1	encies freque lowest 1.2 es e node 1	(MHz) ncy sec 1	step 0 tor	67.257	steps 1	minim .0248 phase 357.6	านฑ	maximum .025888 type voltage	m
Freque no. 1 Source	encies freque lowest 1.2 es e node	(MHz) ncy sec	step 0 tor	-	steps 1 ade	minim .0248 phase	านฑ	maximur .025888 type	m 8 9
Freque no. 1 Source source 1 2 3	encies freque lowest 1.2 es e node 1 11	(MHz) ncy sec 1 1 1	step 0 tor	67.257 639.79	steps 1 ade	minim .0248 phase 357.6 297.1	านฑ	maximur .025888 type voltage voltage	m 8 9
Freque no. 1 Source 1 2 3 Lumpeo	encies freque lowest 1.2 es e node 1 11 21 d load:	(MHz) ncy sec 1 1 1 s resis	step 0 tor tance	67.257 639.79 592.447 rea	steps 1 ade	minim .0248 phase 357.6 297.1 209.1 ind	num 2056 Nuctance	maximu .02588 type voltage voltage voltage capacita	m 89 ance passiv
Freque no. 1 Source 1 2 3 Cumpeo	encies freque lowest 1.2 es e node 1 11 21 d load: node	(MHz) ncy sec 1 1 1 s resis (ohms	step 0 tor tance	67.257 639.79 592.447 rea (oh	steps 1 ade actance ums)	minim .0248 phase 357.6 297.1 209.1 ind (mH	num 2056 Nuctance	maximu .02588 type voltage voltage voltage capacita (uF)	m 89 ance passiv circui
Freque no. 1 Source source 1 2 3	encies freque lowest 1.2 es e node 1 11 21 d load:	(MHz) ncy sec 1 1 1 s resis	step 0 tor tance	67.257 639.79 592.447 rea (oh 466	steps 1 ade ctance ms) 5.24	minim .0248 phase 357.6 297.1 209.1 ind	num 2056 Nuctance	maximu .02588 type voltage voltage voltage capacita	ance passiv circui 0
Freque no. 1 Source 1 2 3 Cumpeo Load 1	encies freque lowest 1.2 es e node 1 11 21 d loads node 31	(MHz) ncy sec 1 1 1 s resis (ohms 0	step 0 tor tance	67.257 639.79 592.447 rea (oh 466	steps 1 ade actance ums)	minim .0248 phase 357.6 297.1 209.1 ind (mH 0	num 2056 Nuctance	maximur .025883 type voltage voltage voltage capacita (uF) 0	m 89 ance passiv circui
Freque no. 1 Source 1 2 3 Cumpeo Load 1 2	encies freque lowest 1.2 es e node 1 11 21 d load: node 31 41	(MHz) ncy sec 1 1 1 s resis (ohms 0	step 0 tor tance	67.257 639.79 592.447 rea (oh 466	steps 1 ade ctance ms) 5.24	minim .0248 phase 357.6 297.1 209.1 ind (mH 0	num 2056 Nuctance	maximur .025883 type voltage voltage voltage capacita (uF) 0	ance passiv circui 0
Freque no. 1 Source source 1 2 3 Lumpec Load 1 2 SMPEDA	encies freque lowest 1.2 es e node 1 11 21 d load: node 31 41	(MHz) ncy sec 1 1 1 s resis (ohms 0	step 0 tor tance	67.257 639.79 592.447 rea (oh 466	steps 1 ade ctance ms) 5.24	minim .0248 phase 357.6 297.1 209.1 ind (mH 0	num 2056 Nuctance	maximur .025883 type voltage voltage voltage capacita (uF) 0	ance passiv circui 0
Freque no. 1 Source source 1 2 3 Lumpec Load 1 2 SMPEDA	encies freque lowest 1.2 es e node 1 21 d load: 31 41 ANCE cmalizz	(MHz) ncy sec 1 1 1 s resis (ohms 0 0	step 0 tor tance	67.257 639.79 592.447 rea (oh 466 480	steps 1 ade actance ms) 5.24 5.35	minim .0248 phase 357.6 297.1 209.1 ind (mH 0	num 2056 Nuctance	maximur .025883 type voltage voltage voltage capacita (uF) 0	ance passiv circui 0

source = 3; node 21, sector 1 1.2 -12.145 99.662 100.4 96.9 **** **** ****

source = 2; node 11, sector 1 1.2 26.926 42.519 50.328 57.7 3.4484 -5.1865 -1.5673

