Federal Communications Commission Washington, D. C. 20554 Approved by OMB 3060-0627 Expires 01/31/98

FOR
FCC USE ONLY

FILE NO.

FOR COMMISSION USE ONLY

nm

FCC 302-AM APPLICATION FOR AM BROADCAST STATION LICENSE

(Please read instructions before filling out form.

SECTION I - APPLICANT FEE INFORMATION						
1. PAYOR NAME (Last, First, Middle Initial)						
Entercom Communications Corp.						
MAILING ADDRESS (Line 1) (Maximum 35 characters) 401 City Avenue						
MAILING ADDRESS (Line 2) (Maximum 35 characters) Suite 809			· · · ·			
CITY Bala Cynwyd	STATE OR COUNTRY (if fore PA	eign address)	ZIP CODE 19004			
TELEPHONE NUMBER (include area code) 610-660-5652	CALL LETTERS KKSN	OTHER FCC IDE 35033	NTIFIER (If applicable)			
2. A. Is a fee submitted with this application?			✓ Yes No			
B. If No, indicate reason for fee exemption (see 47 C.F.R. Section						
Governmental Entity Noncommercial educ	cational licensee	ier (Please explain)):			
C. If Yes, provide the following information:						
Enter in Column (A) the correct Fee Type Code for the service you	are applying for. Fee Type Coc	les may be found i	n the "Mass Media Services			
Fee Filing Guide." Column (B) lists the Fee Multiple applicable for thi	is application. Enter fee amount	t due in Column (C).			
(A) (B)	(C)					
FEE TYPE FEE MULTIPLE	FEE DUE FOR FEE TYPE CODE IN		FOR FCC USE ONLY			
	\$ 635					
	+ 000					
To be used only when you are requesting concurrent actions which res	sult in a requirement to list more	than one Fee Type	e Code.			
$\begin{bmatrix} (A) & (B) \\ \hline M & O & B \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & 1 \end{bmatrix}$	(C) \$ 730		FOR FCC USE ONLY			
	TOTAL AMOUNT					
ADD ALL AMOUNTS SHOWN IN COLUMN C, AND ENTER THE TOTAL HERE.	REMITTED WITH THIS	<u>}</u>	FOR FCC USE ONLY			
THIS AMOUNT SHOULD EQUAL YOUR ENCLOSED	\$ 1365					

SECTION II - APPLICAN	TINFORMATION					
-1NAME-OF-APPLICANT ENTERCOM PORTLAND LI	CENSE; LLC	:				an a cara a
MAILING ADDRESS 401 CITY AVENUE, SUITE	809					
CITY BALA CYNWYD			STATE PA		ZIP CODE 19004	
2. This application is for:	Commorpiel	F				
		L	Noncomn	nercial		
	AM Direc	ctional		lon-Directional		
Call letters	Community of License	Constructi	ion Permit File No.	Modification of Construction	Expiration Date of	f Last
KKSN	VANCOUVER, WA	BP-200	80715ACS	Permit File No(s). BMP-20101213AAR	Construction Pern 11/7/2011	nit
3. Is the station no accordance with 47 C.F.	ow operating pursuant R. Section 73.1620?	to autor	natic program	test authority in	Yes 🗸	No
lf No, explain in an Exhil	bit.				See engineering report	
 Have all the terms construction permit beer 	s, conditions, and oblig n fully met?	ations se	et forth in the	above described	✓ Yes	No
f No, state exceptions ir	an Exhibit.				Exhibit No.	
5. Apart from the chang the grant of the underly representation contained	ges already reported, ha ying construction permit t in the construction perm	s any cau which w nit applica	use or circumsta rould result in a ation to be now	ance arisen since any statement or incorrect?	Yes 🗸	No
f Yes, explain in an Exh	nibit.				Exhibit No.	
 Has the permittee file certification in accordance 	ed its Ownership Report e with 47 C.F.R. Section	(FCC For 73.3615	m 323) or owne (b)?	ership	Yes .	No
f No, explain in an Exhib	it.				Exhibit No.	apply
7. Has an adverse findin or administrative body w criminal proceeding, brou elony; mass media re another governmental ur	ng been made or an adv ith respect to the applica ught under the provisions lated antitrust or unfain it; or discrimination?	rerse final nt or part s of any la ⁻ compet	l action been ta ies to the applic aw relating to th ition; fraudulen	ken by any court cation in a civil or le following: any t statements to	Yes 🗸	No
f the answer is Yes, at nvolved, including an ide by dates and file numb nformation has been e equired by 47 U.S.C. Se of that previous submiss he call letters of the sta vas filed, and the date of	tach as an Exhibit a ful entification of the court o ers), and the disposition earlier disclosed in con action 1.65(c), the applica- ion by reference to the f tion regarding which the filing; and (ii) the dispos	I disclosur r adminis n of the I nection want need of ile number application of th	ure of the perso trative body and litigation. Whe with another a only provide: (i) er in the case o ion or Section e previously rep	ons and matters d the proceeding ere the requisite pplication or as an identification of an application, 1.65 information ported matter.	Exhibit No.	

8. Does the applicant, or any party to the application, have a petition on file to migrate to the expanded band (1605-1705 kHz) or a permit or license either in the existing band or expanded band that is held in combination (pursuant to the 5 year holding period allowed) with the AM facility proposed to be modified herein?

If Yes, provide particulars as an Exhibit.

The APPLICANT hereby waives any claim to the use of any particular frequency or of the electromagnetic spectrum as against the regulatory power of the United States because use of the same, whether by license or otherwise, and requests and authorization in accordance with this application. (See Section 304 of the Communications Act of 1934, as amended).

The APPLICANT acknowledges that all the statements made in this application and attached exhibits are considered material representations and that all the exhibits are a material part hereof and are incorporated herein as set out in full in

CERTIFICATION

1. By checking Yes, the applicant certifies, that, in the case of an individual applicant, he or she is not subject to a denial of federal benefits that includes FCC benefits pursuant to Section 5301 of the Anti-Drug Abuse Act of 1988, 21 U.S.C. Section 862, or, in the case of a non-individual applicant (e.g., corporation, partnership or other unincorporated association), no party to the application is subject to a denial of federal benefits that includes FCC benefits pursuant to that section. For the definition of a "party" for these purposes, see 47 C.F.R. Section 1.2002(b).

2. I certify that the statements in this application are true, complete, and correct to the best of my knowledge and belief, and are made in good faith.

Name	Signature	
John C. Donlevie	Allh	olain
Title Executive VP/Secretary	Date 10/19/2011	Telephone Number 610-660-5610

WILLFUL FALSE STATEMENTS ON THIS FORM ARE PUNISHABLE BY FINE AND/OR IMPRISONMENT (U.S. CODE, TITLE 18, SECTION 1001), AND/OR REVOCATION OF ANY STATION LICENSE OR CONSTRUCTION

FCC NOTICE TO INDIVIDUALS REQUIRED BY THE PRIVACY ACT AND THE PAPERWORK REDUCTION ACT

The solicitation of personal information requested in this application is authorized by the Communications Act of 1934, as amended. The Commission will use the information provided in this form to determine whether grant of the application is in the public interest. In reaching that determination, or for law enforcement purposes, it may become necessary to refer personal information contained in this form to another government agency. In addition, all information provided in this form will be available for public inspection. If information requested on the form is not provided, the application may be returned without action having been taken upon it or its processing may be delayed while a request is made to provide the missing information. Your response is required to obtain the requested authorization.

Public reporting burden for this collection of information is estimated to average 639 hours and 53 minutes per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the burden, can be sent to the Federal Communications Commission, Records Management Branch, Paperwork Reduction Project (3060-0627), Washington, D. C. 20554. Do NOT send completed forms to this address.

THE FOREGOING NOTICE IS REQUIRED BY THE PRIVACY ACT OF 1974, P.L. 93-579, DECEMBER 31, 1974, 5 U.S.C. 552a(e)(3), AND THE PAPERWORK REDUCTION ACT OF 1980, P.L. 96-511, DECEMBER 11, 1980, 44 U.S.C. 3507.

No

Exhibit No.

es	1	No
----	---	----

Name of Applicant	e of Applicant	Name of Applicant	
Name of Applicant			

[X	Station	License
L	X	Station	License

Direct Measurement of Power

1. Facilities auth	orized in construction permit					
Call Sign	File No. of Construction Permit	Frequency	Hours of Operation	Power	in kilowatts	
KKSN	(if applicable) BMP-20101213AAR	(kHz) 910	UNLIMITED	Night 4.3	Day 3.3	
2. Station location	on					
State			City or Town			
WASHING	TON		VANCOUVER			
3. Transmitter lo	cation		L.			
State	County		City or Town	Street address (or other identifi	Street address (or other identification)	
OREGON	MULTNOMAH		PORTLAND	16899 NE C	AMERON BLVD	
4. Main studio lo	cation					
State	County		City or Town	Street address (or other identifi	cation)	
OREGON	MULTNOMAH		PORTLAND	0700 SW BA	NCROFT ST.	
5. Remote contro	ol point location (specify only if au	thorized direction	onal antenna)			
State	County		City or Town	Street address	action)	
OREGON	MULTNOMAH		PORTLAND	0700 SW BA	NCROFT ST.	

6. Has type-approved stereo generating equipment been installed?	Yes X No
7. Does the sampling system meet the requirements of 47 C.F.R. Section 73.68?	X Yes No
	Not Applicable
Attach as an Exhibit a detailed description of the sampling system as installed.	Exhibit No. ENG. RPT.

8. Operating constants:						
RF common point or antenna modulation for night system	RF common point or antenna current (in amperes) without modulation for day system					
2		8.	44			
Measured antenna or common point resistance (in ohms) at operating frequency			Measured ant operating free	tenna or common juency	point reactance (i	n ohms) at
Night	Day		Night		Day	
50.0	50.0		+/-0.	0	+/-0.	0
Antenna indications for direction	onal operation					
Towers	Antenn Phase readin	a monitor g(s) in degrees	Antenna monitor sample current ratio(s)		Antenna base currents	
	Night	Day	Night	Day	Night	Day
1 WEST	-137.0	0	0.711	1.0	NOT	NOT
2 CENTER	0	NOT USED	1.0	NOT USED	REQUIRED	REQUIRED
3 EAST	+125.0	210.0	0.609	0.390		
Manufacturer and type of ante	nna monitor: GOI	RMAN-REDLICH	CMR			

SECTION III - Faue 2

9. Description of antenna system ((f directional antenna is used, the information requested below should be given for each element of the array. Use separate sheets if necessary.)

