Federal Communic	ations	Commission
Washington, D. C.	20554	

Approved by OMB 3060-0627 Expires 01/31/98

FOR FCC USE ONLY

Ang Sue

FCC 302-AM APPLICATION FOR AM

BROADCAST STATION LICENSE

(Please read instructions before filling out form.

FOR COMMISSION USE ONLY FILE NO BAMAL 20111018A

SECTION I - APPLICANT FE	E INFORMATION			
1. PAYOR NAME (Last, First, M	liddle Initial)			
Paskvan Media, Inc.	1			
MAILING ADDRESS (Line 1) (M 1387 Summer Court, N.W.	aximum 35 characters)			
MAILING ADDRESS (Line 2) (Ma	aximum 35 characters)			
CITY Bemidji		STATE OR COUNTRY (if fo	reign address)	ZIP CODE 56601
TELEPHONE NUMBER (include 218-766-7970	area code)	CALL LETTERS KPMI	OTHER FCC IDE 160495	NTIFIER (If applicable)
2. A. Is a fee submitted with this	application?			🖌 Yes 🗌 No
B. If No, indicate reason for fe	e exemption (see 47 C.F.R. Section			
Governmental Entity	Noncommercial educ	cational licensee	ther (Please explain):
C. If Yes, provide the following	information:			
Enter in Column (A) the correct	Fee Type Code for the service you a	are applying for. Fee Type Co	des may be found i	in the "Mass Media Services
Fee Filing Guide. Column (B) is	sts the Fee Multiple applicable for thi	is application. Enter fee amou	nt due in Column (C).
(A)	(B)	(C)		
FEE TYPE	FEE MULTIPLE	FEE DUE FOR FEE TYPE CODE IN		FOR FCC USE ONLY
MMR	0 0 0 1	COLUMN (A) \$ 635.00		
To be used only when you are req	uesting concurrent actions which res	sult in a requirement to list mor	e than one Fee Typ	e Code.
(A)	(B)	(C)		
MOR	0 0 0 1	\$ 730.00		FOR FCC USE ONLY
		TOTAL AMOUNT		
ADD ALL AMOUNTS SHOWN IN AND ENTER THE TOTAL HERE		REMITTED WITH TH APPLICATION		FOR FCC USE ONLY
THIS AMOUNT SHOULD EQUAI REMITTANCE.	L YOUR ENCLOSED	\$ 1,365.00		

SECTION II - APPLICAN				
1. NAME OF APPLICANT Paskvan Media, Inc.				
MAILING ADDRESS				
1387 Summer Court, N.W. CITY Bemidji		STATE MN		ZIP CODE 56601
2. This application is for:	Commercial	Noncomm	nercial on-Directional	
Call letters	Community of License Bemidji, MN	Construction Permit File No. BNP-20050118AFR	Modification of Construction Permit File No(s).	Expiration Date of Last Construction Permit 10/20/2011
3. Is the station n accordance with 47 C.F If No, explain in an Exh		to automatic program	test authority in	Yes ✓ No Exhibit No. 1
 Have all the term construction permit bee 	s, conditions, and oblig n fully met?	ations set forth in the	above described	Yes No
f No, state exceptions i	n an Exhibit.			
the grant of the under	ges already reported, ha lying construction permit d in the construction perr	t which would result in a	any statement or	Yes Vo
New ALL PLATE PROPERTY - CARDING COMPANY OF A	led its Ownership Report ce with 47 C.F.R. Sectior		ership	✓ Yes No Does not apply
lf No, explain in an Exhi	bit.			Exhibit No.
or administrative body v criminal proceeding, bro	ling been made or an adv with respect to the applica bught under the provision elated antitrust or unfai unit; or discrimination?	ant or parties to the appli is of any law relating to th	cation in a civil or he following: any	Yes 🗸 No
involved, including an id (by dates and file num information has been required by 47 U.S.C. S of that previous submis the call letters of the st	attach as an Exhibit a fu dentification of the court of bers), and the disposition earlier disclosed in cor section 1.65(c), the applic sion by reference to the tation regarding which the of filing; and (ii) the dispose	or administrative body an on of the litigation. Wh nnection with another a cant need only provide: (i file number in the case one application or Section	d the proceeding here the requisite application or as an identification of an application, 1.65 information	Exhibit No.

8. Does the applicant, or any party to the application, have a petition on file to migrate to the expanded band (1605-1705 kHz) or a permit or license either in the existing band or expanded band that is held in combination (pursuant to the 5 year holding period allowed) with the AM facility proposed to be modified herein?

If Yes, provide particulars as an Exhibit.

The APPLICANT hereby waives any claim to the use of any particular frequency or of the electromagnetic spectrum as against the regulatory power of the United States because use of the same, whether by license or otherwise, and requests and authorization in accordance with this application. (See Section 304 of the Communications Act of 1934, as amended).