Effici	ncy = 1. power = 2,	.2 MHz ,200. watts)0. % degrees	5				
curren	t			mag	phase	real	imaginary
no.	Х	Y	Z	(amps)	(deg)	(amps)	(amps)
GND	0	0	0	4.97996	1.3	4.97859	.116585
2	0	0	9.11	4.92025	.9	4.91966	.0759741
3	0	0	18.22	4.74818	.6	4.74795	.0461301
4	0	0	27.33	4.46683	.3	4.46678	.0197823
5	0	0	36.44	4.08208	360.	4.08208	-3.22E-03
6	0	0	45.55	3.60196	359.6	3.60189	0221336
7	0	0	54.66	3.03613	359.3	3.03592	0357285
8	0	0	63.77	2.39494	359.	2.39456	0424993
9	0	0	72.88	1.68743	358.6	1.68694	0407167
10	0	0	81.99	.915325	358.2	.914886	0283533
END	0	0	91.1	0	0	0	0
GND	-38.5673	-45.9627	0	8.98781	239.4	-4.56916	-7.73973
12	-38.5673	-45.9627	9.32	9.19762	238.2	-4.84455	-7.81835
13	-38.5673	-45.9627	18.64	9.07631	237.5	-4.88179	-7.65164
14	-38.5673	-45.9627	27.96	8.69227	236.9	-4.75048	-7.27933
15	-38.5673	-45.9627	37.28	8.06389	236.4	-4.46463	-6.71516
16	-38.5673	-45.9627	46.6	7.20896	236.	-4.03543	-5.97364
17	-38.5673	-45.9627	55.92	6.14741	235.6	-3.47441	-5.07141
18	-38.5673	-45.9627	65.24	4.90029	235.2	-2.7935	-4.02606
19	-38.5673	-45.9627	74.56	3.48591	234.9	-2.00296	-2.85302
20	-38.5673	-45.9627	83.88	1.9075	234.6	-1.10422	-1.5554
END	-38.5673	-45.9627	93.2	0	0	0	0
GND	-77.1345	-91.9253	0	4.17197	112.2	-1.57312	3.86402
22	-77.1345	-91.9253	9.16	4.45886	112.7	-1.71979	4.11385
23	-77.1345	-91.9253	18.32	4.51374	113.	-1.76498	4.15436
24	-77.1345	-91.9253	27.48	4.40767	113.3	-1.74297	4.04841
25	-77.1345	-91.9253	36.64	4.15433	113.5	-1.65953	3.80847
26	-77.1345	-91.9253	45.8	3.76424	113.8	-1.51839	3.44442
27	-77.1345	-91.9253	54.96	3.24812	114.	-1.32298	2.96648
28	-77.1345	-91.9253	64.12	2.61699	114.3	-1.07651	2.38532
29	-77.1345	-91.9253	73.28	1.88026	114.6 114.8	781361 436291	1.71023 .942877
30	-77.1345	-91.9253 -91.9253	82.44 91.6	1.03893 0	0	0	0
END	-77.1345 -25.3054		91.6 0	.497936	276.7	.0579673	49455
GND 32	-25.3054	-142.064 -142.064	8.93	.270931	276.6	.0313034	269117
33	-25.3054	-142.064	17.86	.131048	276.3	.0143309	130262
34	-25.3054	-142.064	26.79	.0235302		7.41E-04	0235185
35	-25.3054	-142.064	35.72	.0572321		-9.95E-03	.0563613
36	-25.3054		44.65	.112468			.111063
37	-25.3054	-142.064	53.58	.142891	99.	0223688	
38	-25.3054	-142.064	62.51	.148603	99.1	0235728	
39	-25.3054	-142.064	71.44	.12939	99.3	020933	.127685
40	-25.3054	-142.064	80.37	.0841829		0139142	
END	-25.3054	-142.064	89.3	0	0	0	0
GND	-66.2086	52.6647	0	.158702	330.7	.138457	077562
42	-66.2086	52.6647	9.13	.0835819		.0728166	0410327
43	-66.2086	52.6647	18.26	.0381428			01935
44	-66.2086	52.6647	27.39	4.52E-03			-3.56E-03
45	-66.2086	52.6647	36.52	.0204547		0190585	
46	-66.2086	52.6647	45.65	.0362651		0333731	
47	-66.2086	52.6647	54.78	.044052	157.	0405486	.017216
48	-66.2086	52.6647	63.91	.0443026		0409189	.0169811
49	-66.2086	52.6647	73.04	.0374548		0347563	.0139592
50	-66.2086	52.6647	82.17	.0237001		0221088	8.54E-03
END	-66.2086	52.6647	91.3	0	0	0	0