Type Radiator UNIFORM CROSS SECTION GUYED TOWERS	Overall height in meters of radiator above base insulator, or above base, if grounded.	Overall height in meters above ground (without obstruction lighting)	Overall height in meters above ground (include obstruction lighting)	If antenna is either top loaded or sectionalized, describe fully in an Exhibit.	
	ALL 82.3	ALL 83.2	ALL 83.8	Exhibit No. DNA	

Excitation

Series

Х

Shunt

Geographic coordinates to nearest second. For directional antenna give coordinates of center of array. For single vertical radiator give tower location.

North Latitude	0 45	33	31 "	West Longitude	0 122	28	57
				*			

If not fully described above, attach as an Exhibit further details and dimensions including any other antenna mounted on tower and associated isolation circuits.

Exhibit No. ENG , RPT .

DNA

Also, if necessary for a complete description, attach as an Exhibit a sketch of the details and dimensions of ground system.

10. In what respect, if any, does the apparatus constructed differ from that described in the application for construction permit or in the permit?

NONE STL ANTENNA AND ISOCOUPLER ON #1 WEST TOWER SEE ENG REPORT FOR ELECTRICAL EFFECT OF ISOCOUPLER GROUND SYSTEM 120 RADIALS 270 FEET OR GREATER EXCEPT WHERE OVERLAPPING

11. Give reasons for the change in antenna or common point resistance.

NEW CONSTRUCTION NOTE LATITUDE CHANGE OF ONE SECOND FROM AS BUILT SURVEY (DUE TO ROUNDING -ACTUAL CHANGE IS 0.6 SECONDS)

I certify that I represent the applicant in the capacity indicated below and that I have examined the foregoing statement of technical information and that it is true to the best of my knowledge and belief.

Name (Please Print or Type) BENJ. F. DAWSON III, P.E.	Signature (check appropriate box below)
Address (include ZIP Code) HATFIELD & DAWSON CONSULTING ENGINEERS	Date OCTOBER 17, 2011
SEATTLE, WA 98103	Telephone No. (Include Area Code)
	206 783 9151

Technical Director	X	Registered Professional Engineer
Chief Operator		Technical Consultant

Other (specify) CONSULTING ENGINEER

X

BENJAMIN F. DAWSON III, PE THOMAS M. ECKELS, PE Stephen S. Lockwood, PE David J. Pinion, PE Erik C. Swanson, PE

Thomas S. Gorton, PE Michael H. Mehigan, EIT HATFIELD & DAWSON CONSULTING ELECTRICAL ENGINEERS 9500 GREENWOOD AVE. N. SEATTLE, WASHINGTON 98103

Telephone (206) 783-9151 Facsimile (206) 789-9834 E-mail hatdaw@hatdaw.com

> James B. Hatfield, PE Consultant

Maury L. Hatfield, PE (1942-2009) Paul W. Leonard, PE (1925-2011)

Application for License to Cover Construction Permit BMP-2010123AAR

KKSN (AM)

Vancouver, WA

910 kHz

3.3 kW Day, 4.3 kW Night DA-2

Entercom Portland License, LLC

October 2011

CARRIE A. WARD ASSOCIATE COUNSEL

October 20, 2011

VIA OVERNIGHT DELIVERY

Federal Communications Commission Media Bureau Services P.O. Box 979089 St. Louis, MO 63197-9000

Re: KKSN(AM), Vancouver, WA Facility Id. No. 35033

Dear Sir or Madam:

On behalf of Entercom Portland License, LLC, licensee of KKSN(AM) (Facility Id. No. 35033), enclosed in triplicate, is an application on FCC Form 302-AM requesting a license to cover BP-20080715ACS (as modified by BMP-20101213AAR). Enclosed also is a completed FCC Form 159 and a check payable to the FCC in the amount of \$1,365.00 to cover the applicable filing fee.

The undersigned counsel is authorized to represent that neither the licensee nor any party holding an attributable interest in the licensee is subject to a denial of federal benefits under Section 5301 of the Anti-Drug Abuse Act of 1988, 21 U.S.C. §862.

If any information is desired in connection with this matter, please feel free to contact the undersigned. Kindly date stamp the enclosed "return copy" of this filing acknowledging its receipt by your office and return it to me in the enclosed self-addressed stamped envelope.

Sincerely,

ie am ward

Carrie Ward

Enclosure

cc: Erin Hubert Gary Hilliard (KKSN(AM) Authorizations & Public File)

APPLICATION FOR LICENSE

RADIO STATION KKSN-AM Vancouver, WA 910 kHz, 3.3 kW Day, 4.3 kW Night DA-2

Purpose of Application

- Item 1 Tower Impedance Measurements and Verification of Method of Moments Model
- Item 2 Derivation of Operating Parameters for Directional Antenna
- Item 3 Method of Moments Model Details for Towers Driven Individually
- Item 4 Method of Moments Model Details for Directional Antenna Patterns
- Item 5 Summary of Post Construction Certified Array Geometry
- Item 6 Sampling System Measurements
- Item 7 Reference Field Strength Measurements
- Item 8 Direct Measurement of Power
- Item 9 Antenna Monitor and Sampling System
- Item 10 Internodulation Considerations Construction Permit Condition #3
- Appendix A Certified Post Construction Array Geometry Survey
- Appendix B Construction Permit BMP 20101213AAR
- Appendix C FCC Form 302-AM

Purpose of Application

This engineering exhibit supports an application for license for the newly authorized directional antenna system for radio station KKSN, Vancouver, WA. KKSN will operate on 910 kHz with a daytime power of 3.3 kW and a nighttime power of 4.3 kW, with different directional patterns for day and night operation.

The KKSN move to this site was authorized by FCC construction permit number BMP - 20101213AAR.

The antenna towers and ground system were constructed in accordance with the terms of the construction permit and specifications that were provided in the application for construction permit.

Information is provided herein demonstrating that the directional antenna parameters for the patterns authorized by the station license have been determined in accordance with the requirements of section 73.151(c) of the FCC Rules. The system has been adjusted to produce antenna monitor parameters within +/- 5 percent in ratio and +/- 3 degrees in phase of the modeled values, as required by the Rules.

All measurements used in this report were made by, Stephen Lockwood, PE, Thomas Gorton, PE, Benjamin F. Dawson, PE, and/or James Boyd.

Benjamin F. Dawson III, P.E.

Hatfield & Dawson Consulting Engineers

Item 1

Analysis of Tower Impedance Measurements to Verify Method of Moments Model - KKSN

Tower base impedance measurements were made at the locations of the outputs of the antenna coupling units and diplexing filtering equipment using an HP-8753C network analyzer in a calibrated measurement system. The other towers were open circuited at the same point where impedance measurements were made (the "reference points") for each of the measurements.

Circuit calculations were performed to relate the method of moments modeled impedances at the tower base feed points to those at the measurement locations as shown in the following table. The base conditions shown for each tower, which includes the stray capacitances, were used in the moment method model as a load at ground level for the open circuited case. One of the towers has an isocoupler for an STL transmission line, and each tower has a parallel resonated isolation inductor for the sample line, and the manufacturer's or measured values of impedance for each were used in the models. Towers 1 and 3 each have a lighting isolation inductor, the effects of which were found to be negligible, and which are not included in the computation.

The following table shows the allowable range of modeled impedance values.

Tower #	R open	Hi Limit	Lo Limit	Xopen	Hi Limit	Lo Limit
1	43.3	47.032	39.568	78.1	83.224	72.976
2	42.1	45.784	38.416	71.7	76.568	66.832
3	42.1	45.784	38.416	80.1	85.304	74.896

KKSN Tower Measurement Matrix

Hatfield & Dawson Consulting Engineers

Item 2 Derivation of Operating Parameters for Directional Antenna - KKSN

The method of moments model of the array, following verification with the measured individual open circuited base impedances, was utilized for directional antenna calculations. Calculations were made to determine the complex voltage values for sources located at ground level under each tower of the array to produce current moment sums for the towers that, when normalized, equated to the theoretical field parameters of the authorized directional antenna patterns. With these voltage sources, the tower currents were calculated. Twenty-one segments were used for each tower.

DAY PATTERN

Tower	Modeled Current Pulse	Current Magnitude	Current Phase	Antenna Monitor Ratio	Antenna Monitor Phase
1	8	7.2585	0.0°	1.0	0.0°
2	29	DETUNED			
3	50	2.8290	210°	0.390	-150.0°

NIGHT PATTERN

	Modeled	Current	Current	Antenna	Antenna
	Current	Magnitude	Phase	Monitor	Monitor
Tower	Pulse			Ratio	Phase
1	8	7.06444	-137.0	0.711	-137.0°
2	29	9.93465	0°	1.0	0°
3	50	6.05174	125.0°	0.609	125.0°

For the 21 segment moment method model, no segment elevation current magnitude values match the far field condition exactly for the night pattern. Analysis of models using other segment totals also resulted in essentially identical current ratios to the 21 segment model, but with current phase angles matching the far field pattern. The selection of segment 8 above the base of each tower was based, as shown the attached model data, on the basis of the elevation where the current is minimum with a tower of the modeled characteristics detuned for minimum horizontal plane radiation, as described in 73.151(c)(2)(I). The sample loops are therefore located at 90 feet above the base insulators.

Determination of Current Minimum for Detuned Condition

Elements of same geometry as impedance matrix moment method model, (91.5 and 93 degrees) with element two set for essentially zero field to determine proper reactance termination for detuned condition.

91.5 degree case

C:\Expert MBPro V.14\kksn#2 detuning 1 10-14-2011 11:59:08 GEOMETRY Wire coordinates in degrees; other dimensions in meters Environment: perfect ground wire caps Distance Angle Ζ radius seqs 1 none O 0 0 .18 21 0 0 91.5 none 168.5 2 90. 0 21 .18 168.5 90. 91.5 Number of wires = 2 current nodes = 42 minimum maximum Individual wires wire value wire value segment length 1 4.35714 1 4.35714 .18 radius 1 1 .18 ELECTRICAL DESCRIPTION Frequencies (KHz) frequency no. of segment length (wavelengths) no. lowest step steps minimum maximum 1 910. 0 1 .0121032 .0121032 Sources source node sector magnitude phase type 1 1 1 359.231 38.7 voltage 2 22 130.212 257.6 1 voltage C:\Expert MBPro V.14\kksn#2 detuning 1 10-14-2011 11:59:08 IMPEDANCE normalization = 50. freq resist react imped phase VSWR S11 S12 (ohms) (KHz) (ohms) (ohms) (deg) dB dB source = 1; node 1, sector 1 910. 43.762 30.151 53.143 34.6 1.9096 -10.1 -.44663 source = 2; node 22, sector 1 7.0502 910. -577.61 577.65 270.7 953.69 -1.8E-02 -23.783