The APPLICANT acknowledges that all the statements made in this application and attached exhibits are considered material representations and that all the exhibits are a material part hereof and are incorporated herein as set out in full in

CERTIFICATION

1. By checking Yes, the applicant certifies, that, in the case of an individual applicant, he or she is not subject to a denial of federal benefits that includes FCC benefits pursuant to Section 5301 of the Anti-Drug Abuse Act of 1988, 21 U.S.C. Section 862, or, in the case of a non-individual applicant (e.g., corporation, partnership or other unincorporated association), no party to the application is subject to a denial of federal benefits that includes FCC benefits pursuant to that section. For the definition of a "party" for these purposes, see 47 C.F.R. Section 1.2002(b).

2. I certify that the statements in this application are true, complete, and correct to the best of my knowledge and belief, and are made in good faith.

Name	Signature				
Troy Paskvan	Trons Pashum				
TOY FASKVAT	Troy Pas	mon			
Title	Date	Telephone Number			
President	1Ø/7/11	218-766-7970			

WILLFUL FALSE STATEMENTS ON THIS FORM ARE PUNISHABLE BY FINE AND/OR IMPRISONMENT (U.S. CODE, TITLE 18, SECTION 1001), AND/OR REVOCATION OF ANY STATION LICENSE OR CONSTRUCTION

FCC NOTICE TO INDIVIDUALS REQUIRED BY THE PRIVACY ACT AND THE PAPERWORK REDUCTION ACT

The solicitation of personal information requested in this application is authorized by the Communications Act of 1934, as amended. The Commission will use the information provided in this form to determine whether grant of the application is in the public interest. In reaching that determination, or for law enforcement purposes, it may become necessary to refer personal information contained in this form to another government agency. In addition, all information provided in this form will be available for public inspection. If information requested on the form is not provided, the application may be returned without action having been taken upon it or its processing may be delayed while a request is made to provide the missing information. Your response is required to obtain the requested authorization.

Public reporting burden for this collection of information is estimated to average 639 hours and 53 minutes per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the burden, can be sent to the Federal Communications Commission, Records Management Branch, Paperwork Reduction Project (3060-0627), Washington, D. C. 20554. Do NOT send completed forms to this address.

THE FOREGOING NOTICE IS REQUIRED BY THE PRIVACY ACT OF 1974, P.L. 93-579, DECEMBER 31, 1974, 5 U.S.C. 552a(e)(3), AND THE PAPERWORK REDUCTION ACT OF 1980, P.L. 96-511, DECEMBER 11, 1980, 44 U.S.C. 3507.

No

Vac

SECTION III - LICENSE	APPLICATION	ENGINEERING	DATA
Name of Applicant			

PASKVAN MEDIA, INC

i.

PURPOSE OF AUTHORIZATION APPLIED FOR: (check one)

Call Sign	uthorized in construction permit File No. of Construction Permit	Frequency	Hours of Operation	Pow	er in kilowatts
KPMI	(if applicable) BNP-20050118AFR	(kHz) 1300	UNLIMITED	Night 0.6	Day 2.5
2. Station loca	ation				
State MN			City or Town BEMIDJI		
3. Transmitter	r location				
State MN	County BELTRAMI		City or Town BEMIDJI	Street address (or other identification) 2115 WASHINGTON	
4. Main studio	location				
State MN	County BELTRAMI		City or Town BEMIDJI	Street address (or other identification) 2115 WASHINGTON AVE	
5. Remote co	ntrol point location (specify only if au	thorized directi	onal antenna)	L.	
State	County		City or Town	Street addres (or other iden	

6. Has type-approved stereo generating equipment been installed?	Yes V No
7. Does the sampling system meet the requirements of 47 C.F.R. Section 73.68?	🖌 Yes 🗌 No
,	Not Applicable
Attach as an Exhibit a detailed description of the sampling system as installed.	Exhibit No.

8. Operating constants						
RF common point or an modulation for night sys 3.6	RF common point or antenna current (in amperes) without modulation for day system 7.75					
Measured antenna or co operating frequency	ommon point resistance (in	ohms) at	Measured ante operating frequ		point reactance (in	ohms) at
Night Day			Night		Day	
50					41.6	
Antenna indications for	directional operation					
Towers	Antenna n Phase reading(s		Antenna monitor sample current ratio(s)		Antenna base currents	
	Night	Day	Night	Day	Night	Day
1	0		4.0			
2	84.3		1.109			
Manufacturer and type	of antenna monitor: POT	OMAC AM-1	204			

FCC 302-AM (Page 4) August 1995

SECTION III - Page 2

9. Description of antenna system ((f directional antenna is used, the information requested below should be given for each element of the array. Use separate sheets if necessary.)

Type Radiator	Overall height in meters of radiator above base insulator, or above base, if grounded.	Overall height in meters above ground (without obstruction lighting)	Overall height in meters above ground (include obstruction lighting)	If antenna is either top loaded or sectionalized, describe fully in an Exhibit.
UNFORM CROSS SECTIONAL STEEL TOWER	54.6	55.2	N/A	Exhibit No. N/A

Geographic coordinates to nearest second. For directional antenna give coordinates of center of array. For single vertical radiator give tower location.

1	North Latitude	47	0	26	•	32	"	West Longitude 94	0	51	57	"	

If not fully described above, attach as an Exhibit further details and dimensions including any other antenna mounted on tower and associated isolation circuits.