<u>لا</u> ار

Sampling System Measurements – WINK

Impedance measurements were made of the antenna monitor sampling system using a Hewlett-Packard 8751A network analyzer and a Tunwall Radio directional coupler in a calibrated measurement system. The measurements were made looking into the antenna monitor ends of the sampling lines for two conditions – with them open circuited at their tower ends and with them connected to the sampling devices at the tower bases.

The following table shows the frequencies above and below the carrier frequency where resonance – zero reactance corresponding with low resistance – was found. As the length of a distortionless transmission line is 180 electrical degrees at the difference frequency between adjacent frequencies of resonance, and frequencies of resonance occur at odd multiples of 90 degrees electrical length, the sampling line length at the resonant frequency below carrier frequency – which is the closest one to the carrier frequency in terms of the ratio of frequencies – was found to be 270 electrical degrees. The electrical lengths at carrier frequency appearing in the table below were calculated by ratioing the frequencies.

Tower	Sampling Line Open-Circuited Resonance Below 1200 kHz (kHz)	Sampling Line Open-Circuited Resonance Above 1200 kHz (kHz)	Sampling Line Calculated Electrical Length at 1200 kHz (degrees)	1200 kHz Measured Impedance with Toroid Connected (Ohms)
1	1172.75	1958.38	276.3	51.1 — j 2.1
2	1172.55	1958.00	276.3	51.2 – j 2.2
3	1172.70	1959.13	276.3	51.2 – j 2.1
4	1173.25	1959.50	276.2	51.1 – j 2.2
5	1172.45	1958.38	276.3	51.1 – j 2.2

The sampling line lengths meet the requirement that they be equal in length within 1 electrical degree.

The characteristic impedance was calculated using the following formula, where $R_1 + j X_1$ and $R_2 + j X_2$ are the measured impedances at the +45 and -45 degree offset frequencies, respectively:

ξ.

Tower	-45 Degree Offset Frequency (kHz)	-45 Degree Measured Impedance (Ohms)	+45 Degree Offset Frequency (KHz)	+45 Degree Measured Impedance (Ohms)	Calculated Characteristic Impedance (Ohms)
1	977.29	3.41 –j 50.20	1368.21	5.50 +j 50.06	50.3
2	977.13	3.43 –j 50.24	1367.98	5.54 +j 50.11	50.4
3	977.25	3.49 –j 49.90	1368.15	5.60 +j 50.07	50.4
4	977.71	3.42 –j 50.25	1368.79	5.52 +j 50.07	50.4
5	977.04	3.45 –j 50.21	1367.86	5.54 +j 50.04	50.3

$$Z_0 = ((R_1^2 + X_1^2)^{1/2} \bullet (R_2^2 + X_2^2)^{1/2})^{1/2}$$

The sampling line measured characteristic impedances meet the requirement that they be equal within 2 ohms.