Hatfield & Dawson Consulting Engineers

C:\Expert MBPro V.14\kksn#2 detuning 1 10-14-2011 11:59:08

CURRE	ENT rms		
Frequ	lency	= 910 KHz	
Input	: power	= 1,000. watts	
Effic	ciency	= 100. %	
coord	linates	in degrees	
curre	ent		
no.	Х	Y	Z
GND	0	0	0
2	0	0	4.3571
3	0	0	8.7142
4	0	0	13.071

curre	ent			mag	phase	real	imaginary
no.	Х	Y	Z	(amps)	(deg)	(amps)	(amps)
GND	0	0	0	4.77985	4.1	4.76746	.343992
2	0	0	4.35714	4.83081	3.1	4.82396	.257047
3	0	0	8.71429	4.83587	2.3	4.8318	.198162
4	0	0	13.0714	4.80907	1.8	4.8068	.147807
5	0	0	17.4286	4.75247	1.2	4.75134	.103411
6	0	0	21.7857	4.66713	.8	4.66669	.0639595
7	0	0	26.1429	4.55386	. 4	4.55376	.0289911
8	0	0	30.5	4.41342	360.	4.41342	-1.72E-03
9	0	0	34.8571	4.24663	359.6	4.24654	0282919
10	0	0	39.2143	4.05437	359.3	4.05405	0507796
11	0	0	43.5714	3.83756	359.	3.83693	0692141
12	0	0	47.9286	3.59721	358.7	3.59624	0836119
13	0	0	52.2857	3.3344	358.4	3.33308	0939859
14	0	0	56.6429	3.0502	358.1	3.04854	100348
15	0	0	61.	2.74569	357.9	2.74377	102711
16	0	0	65.3571	2.42187	357.6	2.41976	101088
17	0	0	69.7143	2.07958	357.4	2.07738	0954863
18	0	0	74.0714	1.71925	357.1	1.7171	0858916
19	0	0	78.4286	1.34057	356.9	1.33862	0722409
20	0	0	82.7857	.941351	356.7	.939781	0543435
21	0	0	87.1429	.514338	356.5	.513363	0316512
END	0	0	91.5	0	0	0	0
GND	0	-168.5	0	.159394	346.9	.155267	0360371
23	0	-168.5	4.35714	.119031	346.7	.115843	0273641
24	0	-168.5	8.71429	.0917198	346.5	.0891803	0214332
25	0	-168.5	13.0714	.0683916	346.2	.0664198	0163037
26	0	-168.5	17.4286	.0478505	345.8	.0463923	0117229
27	0	-168.5	21.7857	.0296235	345.1	.0286337	-7.59E-03
28	0	-168.5	26.1429	.0134991	343.3	.0129308	-3.88E-03
29	0	-168.5	30.5	9.92E-04	213.8	-8.24E-04	-5.52E-04
30	0	-168.5	34.8571	.0129106	169.4	0126893	2.38E-03
31	0	-168.5	39.2143	.0232242	167.8	0226972	4.92E-03
32	0	-168.5	43.5714	.0316652	167.1	0308683	7.06E-03
33	0	-168.5	47.9286	.0382419	166.7	0372179	8.79E-03
34	0	-168.5	52.2857	.0429641	166.4	0417591	.0101038
35	0	-168.5	56.6429	.0458423	166.1	044506	.0109882
36	0	-168.5	61.	.0468882	165.9	0454731	.0114322
37	0	-168.5	65.3571	.0461124	165.7	0446751	.0114233
38	0	-168.5	69.7143	.0435232	165.4	0421239	.0109474
39	0	-168.5	74.0714	.039119	165.2	0378227	9.99E-03
40	0	-168.5	78.4286	.0328759	165.	0317535	8.52E-03
41	0	-168.5	82.7857	.0247118	164.8	0238425	6.5E-03
42	0	-168.5	87.1429	.0143818	164.5	0138603	3.84E-03
END	0	-168.5	91.5	0	0	0	0

Hatfield & Dawson Consulting Engineers

Element 2 Detuned with Conjugate Reactance

C:\Expert MBPro V.14\kksn#2 detuning 2 10-14-2011 12:04:46 GEOMETRY Wire coordinates in degrees; other dimensions in meters Environment: perfect ground wire caps Distance Z Angle radius seqs none O 0 1 0 .18 21 0 0 91.5 90. 2 none 168.5 0 .18 21 168.5 90. 91.5 Number of wires -2 current nodes = 42 minimum maximum Individual wires wire value wire value 1 4.35714 segment length 1 4.35714 radius 1 .18 1 .18 ELECTRICAL DESCRIPTION Frequencies (KHz) frequency no. of segment length (wavelengths) no. lowest step steps minimum maximum 1 910. 0 1 .0121032 .0121032 Sources source node sector magnitude phase type 1 1 1 359.231 38.7 voltage Lumped loads resistance reactance inductance capacitance passive load node (ohms) (ohms) (mH) (uF) circuit 22 0 1 577.61 0 0 0 C:\Expert MBPro V.14\kksn#2 detuning 2 10-14-2011 12:07:09 IMPEDANCE normalization = 50. freq resist react imped phase VSWR S11 S12 (KHz) (ohms) (ohms) (ohms) (deg) dB dB source = 1; node 1, sector 1 910. 43.768 30.147 53.146 34.6 1.9093 -10.102 -.44641 C:\Expert MBPro V.14\kksn#2 detuning 2 10-14-2011 12:07:09 CURRENT rms Frequency = 910 KHz

Hatfield & Dawson Consulting Engineers

Input Effic	z power ciency	= 1,000. watts = $100.$ %					
coord	linates	in degrees					
curre	ent	j		maq	phase	real	imaginary
no.	X	Y	Z	(amps)	(deg)	(amps)	(amps)
GND	0	0	0	4.77992	4.1	4.76744	345227
2	0	0	4.35714	4.83087	3.1	4.82396	25828
3	0	0	8.71429	4.83592	2.4	4.83181	199387
4	0	0	13.0714	4.80913	1.8	4.80682	.149017
5	0	0	17.4286	4.75252	1.3	4.75137	.104601
6	0	0	21,7857	4.66717	. 8	4.66672	.0651216
7	0	0	26.1429	4.5539	. 4	4.5538	0301196
8	0	0	30.5	4.41346	360.	4.41346	-6 32E - 04
9	0	0	34.8571	4.24667	359.6	4.24658	- 0272488
10	0	0	39.2143	4.0544	359.3	4.05409	- 0497878
11	0	0	43.5714	3.83758	359.	3.83697	- 0682789
12	0	0	47.9286	3.59724	358.7	3 59629	- 0827387
13	0	0	52.2857	3.33442	358.4	3 33312	- 0931792
14	0	Õ	56.6429	3.05021	358.1	3 04859	- 0996115
15	0	Õ	61.	2.7457	357.9	2.7438	- 10205
16	0	0	65.3571	2 42188	357 6	2 4198	- 100507
17	0	Õ	69.7143	2 07958	357 4	2 07741	- 0949895
18	0	Õ	74.0714	1.71927	357.2	1.71714	- 0854825
19	0	Û	78.4286	1 34058	356 9	1 33865	- 0719228
20	0	0	82 7857	941354	356 7	939797	- 0541205
21	0	Õ	87.1429	.51434	356.5	513373	- 0315296
END	0	0	91.5	0	0	0	0
GND	0	-168.5	0	.159273	347.6	155562	- 0341772
23	0	-168.5	4.35714	.11894	347.6	116174	- 0255001
24	0	-168.5	8.71429	.0916486	347.7	.0895331	019578
25	0	-168.5	13.0714	.0683365	347.8	.0667875	- 0144678
26	0	-168.5	17.4286	.0478102	348.	.0467705	-9.92E-03
27	0	-168.5	21.7857	.0295974	348.6	.0290181	-5.83E-03
28	0	-168.5	26.1429	.0134913	350.8	.0133175	-2.16E-03
29	0	-168.5	30.5	1.19E-03	111.7	-4.39E-04	1.11E-03
30	0	-168.5	34.8571	.0129342	162.1	0123096	3.97E-03
31	0	-168.5	39.2143	.0232349	163.9	0223265	6.43E - 03
32	0	-168.5	43.5714	.0316688	164.5	0305102	8.49E-03
33	0	-168.5	47.9286	.0382407	164.6	0368757	0101258
34	0	-168.5	52.2857	.0429596	164.7	0414363	.0113382
35	0	-168.5	56,6429	.0458357	164.7	0442058	.0121144
36	0	-168.5	61.	.0468803	164.6	0451988	.0124434
37	0	-168.5	65.3571	.0461042	164.5	0444296	0123131
38	0	-168.5	69.7143	.0435152	164.4	0419101	0117097
39	0	-168.5	74.0714	.0391119	164.3	0376437	.0106156
40	0	-168.5	78.4286	.03287	164.1	0316121	9.01E-03
41	0	-168.5	82.7857	.0247076	163.9	0237421	6.84E - 0.3
42	0	-168.5	87.1429	.0143795	163.7	0138048	4.02E-03
END	0	-168.5	91.5	0	0	0	0

Hatfield & Dawson Consulting Engineers

93 Degree Case

C:\Expert MBPro V.14\kksn#2 detuning 1b 10-14-2011 14:22:01 GEOMETRY Wire coordinates in degrees; other dimensions in meters Environment: perfect ground wire caps Distance Angle Ζ radius segs 1 none O 0 0 .18 21 Ω 0 91.5 2 none 168.5 90. 0 .18 21 168.5 90. 93. Number of wires = 2 current nodes = 42 minimum maximum Individual wires wire value wire value segment length 1 4.35714 2 4.42857 radius 1 .18 1 .18 ELECTRICAL DESCRIPTION Frequencies (KHz) frequency no. of segment length (wavelengths) no. lowest step steps minimum maximum 1 910. 0 1 .0121032 .0123016 Sources source node sector magnitude phase type 1 1 1 359.222 38.7 voltage 2 22 1 131.844 257.6 voltage C:\Expert MBPro V.14\kksn#2 detuning 1b 10-14-2011 14:22:01 IMPEDANCE normalization = 50. freq resist react imped phase VSWR S11 S12 (KHz) (ohms) (ohms) (ohms) (deg) dB dB source = 1; node 1, sector 1 910. 43.761 30.15 53.142 34.6 1.9095 -10.1 -.44659 source = 2; node 22, sector 1 910. 7.2624 -569.62 569.66 270.7 900.56 -1.9E-02 -23.534 C:\Expert MBPro V.14\kksn#2 detuning 1b 10-14-2011 14:22:01 CURRENT rms Frequency = 910 KHz Input power = 1,000. watts Efficiency = 100. % coordinates in degrees current imaginary mag phase real