Also, if necessary for a complete description, attach as an Exhibit a sketch of the details and dimensions of ground system.

Exhibit No. SEE ENG STATEMENT

Exhibit No.

10. In what respect, if any, does the apparatus constructed differ from that described in the application for construction permit or in the permit?

11. Give reasons for the change in antenna or common point resistance.

I certify that I represent the applicant in the capacity indicated below and that I have examined the foregoing statement of technical information and that it is true to the best of my knowledge and belief.

Name (Please Print or Type) GARRETT G. LYSIAK, P.E.	Signature (check appropriate box below) < Dancet L. Syscak
Address (include ZIP Code) OWL ENGINEERING, INC	Date 0 10-11-2011
5844 HAMLINE AVE N SHOREVIEW, MN 55126	Telephone No. (Include Area Code) 651 784-7445
Technical Director	Registered Professional Engineer
Chief Operator	Technical Consultant
Other (specify)	

FCC 302-AM (Page 5) August 1995 HARRY F. COLF ANNE GOODWIN CRUMP PAUL J. FELDMAN CHRISTINE GOEPP* **KEVIN M. GOLDBERG** FRANK R. JAZZO M. SCOTT JOHNSON DANIEL A. KIRKPATRICK MITCHELL LAZARUS STEPHEN T. LOVELADY* SUSAN A. MARSHALL HARRY C. MARTIN MICHELLE A. McCLURE MATTHEW H. McCORMICK FRANCISCO R. MONTERO LEE G. PETRO* **RAYMOND J. QUIANZON** JAMES P. RILEY DAVINA SASHKIN PETER TANNENWALD KATHLEEN VICTORY HOWARD M. WEISS

1

Fletcher, Heald & Hildreth

1300 NORTH 17th STREET, 11th FLOOR ARLINGTON, VIRGINIA 22209

> OFFICE: (703) 812-0400 FAX: (703) 812-0486 www.fhhlaw.com www.commlawblog.com

RETIRED MEMBERS VINCENT J. CURTIS, JR. RICHARD HILDRETH GEORGE PETRUTSAS

OF COUNSEL ALAN C. CAMPBELL THOMAS J. DOUGHERTY, JR. DONALD J. EVANS ROBERT M. GURSS* ROBERT J. SCHILL RICHARD F. SWIFT

October 17, 2011

ANNE GOODWIN CRUMP (703) 812-0426 CRUMP@FHHLAW.COM

* NOT ADMITTED IN VIRGINIA

BY FEDEX

Federal Communications Commission Media Bureau P.O. Box 979089 St. Louis, MO 63197-9000

> Re: Application for License to Cover Construction Permit KPMI(AM), Facility ID No. 160495 Bemidji, Minnesota

Dear Sir or Madam:

Transmitted herewith, on behalf of Paskvan Media, Inc., permittee of KPMI(AM), are an original and two copies of its application for license to cover original construction permit (File No. BNP-20050118AFR), together with FCC Form 159 and a check in the amount of \$1,365.00 to cover the filing fees for the above-referenced license application.

Please date-stamp the attached confirmation copy and return it to the courier. Should any questions arise concerning this matter, please communicate with this office.

Very truly yours,

Anne Goodur Jump

Anne Goodwin Crump Counsel for Paskvan Media, Inc.

AGC:deb

Enclosures

FCC Form 302-AM KPMI Bemidji, Minnesota

EXHIBIT 1

KPMI(AM) is not operating pursuant to program test authority. Please note that the construction permit for this facility, File No. BNP-20050118AFR does not authorize automatic program test authority, but rather requires the submission of proofs of performance before any program test authority can be authorized or operation can begin. Program test authority is hereby requested.

CONSULTING COMMUNICATIONS ENGINEERS - EMC TEST LABORATORIES

5844 Hamline Avenue North, Shoreview, MN 55126 651-784-7445 • Fax 651-784-7541

Radio Station KPMI Bemidji, Minnesota

Paskvan Media, Inc.

1300 kHz 2.5 kW ND .6 kW DA BNP-20050118AFR

Facility ID-160495

October 11, 2011

CONSULTING COMMUNICATIONS ENGINEERS · EMC TEST LABORATORIES

5844 Hamline Avenue North, Shoreview, MN 55126 651-784-7445 • Fax 651-784-7541

Executive Summary

This engineering exhibit supports an application for license for KPMI in Bemidji, Minnesota pursuant to the AM technical rules permitting moment-method modeling of the KPMI nighttime directional array.

The information presented in this application demonstrates that the directional antenna parameters for the night pattern authorized by the FCC (BNP-20050118AFR) has been determined to be in accordance with the requirements of 47 C.F.R. §73.151(c). The system has been tested and adjusted to produce antenna monitor parameters within ±5 percent in power ratio and ±3 degrees in phase of the moment-method modeled values, as required by the Rules. Program Test Authority is hereby requested with the submission.

KPMI is co-located on the three-tower directional antenna system of radio station KKBJ, Bemidji, Minnesota. The day non-directional mode of KPMI utilizes one tower and the night directional pattern is produced utilizing two of the other KKBJ antenna system. Filters were installed on all of the three KKBJ towers to pass it and reject KPMI signals. Measurements were performed at the conclusion of the KPMI construction to demonstrate compliance with the Rules.