The toroidal transformers were calibrated by measuring their outputs with a common reference signal using a Hewlett-Packard 8751A network analyzer in a calibrated measurement system. They were placed side-by-side with a conductor carrying the reference signal passing through them and their outputs were fed into the A and B receiver inputs of the analyzer which was configured to measure the relative ratios and phases of their output voltages. The following results were found for carrier frequency, 1200 kilohertz:

Tower	Toroid Ratio	Toroid Phase (Degrees)
1	Reference	Reference
2	1.001	-0.048
3	1.001	-0.116
4	1.001	-0.162
5	1.002	-0.200

Delta type TCT-1 toroidal transformers are rated for absolute magnitude accuracy of +/- 2% and absolute phase accuracy of +/- 3 degrees. As the maximum measured transformer-to-transformer variations among the four were no more than 0.2 percent and 0.2 degree, they provide far more accurate relative indications than could be the case within their rated accuracies.

t. C.

Reference Field Strength Measurements – WINK

٤ ٢

Reference field strength measurements were made at three locations along each radial at an azimuth specified for monitoring by the existing (old) STA for the nighttime pattern, at 290.0 and 330.0 degrees true, and at the azimuths specified for monitoring on the construction permit for the new daytime directional antenna at 96.5, 185.0 and 289.0 degrees true. Additionally, measurements were made on major lobe radials at 7.0 degrees true for the daytime pattern and at 130.0 degrees true for the nighttime pattern. The measured field strengths, descriptions and GPS coordinates for the reference measurement points are shown on the following pages.

Reference Field Strength Measurements

0 84

WINK DA-D

Radial	Point	Dist.	Field	Coordinate	s (NAD 27)	Description
(Deg.)		(Km)	(mV/m)	N	W	
	1	2.97	1380	26-44-26.3	82-02-30.9	Burnt Store Road and Durden Parkway
7	2	5.09	760	26-45-34.6	82-02-21.4	Burnt Store Road and Charlee Road
	3	5.41	560	26-45-44.5	82-02-18.7	Burnt Store Road and Islamorada Boulevard
	1	2.93	94	26-42-40.5	82-00-58.1	Jacaranda Parkway and NW 20 th Place
96.5	2	3.03	121	26-42-39.1	82-00-54.6	Jacaranda Parkway and NW 20 th Avenue
	3	3.49	121	26-42-38.3	82-00-38.0	Jacaranda Parkway and NW 18 th Avenue
	1	3.59	175	26-40-55.2	82-02-54.3	3605 Gulfstream Parkway
185	2	4.45	140	26-40-27.6	82-02-57.8	Yucatan Parkway and NW 36 th Place
	3	5.28	108	26-40-01.0	82-02-59.5	Tropicana Parkway and NW 38 th Avenue
	1	1.12	580	26-43-02.8	82-03-22.0	Old Burnt Store Road
289	2	1.43	425	26-43-06.0	82-03-32.6	NW 34 th Terrace and NW 42 nd Avenue
	3	1.86	310	26-43-10.5	82-03-47.4	NW 35 th Street and NW 44 th Place

Reference Field Strength Measurements

ته ال

WINK DA-N

Radial	Point	Dist.	Field	Coordinate	s (NAD 27)	Description
(Deg.)		(Km)	(mV/m)	N	W	
	1	1.87	370	26-42-12.9	82-01-51.9	NW 27th Street and 28 th Avenue
130	2	2.01	340	26-42-09.5	82-01-47.7	2703 NW 26th Terrace
	3	2.41	290	26-42-00.7	82-01-37.0	2530 NW 26th Avenue
	1	1.10	15.0	26-43-03.2	82-03-21.0	Old Burnt Store Road and NW 34th Street
290	2	1.39	11.2	26-43-06.2	82-03-30.9	NW 42 nd Avenue and NW 34 th Terrace
	3	1.96	8.0	26-43-12.3	82-03-48.8	NW 44 th Place and 35 th Street
	1	1.96	9.5	26-43-45.8	82-03-18.7	Old Burnt Store Road and NW 39 th Street
330	2	2.11	9.0	26-43-50.2	82-03-21.6	Old Burnt Store Road and NW 39 th Lane
	3	2.47	8.1	26-44-00.0	82-03-28.7	NW 40 th Lane and NW 42 nd Avenue