no.	Х	Y	Z	(amps)	(deg)	(amps)	(amps)
GND	0	0	0	4.77983	4.1	4.76744	.343985
2	0	0	4.35714	4.83079	3.1	4.82395	.257041
3	0	0	8.71429	4.83584	2.3	4.83178	.198156
4	0	0	13.0714	4.80905	1.8	4.80678	.147802
5	0	0	17.4286	4.75244	1.2	4.75132	.103407
6	0	0	21.7857	4.6671	.8	4.66666	.0639555
7	0	0	26.1429	4.55382	.4	4.55373	.0289875
8	0	0	30.5	4.41339	360.	4.41339	-1.72E-03
9	0	0	34.8571	4.24661	359.6	4.24651	0282948
10	0	0	39.2143	4.05434	359.3	4.05402	0507822
11	0	0	43.5714	3.83753	359.	3.83691	0692164
12	0	0	47.9286	3.59719	358.7	3.59622	0836141
13	0	0	52.2857	3.33438	358.4	3.33305	0939873
14	0	0	56.6429	3.05018	358.1	3.04853	100349
15	0	0	61.	2.74567	357.9	2.74375	102712
16	0	0	65.3571	2.42185	357.6	2.41974	10109
17	0	0	69.7143	2.07956	357.4	2.07737	0954871
18	0	0	74.0714	1.71924	357.1	1.71709	0858924
19	0	0	78.4286	1.34056	356.9	1.33861	0722417
20	0	0	82.7857	.941344	356.7	.939774	0543438
21	0	0	87.1429	.514334	356.5	.513359	0316513
END	0	0	91.5	0	0	0	0
GND	0	-168.5	0	.163654	346.9	.159374	0371864
23	0	-168.5	4.42857	.122344	346.6	.11903	0282832
24	0	-168.5	8.85714	.0943179	346.4	.0916737	0221765
25	0	-168.5	13.2857	.0703569	346.1	.0683001	0168875
26	0	-168.5	17.7143	.0492426	345.7	.047718	0121584
27	0	-168.5	22.1429	.0304958	345.	.0294573	-7.89E-03
28	0	-168.5	26.5714	.0139044	343.1	.0133033	-4.04E-03
29	0	-168.5	31.	1.04E-03	215.3	-8.51E-04	-6.03E-04
30	0	-168.5	35.4286	.0132887	169.4	0130634	2.44E-03
31	0	-168.5	39.8571	.0239085	167.8	0233646	5.07E-03
32	0	-168.5	44.2857	.0326004	167.1	0317745	7.29E-03
33	0	-168.5	48.7143	.0393713	166.7	0383074	9.09E-03
34	0	-168.5	53.1429	.0442305	166.3	0429768	.0104564
35	0	-168.5	57.5714	.0471887	166.	0457967	.0113773
36	0	-168.5	62.	.0482579	165.8	0467825	.0118413
37	0	-168.5	66.4286	.0474499	165.6	0459502	.0118351
38	0	-168.5	70.8571	.0447739	165.3	0433131	.0113438
39	0	-168.5	75.2857	.0402305	165.1	0388765	.0103493
40	0	-168.5	79.7143	.0337966	164.9	0326238	8.83E-03
41	0	-168.5	84.1429	.0253908	164.6	0244823	6.73E-03
42	0	-168.5	88.5714	.014765	164.4	01422	3.97E-03
END	0	-168.5	93.	0	0	0	0

Element 2 Detuned with Conjugate Reactance

C:\Expert MBPro V.14\kksn#2 detuning 2a 10-14-2011 14:28:28 GEOMETRY Wire coordinates in degrees; other dimensions in meters Environment: perfect ground wire caps Distance Angle Ζ radius segs 1 none O 0 0 .18 21 Ω 0 91.5 90. 2 none 168.5 0 .18 21 168.5 90. 93. Number of wires = 2 current nodes = 42 minimum maximum Individual wires wire value wire value segment length 1 4.35714 2 4.42857 radius 1 .18 1 .18 ELECTRICAL DESCRIPTION Frequencies (KHz) frequency no. of segment length (wavelengths) no. lowest step steps minimum maximum 1 910. 0 1 .0121032 .0123016 Sources source node sector magnitude phase type 1 1 1 359.231 38.7 voltage Lumped loads resistance reactance inductance capacitance passive load node (ohms) (ohms) (mH) (uF) circuit 1 22 0 569.62 0 0 0 C:\Expert MBPro V.14\kksn#2 detuning 2a 10-14-2011 14:28:28 IMPEDANCE normalization = 50. phase freq resist react imped VSWR S11 S12 (KHz) (ohms) (ohms) (ohms) (deg) dB dB source = 1; node 1, sector 1 910. 43.768 30.145 53.145 34.6 1.9092 -10.102 -.44636 C:\Expert MBPro V.14\kksn#2 detuning 2a 10-14-2011 14:28:28 CURRENT rms = 910 KHz Frequency Input power = 1,000. watts Efficiency = 100. % coordinates in degrees

Hatfield & Dawson Consulting Engineers

curre	ent			mag	phase	real	imaginary
no.	Х	Y	Z	(amps)	(deg)	(amps)	(amps)
GND	0	0	0	4.77991	4.1	4.76742	.345369
2	0	0	4.35714	4.83086	3.1	4.82394	.258424
3	0	0	8.71429	4.8359	2.4	4.83178	.199531
4	0	0	13.0714	4.80911	1.8	4.80679	.14916
5	0	0	17.4286	4.7525	1.3	4.75135	.104741
6	0	0	21.7857	4.66715	.8	4.6667	.0652597
7	0	0	26.1429	4.55387	. 4	4.55377	.0302541
8	0	0	30.5	4.41343	360.	4.41343	-5.02E-04
9	0	0	34.8571	4.24665	359.6	4.24656	0271236
10	0	0	39.2143	4.05437	359.3	4.05407	0496685
11	0	0	43.5714	3.83756	359.	3.83695	0681661
12	0	0	47.9286	3.59722	358.7	3.59627	0826333
13	0	0	52.2857	3.3344	358.4	3.3331	0930813
14	0	0	56.6429	3.0502	358.1	3.04857	0995227
15	0	0	61.	2.74569	357.9	2.74379	10197
16	0	0	65.3571	2.42187	357.6	2.41978	100437
17	0	0	69.7143	2.07957	357.4	2.0774	0949291
18	0	0	74.0714	1.71925	357.2	1.71713	0854321
19	0	0	78.4286	1.34057	356.9	1.33864	0718833
20	0	0	82.7857	.941349	356.7	.939794	0540931
21	0	0	87.1429	.514336	356.5	.51337	0315146
END	0	0	91.5	0	0	0	0
GND	0	-168.5	0	.163519	347.6	.159682	0352185
23	0	-168.5	4.42857	.122241	347.6	.119377	0263044
24	0	-168.5	8.85714	.094237	347.6	.092046	0202026
25	0	-168.5	13.2857	.0702947	347.7	.0686907	0149307
26	0	-168.5	17.7143	.0491969	348.	.0481215	0102302
27	0	-168.5	22.1429	.0304658	348.6	.0298687	-6.E-03
28	0	-168.5	26.5714	.0138946	350.9	.0137183	-2.21E-03
29	0	-168.5	31.	1.25E-03	110.4	-4.37E-04	1.17E-03
30	0	-168.5	35.4286	.0133149	161.9	0126541	4.14E-03
31	0	-168.5	39.8571	.0239205	163.7	0229643	6.7E-03
32	0	-168.5	44.2857	.0326046	164.3	0313872	8.83E-03
33	0	-168.5	48.7143	.0393701	164.5	037937	.0105257
34	0	-168.5	53.1429	.0442257	164.5	042627	.0117836
35	0	-168.5	57.5714	.0471816	164.5	0454711	.0125889
36	0	-168.5	62.	.0482493	164.5	0464847	.0129295
37	0	-168.5	66.4286	.0474408	164.4	0456834	.0127929
38	0	-168.5	70.8571	.0447652	164.2	0430807	.0121644
39	0	-168.5	75.2857	.0402226	164.1	0386817	.0110262
40	0	-168.5	79.7143	.0337901	163.9	0324699	9.35E-03
41	0	-168.5	84.1429	.0253861	163.8	024373	7.1E-03
42	0	-168.5	88.5714	.0147624	163.6	0141596	4.18E-03
END	0	-168.5	93	0	0	0	0

Item 3 Method of Moments Model Details for Towers Driven Individually - KKSN

The array of towers was modeled using MININEC

One wire was used to represent each tower. The top and bottom wire end points were specified using electrical degrees in the geographic coordinate system, using the theoretical directional antenna specifications. Each tower was modeled using 21 wire segments. As the towers are physically 89.9 degrees in electrical height, the segment length is 4.28 electrical degrees.

Each tower's modeled height relative to its physical height falls within the required range of 75 to 125 percent and each modeled radius falls within the required range of 80 percent to 150 percent of the radius of a circle having a circumference equal to the sum of the widths of the tower sides. The array consists of identical, uniform cross section towers having a face width of 18 inches, or an equivalent radius of 0.218 meters.

Tower	Physical	Modeled	Modeled	Modeled	Percent of
	Height	Height	Percentage	Radius	Equivalent
	(degrees)	(degrees)	of Height	(meters)	Radius
1, 3	89.9	91.5	101.78	0.18	82.5
2	89.9	93	103.44	0.18	82.5

The following pages show the details of the method of moments models for the individually driven towers.

Tower #2 Driven with Towers #1 and #3 Open

(Complete Printout of Summary Data from MININEC)

C:\Expert MBPro V.14\kksn#2 10-14-2011 11:37:48 GEOMETRY Wire coordinates in degrees; other dimensions in meters Environment: perfect ground wire caps Distance Angle Ζ radius segs 0 none O 0 1 .18 21 0 91.5 0 90. 2 none 84.3 0 .18 21 93. 84.3 90. 3 none 168.5 90. 0 .18 21 168.5 90. 91.5 Number of wires = 3 current nodes = 63 minimum maximum wire value Individual wires wire value 1 4.35714 segment length 2 4.42857 radius 1 .18 1 .18 ELECTRICAL DESCRIPTION Frequencies (KHz) frequency no. of segment length (wavelengths) no. lowest step steps minimum maximum 1 910. 0 1 .0121032 .0123016 Sources source node sector magnitude phase type 1 22 1 1. 0 voltage Lumped loads resistance reactance inductance capacitance passive load node (ohms) (ohms) (mH) (uF) circuit 1 43 0 -4,997. 0 0 0 2 1 0 -2,681. 0 0 0 C:\Expert MBPro V.14\kksn#2 10-14-2011 11:37:48 IMPEDANCE normalization = 50. freq resist react imped phase VSWR S11 S12 (ohms) (ohms) (KHz) (ohms) (deg) dB dB source = 1; node 22, sector 1 910. 43.075 37.935 57.398 2.245 -8.3208 -.69155 41.4 C:\Expert MBPro V.14\kksn#2 10-14-2011 11:37:48 CURRENT rms