METHOD OF MOMENTS DETAIL

All Moment Method Modeling was done with Expert MININEC Broadcast Professional, Version 23. One wire was used to represent each Tower. Towers were driven individually to verify the MININEC Model compared to the measured impedance data. Once the MININEC Model was verified, both the Day Non-Directional and Night Directional Antenna Systems were computed. For Directional modes, the complex voltage values for sources located at ground level were

CONSULTING COMMUNICATIONS ENGINEERS - EMC TEST LABORATORIES

5844 Hamline Avenue North, Shoreview, MN 55126 651-784-7445 • Fax 651-784-7541

computed. These sources produce current moment sums for each Tower that, when normalized, equate to the Theoretical Field Parameters for each respective Tower.

KPMI SAMPLING SYSTEM DESCRIPTION/MEASUREMENTS

SAMPLING SYSTEM DESCRIPTION

The Sampling System consists of Phasetek Inc. P600-203 Toroidal Sampling Transformers (1.0 volt/amp) mounted at the base of each Tower. The sampling devices are connected to the Antenna Monitor with equal lengths of Andrew LDF2-50. The Antenna Monitor is a Potomac Instruments Model AM-19(204), Serial Number 501.

SAMPLE LINE MEASUREMENTS

Impedance measurements were made of the Antenna Sampling Lines using a Hewlett Packard 8751A Network Analyzer and Array Solutions Power Aim 2180 Vector Network Analyzer (VNA). Measurements were done with the lines open circuited and then connected to the TCT's.

The table below shows the frequencies above and below the carrier frequency where resonance, defined as zero reactance corresponding with low resistance, was found. Frequencies of resonance occur at odd multiples of 90 degrees electrical length, the Sample Line length at the resonant frequency above the carrier frequency, which is the closest one to the carrier frequency, was found to be 450 electrical degrees. The electrical length at carrier frequency appearing in the table below was calculated by ratioing the frequencies.

To determine the characteristic impedance values of the Sample Lines, open-circuited measurements were made with frequencies offset to produce \pm 45 degrees of electrical length from resonance. The characteristic impedance was calculated using the following formula, where R1 +j X1 and R2 +j X2 are the measured impedances at the +45 and -45 degree offset frequencies, respectively:

CONSULTING COMMUNICATIONS ENGINEERS - EMC TEST LABORATORIES

5844 Hamline Avenue North, Shoreview, MN 55126 651-784-7445 • Fax 651-784-7541

$$Z_0 = ((R_1^2 + X_1^2)^{1/2} \bullet (R_2^2 + X_2^2)^{1/2})^{1/2}$$

Tower	+ 45 Degree Offset Frequency (kHz)	+ 45 Degree Measured Impedance (Ohms)	- 45 Degree Offset Frequency (kHz)	- 45 Degree Measured Impedance (Ohms)	Calculated Characteristic Impedance (Ohms)
1	1518.8	15.25 +j53.1	1242.7	8.18 -j44.0	49.72
2	1517.0	12.7 +j46.9	1241.2	8.93 -j42.4	48.90

Resonant requency (kHz) below 1300 kHz 824.9 824.3	Resonant Frequency (kHz) above 1300 kHz 1380.8	(deg.) @ 1300 kHz	Impedance connected to TCT @1300 kHz (Ohms)	
Contraction of the second s	1380.8	100 7		
824.3		423.7	45.84 -j4.19	
	1379.1	424.2	47.0 -j3.81	
+45 Degree ffset Frequency (kHz)	+45 Degree Measured Impedance (Ohms)	-45 Degree Offset Frequency (kHz)	-45 Degree Measured Impedance (Ohms)	Calculated Characteristic Impedance (Ohms)
1518.8	15.25 +j53.1	1242.7	8.18 -j44.0	49.72
1517.0	12.7 +j46.9	1241.2	8.93 -j42.4	48.90
			IMPEDANCE DELTA	0.82
F	fset Frequency (kHz) 1518.8	+45 DegreeMeasuredfset FrequencyImpedance(kHz)(Ohms)1518.815.25 +j53.1	+45 Degree Measured -45 Degree fset Frequency Impedance Offset Frequency (kHz) (Ohms) (kHz) 1518.8 15.25 +j53.1 1242.7 1517.0 12.7 +j46.9 1241.2	+45 DegreeMeasured-45 DegreeMeasuredfset FrequencyImpedanceOffset FrequencyImpedance(kHz)(Ohms)(kHz)(Ohms)1518.815.25 + j53.11242.78.18 - j44.0

SAMPLING TCT MEASUREMENTS

Measurements of the Phasetek Inc. Model P600-203, 1.0 V/A Toroidal Current Transformers were performed by a Hewlett Packard 8751A, Network Analyzer. Measurements are normalized to Tower #1 (reference).