All of the field strength observations were made on March 30, 2012 by Mr. James Johnson. The Potomac Instruments FIM-21 field strength meter used for the measurements, serial number 782, was most recently calibrated by its manufacturer on November 19, 2010.

Direct Measurement of Power - WINK

1 1

Common point impedance measurements were made using the permanently installed Delta Electronics CPB-1A Common Point Bridge. The bridge is located in the circuit adjacent to the common point current meter that is used to determine operating power. The bridge readings were confirmed by comparison with those made by a calibrated network analyzer measurement system employing a Hewlett-Packard 8751A vector network analyzer and a Tunwall Radio directional coupler. The common point impedance was adjusted to 50.0 - j 6.0 ohms for both directional patterns. The reactance was set to -j 6.0 to compensate for series inductance in the circuit between the transmitter and the common point in the phasor cabinet, including the main-auxiliary transmitter switching contactor, in order to provide a non-reactive load for the transmitter's output port at carrier frequency.

Section 73.51(b)(1) of the FCC Rules specifies that the authorized antenna input power of a directional antenna for up to 5.0 kilowatts nominal power shall be increased by 8 percent above the nominal power. For the 2.2 kilowatt STA nighttime pattern, the common point current was calculated for 2,376 watts antenna input power.

Section 73.51(b)(2) of the FCC Rules specifies that the authorized antenna input power of a directional antenna for greater than 5.0 kilowatts nominal power shall be increased by 5.3 percent above the nominal power. For the 50 kilowatt daytime pattern, the common point current was calculated for 52,650 watts antenna input power.

Antenna Monitor and Sampling Lines - WINK

3 5

The antenna monitor is a Potomac Instruments model AM-1901. The sampling devices are Delta Electronics Type TCT-1 shielded toroidal transformers located at the ATU output reference points. The TCT-1 transformers have a sensitivity of 0.5 volt per ampere of RF current. The toroids are connected through equal length ½ inch foam heliax sampling lines to the antenna monitor. The outdoor portions of the sampling lines are buried underground.

The antenna monitor is new. As it was calibrated by its manufacturer prior to installation, no calibration measurements are necessary for this proof of performance.