Hatfield & Dawson Consulting Engineers

Freq	uency	= 910 KHz					
Inpu	t power	= 1,000. watts					
Effi	ciency	= 100. %					
coor	dinates	in degrees					
curr	ent	-		maq	phase	real	imaginarv
no.	Х	Y	Z	(amps)	(dea)	(amps)	(amps)
GND	0	0	0	.0550415	190.7	0540772	0102575
2	0	0	4.35714	.118886	190.8	116793	0222097
3	0	0	8.71429	.160115	190.8	157269	0300538
4	0	0	13.0714	.19328	190.9	189803	036497
5	0	0	17,4286	.220326	191.	216306	0418938
6	0	0	21.7857	.242048	191.	237563	0463815
7	0	0	26.1429	.258842	191.1	253963	050019
8	0	0	30.5	.270938	191.2	265737	0528327
9	0	0	34.8571	.278492	191.4	273041	0548309
10	0	0	39.2143	.281628	191.5	276001	0560134
11	0	0	43.5714	.280454	191.6	274729	0563752
12	0	0	47.9286	.275075	191.7	269334	0559072
13	0	0	52.2857	.265598	191.9	259925	0545999
14	0	0	56.6429	.252131	192.	246617	- 0524414
15	0	0	61.	.234783	192.2	229523	04942
16	0	0	65.3571	.213657	192.3	- 208751	- 0455214
17	0	0	69.7143	.18884	192.5	- 184396	- 0407295
18	0	0	74.0714	.160385	192.6	- 156515	- 0350194
19	0	Õ	78.4286	128261	192.8	- 125088	- 0283505
20	0	0 0	82 7857	0922437	192.0	- 089905	- 0206394
21	Õ	0	87 1429	0515707	193 1	- 0502306	-0116801
END	0	0	91 5	0	0	.0502500	0
GND	0	-84 3	0	4 81823	318 6	3 61588	-3 18445
23	0	-84 3	4 42857	4 88662	317 6	3 60639	-3 29742
24	0	-84 3	8 85711	4.00002	316 9	3 57902	-3 25105
25	0	-84.3	13 2857	1 99159	316 3	3.57002	-3.33103
26	0	-84.3	17 71/3	4.004.00	315 0	3 46510	-3.37322
27	0	-84.3	22 1/20	4.03403	315 3	2 2012	-3.3714
28	0	-84 3	26 5714	4.75420	31/ 0	3 27961	-3.29946
20	0	-84.3	20.3714	4.04430	214.9	3.27904	-3.20040
30	0	-84.3	35 1286	4.33016	314.2	3.10009	-3.21120
31	0	-84.3	39 8571	4.55940	313 0	2.02.307	-2 00017
32	0	-84.3	11 2857	3 0272	313.5	2.01330	2.90917
22	0	-84.3	44.2037	3 69330	313.0	2.70037	-2.04070
34	0	-84 3	53 1/20	3 /1505	313	2.32401	-2.00192
35	0	-84 3	57 5714	3 12604	313.	2.52555	-2.4904
36	0	-94.3	57.5714	2 01404	212.7	2.12134	-2.29009
30	0	-04.3	66 1296	2.01404	312.3	1.90109	-2.07586
30	0	-04.5	70 9571	2.40343	312.2	1 40726	-1.83849
30	0	-94.3	75 2057	2.132/3	312	1 17404	-1.0040/
10	0	-04.3	73.2037	1 27401	311.0	010160	-1.314/0
40	0	-04.5	79.7143 04 1430	1.3/401	211.0	.912102	-1.02862
41	0	-04.5	04.1429	.900195	311.4	.03/004	724539
42 END	0	-04.5	00.0/14	.527095	SII.I 0	.340//	396962
CND	0	-04.3	, ce	U 0000070	U 101 4	U 0007041	
G N D	0	-160 5	U 1 25711	. UZ 929/3	101 4	028/241	-3.//E-U3
44	0	-160 F	4.33/14	122002	101 4	0908/85	0183021
40	0	-100.0	0./1429	.133802	101 5	131141	020555
40	0	-160.5	13.0/14	.10/034	191.5	103668	0333622
4/	0	-108.5	11.4286	.194323	191.6	19035	0390953
4 X	U	-108.5	21./85/	.216458	191./	ZII96	0438977

Hatfield & Dawson Consulting Engineers

49	0	-168.5	26.1429	.233828	191.8	228883	0478317
50	0	-168.5	30.5	.246657	191.9	241343	0509239
51	0	-168.5	34.8571	.255098	192.	249492	053184
52	0	-168.5	39.2143	.259267	192.2	25345	054611
53	0	-168.5	43.5714	.259268	192.3	253323	0551995
54	0	-168.5	47.9286	.2552	192.4	249216	0549407
55	0	-168.5	52.2857	.247162	192.6	241231	0538234
56	0	-168.5	56.6429	.235257	192.7	229476	0518357
57	0	-168.5	61.	.219587	192.9	214058	0489656
58	0	-168.5	65.3571	.200249	193.	195081	0451984
59	0	-168.5	69.7143	.177324	193.2	172634	0405162
60	0	-168.5	74.0714	.150863	193.4	146772	0348952
61	0	-168.5	78.4286	.120836	193.5	117477	0282935
62	0	-168.5	82.7857	.0870302	193.7	0845506	0206266
63	0	-168.5	87.1429	.0487226	193.9	0472999	0116881
END	0	-168.5	91.5	0	0	0	0

Tower #1 Driven with Towers #2 and #3 Open

(Impedance Data Only)

C:\Expert MBPro V.14\kksn#2 10-14-2011 11:27:42 IMPEDANCE normalization = 50. freq resist react imped phase VSWR S11 S12 (KHz) (ohms) (ohms) (ohms) (deg) dB dB source = 1; node 1, sector 1 42.744 910. 30.158 52.312 35.2 1.9328 -9.9498 -.46318

Tower #3 Driven with Towers #2 and #1 Open (Impedance Data Only)

C:\Expert MBPro V.14\kksn#2 10-14-2011 11:41:53

IMPEDANCE	2						
normal	ization =	= 50 .					
freq	resist	react	imped	phase	VSWR	S11	S12
(KHz)	(ohms)	(ohms)	(ohms)	(deg)		dB	dB
source =	l; node	43, secto	or 1				
910.	42.805	30.204	52.389	35.2	1.9331	-9.9477	46342

Hatfield & Dawson Consulting Engineers

Item 4 Method of Moments Model Details for Directional Antenna- KKSN

The array of towers was modeled using MININEC with the individual tower characteristics that were verified by the individual tower impedance measurements. Calculations were made to determine the complex voltage values for sources located at ground level under each tower of the array to produce current moment sums for the towers that, when normalized, equated to the theoretical field parameters of the authorized directional antenna pattern. The following pages contain details of the method of moments models of the directional antenna patterns.

Tower	Wire	Base Node
1	1	1
2	2	22
3	3	43

KKSN Day Driven Array

C:\Expert MBPro V.14\kksn#2daypat 10-17-2011 13:51:58

GEOMETRY Wire coordinates in degrees; other dimensions in meters Environment: perfect ground

aps	Distance	Angle	Z	radius	segs
one	0	0	0	.18	21
	0	0	91.5		
one	84.3	90.	0	.18	21
	84.3	90.	93.		
one	168.5	90.	0	.18	21
	168.5	90.	91.5		
	ne ne ne	<pre>ips Distance one 0 0 one 84.3 84.3 one 168.5 168.5</pre>	aps Distance Angle one 0 0 0 one 84.3 90. 84.3 90. one 168.5 168.5 90.	aps Distance Angle Z one 0 0 0 0 0 91.5 one 84.3 90. 0 84.3 90. 93. one 168.5 90. 0 168.5 90. 91.5	aps Distance Angle Z radius one 0 0 .18 o 0 91.5 one 84.3 90. 0 .18 s4.3 90. 93. .18 one 168.5 90. .18 168.5 90. 91.5

Number of wires = 3 current nodes = 63

	minim	um	maximum		
Individual wires	wire	value	wire	value	
segment length	1	4.35714	2	4.42857	
radius	1	.18	1	.18	

ELECTRICAL DESCRIPTION Frequencies (KHz) no. lowest step steps minimum maximum 1 910. 0 1 .0121032 .0123016

Sources								
source	node	sector	magnitude	phase	type			
1	1	1	625.97	45.8	voltage			
2	43	1	443.227	253.1	voltage			

Lumped loads

~

		resistance	reactance	inductance	capacitance	passive
load	node	(ohms)	(ohms)	(mH)	(uF)	circuit
1	22	0	579.	0	0	0

C:\Expert MBPro V.14\kksn#2daypat 10-17-2011 13:53:45

IMPEDANC	E						
norma	lization :	= 50.					
freq	resist	react	imped	phase	VSWR	S11	S12
(KHz)	(ohms)	(ohms)	(ohms)	(deg)		dB	dB
source =	l; node	1, secto	or 1				
910.	42.491	38.012	57.012	41.8	2.2652	-8.2351	70651
source =	2; node	43, sect	or 1				
910.	88.638	62.436	108.42	35.2	2.8677	-6.3228	-1.1532