TOWER	TCT SERIAL #	MAGNITUDE	PHASE
1	901	1.000	0.0°
2	902	.997	0.2°

CONSULTING COMMUNICATIONS ENGINEERS - EMC TEST LABORATORIES

5844 Hamline Avenue North, Shoreview, MN 55126 651-784-7445 • Fax 651-784-7541

ANTENNA MONITOR MEASUREMENT

Measurement of the Potomac Instruments Model AM-19(204), Serial Number 501, Antenna Monitor was performed to verify calibration. A single RF Voltage was applied to the Reference Input (Tower #1) and each other Input by use of a "T" divider and equal electrical length coaxial cables. This yields the following:

Tower	Ratio	Phase
1	1.000	0.00
2	1.000	-0.2 ⁰

KPMI MOMENT MODEL PARAMETERS

Tower #	Wire #	# of Segments	Base Node
1	1	10	1
2	2	10	11

Tower #	Physical Height Degrees	Modeled Height Degrees	Modeled Radius Meters	% of Equivalent Radius
1	85.1	89.3	.218	100.0
2	85.1	88.6	.218	100.0

All Towers are uniform cross section, guyed with Base Insulator. All of the towers are three (3) sided, 18" face width. All Base Insulators are manufactured by Lapp Insulators with an assumed capacity of 15pf. All Towers have Phasetek Inc. Model #P600-161-3 Static Drain Chokes installed and these measure –j 14,000 ohms @ 1300 KHz.

CONSULTING COMMUNICATIONS ENGINEERS - EMC TEST LABORATORIES

5844 Hamline Avenue North, Shoreview, MN 55126 651-784-7445 • Fax 651-784-7541

KPMI Tower 1 driven, all others floated

GEOMETRY Wire coordinates in degrees; other dimensions in meters Environment: perfect ground wire caps Distance Angle Z radius segs 1 none 0 0 0 .218 10 0 90. 0 2 none 86.7 188. 0 .218 10 86.7 188. 92.1 Number of wires = 2 current nodes = 20 minimum maximum Individual wires wire value wire value segment length 1 9. 2 9.21 radius 1 .218 1 .218 ELECTRICAL DESCRIPTION Frequencies (MHz) frequency no. of segment length (wavelengths) no. lowest step steps minimum maximum 1 1.3 0 .0255833 1 .025 Sources source node sector magnitude phase type 1 1 1 1. 0 voltage Lumped loads resistance reactance inductance capacitance passive load node (ohms) (ohms) (mH) (uF)circuit 1 11 0 -8,161.8 0 0 0

CONSULTING COMMUNICATIONS ENGINEERS - EMC TEST LABORATORIES

5844 Hamline Avenue North, Shoreview, MN 55126 651-784-7445 • Fax 651-784-7541

IMPEDANC norma	E lization	= 50.					
freq (MHz)	resist (ohms)	react (ohms)	imped (ohms)	phase (deg)	VSWR	S11 dB	S12 dB
source = 1.3	1; node 39.733	1, secto 18.714	or 1 43.919	25.2	1.6071	-12.658	24214

Frequ Input Effic	power = .0	0. %	ts				
curre		5		maq	phase	real	imaginary
no.	Х	Y	Z	(amps)	(deg)	(amps)	(amps)
GND	0	0	0	.0161002		.0145654	-6.86E-03
2	0	0	9.	.0161729	332.9	.0144005	-7.36E-03
3	0	0	18.	.0157883	331.8	.0139093	-7.47E-03
4	0	0	27.	.0150044	330.8	.0131015	-7.31E-03
5	0	0	36.	.0138427	330.	.0119933	-6.91E-03
6	0	0	45.	.0123276	329.4	.010606	-6.28E-03
7	0	0	54.	.0104872	328.7	8.96E-03	-5.44E-03
8	0	0	63.	8.35E-03	328.2	7.1E-03	-4.4E-03
9	0	0	72.	5.94E-03	327.7	5.02E-03	-3.18E-03
10	0	0	81.	3.26E-03	327.2	2.74E-03	-1.77E-03
END	0	0	90.	0	0	0	0
GND	-85.8562	12.0663	0	5.86E-05	204.2	-5.35E-05	-2.4E-05
12	-85.8562	12.0663	9.21	4.55E-04	204.3	-4.14E-04	-1.87E-04
13	-85.8562	12.0663	18.42	6.84E-04	204.5	-6.23E-04	-2.83E-04
14	-85.8562	12.0663	27.63	8.31E-04	204.7	-7.55E-04	-3.47E-04
15	-85.8562	12.0663	36.84	9.05E-04	204.9	-8.21E-04	-3.82E-04
16	-85.8562	12.0663	46.05	9.11E-04	205.2	-8.24E-04	-3.88E-04
17	-85.8562	12.0663	55.26	8.53E-04	205.5	-7.7E-04	-3.68E-04
18	-85.8562	12.0663	64.47	7.35E-04	205.8	-6.61E-04	-3.2E-04
19	-85.8562	12.0663	73.68	5.58E-04	206.2	-5.01E-04	-2.46E-04
20	-85.8562	12.0663	82.89	3.24E-04	206.5	-2.9E-04	-1.45E-04
END	-85.8562	12.0663	92.1	0	0	0	0