Radio Frequency Radiation Considerations - WINK

£ 9

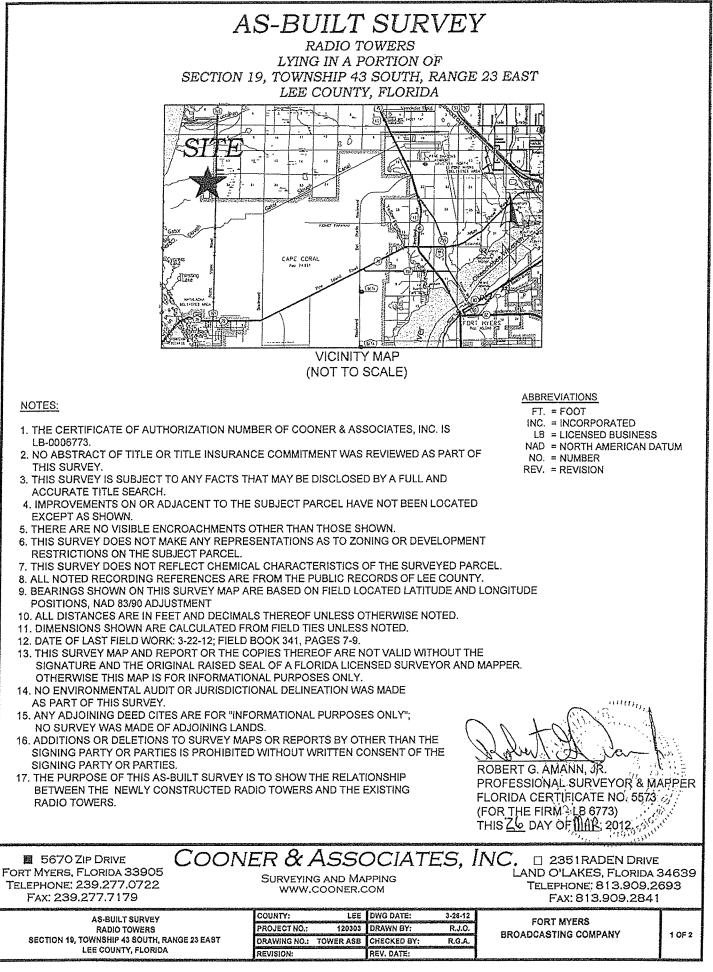
The operation of WINK will not result in the exposure of workers or the general public to levels of radio frequency radiation in excess of the limits specified in 47 CFR 1.1310. Fences have been installed about the tower bases to restrict access beyond the distances necessary to prevent electric and magnetic field exposure above the required levels.

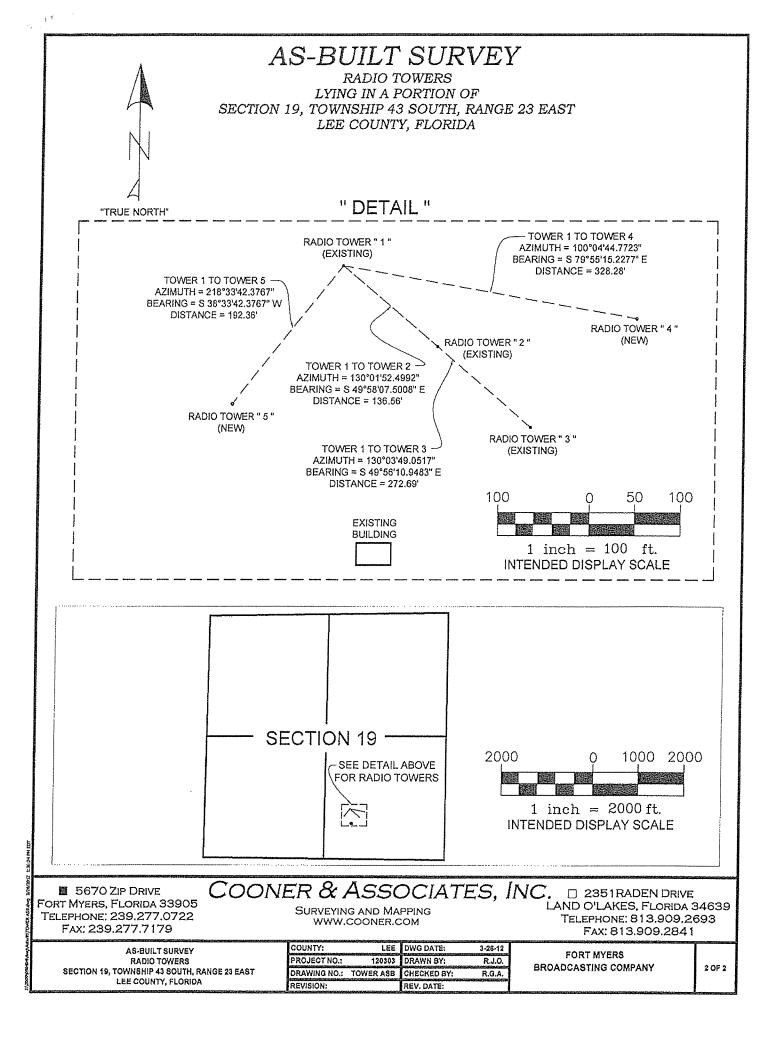
The fence sizes were determined with reference to Table 2 of Supplement A to FCC OET Bulletin 65 (Edition 97-01). According to Table 2, the predicted "Distance for Compliance with FCC limits" at 1200 kilohertz, for 10 kilowatts fed into a single tower 0.25 wavelength in height, is 2 meters and the distance for 50 kilowatts is 4 meters. The following table shows the operating powers of towers 1, 3, 4 and 5 in daytime directional mode and the power of tower 2 in nondirectional test mode along with the interpolated distances for each value of power and the radius values for which the fences restrict access. The nighttime mode power levels are lower than those shown in all cases.