Hatfield & Dawson Consulting Engineers

C:\Expert MBPro V.14\kksn#2daypat 10-17-2011

-2011 13:53:45

CURR	ENT rms						
Freq	uency	= 910 KHz					
Inpu	t power	= 3,300. watts					
Effi	ciency	= 100. %					
coor	dinates	in degrees					
curr	ent			mag	phase	real	imaginary
no.	Х	Y	Z	(amps)	(deg)	(amps)	(amps)
GND	0	0	0	7.76157	4.	7.74281	.539343
2	0	0	4.35714	7.87067	2.9	7.8603	.404032
3	0	0	8.71429	7.8961	2.3	7.88992	.312343
4	0	0	13.0714	7.86653	1.7	7.86305	.233885
5	0	0	17.4286	7.78619	1.2	7.78444	.164662
6	0	0	21.7857	7.65712	.8	7.65642	.103093
7	0	0	26.1429	7.48077	. 4	7.48061	.048466
8	0	0	30.5	7.2585	0.0	7.2585	4.29E-04
9	0	0	34.8571	6.99176	359.7	6.99164	0411919
10	0	0	39.2143	6.68192	359.3	6.68148	0764836
11	0	0	43.5714	6.33055	359.	6.32967	105486
12	0	0	47.9286	5.93933	358.8	5.93795	12822
13	0	0	52.2857	5.51001	358.5	5.50811	144696
14	0	0	56.6429	5.04439	358.2	5.04201	154927
15	0	0	61.	4.54424	358.	4.54146	158923
16	0	0	65.3571	4.01123	357.8	4.00817	156696
17	0	0	69.7143	3.44671	357.5	3.44352	148244
18	0	0	74.0714	2.85144	357.3	2.84831	133534
19	0	0	78.4286	2.22484	357.1	2.22199	112456
20	0	0	82.7857	1.56329	356.9	1.56099	084698
21	0	0	87.1429	.854692	356.7	.853264	0493888
END	0	0	91.5	0	0	0	0
GND	0	-84.3	0	.27545	44.2	.197561	.191944
23	0	-84.3	4.42857	.204835	44.2	.146969	.142679
24	0	-84.3	8.85714	.157072	44.1	.112876	.109227
25	0	-84.3	13.2857	.116382	43.8	.0839578	.0805965
26	0	-84.3	17.7143	.0806757	43.3	.0587057	.0553372
27	0	-84.3	22.1429	.0491331	42.	.0365087	.0328812
28	0	-84.3	26.5714	.0214428	37.2	.0170729	.0129734
29	0	-84.3	31.	4.52E-03	273.	2.34E-04	-4.51E-03
30	0	-84.3	35.4286	.0241741	234.3	0141141	019626
31	0	-84.3	39.8571	.0415753	231.2	0260477	0324041
32	0	-84.3	44.2857	.055733	230.3	0356325	0428543
33	0	-84.3	48.7143	.0666481	229.9	0429301	0509802
34	0	-84.3	53.1429	.0743536	229.8	0480018	0567828
35	0	-84.3	57.5714	.0788899	229.8	0509114	0602631
36	0	-84.3	62.	.0803006	229.9	- 0517241	-0.614232
37	0	-84.3	66.4286	0786299	230	-0505051	- 0602652
38	Õ	-84.3	70.8571	0739167	230 2	-0473156	- 0567884
39	0	-84.3	75.2857	.0661845	230.4	0422053	0509813
40	Õ	-84.3	79.7143	.0554179	230.6	- 0351978	- 0428049
41	õ	-84.3	84.1429	.0415053	230.8	0262527	0321478
42	0 0	-84.3	88.5714	.0240633	231.	015157	- 0186898
END	0	-84.3	93.	0	0	0	0

Hatfield & Dawson Consulting Engineers

GND	0	-168.5	0	2.889	88 217.9	-2.27913	-1.77677
44	0	-168.5	4.357	14 2.962	71 215.8	-2.40329	-1.73258
45	0	-168.5	8.714	29 2.994	74 214.4	-2.47041	-1.69279
46	0	-168.5	13.07	14 3.003	06 213.3	-2.51015	-1.64849
47	0	-168.5	17.42	86 2.989	84 212.3	-2.52656	-1.59863
48	0	-168.5	21.78	57 2.956	04 211.5	-2.52145	-1.54288
49	0	-168.5	26.14	29 2.902	26 210.7	-2.49582	-1.48121
50	0	-168.5	30.5	2.829	210.	-2.45041	-1.41377
51	0	-168.5	34.85	71 2.736	75 209.3	-2.38584	-1.34075
52	0	-168.5	39.21	43 2.626	03 208.7	-2.30268	-1.26243
53	0	-168.5	43.57	14 2.497	42 208.2	-2.20154	-1.17912
54	0	-168.5	47.92	36 2.351	53 207.6	-2.08304	-1.09116
55	0	-168.5	52.28	57 2.189	03 207.2	-1.94781	99893
56	0	-168.5	56.642	29 2.010	58 206.7	-1.7965	902783
57	0	-168.5	61.	1.816	87 206.2	-1.62974	803094
58	0	-168.5	65.35	71 1.608	55 205.8	-1.44815	700211
59	0	-168.5	69.714	13 1.386	14 205.4	-1.25222	59442
60	0	-168.5	74.071	L4 1.149	92 205.	-1.04221	485912
61	0	-168.5	78.428	.8996	28 204.6	817897	374667
62	0	-168.5	82.785	.6337	68 204.2	577906	260166
63	0	-168.5	87.142	.3473	89 203.9	317687	14055
END	0	-168.5	91.5	0	0	0	0
C:\Exp	ert MBPro V	V.14\kksn#	2daypat	10-17-2	011 13:	52 : 13	
CURREN	T MOMENTS (a	amp-degree	s) rms				
Freque	ncy = 910	KHz					
Input	power = $3,3$	300. watts					
				vertical	current m	oment	
wire	magnitude	phase	(deg)	magnitude	phase	(deg)	
1	640.781	0.0		640.781	0.0		
2	.527774	318.6		.527774	318.6		
3	249.546	210.		249.546	210.		
Medium (Calcu	wave array lation assu	y vertical ımes tower	currer wires	nt moment are group	(amps-deg ed togeth	rees) rms er.	
The fi	rst wire of	E each gro	up must	contain	the sourc	e.)	

tower	magnitude	phase	(deg)
1	640.781	0.0	
2	.527774	318.6	
3	249.546	210.	

These current moment summations show the model produces the correct far-field amplitude and phase relationships, and that the #2 tower is properly detuned, with a far field contribution of less than 0.1% of that of the reference tower.

Hatfield & Dawson Consulting Engineers

KKSN Night Driven Array

C:\Expert MBPro V.14\kksn#2nitepat 10-17-2011 10:17:53 GEOMETRY Wire coordinates in degrees; other dimensions in meters Environment: perfect ground wire caps Distance Angle Ζ radius segs 1 none O 0 0 .18 21 0 0 91.5 90. 2 none 84.3 0 .18 21 84.3 90. 93. none 168.5 3 90. 0 .18 21 168.5 90. 91.5 Number of wires 3 = current nodes = 63 minimum maximum Individual wires wire value wire value segment length 1 4.35714 2 4.42857 radius 1 .18 1 .18 ELECTRICAL DESCRIPTION Frequencies (KHz) frequency no. of segment length (wavelengths) no. lowest steps minimum step maximum 1 910. Ο 1 .0121032 .0123016 Sources source node sector magnitude phase type 858.676 1 1 1 303.1 voltage 2 22 891.914 1 69.3 voltage 3 43 1 214.575 152.6 voltage C:\Expert MBPro V.14\kksn#2nitepat 10-17-2011 10:21:11 IMPEDANCE normalization = 50. VSWR S12 freq resist react imped phase S11 (KHz) (ohms) (ohms) (ohms) (deg) dB dB source = 1; node 1, sector 1 910. 16.875 84.595 86.261 78.7 11.697 -1.4888 -5.3726 source = 2; node 22, sector 1 910. 56.219 23.7 61.011 67.1 5.0529 -3.4839 -2.5833 source = 3; node 43, sector 1 20.119 910. 9.618 22.3 25.6 2.594 -7.0617 -.9513 C:\Expert MBPro V.14\kksn#2nitepat 10-17-2011

Hatfield & Dawson Consulting Engineers

10:21:11

CURRE	ENT rms						
Frequ	lency	= 910 KHz					
Input	power	= 4,300. watts					
Effic	ciency	= 100. %					
coord	linates	in degrees					
curre	ent			mag	phase	real	imaginary
no.	Х	Y	Z	(amps)	(deg)	(amps)	(amps)
GND	0	0	0	7.0388	224.4	-5.02715	-4.92672
2	0	0	4.35714	7.27898	224.	-5.23458	-5.05793
3	0	0	8.71429	7.39284	223.8	-5.33912	-5.11351
4	0	0	13.0714	7.43929	223.6	-5.39105	-5.12637
5	0	0	17.4286	7.42655	223.4	-5.39739	-5.10117
6	0	0	21.7857	7.35839	223.2	-5.36127	-5.0401
7	0	0	26.1429	7.23708	223.1	-5.28457	-4.94456
8	0	0	30.5	7.06444	223.	-5.16871	-4.81568
9	0	0	34.8571	6.84208	222.9	-5.01494	-4.65451
10	0	0	39.2143	6.57165	222.8	-4.82452	-4.46213
11	0	0	43.5714	6.25481	222.7	-4.59869	-4.23966
12	0	0	47.9286	5.89333	222.6	-4.33879	-3.98826
13	0	0	52.2857	5.48905	222.5	-4.04621	-3.70916
14	0	0	56.6429	5.04383	222.4	-3.72232	-3,40361
15	0	0	61.	4.55955	222.4	-3.36855	-3.07284
16	0	0	65.3571	4.03793	222.3	-2.98618	-2.71801
17	0	0	69.7143	3,48041	222.2	-2.57631	-2.34005
18	0	0	74.0714	2.88779	222.2	-2.13955	-1.9395
19	0	0	78.4286	2.25954	222.1	-1.67551	-1.51598
20	0	0	82.7857	1.59195	222.1	-1.18144	-1.06702
21	0	0	87.1429	.872666	222.	648147	584338
END	0	0	91.5	0	0	0	0
GND	0	-84.3	0	10.3372	2.2	10.3297	.392849
23	0	-84.3	4,42857	10.5655	1.6	10.5614	294105
2.4	0	-84.3	8.85714	10.6516	1.2	10.6492	22703
2.5	Õ	-84.3	13.2857	10.6535	. 9	10 6522	169594
26	0	-84.3	17.7143	10.5793	. 6	10.5786	.118892
27	0	-84.3	22.1429	10.4331	. 4	10.4328	.0737817
28	0	-84.3	26.5714	10.2175	.2	10.2174	.0337503
29	0	-84.3	31.	9 93465	360	9 93465	-1 45E-03
30	0	-84.3	35.4286	9.58688	359 8	9 58682	-0319472
31	0 0	-84 3	39 8571	9 17646	359 6	9 17628	- 0577945
32	Õ	-84.3	44.2857	8,70563	359 5	8 70527	- 07902
33	Õ	-84 3	48 7143	8 17713	359 3	8 17657	- 0956363
34	Õ	-84.3	53,1429	7.59347	359.2	7 59271	- 107649
35	õ	-84 3	57 5714	6 9575	359.2	6 95655	- 115065
36	Õ	-84.3	62	6 27182	358 9	6 27072	- 117892
37	Õ	-84 3	66 4286	5 53904	358 8	5 53782	- 116135
38	Õ	-84.3	70 8571	4 7613	358 7	4 76004	- 109793
39	Õ	-84 3	75 2857	3 93992	358 6	3 93868	- 0988416
40	õ	-84.3	79.7143	3.07441	358 4	3 07329	- 0831969
41	õ	-84 3	84 1429	2 16005	358 3	2 15014	- 0626293
42	õ	-84 3	88.5714	1.18045	358 2	1 17989	- 0364945
END	õ	-84 3	93.	1.10010	0	0	.0504945
GND	õ	-168.5	0	6.80398	127 1	-4.10075	5.42936
44	õ	-168.5	4.35714	6.81482	126 6	-4.05961	5 47369
4.5	0	-168.5	8.71429	6.78045	126 2	-4.00734	5.46952
	-						