CONSULTING COMMUNICATIONS ENGINEERS - EMC TEST LABORATORIES

5844 Hamline Avenue North, Shoreview, MN 55126 651-784-7445 • Fax 651-784-7541

KPMI Tower 2 driven, all others floated

GEOMETRY Wire coordinates in deg Environment: perfect gr		mensions in met	ers	
wire caps Distance 1 none 0 0	0 0		dius 18	segs 10
2 none 86.7 86.7	188. (18	10
Number of wires current nodes	= 2 = 20			
Individual wires w segment length radius	minimum ire value 2 8.86 1 .218	ma wire 1 1	ximum value 8.93 .218	
ELECTRICAL DESCRIPTION Frequencies (MHz) frequency no. lowest step 1 1.3 0	no. of steps 1	segment lengt minimum .0246111	h (wavelen maximum .0248056	
	magnitude 1.	phase 0	type voltage	
Lumped loads resistance load node (ohms) 1 1 0	reactance (ohms) -8,161.8	inductance (mH) 0	capacitan (uF) 0	ce passive circuit 0
IMPEDANCE normalization = 50. freq resist react (MHz) (ohms) (ohms source = 1; node 11, s 1.3 37.819 11.46) (ohms) (d ector 1	nase VSWR leg) 5.9 1.4657		S12 dB 15777
CURRENT rms Frequency = 1.3 MHz Input power = .0121082 Efficiency = 100. %	watts			

CONSULTING COMMUNICATIONS ENGINEERS - EMC TEST LABORATORIES

5844 Hamline Avenue North, Shoreview, MN 55126 651-784-7445 • Fax 651-784-7541

coord	inates in d	legrees					
curre	nt			mag	phase	real	imaginary
no.	Х	Y	Z	(amps)	(deg)	(amps)	(amps)
GND	0	0	0	6.03E-05	213.	-5.06E-05	-3.28E-05
2	0	0	8.93	4.59E-04	213.1	-3.84E-04	-2.5E-04
3	0	0	17.86	6.89E-04	213.3	-5.76E-04	-3.78E-04
4	0	0	26.79	8.36E-04	213.5	-6.97E-04	-4.61E-04
5	0	0	35.72	9.09E-04	213.8	-7.56E-04	-5.05E-04
6	0	0	44.65	9.16E-04	214.1	-7.59E-04	-5.13E-04
7	0	0	53.58	8.58E-04	214.4	-7.08E-04	-4.84E-04
8	0	0	62.51	7.39E-04	214.7	-6.07E-04	-4.21E-04
9	0	0	71.44	5.62E-04	215.1	-4.6E-04	-3.23E-04
10	0	0	80.37	3.27E-04	215.4	-2.66E-04	-1.9E-04
END	0	0	89.3	0	0	0	0
GND	-85.8562	12.0663	0	.0178932	343.1	.0171236	-5.19E-03
12	-85.8562	12.0663	8.86	.0178664	341.4	.016931	-5.71E-03
13	-85.8562	12.0663	17.72	.0173775	340.3	.0163571	-5.87E-03
14	-85.8562	12.0663	26.58	.0164686	339.4	.015413	-5.8E-03
15	-85.8562	12.0663	35.44	.0151605	338.6	.0141168	-5.53E-03
16	-85.8562	12.0663	44.3	.0134784	338.	.0124926	-5.06E-03
17	-85.8562	12.0663	53.16	.0114517	337.4	.0105688	-4.41E-03
18	-85.8562	12.0663	62.02	9.11E-03	336.8	8.37E-03	-3.59E-03
19	-85.8562	12.0663	70.88	6.48E-03	336.3	5.93E-03	-2.6E-03
20	-85.8562	12.0663	79.74	3.56E-03	335.8	3.24E-03	-1.46E-03
END	-85.8562	12.0663	88.6	0	0	0	0

CONSULTING COMMUNICATIONS ENGINEERS - EMC TEST LABORATORIES

5844 Hamline Avenue North, Shoreview, MN 55126 651-784-7445 • Fax 651-784-7541

KPMI Night Directional Model

GEOME		Anno Anno Anno Anno Anno Anno Anno Anno					
	coordinates onment: perf			dimension	s in met	ers	
				-			
wire 1	caps Distan none 0		gie	Z		dius	segs
ι.	1011E 0 0	0		0 89.3	. 2	18	10
2	none 86.7	188	2	0	2	18	10
2	86.7	188		88.6	- 2	10	TO
Numbe	r of wires	=	2				
	current	nodes =	20				
		min	iimum		ma	ximum	
Indiv	idual wires	wire	value		wire	value	
segme	nt length	2	8.86		1	8.93	
radiu	S	1	.218		1	.218	
ELECT	RICAL DESCRI	PTTON					
	encies (MHz)	I IION					
	frequency		no. d	of seame	nt lengt	h (wavele	ngths)
	lowest	step	steps			maximum	
1	1.3	0	1	.0246	111	.024805	6
-							
Sourc		ator moon	itudo			100 mm	
sourc 1	1 1		itude	phase 37.1		type voltage	
2	11 1			69.8		voltage	
2		102.	572	02.0		vortage	
IMPED.							
	rmalization						
freq	and the second s	react	imped	phase	VSWR	S11	S12
	resist		(- lama)	(-1)		-170	
(MHz)	(ohms)	(ohms)	(ohms)	(deg)		dB	dB
(MHz)		(ohms) 1, sector	· 1		1.9648		dB
(MHz) sourc	(ohms) e = 1; node	(ohms) 1, sector		(deg) 31.1	1.9648		
(MHz) sourc 1.3	(ohms) e = 1; node 60.366 e = 2; node	(ohms) 1, sector 36.367 11, secto	`l 70.474		1.9648		dB
(MHz) sourc 1.3	(ohms) e = 1; node 60.366	(ohms) 1, sector 36.367 11, secto	`l 70.474		1.9648 2.194		dB