		Interpolated	Interpolated	Fence
	Power	Distance	Distance	Restriction
Tower	(KW)	(Meters)	(Feet)	(Feet)
1 (NW)	19.1	2.5	8.2	10
2 (C)	12.5	2.1	6.9	8
3 (SE)	14.7	2.2	7.2	8
4 (NE)	35.2	3.3	10.8	13
5 (SW)	10.3	2.0	6.6	8

The fences limit access to areas with fields that exceed the requirements of the Rules for all possible modes of operation. If it is necessary for workers to be inside them for extended periods of time, the station may switch to nondirectional operation with tower 2 to de-activate towers 1, 3, 4 and 5, switch to daytime directional mode to de-activate tower 2, or temporarily terminate operation. The WINK facility is, therefore, in full compliance with the FCC's requirements with regard to radio frequency radiation exposure.

Summary of Certified Array Geometry - WINK


11


The tower locations based on the relative distances in feet and azimuths (referenced to True North) provided in the Tower Location Certification of Appendix A were compared to the relative distances and azimuths of the array elements specified on the construction permit. The Certified and specified values were converted to the rectangular coordinate system to facilitate calculating the individual tower specified-to-certified distances, which were then converted to the polar coordinate system to determine their magnitudes. This tabulation shows those distances and other information that is relevant to their determination.

Tower	Specifi	ed Array Ge	eometry		nstruction cation*	Distance From Specified Base Location		
	Spacing (Deg.)	Spacing (Feet)	Azimuth (Deg. T.)	Spacing (Feet)	Azimuth (Deg. T.)	(Feet)	(Deg.)	
1	Ref.	Ref.	Ref.	Ref.	Ref.	Ref.	Ref.	
2	60.0	136.61	130.0	136.56	130.03	0.09	0.04	
3	120.0	273.21	130.0	272.69	130.06	0.59	0.26	
4	144.3	328.54	100.1	328.28	100.08	0.28	0.12	
5	84.6	192.62	218.5	192.36	218.56	0.33	0.14	

* As built tower locations from March 26, 2012 Tower Location Certification prepared by Robert G. Amann, Professional Surveyor & Mapper of Cooner & Associates, Inc. Appendix A Certified Post Construction Array Geometry

() ''

SECTION III I	ICENSE APPLICATION ENGI					
Name of Applica			DA PATTERN AND READJUSTN	IENT OF STA NIGH	IT-DA PATTERN)	
PURPOSE OF A	UTHORIZATION APPLIED FOR:	: (check one)				
\checkmark	Station License	Direct Mea	surement of Power			
1. Facilities auth	orized in construction permit	L	1			
Call Sign	File No. of Construction Permit	1	Hours of Operation		kilowatts	
WINK	(if applicable) N/A	(kHz) 1200	UNLIIMITED	Night 2.2	Day 50.0	
2. Station location)n					
State			City or Town			
FLORIDA PINE ISLAND C				ITER		
3. Transmitter lo	cation					
State	County		City or Town	Street address		
FL	FL LEÉ		CAPE CORAL	(or other identification) 3435 JANIS ROAD		
4. Main studio location						
State	State County		City or Town	Street address (or other identification	ation)	
FL	LEE		FORT MYERS	2824 PALM BEAC		
5. Remote contro	ol point location (specify only if au	thorized directiona	al antenna)			