Hatfield & Dawson Consulting Engineers

46	0	-168.5	13.0714	6.70749	125.9	-3.93723	5.43034
47	0	-168.5	17.4286	6.5972	125.7	-3.84867	5.35825
48	0	-168.5	21.7857	6.45052	125.5	-3.74165	5.25445
49	0	-168.5	26.1429	6.26836	125.2	-3.61653	5.11987
50	0	-168.5	30.5	6.05174	125.	-3.4738	4.95543
51	0	-168.5	34.8571	5.80179	124.8	-3.31411	4.76209
52	0	-168.5	39.2143	5.51977	124.6	-3.1382	4.54088
53	0	-168.5	43.5714	5.20704	124.5	-2.9469	4.2929
54	0	-168.5	47.9286	4.86506	124.3	-2.74111	4.01934
55	0	-168.5	52.2857	4.49538	124.1	-2.52178	3.72143
56	0	-168.5	56.6429	4.09956	124.	-2.28987	3.40042
57	0	-168.5	61.	3.67917	123.8	-2.04635	3.05758
58	0	-168.5	65.3571	3.23567	123.6	-1.79212	2.69405
59	0	-168.5	69.7143	2.77027	123.5	-1.52795	2.31079
60	0	-168.5	74.0714	2.28368	123.3	-1.25434	1.90836
61	0	-168.5	78.4286	1.77561	123.2	971219	1.48645
62	0	-168.5	82.7857	1.2433	123.	677218	1.04267
63	0	-168.5	87.1429	.677371	122.8	367396	.56908
END	0	-168.5	91.5	0	0	0	0

C:\Expert MBPro V.14\kksn#2nitepat 10-17-2011 10:18:37

CURRENT MOMENTS (amp-degrees) rms

Frequency = 910 KHz Input power = 4,300. watts

			vertical cu	rrent mon	ient
wire	magnitude	phase (deg)	magnitude	phase (deg
1	623.088	223.	623.088	223.	
2	890.125	0.0	890.125	0.0	
3	534.076	125.	534.076	125.	

Medium wave array vertical current moment (amps-degrees) rms (Calculation assumes tower wires are grouped together. The first wire of each group must contain the source.)

tower	magnitude	phase	(deg)
1	623.088	223.	
2	890.125	0.0	
3	534.076	125.	

These current moment summations show the model produces the correct far-field amplitude and phase relationships.

25

Hatfield & Dawson Consulting Engineers

Item 5

Summary of Post Construction Certified Array Geometry- KKSN

The tower relative distances provided in feet on the Certified Survey drawing of Appendix A were converted to electrical degrees at 910 kilohertz and used along with the survey tower azimuths relative to True North to calculate the distance in electrical degrees from the location specified in the theoretical directional antenna pattern array geometry. This figure provides a tabulation showing those distances and other data that is relevant to their determination.

Tower	Specified	Specified	Specified	Surveyed	Surveyed	Distance	Distance
	Spacing	Spacing	Azimuth	Spacing	Azimuth	from	from
	(Deg)	(Feet)	(Deg T)	(Feet)*	(Deg T)*	Specified	Specified
						Location	Location
						(Feet)	(Deg)
1	ref	ref	ref	ref	ref	0	0
2	84.3	253.1	90.0	253.0	90.0	0.1	0.03
3	168.5	505.9	90.0	505.9	90.0	0.0	0.0

*From September 29, 2011 as built survey drawing prepared by D. Gary Hutcheson, RLS

The as built tower displacements from their specified locations expressed in electrical degrees at carrier frequency, which correspond to space phasing differences in the far-field radiation pattern of the array, are well below the guidelines in the FCC Public Notice DA 09-2340 (10/29/2009).

Item 6 Sampling System Measurements - KKSN

Impedance measurements were made of the antenna monitor sampling system using a Hewlett-Packard 8753C network analyzer in a calibrated measurement system. The measurements were made looking into the antenna monitor ends of the sampling lines for two conditions – with and without the sampling lines connected to the sampling loops at the towers.

The following table shows the frequency closest to the carrier frequency where resonance –zero reactance corresponding with low resistance – was found. As frequencies of resonance occur at odd multiples of 90 degrees electrical length, the sampling line length at the resonant frequency above carrier frequency – which is the closest one to the carrier frequency – was found to be 450 electrical degrees. The electrical length at carrier frequency appearing in the table below was calculated by ratioing the carrier frequency to the resonant frequency.

Tower	Sampling Line	Sampling Line Electrical	910 kHz
	Open-Circuited	Length at 910 kHz	Measured Impedance with
	Resonance (kHz)		Sample Loop Connected
1	1037.05	394.87°	7.8+ j50.2
2	1036.75	394.98°	7.8+ j50.3
3	1035.40	395.50°	7.95+ j51.1

The sampling line lengths meet the requirement that they be equal in length within 1 electrical degree.

In order to determine the characteristic impedance values of the sampling lines, open-circuited measurements were made with frequencies offset to produce +/- 45 degrees of electrical length from resonance. The characteristic impedance was calculated using the following formula, where R1 +j X1 and R2 +j X2 are the measured impedances at the +45 and -45 degree offset frequencies, respectively:

Tower	-45° Offset	-45°	+45° Offset	+45°	Calculated
	Frequency	Measured	Frequency	Measured	Characteristic
	(kHz)	Impedance	(kHz)	Impedance	Impedance
		(Ohms)		(Ohms)	(Ohms)
1	933.345	6.9	1140.755	8.78	50.47
		-J49.9		+J49.8	
2	933.075	6.9	1140.425	8.7	50.51
		-J49.9		+J49.9	
3	931.860	6.9	1138.940	8.6	50.36
		-J49.9		+J49.6	

$$Zo = ((R_1^2 + X_1^2)^{1/2} \times (R_2^2 + X_2^2)^{1/2})^{1/2}$$

The sampling line measured characteristic impedances meet the requirement that they be equal within 2 ohms.

Hatfield & Dawson Consulting Engineers

Item 7

Reference Field Strength Measurements - KKSN

Reference field strength measurements were made along radials at the azimuths with radiation values specified on the construction permit and, additionally, on the major lobe radial of each pattern.

Measurements were made using a Potomac Instruments field strength meter, model FIM-41, serial number 1302. This meter was last calibrated 12/29/10.

The measured field strengths and descriptions and GPS coordinates for the reference measurement points are shown on the following pages.

<u>Reference Field Strength Measurements – KKSN, Vancouver, WA 910 kHz DA-D</u>

Radial Azimuth Degrees	<u>Distance km</u>	Field mV/m	GPS Coordinates NAD 83	Point Description
65	7.18	31	45-35-8.16 /122-24-0.27	SW side of NE Franklin Street on sidewalk
65	9.23	24.3	45-35-36.05 / 122-22-34.3	Sidewalk front of 457 W. Lookout Ridge Street
65	9.74	25	45-35-43.08 / 122-22-13.16	Sidewalk front of 2415 N. 4th Street
90	2.34	211	45-33-30.02 / 122-27-13.14	North shoulder of NE Marine Drive
90	3.79	125	45-33-29.98 / 122-26-6.13	Middle of NE 223 rd Avenue
90	5.91	68	45-33-30.14 / 122-24-27.72	Middle of road at NW Sundial Road
115	0.93	640	45-33-17.12 / 122-28-22.58	West side of NE 185 th Avenue
115	4,19	110	45-32-32.55 / 122-26-6.16	North Side of NE Sandy Boulevard
115	5.61	102	45-32-12 / 122-25-7.28	East parking space at 76 station at NE 238 th Drive
190.5	1.19	220	45-32-52.21 / 122-29-11.43	N. side of NE Sandy Blvd, across from Solar Natio
190.5	2.51	90	45-32-10.03 / 122-29-22.55	In street front of 16892 NE Schuyler Street
190.5	3.39	74	45-31-42 / 122-29-29.9	Middle of NE 166 th Avenue at NE Oregon Street
349.5	3.2	49	45-35-11.9 / 122-29-28.3	North side of SE Evergreen Hiway
349.5	5.09	21.5	45-36-11.9 / 122-29-44.32	Sidewalk west side of SE 22 nd Drive
349.5	6.37	17.8	45-36-52.53 / 122-29-55.	Rose City Printing, SE Redwood Cir.

30

Hatfield & Dawson Consulting Engineers

<u>Reference Field Strength Measurements – KKSN, Vancouver, WA 910 kHz DA-N</u>

Radial Azimuth Degrees	Distance km	Field mV/m	GPS Coordinates NAD 83	Point Description
6	2.97	9*	45-35-5.46 / 122-28-47.86	Entrance to Columbia Vista Corp. just off SE Evergreen Highway
6	3.98	6*	45-35-37-75 / 122-28-41.7	North end of Chevron Station at SE 41 st Drive and SE 192 nd Avenue
6	5.87	4*	45-36-38.85 / 122-28-32.65	Bus stop just north of SE 15th Street on SE 192 ⁿ
		*Field strength varies d	ramatically with modulation (pattern minimum)	
90	2.72	90	45-33-29.9 / 122-26-55.9	West side of NE Blue Lake Road
90	3.77	45	45-33-29.9 / 122-26-7.17	Middle of NE 223 rd Avenue
90	5.92	11	45-33-31.06 / 122-24-27.92	Middle of NW Sundial Road
174	1.12	78*	45-32-53.9 / 122-28-56.16	North parking lot of Tharco off of NE Sandy Blvd.
174	2.67	15*	45-32-3.78 / 122-28-50.05	Rear of Safeway store just off of NE Halsey Street
174	3.87	9*	45-31-25.44 / 122-28-42.64	Middle of street at 17932 NE Davis Street
		*Field strength varies d	ramatically with modulation (pattern minimum)	
270	2.06	540	45-33-29.83 / 122-30-37.43	West side of NE 148 th Ave at 5031 mailbox
270	4.15	190	45-33-29.83 / 122-32-14.201	Portland Fire Bureau training center driveway
270	6.82	125	45-33-29.83 / 122-34-16.97	East side of NE 89 th Avenue

All measurements were made with a Potomac Instruments FIM-41, serial number 1302 last calibrated on December 29, 2010.

All measurements were made by the undersigned.

James Boyd Boyd Broadcast Technical Services 21818 SW Columbia Circle Tualatin, OR 97062 (503) 703-8360

Item 8 Direct Measurement of Power - KKSN

Common point impedance measurements were made using a Hewlet-Packard 8753C network analyzer calibrated measurement system. The measurements were made at the phasor cabinet input jack adjacent to the common point current meter that is used to determine operating power. The impedance measured at this point was adjusted to a value of 50 +/- j0 for both the daytime and nighttime antenna patterns.

Item 9 Antenna Monitor and Sampling System - KKSN

The antenna monitor is a Gorman-Redlich model CMR. The sample loops are connected through equal lengths of ½ inch foam heliax solid outer conductor transmission lines (Andrew LDF-50A phase stabilized cable) to the antenna monitor. The three sample lines are routed to the towers such that they are subject to similar environmental conditions.