CURRENT rms Frequency = 1.3 MHz

CONSULTING COMMUNICATIONS ENGINEERS - EMC TEST LABORATORIES

5844 Hamline Avenue North, Shoreview, MN 55126 651-784-7445 • Fax 651-784-7541

Input power = 600.001 watts									
	Efficiency = 100. %								
coordinates in degrees									
current	5			mag	phase	real	imaginary		
no.	Х	Y	Z	(amps)	(deg)	(amps)	(amps)		
GND	0	0	0	2.5956	6.	2.58143	.270912		
2	0	0	8.93	2.64619	3.2	2.64198	.149279		
3	0	0	17.86	2.60878	1.6	2.60781	.0710006		
4	0	0	26.79	2.49956	.3	2.49953	.0111622		
5	0	0	35.72	2.32246	359.2	2.32222	0330983		
6	0	0	44.65	2.08147	358.3	2.08052	0627708		
7	0	0	53.58	1.78109	357.5	1.77936	0783559		
8	0	0	62.51	1.42606	356.8	1.4238	0802418		
9	0	0	71.44	1.02019	356.1	1.01787	0687263		
10	0	0	80.37	.562689	355.5	.56099	0436967		
END	0	0	89.3	0	0	0	0		
GND	-85.8562	12.0663	0	2.85311	90.7	0331342	2.85292		
12	-85.8562	12.0663	8.86	2.80066	89.5	.0225134	2.80057		
13	-85.8562	12.0663	17.72	2.69375	88.8	.0564993	2.69316		
14	-85.8562	12.0663	26.58	2.52952	88.2	.0803627	2.52824		
15	-85.8562	12.0663	35.44	2.31025	87.6	.095342	2.30828		
16	-85.8562	12.0663	44.3	2.0396	87.1	.101773	2.03706		
17	-85.8562	12.0663	53.16	1.72199	86.7	.0997332	1.7191		
18	-85.8562	12.0663	62.02	1.36212	86.2	.089222	1.35919		
19	-85.8562	12.0663	70.88	.963684	85.8	.0701451	.961128		
20	-85.8562	12.0663	79.74	.526074	85.4	.0420491	.524391		
END	-85.8562	12.0663	88.6	0	0	0	0		

CONSULTING COMMUNICATIONS ENGINEERS - EMC TEST LABORATORIES

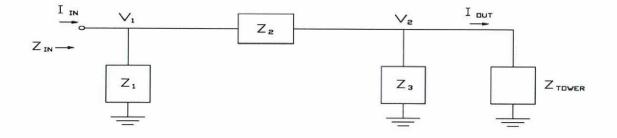
5844 Namline Avenue North, Shoreview, MN 55126 651-784-7445 • Fax 651-784-7541

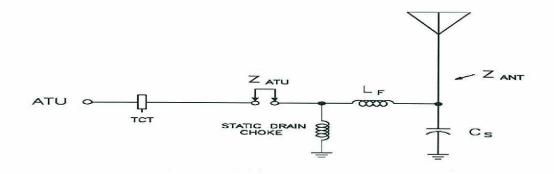
KPMI DERIVED DIRECTIONAL PARAMETERS

NIGHT:

	Theoretical		Base Network Input Current		Normalized TCT	
Tower	Field	Phase	Amplitude	Phase	Amplitude	Phase
1 (N)	1.000	0.0°	2.57	+6.7°	1.000	0.0°
2 (S)	1.000	+88.0°	2.85	+91.0°	1.109	+84.3°

KPMI TOWER BASE CIRCUIT ANALYSIS DESCRIPTION


CIRCUIT ANALYSIS


Circuit Analysis was performed on each Tower of the KPMI model. "*Phasetek*" nodal Circuit Analysis program was used to compute base model Input/Output voltages and currents. For the Directional modes, the calculated MININEC Tower Base Drive Voltage was used to determine the Base Network Input Current. This point is the location of the Sampling TCT. "Z₁" represents the ATU Shunt impedance, "Z₂" represents the Tower Feed impedance, and "Z₃" represents the Tower Base Shunt impedance.

