LAW OFFICES

MILLER AND NEELY, P. C.

SUITE 704 6900 WISCONSIN AVENUE BETHESDA, MD 20815

November 1, 2011

(301) 986-4160 FAX: (301) 986-4162

57

NUSERVINES

DUPLICATE

Received & Inspected

NOV 0 1 2011 FCC Mail Room

JERROLD D. MILLER JOHN S. NEELY*

*ADMITTED PA AND DC ONLY

Secretary Federal Communications Commission Washington, DC 20554

ATTN: Audio Division (AM)

RE: Form 302-AM Amendment WRDT(AM) Monroe, Michigan FAC: 25083 BMML-20110811ACK

Dear Madam Secretary:

Transmitted herewith in triplicate on behalf of Kimtron, Inc., is an amendment to the above-referenced application for broadcast license. This amendment is filed in reply to a letter from your Audio Division to the undersigned dated October 19, 2011, seeking supplemental information as needed to complete application processing.

Any questions concerning this matter should be addressed to the undersigned.

Sincerely John S. Neelv

encs.

XNO

BMML-20110811ACK November 2011 amendment

8. Does the applicant, or any party to the application, have a petition on file to migrate to the expanded band (1605-1705 kHz) or a permit or license either in the existing band or expanded band that is held in combination (pursuant to the 5 year holding period allowed) with the AM facility proposed to be modified herein?

If Yes, provide particulars as an Exhibit.

The APPLICANT hereby waives any claim to the use of any particular frequency or of the electromagnetic spectrum as against the regulatory power of the United States because use of the same, whether by license or otherwise, and requests and authorization in accordance with this application. (See Section 304 of the Communications Act of 1934, as amended).

The APPLICANT acknowledges that all the statements made in this application and attached exhibits are considered material representations and that all the exhibits are a material part hereof and are incorporated herein as set out in full in

CERTIFICATION

1. By checking Yes, the applicant certifies, that, in the case of an individual applicant, he or she is not subject to a denial of federal benefits that includes FCC benefits pursuant to Section 5301 of the Anti-Drug Abuse Act of 1988, 21 U.S.C. Section 862, or, in the case of a non-individual applicant (e.g., corporation, partnership or other unincorporated association), no party to the application is subject to a denial of federal benefits that includes FCC benefits pursuant to that section. For the definition of a "party" for these purposes, see 47 C.F.R. Section 1.2002(b).

2. I certify that the statements in this application are true, complete, and correct to the best of my knowledge and belief, and are made in good faith.

Name Donald B. Crawford	Signature	5-1
Title President		Telephone Number (215) 628-3500

WILLFUL FALSE STATEMENTS ON THIS FORM ARE PUNISHABLE BY FINE AND/OR IMPRISONMENT (U.S. CODE, TITLE 18, SECTION 1001), AND/OR REVOCATION OF ANY STATION LICENSE OR CONSTRUCTION

FCC NOTICE TO INDIVIDUALS REQUIRED BY THE PRIVACY ACT AND THE PAPERWORK REDUCTION ACT

The solicitation of personal information requested in this application is authorized by the Communications Act of 1934, as amended. The Commission will use the information provided in this form to determine whether grant of the application is in the public interest. In reaching that determination, or for law enforcement purposes, it may become necessary to refer personal information contained in this form to another government agency. In addition, all information provided in this form will be available for public inspection. If information requested on the form is not provided, the application may be returned without action having been taken upon it or its processing may be delayed while a request is made to provide the missing information. Your response is required to obtain the requested authorization.

Public reporting burden for this collection of information is estimated to average 639 hours and 53 minutes per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the burden, can be sent to the Federal Communications Commission. Records Management Branch, Paperwork Reduction Project (3060-0627), Washington, D. C. 20554 Do NOT send completed forms to this address.

THE FOREGOING NOTICE IS REQUIRED BY THE PRIVACY ACT OF 1974, P L. 93-579, DECEMBER 31, 1974, 5 U.S.C. 552a(e)(3), AND THE PAPERWORK REDUCTION ACT OF 1980, P.L. 96-511, DECEMBER 11, 1980, 44 U.S.C. 3507.

Exhibit	No.
N/A	

Yes

SECTION III - LICENSE APPLICATION ENGINEERIN	IC DATA
Name of Applicant	IG.DALA

WMUZ Radio, Inc.