6. Has type-approved stereo generating equipment been installed?	Yes 🗸 No
7. Does the sampling system meet the requirements of 47 C.F.R. Section 73.68?	✓ Yes No Not Applicable
Attach as an Exhibit a detailed description of the sampling system as installed.	Exhibit No. TECH EXHIBIT

State

FL

County

LEE

City or Town

FORT MYERS

RF common point or ante modulation for night syst 6.89	· · ·	res) without		RF common point or antenna current (in amperes) without modulation for day system 32.45			
Measured antenna or co operating frequency Night 50.0	mmon point resistance Day 50.0	, , , , , , , , , , , , , , , , , , ,	Measured ar operating fre Night -j6.0		point reactance (ir Day -j6.0	n ohms) at	
Antenna indications for d	irectional operation		······································				
Towers		ina monitor ling(s) in degrees		Antenna monitor sample current ratio(s)		Antenna base currents	
	Night	Day	Night	Day	Night	Day	
1 (NW)	+ 121.1	- 1.4	0.568	0.528	N/A	N/A	
2 (C)	0.0	N/A	1.000	N/A	N/A	N/A	
3 (SE)	- 128.2	+ 139.6	0.467	0.738	N/A	N/A	
4 (NE)	N/A	0.0	N/A	1.000	N/A	N/A	
5 (SW)	N/A	+ 90.5	N/A	0.606	N/A	N/A	
					-		

Street address

(or other identification)

2824 PALM BEACH BOULEVARD

SECTION III - Page 2

9. Description of antenna system ((f directional antenna is used, the information requested below should be given for each element of the array. Use separate sheets if necessary.)

Type Radiator	Overall height in meters of radiator above base insulator, or above base, if grounded.	Overall height in meters above ground (without obstruction lighting)	Overall height in meters above ground (include obstruction lighting)	If antenna is either top loaded or sectionalized, describe fully in an Exhibit.
UNIFORM CROSS-SECTION, GUYED	1, 2, 3 - 59.4; 4, 5 - 57.9	1, 2, 3 - 60.3; 4, 5 - 58.8	1, 2, 3 - 60.3; 4, 5 - 58.8	Exhibit No. N/A
Excitation	Series	Shunt		

Excitation

 $\psi_{i} \psi_{i}^{k}$

Geographic coordinates to nearest second. For directional antenna give coordinates of center of array. For single vertical radiator give tower location.

20 42 52 02 40	-			11		0		ı	46	11
----------------	---	--	--	----	--	---	--	---	----	----

If not fully described above, attach as an Exhibit further details and dimensions including any other antenna mounted on tower and associated isolation circuits.

Also, if necessary for a complete description, attach as an Exhibit a sketch of the details and dimensions of ground system.

Exhibit No. N/A

Exhibit No. TECH EXHIBIT

10. In what respect, if any, does the apparatus constructed differ from that described in the application for construction permit or in the permit?

NONE WITH REGARD TO CONSTRUCTION. COMPUTER MODELED PROOFS

RUN TO SATISFY CP CONDITIONS 4 AND 5, AS PERMITTED BY NEW FCC RULES.

11. Give reasons for the change in antenna or common point resistance.

NEW CONSTRUCTION

I certify that I represent the applicant in the capacity indicated below and that I have examined the foregoing statement of technical information and that it is true to the best of my knowledge and belief.

Name (Please Print or Type) RONALD D. RACKLEY, P.E.	Signature (Pondel Dadity
Address (include ZIP Code) DUTREIL, LUNDIN & RACKLEY, INC. 201 FLETCHER AVENUE	Date 4/02/2012
SARASOTA, FL 34237	Telephone No. (Include Area Code) 941-329-6000
Technical Director	Registered Professional Engineer
Chief Operator	Technical Consultant
Other (specify)	
FCC 302-AM (Page 5) August 1995	