Item 10 Construction Permit Condition #3 - KKSN

KKSN, 910 kHz, Vancouver, WA, is operating from the same transmitter site as KFXX, 1080 kHz, Portland, OR. KFXX is operating pursuant to construction permit BP-20080717AAW and the provisions of 73.1615 with 12.5 kW daytime and 2.25 kW nighttime, non-directional both day and night. KKSN is operating according to the terms of Construction Permit File Number: BMP-20121213AAR. Measurements were made on October 8th, 2011 to observe any possible spurious emissions which might result from any interaction or intermodulation of the two stations. A Potomac Instruments FIM-41 Field Strength Meter was setup approximately 2.3 kM from the transmitter site. The spectrum from 540 kHz through 5 MHz was scanned for any signs of spurious emissions. In addition third-order intermodulation products were checked. An Agilent N9340B spectrum analyzer was used to check the possibility of 1080-910=170 kHz. The results of the investigation are listed below. At the conclusion of adjustment of the KFXX array, these measurements will be repeated and reported in the license application for KFXX.

170 kHz	No signal observed on Agilent N9340B Spectrum Analyzer
570	KVI Seattle is on this channelno interference observed
740	KXL on adjacent channel at 750 kHz. Sidebands preclude measurement of 740 kHz. No
	apparent interference to KXL.
910	KKSN 320 mV/m (Reference)
1080	KFXX 520 mV/m (Reference)
1250	0.016 mV/m 86 dB below KKSN and 90.2 dB below KFXX
1420	KBNP on adjacent channel at 1410 kHz. Sidebands preclude measurement of 1420 kHz. No
	apparent interference to KBNP.
1990	No signal observed
2560	No signal observed
2900	Less than 0.01 More than 90.1 dB below KKSN and more than 94.3 dB below KFXX.

3070	0.016 mV/m 86 dB below KKSN and 90.2 dB below KFXX
3410	No signal observed
4720	No signal observed
4890	No signal observed

No other spurious emissions were observed.

The FIM-41 used for these measurements is serial number 1302 and was last calibrated on December 29, 2010. All measurements were made by the undersigned.

JE+

James Boyd Boyd Broadcast Technical Services

Appendix A Certified Post Construction Array Geometry

ENTERCOM RADIO TOWERS NE MARINE DRIVE MULTNOMAH COUNTY, OREGON

THE DATA SHOWN HERE WAS DERIVED FROM A FIELD SURVEY PERFORMED 29, SEPT. 2011 AND IS BASED ON OREGON NAD 83/91.

	AZ = 90°00'00" TRUE				
A	252.965' (77.10 m) 252.965'	(77.10 m)			
TOWER	TOWER	TOWER			
	LATITUDE: 45°33'30"				
LONGITUDE: -122*29'01"					

Appendix B Construction Permit

United States of America FEDERAL COMMUNICATIONS COMMISSION AM BROADCAST STATION CONSTRUCTION PERMIT

Authorizing Official:

Official Mailing Address:

ENTERCOM PORTLAND LICENSE, LLC 401 CITY AVENUE, SUITE 809 BALA CYNWYD PA 19004

Facility Id: 35033

Call Sign: KKSN

Permit File Number: BMP-20101213AAR

Son Nguyen Supervisory Engineer Audio Division

Media Bureau

Grant Date: April 14, 2011

The authority granted herein has no effect on the expiration date of the underlying construction permit.

This permit modifies permit no.: BP-20080715ACS

Subject to the provisions of the Communications Act of 1934, as amended, subsequent acts and treaties, and all regulations heretofore or hereafter made by this Commission, and further subject to the conditions set forth in this permit, the permittee is hereby authorized to construct the radio transmitting apparatus herein described. Installation and adjustment of equipment not specifically set forth herein shall be in accordance with representations contained in the permittee's application for construction permit except for such modifications as are presently permitted, without application, by the Commission's Rules.

Commission rules which became effective on February 16, 1999, have a bearing on this construction permit. See Report & Order, Streamlining of Mass Media Applications, MM Docket No. 98-43, 13 FCC RCD 23056, Para. 77-90 (November 25, 1998); 63 Fed. Reg. 70039 (December 18, 1998). Pursuant to these rules, this construction permit will be subject to automatic forfeiture unless construction is complete and an application for license to cover is filed prior to expiration. See Section 73.3598.

Equipment and program tests shall be conducted only pursuant to Sections 73.1610 and 73.1620 of the Commission's Rules.

Hours of Operation: Unlimited

Average hours of sunrise and sunset: Local Standard Time (Non-Advanced)

Jan.	7:45 AM	4:45	PM	Jı	ıl. 4:30	AM	8:00	РМ
Feb.	7:15 AM	5:30	РМ	Au	ıg. 5:15	MA	7:15	РМ
Mar.	6:30 AM	6:15	ΡM	Se	ep. 5:45	MA	6:30	РМ
Apr.	5:30 AM	7:00	PM	00	ct. 6:30	MA	5:30	ΡM
May	4:45 AM	7:30	PM	No	ov. 7:15	AM	4:45	РМ
Jun.	4:15 AM	8:00	PM	De	ec. 7:45	AM	4:30	PM

Name of Perm	ittee: ENTER	COM PORTLAND LICENSE. LLC				
Station Locat	ion: VANCOU	VER, WA				
Enominant (ht	T_), 910					
Frequency (ki	12): 510					
Station Class	з: В					
Antenna Coord	inates:					
	Dav					
Latitude:	N 45 Deg	33 Min 30 Sec				
Longitude:	W 122 Deg	28 Min 57 Sec				
5	5					
	Night					
Latitude:	N 45 Deg	33 Min 30 Sec				
Longitude:	W 122 Deg	28 Min 57 Sec				
Transmitter(s 73.1670 of th): Type Acce e Commissior	epted. See Sections 73.1660, 73.1665 and i's Rules.				
Nominal Power	(kW):	Day: 3.3 Night: 4.3				
Antenna Mode:		Day: DA Night: DA				
(DA=Directional Antenna, ND=Non-directional Antenna; CH=Critical Hours)						
Antenna Regis	tration Numb	per(s):				
Day:						
Tower No.	ASRN	Overall Height (m)				
1	1263410					
2	1263413					
Night:						
Tower No.	ASRN	Overall Height (m)				
1	1263410					
2	1263412					
3	1263413					

DEDCRIFI.	ION OF DIK	CLIONAL A	MIENNA SIS	기대				
Theoretical RMS (mV/m/km) · Dav · 583.89 Night · 686								
Standard BMS ($mV/m/km$). Dev. (12.20 Night, 500 70								
Standard RMS (mv/m/km): Day: 613.38 Night: 720.72								
Augmented RMS (mV/m/km):								
Q Factor:	:	Da	ay:	Night:	:			
Theoret	ical Param	neters:						
Day Dir	ectional A	Antenna:						
Tower No. 1	Field Ratio 1.0000	Phasing (Deg.) 0.000	Spacing (Deg.)	Orientation (Deg.)	Tower Ref Switch *	Height (Deg.) 89 9		
2	0.3900	210.000	168.5000	90 000	ů O	89.9		
 * Tower Reference Switch 0 = Spacing and orientation from reference tower 1 = Spacing and orientation from previous tower 								
Theoret	ical Param	neters:						
Night D:	irectional	Antenna:						
Tower No. 1	Field Ratio 0.7000	Phasing (Deg.) -137.000	Spacing (Deg.) 0.0000	Orientation (Deg.) 0.000	Tower Ref Switch * 0	Height (Deg.) 89.9		
2	1.0000	0.000	84.3000	90.000	0	89.9		
3	0.6000	125.000	168.5000	90.000	0	89.9		
* Tower	Reference	Switch						

0 = Spacing and orientation from reference tower

1 = Spacing and orientation from previous tower

THAT THE DISCANCE LIETO SCIENACUS The inverse distance field strength at a distance of one kilometer from the above antenna in the directions specified shall not exceed the following values:

Day:

Azimuth:	Radiation:	
90	735.9	mV/m
190.5	326.8	mV/m
349.5	326.8	mV/m

326.8

Night:

Azimuth:	Radiation:	
6	38.4	mV/m
90	131.2	mV/m
174	38.4	mV/m

Special operating conditions or restrictions:

mV/m

1 The permittee must submit a proof of performance as set forth in either Section 73.151(a) or 73.151(c) of the rules before program tests are authorized. A proof of performance based on field strength measurements,

per Section 73.151(a), shall include a complete nondirectional proof of performance, in addition to a complete proof on the (day) and (night) directional antenna system. The nondirectional and directional field strength measurements must be made under similar environmental conditions. The proof(s) of performance submitted to the Commission must contain all of the data specified in Section 73.186 of the rules. Permittees who elect to submit a moment method proof of performance, as set forth in Section 73.151(c), must use series-fed radiators. In addition, the sampling system must be constructed as described in Section 73.151(c) (2) (i).

Permittee shall install a type accepted transmitter, or submit 2 application (FCC Form 301) along with data prescribed in Section 73.1660(b) should non-type accepted transmitter be proposed.

special operating conditions or restrictions:

- Before program tests are authorized, sufficient data shall be 3. submitted to show that adequate filters, traps and other equipment has been installed and adjusted to prevent interaction, intermodulation and/or generation of spurious radiation products which may be caused by common usage of the same antenna system by Stations KKSN, Vancouver, WA, 35033 and KFXX, Portland, OR, 57830, and there shall be filed with the license application copies of a firm agreement entered into by the two (2) stations involved clearly fixing the responsibility of each with regard to the installation and maintenance of such equipment. In addition, field observations shall be made to determine whether spurious emissions exist and any objectionable problems resulting therefrom shall be eliminated. Following construction, and prior to authorization of program test under this grant, Stations KKSN, Vancouver, WA, 35033 and KFXX, Portland, OR, 57830 shall each measure antenna or common point resistance and submit FCC Form 302 as application notifying the return to direct measurement of power.
- 4 Ground system consists of 120 equally spaced, buried, copper radials about the base of each tower, each 275 feet meters in length about towers #1 and #3 and 320 feet in length about tower #2 to compensate for loss of ground system at property boundaries, except where terminated by property boundaries or where intersecting radials are shortened and bonded to a transverse copper strap midway between adjacent towers.

*** END OF AUTHORIZATION ***

Agreement between KKSN(AM) and KFXX(AM) per CP Condition #3

KKSN(AM), Vancouver, WA Facility ID #35033 and KFXX(AM), Portland, OR Facility ID #57830 are both licensed to Entercom Portland License, LLC. The stations have construction permits to co-locate at a new transmitter site utilizing a new common antenna system. In response to special operating condition or restriction #3 on the KKSN(AM) Permit File #BMP-20101213AAR, the Licensee states that it is the sole responsible party for the installation and continued maintenance of adequate filters, traps and other equipment necessary to prevent interaction, intermodulation and/or the generation of spurious radiation products which may be caused by common usage of the same antenna system.