PURPOSE OF AUTHORIZATION APPLIED FOR:	(check one)
---------------------------------------	-------------

· X	<u></u>
	Station

tion License

Direct Measurement of Power

1. Facilities aut	horized in construction permit					
Call Sign	File No. of Construction Permit		Hours of Operation	Power in kilowatts		
WRDT	(if applicable) N/A	(kHz) 560	Unlimited	Night 0.014	Day 0.500	
2. Station locati	on				0.500	
State			City or Town			
Michigan			Monroe			
3. Transmitter lo	ocation					
State	County		City or Town	Street address (or other identification) 5305 Vineyard Drive		
MI	Monroe		Monroe			
4. Main studio lo	cation					
State	County		City or Town	Street address		
MI	Wayne		Detroit	(or other identification) 12300 Radio Place		
5. Remote contro	ol point location (specify only if aut	horized directio	nal antenna)			
State	County		City or Town	Street address	······································	
MI	Wayne		Detroit	(or other identifica 12300 Radio Pla	ition) Ce	

6. Has type-approved stereo generating equipment been installed?	Yes X No
7. Does the sampling system meet the requirements of 47 C.F.R. Section 73.68?	X Yes No
	Not Applicable
Attach as an Exhibit a detailed description of the sampling system as installed.	Exhibit No. E-1

RF common point or anter modulation for night system	nna current (in ampere m 0.33 (1.67)	s) without	RF common production for		urrent (in amperes	s) without
Measured antenna or com operating frequency Night 190	mon point resistance (Day 50	in ohms) at	Measured ant operating freq Night +470	-	point reactance (in Day 0	n ohms) at
Antenna indications for dire	ectional operation					
Towers		Antenna monitor Phase reading(s) in degrees		onitor sample ratio(s)	Antenna base current	
1	Night	Day -1.5	Night	Day 1.024	Night	Day
2		0.0	· · · · · · · · · · · · · · · · · · ·	1.000		
3		-88.6		1.115		·····
4		-89.6		0.918		
						1997 - 1998 - 1 12 Martines
lanufacturer and type of ar	tenna monitor – Po	tomac Instrume				

SECTION III - Page 2

X

Series

BMML-20110811ACK November 2011 amendment

9. Description of antenna system ((f directional antenna is used, the information requested below should be given for each element of the array. Use separate sheets if necessary.) See Exhibit E-1 page 28.

Type Radiator	Overall height in meters of radiator above base insulator, or above base, if grounded.	Overall height in meters above ground (without obstruction lighting)	Overall height in meters above ground (include obstruction lighting)	If antenna is either top loaded or sectionalized, describe fully in an Exhibit.
See E-1	See E-1	See E-1	See E-1	Exhibit No. See E-1

Excitation

Γ

Geographic coordinates to nearest second. For directional antenna give coordinates of center of array. For single vertical radiator give tower location.

Shunt

	North Latitude	41	0	53	•	28	*	West Longitude	083	0	25	•	39	-	
_														1	

If not fully described above, attach as an Exhibit further details and dimensions including any other antenna mounted on tower and associated isolation circuits.

Also, if necessary for a complete description, attach as an Exhibit a sketch of the details and dimensions of ground system. On file - no change. Exhibit No.

Exhibit No.

See E-1

10. In what respect, if any, does the apparatus constructed differ from that described in the application for construction permit or in the permit?

11. Give reasons for the change in antenna or common point resistance.

No change in common point resistance - moment-method license application only.

I certify that I represent the applicant in the capacity indicated below and that I have examined the foregoing statement of technical information and that it is true to the best of my knowledge and belief.

Name (Please Print or Type)	Signature (check appropriate box below)
W.C. Alexander	Williaman
Address (include ZIP Code)	Date
2821 S. Parker Road	10/27/2011
Suite 1205	Telephone No. (Include Area Code)
Aurora, CO 80014	(303) 433-0104

x	Technical Director	·	Registered Professional Engineer
	Chief Operator		Technical Consultant

Other (specify)

EXHIBIT E-1

ŝ,

r. e

> AMENDMENT TO APPLICATION FOR LICENSE INFORMATION RADIO STATION WRDT MONROE, MICHIGAN

> > WMUZ Radio, Inc.

October 27, 2011

560 kHz 0.5 kW-D/0.014 kW-N DA-D

This engineering exhibit supports an amendment to an application for license for the existing daytime directional antenna system of radio station WRDT in Monroe, Michigan (FCC FID No. 25083, File No. BMML-20110811ACK) pursuant to the AM technical rules permitting moment-method modeling of eligible AM directional arrays. This amendment corrects an error in the tower 4 theoretical field ratio that in turn resulted in an error in the source voltages for the directional model. It also notes that the terminated sample line impedance measurements were made on the carrier frequency, a fact that was omitted in the original filing.

In the interest of keeping all the information together in one cohesive document, this amendment is filed as a complete application, essentially replacing the previous filing complete with technical showings and exhibits. The changes noted above are limited to the daytime directional antenna and circuit models, the terminated sample line impedance measurements (unchanged with the measurement frequency noted) and the reference field strength measurements. Model calibrations, sample system measurements and other elements are unchanged.

FCC Special Temporary Authority (BSTA-20110721AAI) was obtained on July 21, 2011 to permit operation with parameters at variance from the licensed values while making reference field measurements and performing other tasks relevant to moment-method modeling of the WRDT daytime array.

Information is provided herein showing that the directional antenna parameters for the day pattern authorized by the FCC have been determined in accordance with the requirements of 47 C.F.R. 73.151(c). The system has been adjusted to produce antenna monitor parameters within ± 5 percent in ratio and ± 3 degrees in phase of the modeled values, as required by the Rules. A modified station license is requested herewith specifying the new night operating parameters.