CONSULTING COMMUNICATIONS ENGINEERS - EMC TEST LABORATORIES

5844 Hamline Avenue North, Shoreview, MN 55126 651-784-7445 • Fax 651-784-7541

CONSULTING COMMUNICATIONS ENGINEERS - EMC TEST LABORATORIES

5844 Hamline Avenue North, Shoreview, MN 55126 651-784-7445 • Fax 651-784-7541

TOWER	Specified	Measured	Measured	Modeled	Z_{ANT}	Modeled	Z_{ATU}	Measured	Z_{ATU}
	Cs (pf)	L _F (μΗ)	$X_F(\Omega)$	(Ω)		(Ω)		(Ω)	
1	15	3.24	+j26.5	38.87 +j15	.11	39.25 +j4:	1.47	38.99 +j41	.60
2	15	3.76	+j30.7	37.82 +j11	.47	38.15 +j42	2.03	37.54 +j42	.23

Direct Measurement of Power - KPMI

Common point impedance measurements were made using a Hewlett-Packard 8751A network analyzer and a Tunwall Radio directional coupler in a calibrated measurement system. The measurements were made at the phasor cabinet input jack adjacent to the common point current meter that is used to determine operating power. The resistance value was adjusted to provide the correct input power with the specified common point current. The reactance value was adjusted to cancel incidental inductance in the circuit between the transmitter output port and the common point in the phasor cabinet, including the main-auxiliary switching contactor, to provide a non-reactive load for the transmitter at carrier frequency.

CONSULTING COMMUNICATIONS ENGINEERS - EMC TEST LABORATORIES

5844 Hamline Avenue North, Shoreview, MN 55126 651-784-7445 • Fax 651-784-7541

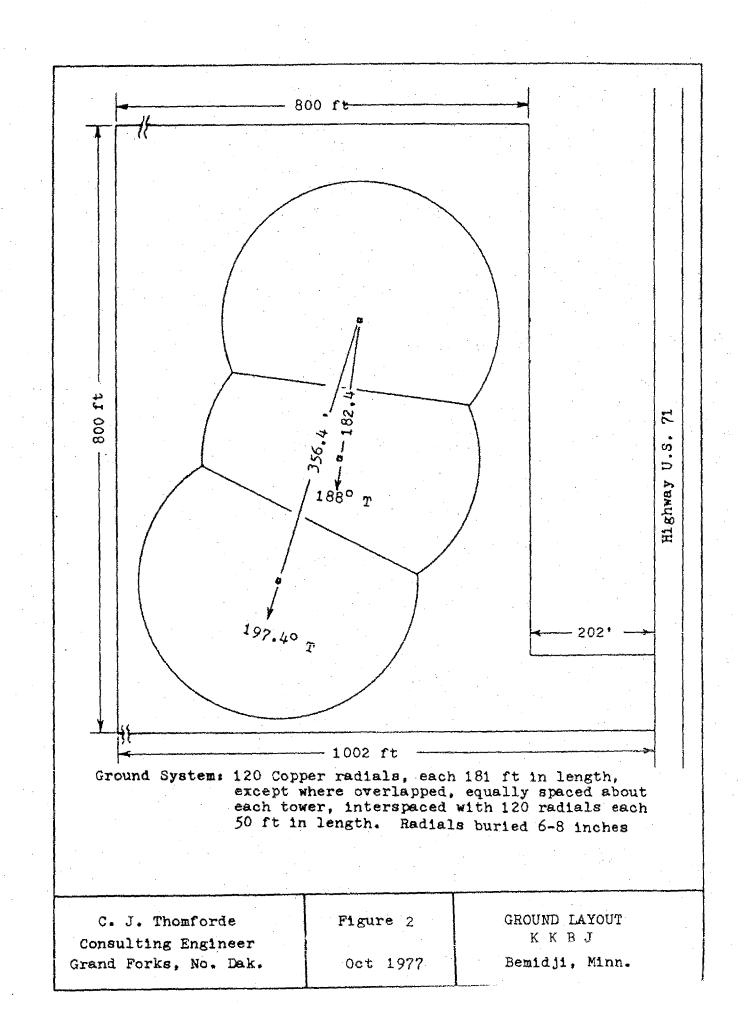
Reference Field Strength Measurements

The field measurements were performed by Mr. Roger Paskvan, under my supervision, using a Potomac Field intensity Meter FIM-41 s/n-581 calibrated 5/21/2002 and checked against another meter and found to be within operating specifications. KPMI was confirmed to be operating at the Construction Permit values.

188 degree radial

3

2.44Km


61mv

Point #	Distance to	reading	Lat/long	Description					
1	1.5Km	15.6 mv	47-25-43.5/94-52-06.4	.36Km west (271 degrees) the corner of Convenience					
2	2.0 Km	7.0 mv		lane .44Km west of Oak Hills Rd SW and Hwy 71 South					
3	3.57Km	2.5mv	47-24-37/94-52-21	.67Km West of North Plantanginet and Hwy 71					
<u>8 Degree radial</u>									
1	1 Km	85mv	47-26-31.7/94-51-56.6	Corner of Rako and Washington Ave					
2	2.0 Km	66mv	47-27-35.2/94-51-43.1	Corner of 2nd street and Wood Ave and Lakeshore					

47-27-48.9/94-51-40.2

Dr. NE (right on beach)

.07Km at a bearing 330 Degrees from Corner of Central Ave NE and Lakeshore Dr.