Tower base impedance measurements were made at the final J-plugs within the WRDT ATUs using a Delta Electronics OIB-1 impedance bridge. Downstream of the final J-plug at the ATU output at each tower there is only a piece of feed tubing connecting the ATU output and the tower base. The other WRDT towers were all open-circuited at the output J-plugs.

Expert MININEC Broadcast Professional (version 14.5) was used to model the WRDT night array.

A lumped load with a reactance of -j10,000 ohms was modeled at the base of the other WRDT towers to simulate an open circuit at each tower base.

The WRDT tower heights were adjusted in the model in order to achieve calibration of the model with the measured base impedances. All modeled tower heights were within 75 to 125 percent of the physical tower height as required by the FCC Rules.

All the WRDT towers employ 21 electrical degrees of top-loading. This top-loading is achieved by means of the segments of the top guy wires closest to the towers, which are electrically bonded to the towers. The ends of the top-load segments are connected together in "spider-web" fashion. Top-load wires were modeled at their full electrical lengths and at the actual radius of the wires employed.

The nominal modeled radius for each WRDT tower was 0.2911 meters, which amounts to 100% of the physical radius of the tower as determined by the formula $3T/2\pi$, where T is the tower face width in meters. The WRDT radiators are uniform cross-section triangular towers and have face widths of 0.6097 meters.

Three of the WRDT towers support STL/ICR antennas near the top. Towers 1 and 3 each support a 72-inch parabolic dish antenna at the 121.9-meter level; tower 2 supports a 120-inch parabolic dish at the 121.9 meter level. The top segment of the tower 1, 2 and 3 models was increased in radius to compensate for the aperture of the STL antennas. Isocouplers are in place on towers 2 and 3; the parabolic dish antenna on tower 1 is unused and no isocoupler is in place.

As noted above, each WRDT tower is fed with a length of copper tubing that exhibits a small amount of series inductive reactance, depending on the length. This tubing connects to each tower immediately above the base insulator.

A circuit model was constructed for each tower using the assumed series feed tubing and shunt base region reactances. This model was used with WCAP Professional version 1.1.02 to determine the effects of these reactances on the ATU output impedance at each tower. In each of the WCAP tabulations, node 2 represents the ATU output reference point and node 3 represents the tower base as shown on the circuit model schematic provided with each tabulation. Node 0 represents ground potential. The ATU output impedances can be found in the "TO IMPEDANCE" column of each WCAP tabulation, following the phantom 1.0 ohm resistor inserted in the model to provide a calculation point for the impedance. The complex base impedance of each tower from the moment method model is represented in each case by the complex load from node 3 to ground. A value of 50 pF was assumed for the base insulator. The WCAP circuit model tabulation immediately follows the model for each tower.

§73.151(c)(1)(vii) permits the use of a lumped series inductance of 10 uH or less between the output port of each antenna tuning unit and the associated tower. In each case, the value of lumped series inductance was below this 10 uH limit.

The modeled and measured impedances at the ATU output J-plugs with the other towers opencircuited at their ATU output J-plugs agree within ± 2 ohms and ± 4 percent as required by the FCC rules.

ę

In the table below, the top and bottom values in the "Shunt C pF" column represent the shunt capacitances of the base insulator and isocoupler, respectively. The top and bottom values in the "Model Radius (m)" and "% Phys. Rad." columns represent for towers 1, 2 and 3 the radius values and percentages for the bottom 19 segments and the top segment respectively.

[[Series	Shunt	Phys.	Model	%	Model	%
	Z _{BASE}	ZATU	ZATU	L	C	Height	Height	Phys.	Radius	Phys.
Twr.	(Modeled)	(Modeled)	(Measured)	(uH)	pF	(deg.)	(deg.)	Height	(m)	Rad.
1									0.2911	100.0
	63.9+j167.2	67.8 +j179.2	68.0 +j179.2	2.20	50	84.0	79.80	95.0	0.4852	100.0
2					50				0.2911	100.0
	83.4 +j211.8	105.5 +j268.2	105.0 +j274.4	9.95	100	84.0	85.0	101.2	0.6793	100.0
3					50				0.2911	100.0
	62.6 +j164.7	75.0+j200.7	75.0 +j201.0	6.55	100	84.0	79.5	94.6	0.4852	100.0
4										
	75.3 +j194.3	80.7 +j203.6	81.0 +j196.6	1.00	50	84.0	83.0	98.8	0.2911	100.0

Table 1 - Analysis of Tower Impedance Measurements to Verify Moment Method Model

WRDT Calibration Model Tower 1 driven, all others floated

e e

> GEOMETRY Wire coordinates in degrees; other dimensions in meters Environment: perfect ground

wire 1	cap: none		Angle O	Z 0	radius .2911	segs 19
2	none	0 = 0 0	0 0 0	75.81 75.81 79.8	.4852	1
3	none	e 0 11.761	0 89.001	79.8	.0095	5
4	none	e 0 11.761	0 208.999	79.8 62.402	.0095	5
5	none	e 0 11.761	0 329.	79.8 62.402	.0095	5
6	none	e 11.761 11.761	89.001 208.999	62.402 62.402	.0095	5
7	none	e 11.761 11.761	208.999 329.	62.402 62.402	.0095	5
8	none	e 11.761 11.761	329. 89.001	62.402 62.402	.0095	5
9	none	202. 202.	283. 283.	0 80.75	.2911	19
10		202.	283. 283.	80.75 85.	.6793	1
11		202. 202.748	283. 286.313	85. 67.578	.019	5
12		202. 191.726	283. 281.355	85. 67.578	.019	5
13		202. 212.034	283. 281.321	85. 67.578	.019	5
14		202.748 191.726	286.313 281.355	67.578 67.578	.0095	5
15		191.726 212.034	281.355 281.321	67.578 67.578	.0095	5
16		212.034 202.748	281.321 286.313	67.578 67.578	.0095	5
17		221.1 221.1	307. 307.	0 75.525	.2911	19
18		221.1 221.1	307. 307.	75.525 79.5	.4852	1
19		221.1 226.904	307. 309 <i>.</i> 638	79.5 62.102	.0095	5
20		221.1 209.389	307. 306.904	79.5 62.102	.0095	5
21		221.1 227.59	307. 304.503	79.5 62.102	.0095	5
22		226.904 209.389	309.638 306.904	62.102 62.102	.0095	5
23		209.389 227.59	306.904 304.503	62.102 62.102	.0095	5
24		227.59 226.904	304.503 309.638	62.102 62.102	.0095	5
25	none	90. 90.	13. 13.	0 83.	.2911	20

Page 4 of 31

26	none		13		83.		0095	5
		91.568		.339	65.578			
27	none		13		83.	•	0095	5
		79.628	9.	299	65.578			
28	none	90.	13		83.		0095	5
		99.936	9.	238	65.578			
29	none	91.568	20	.339	65.578	. (095	5
		79.628	9.	299	65.578			
30	none	79.628	9.	299	65.578		0095	5
		99.936	9.3	238	65.578			-
31	none	99.936	9.	238	65.578	_	0095	5
		91.568	20	.339	65.578	·		J.
Numb	er of w c	vires Surrent nod	= es =	31 212				
			mir	nimum		ma	iximum	
	vidual		wire	value		wire	e value	
segm	ent len	gth	18	3.975		9	4.25	
radi	us		3	9.5E-0	03	10	.6793	
no. 1	freque lowest 560.	-	p	no. o step: 1		num	h (wavele maximum .01180	n
Sourd	res							
	ce node	sector	magr	itude	phase		tuno	
1	1	1	1.	i cuuc	0		type voltage	
~	+	1	±•		0		vortage	
umpe	ed load	S						
		resistan	ce	reactance	e ind	uctance	capacita	nce passive
oad	node	(ohms)		(ohms)	(mH	()	(uF)	circuit
1	54	0		-10,000.	0		0	0
2	107	0		-10,000.	0		0	õ
3	107						-	
5	160	0		-10,000.	0		0	0
MPED no req KHz)	160 DANCE prmaliza res (of	0 ation = 50. sist reac nms) (ohm	ct ns)	-10,000. imped (ohms)	0 phase (deg)	VSWR	0 S11 dB	
MPED no Treq (KHz) (Ourc	160 DANCE prmaliza res (of	0 ation = 50. sist read	ct ns) sector	-10,000. imped (ohms) 1	phase (deg)		S11 dB	0 S12 dB
IMPED no Treq (KHz)	160 DANCE prmaliza res (of	0 ation = 50. sist reac nms) (ohm	ct ns) sector	-10,000. imped (ohms) 1	phase	VSWR 10.713	S11	0 S12 dB

Page 5 of 31

WCAP - WRDT Tower 1 Calibration

WCAP OUTPUT AT FREQUENCY: 0.560 MHz

NODE VOLTAGES

k r

Node:	1	191.9826 4	68.9928° V
Node:	2	191.6264 4	69.2720° V
Node:	3	184.4069 4	68.4207° V

	WCAP PART		BRANC	H VOLTAGE	BRANCH	CURRENT
R	1-2	1.00000000	1.00 4	0.000° V	1.00 4	0.000° A
L	2-+3	2.20000000	7.74 4	90.000° V	1.00 4	0.000° A
С	3-+0	0.00005000	184.41 4	68.421° V	0.03 4	158.421° A
R	3→0	63.90000000	184.41 4	68.421° V	1.03 4	-0.664° A
	WCAP PART		FROM IMPEDANCE TO IMPEDANCE			DANCE
R	12	1.00000000	68.82 +	j 179.223	67 102	119 123
L	23	2.2000000	67.82 +	j 179.223	67.82 + j	171.482
С	3-0	0.00005000	0.00 -	j 5684.105	0.00 + j	0.000
R	3-0	63.90000000	63.90 +	j 167.200	0.00 + j	0.000
WCA	AP INPUT DAT	CA:				
	0.5600	0.0000000	0			
1	1.000	00000 0 1	0.000	0000		

		~	~	0.00000000
R	1.00000000	1	2	0.00000000
L	2.20000000	2	3	0.00000000
C	0.00005000	3	0	
P.	63.9000000	3	0	167.20000000

WRDT Calibration Model Tower 2 driven, all others floated

GEOMETRY Wire coordinates in degrees; other dimensions in meters Environment: perfect ground ,

wire 1	caps none		Angle 0	Z O	radius .2911	segs 19
2	none	0	0 0 0	75.81 75.81 79.8	.4852	1
3	none	0 11.761	0 89.001	79.8 62.402	.0095	5
4	none		0 208.999	79.8 62.402	.0095	5
5	none		0 329.	79.8 62.402	.0095	5
6	none	11.761 11.761	89.001 208.999	62.402 62.402	.0095	5
7	none	11.761 11.761	208.999	62.402 62.402	.0095	5
8	none	11.761 11.761	329. 89.001	62.402 62.402	.0095	5
9	none	202. 202.	283. 283.	0 80.75	.2911	19
10	none	202. 202.	283. 283.	80.75	.6793	1
11	none		283. 286.313	85. 67.578	.019	5
12	none		283. 281.355	85. 67.578	.019	5
13	none	202. 212.034	283. 281.321	85. 67.578	.019	5
14	none	202.748 191.726	286.313 281.355	67.578 67.578	.0095	5
15	none	191.726 212.034	281.355 281.321	67.578 67.578	.0095	5
16	none	212.034 202.748	281.321 286.313	67.578 67.578	.0095	5
17	none	221.1 221.1	307. 307.	0 75.525	.2911	19
18	none	221.1 221.1	307. 307.	75.525 79.5	.4852	1
19		221.1 226.904	307. 309.638	79.5 62.102	.0095	5
20		221.1 209.389	307. 306.904	79.5 62.102	.0095	5
21		221.1 227.59	307. 304.503	79.5 62.102	.0095	5
22		226.904 209.389	309.638 306.904	62.102 62.102	.0095	5
23		209.389 227.59	306.904 304.503	62.102 62.102	.0095	5
24	none	227.59 226.904	304.503 309.638	62.102 62.102	.0095	5
25	none	90. 90.	13. 13.	0 83.	.2911	20
26	none		13.		.0095	5

Page 7 of 31

		91.568	20.339	65.578			
27	none		13.	83.	. 0	095	5
		79.628	9.299	65.578			U U
28	none	90.	13.	83.	.0	095	5
		99.936	9.238	65.578			
29	none	91.568	20.339	65.578	.0	095	5
		79.628	9.299	65.578			
30	none	79.628	9.299	65.578	.0	095	5
		99.936	9.238	65.578			
31	none	99.936	9.238	65.578	.0	095	5
		91.568	20.339	65.578			
	~						
Numbe	r of v		= 31				
	C	current node	s = 212				
India	idual	wires	minimum wire value			ximum	
	nt ler		18 3.975		wire 9	value 4.25	
radiu		igui	3 9.5E-		9 10	4.25	
Luuru.	5		5 9.JE-	03	10	.0793	
ELECTI	RTCAL	DESCRIPTION	r				
		(KHz)					
-	freque		no.	of seamen	t length	n (wavele	naths
	lowest	-				maximum	-
1 3	560.	0	1	.01104		.011805	
							-
Source	es						
source	e node	sector	magnitude	phase		type	
1	54	1	1.	Ō		voltage	
						5	
Lumpeo	d load	S					
		resistanc	e reactanc	e indu	ctance	capacita	nce passive
load	node	(ohms)	(ohms)	(mH)		(uF)	circuit
1	1	0	-10,000.	0		0	0
2	107	0	-10,000.	0		0	0
3	160	0	-10,000.	0		0	0
IMPEDA	NCE						
nor	maliz	ation = 50 .					
freq	re	sist reac	t imped		VSWR	S11	S12
(KHz)		hms) (ohm		(deg)		dB	dB
source	e = 1	; node 54,	sector 1				
560.			227.66	68.5	12.951	-1.344	-5.7485

ار م، ور -

WCAP - WRDT Tower 2 Calibration

.

WCAP OUTPUT AT FREQUENCY: 0.560 MHz

 NODE
 VOLTAGES

 Node:
 1
 288.5916 **4** 68.3537° V

 Node:
 2
 288.2242 **4** 68.5385° V

 Node:
 3
 255.9625 **4** 65.6700° V

	WCAP PART		BRANCH	VOLTAGE	BRANCH	CURRENT
R	1-2	1.00000000	1.00 4	0.000° V	1.00 4	0.000° A
L	2-+3	9.95000000	35.01 4	90.000° V	1.00 4	0.000° A
С	3→0	0.00005000	255.96 4	65.670° V	0.05 4	155.670° A
С	3-+0	0.00010000	255.96 4	65.670° V	0.09 4	155.670° A
R	3→0	83.40000000	255.96 4	65.670° V	1.12 4	-2.837° A

	WCAP PART		FROM IMP	EDANCE	TO IMPEDANCE		
R	1-2	1.00000000	106.45 + j	268.240	100100 - 1	178 115	
L	2-3	9.95000000	105.45 + j	268.240	105.45 + j	233.230	
C	3→0	0.00005000	-0.00 - j	5684.105	0.00 + j	0.000	
С	3-+0	0.00010000	-0.00 - j	2842.053	0.00 + j	0.000	
R	3→0	83.40000000	83.40 + j	211.800	0.00 + j	0.000	

WCAP	INPUT DATA:				
	0.5600	0.0000	00000	0	
I	1.000000	00 00	1	0.0000000	
R	1.000000	00 1	2	0.00000000	
L	9.950000	00 2	3	0.00000000	
C	0.000050	00 3	0		
С	0.000100	00 3	0		
P.	83.400000	00 3	0	211.80000000	

WRDT Calibration Model Tower 3 driven, all others floated

ł

•

GEOMETRY Wire coordinates in degrees; other dimensions in meters Environment: perfect ground

		Distant		_		
wire	-	Distance	Angle	Z	radius	segs
1	none		0	0	.2911	19
		0	0	75.81		
2	none		0	75.81	.4852	1
		0	0	79.8		
3	none		0	79.8	.0095	5
		11.761	89.001	62.402		
4	none	0	0	79.8	.0095	5
		11.761	208.999	62.402		
5	none	0	0	79.8	.0095	5
		11.761	329.	62.402		
6	none	11.761	89.001	62.402	.0095	5
		11.761	208.999	62.402		-
7	none	11.761	208.999	62.402	.0095	5
		11.761	329.	62.402		0
8	none	11.761	329.	62.402	.0095	5
•		11.761	89.001	62.402	.0000	5
9	none		283.	02.402	.2911	19
2	none	202.	283.	80.75	.2911	19
10	none		283.		C700	-
10	none	202.		80.75	.6793	1
1 1			283.	85.		_
11	none		283.	85.	.019	5
1.0		202.748	286.313	67.578		
12	none		283.	85.	.019	5
		191.726	281.355	67.578		
13	none		283.	85.	.019	5
		212.034	281.321	67.578		
14	none	202.748	286.313	67.578	.0095	5
		191.726	281.355	67.578		
15	none	191.726	281.355	67.578	.0095	5
		212.034	281.321	67.578		
16	none	212.034	281.321	67.578	.0095	5
		202.748	286.313	67.578		
17	none	221.1	307.	0	.2911	19
		221.1	307.	75.525		
18	none	221.1	307.	75.525	.4852	1
		221.1	307.	79.5	11000	-
19	none	221.1	307.	79.5	.0095	5
		226.904	309.638	62.102	.0000	5
20	none		307.	79.5	.0095	5
20		209.389	306.904	62.102	.0095	J
21		221.1	307.	79.5	0005	-
<u> </u>		227.59	304.503		.0095	5
22		226.904		62.102	0005	~
<u> </u>			309.638	62.102	.0095	5
0.0		209.389	306.904	62.102		
23		209.389	306.904	62.102	.0095	5
~ .		227.59	304.503	62.102		
24		227.59	304.503	62.102	.0095	5
		226.904	309.638	62.102		
25	none		13.	0	.2911	20
		90.	13.	83.		
26	none	90.	13.	83.	.0095	5

Page 10 of 31

		91.568	20.339	65.578		
27	none		13.	83.	.0095	5
		79.628	9.299	65.578		-
28	none	90.	13.	83.	.0095	5
		99.936	9.238	65.578		
29		91.568	20.339	65.578	.0095	5
2.0		79.628	9.299	65.578		
30		79.628	9.299	65.578	.0095	5
31		99.936	9.238	65.578		_
21		99.936 91.568	9.238	65.578	.0095	5
		91.300	20.339	65.578		
Numbe	rofw	ires	= 31			
		urrent nod				
			minimum		maximum	
	idual		wire value	2	wire value	
-	nt len	gth	18 3.975		9 4.25	
radius	5		3 9.5E-	03	10 .6793	
DI DODI			-			
		DESCRIPTIO	N			
	encies freque					
	Lowest	ster	no. D step		length (wavel maximu	-
	560.	0	j step 1	.011041		
~ `		0	Ŧ	.011041	, .01100	50
Source	es					
source	e node	sector	magnitude	phase	type	
1	107	1	1.	Ō	voltage	
					5	
Lumped	l loads	5				
_		resistanc	ce reactanc	e induc		ance passive
load	node	(ohms)	(ohms)	(mH)	(uF)	circuít
1	1	0	-10,000.	0	0	0
2	54	0	-10,000.	0	0	0
3	160	0	-10,000.	0	0	0
IMPEDA		ation = 50 .				
freq		sist read		phase V	SWR S11	S12
(KHz)		ums) (ohm	T	(deg)	dB	dB
source						
	- 1;	node 107.	SCCLOT T			
560.		- node 107,		69.2 10).631 -1.639	-5.0259

WCAP - WRDT Tower 3 Calibration

WCAP OUTPUT AT FREQUENCY: 0.560 MHz

NODE VOLTAGES

NODE VO	OLING	ES			
Node:	1	214.6159	4	69.2637°	v
Node:	2	214.2639	4	69.5138°	v
Node:	3	192.8435	4	67.1166°	V

	WCAP PART		BRANCH	VOLTAGE	BRANCH CURRENT
R	1-2	1.00000000	1.00 \$	0.000° V	1.00 4 0.000° A
Ľ	2-+3	6.55000000	23.05 4	90.000° V	1.00 ≰ 0.000° A
С	3-0	0.00005000	192.84 4	67.117° V	0.03 4 157.117° A
С	3→0	0.00010000	192.84 4	67.117° V	0.07 4 157.117° A
R	3-0	62.60000000	192.84 4	67.117° V	1.09 4 -2.072° A
	WCAP PART		FROM IMPEDANCE		TO IMPEDANCE
R	1→2	1.00000000	75.99 + j	200.713	مىيەر بەر يەر يەر ب

R	1-2	1.00000000	75.99 + j	200.713		n ngagaga sana ka mita. K
\mathbf{L}	2-3	6.55000000	74.99 + j	200.713	74.99 + j	177.666
С	30	0.00005000	0.00 - j	5684.105	0.00 + j	0.000
C	3-+0	0.00010000	0.00 - j	2842.053	0.00 + j	0.000
R	3-+0	62.60000000	62.60 + j	164.700	0.00 + j	0.000

WCAP	INPUT DATA:			
	0.5600	0.0000	0000	0
I	1.0000000	0 0	1	0.00000000
P.	1.0000000	0 1	2	0.0000000
L	6.5500000	0 2	3	0.00000000
C	0.0000500	0 3	0	
Ç	0.0001000	0 3	0	
R	62.6000000	03	0	164.70000000

WRDT Calibration Model Tower 4 driven, all others floated

\$

GEOMETRY Wire coordinates in degrees; other dimensions in meters Environment: perfect ground

wire 1	caps none	Distance 0	Angle 0	Z O	radius .2911	segs 19
		0	0	75.81	. 2911	17
2	none	0 0	0	75.81 79.8	.4852	1
3	none	0 11.761	0 89.001	79.8 62.402	.0095	5
4	none		0 208.999	79.8 62.402	.0095	5
5	none		0 329.	79.8 62.402	.0095	5
6	none	11.761 11.761	89.001 208.999	62.402 62.402	.0095	5
7	none	11.761 11.761	208.999 329.	62.402 62.402	.0095	5
8	none	11.761 11.761	329. 89.001	62.402 62.402	.0095	5
9	none		283. 283.	0 80.75	.2911	19
10	none		283. 283.	80.75 85.	.6793	1
11	none		283. 286.313	85. 67.578	.019	5
12	none		283. 281.355	85. 67.578	.019	5
13	none		283. 281.321	85.	.019	5
14	none	202.748	286.313 281.355	67.578 67.578	.0095	5
15	none	191.726 212.034	281.355 281.321	67.578 67.578	.0095	5
16	none	212.034 202.748	281.321 286.313	67.578 67.578	.0095	5
17		221.1	307. 307.	0 75.525	.2911	19
18	none	221.1 221.1	307. 307.	75.525 79.5	.4852	1
19	none	221.1 226.904	307. 309.638	79.5	.0095	5
20	none		307. 306.904	79.5 62.102	.0095	5
21	none	221.1 227.59	307. 304.503	79.5 62.102	.0095	5
22	none	226.904 209.389	309.638 306.904	62.102 62.102	.0095	5
23	none	209.389 227.59	306.904 304.503	62.102 62.102	.0095	5
24	none	227.59 226.904	304.503 309.638	62.102 62.102 62.102	.0095	5
25	none		13.		.2911	20
26	none		13.		.0095	5

Page 13 of 31

		91.568	20.339	65.578			
27	none		13.	83.	.0	095	5
28	none	79.628 90.	9.299 13.	65.578 83.	.00	095	5
		99.936	9.238	65.578			-
29	none	91.568 79.628	20.339 9.299	65.578 65.578	.00	095	5
30	none	79.628	9.299	65.578	.00	095	5
21		99.936	9.238	65.578			_
31	none	99.936 91.568	9.238 20.339	65.578 65.578	.00	095	5
Numbe	rofu	iroc	= 31				
Nullide:		urrent node					
			minimum			ximum	
Indivi	idual	wires	wire value	e	wire		
segmer		lgth	18 3.97		9	4.25	
radius	3		3 9.5E-	-03	10	.6793	
		DESCRIPTION	1				
	reque	(KHz)	no.	of common	+ longth	(*********	n art h a \
	lowest	-		-	-	n (wavele maximum	
	560.	0	1	.01104		.011805	
Source	<u>, c</u>						
source		sector	magnitude	phase		type	
1	160	1	1.	0		voltage	
Lumped	l load	S					
		resistanc	e reactand	e induc	ctance	capacita	nce passive
load	node	(ohms)	(ohms)	(mH)		(uF)	circuit
1	1	0	-10,000.			0	0
2	54	0	-10,000.			0	0
3	107	0	-10,000.	0		0	0
IMPEDA		ation - FO					
nor freq		ation = 50. sist reac		phage t	TOLIT	C11	G1 0
(KHz)		hms) (ohm	T T	phase V (deg)		S11 dB	S12 dB
source	•	; node 160,		(uey)		ωD	ub
560.		270 194.		68.8 1	2.118 -	-1.4369	-5.5024

194.30000000

.

Derivation of Operating Parameters for Daytime Directional Antenna

Once calibrated against the measured individual open-circuited base impedances, the moment method model was utilized for day directional antenna calculations. Two sets of calculations were run as described below. These calculations were made to determine the complex voltage source values to be applied at ground level for each driven tower of the array to produce the current moment sums for the towers which, when normalized to the reference tower, equate to the theoretical field parameters of the authorized directional pattern, normalized to a tower 2 reference. These voltage sources were then applied in the model and the tower currents were calculated.

Twenty (20) total segments were used for each tower. The WRDT towers are base sampled, which is permitted for towers of 120 electrical degrees or less. As such, the first (ground) segment of each tower was used to determine the model operating parameters of the array.

A circuit model was constructed to determine the effect of the series feed inductance and the shunt base region capacitance on the ATU output current. The circuit model for each tower is the same circuit model used for model verification above, substituting the directional mode model-predicted operating impedance for each tower. Again, this model was used with WCAP Professional version 1.1.02. The results are tabulated in the table below along with the base operating parameters for the day array.

Twr.	Node	Current Magnitude (amperes)	Current Phase (degrees)	WCAP Current Offset for Unity I _{BASE}	WCAP Phase Offset for Unity Ø _{BASE} (degrees)	Antenna Monitor Ratio	Antenna Monitor Phase (degrees)
1	1	2.1835	+0.3	0.977	+0.032	1.024	-1.5
2	54	2.3073	+1.3	0.900	+0.533	1.000	0.0
3	107	2.5412	+270.5	0.913	+2.758	1.115	-88.6
4	160	1.9709	+271.3	0.969	+0.973	0.918	-89.6

WRDT Daytime Directional Model

GEOMETRY

Wire coordinates in degrees; other dimensions in meters Environment: perfect ground

wire 1	caps none	Distance 0	Angle O	Z 0	radius .2911	segs 19
		0	0	75.81		
2	none	0	0	75.81	.4852	1
		0	0	79.8		
3	none		0	79.8	.0095	5
		11.761	89.001	62.402		_
4	none		0	79.8	.0095	5
5	none	11.761	208.999 0	62.402 79.8	0005	5
5	none	11.761	329.	62.402	.0095	5
6	none	11.761	89.001	62.402	.0095	5
Ŭ	mome	11.761	208.999	62.402	.0055	5
7	none	11.761	208.999	62.402	.0095	5
		11.761	329.	62.402		Ũ
8	none	11.761	329.	62.402	.0095	5
		11.761	89.001	62.402		
9	none	202.	283.	0	.2911	19
		202.	283.	80.75		
10	none		283.	80.75	.6793	1
		202.	283.	85.		
11	none		283.	85.	.019	5
10		202.748	286.313	67.578	01.0	-
12	none	202. 191.726	283.	85.	.019	5
13	none		281.355 283.	67.578 85.	.019	5
10	none	212.034	281.321	67.578	.019	5
14	none	202.748	286.313	67.578	.0095	5
	mome	191.726	281.355	67.578	.0055	5
15	none	191.726	281.355	67.578	.0095	5
		212.034	281.321	67.578		-
16	none	212.034	281.321	67.578	.0095	5
		202.748	286.313	67.578		
17	none	221.1	307.	0	.2911	19
		221.1	307.	75.525		
18	none	221.1	307.	75.525	.4852	1
		221.1	307.	79.5		
19		221.1	307.	79.5	.0095	5
20		226.904	309.638	62.102	0005	c
20		221.1 209.389	307.	79.5	.0095	5
21		209.389	306.904 307.	62.102 79.5	.0095	5
<u> </u>		227.59	304.503	62.102	.0095	5
22		226.904	309.638	62.102	.0095	5
		209.389	306.904	62.102	.0050	5
23		209.389	306.904	62.102	.0095	5
		227.59	304.503	62.102		
24	none	227.59	304.503	62.102	.0095	5
		226.904	309.638	62.102		
25	none		13.	0	.2911	20
_		90.	13.	83.		
26	none		13.	83.	.0095	5
07		91.568	20.339	65.578	0005	-
27	none	90.	13.		.0095	5
			D	17 - 621		

Page 17 of 31

7	9.628	9.299	65.578			
28 none 9	Ο.	13.	83.		0095	5
29 none 9		9.238 20.339	65.578 65.578		0095	5
30 none 7		9.299 9.299	65.578 65.578	•	0095	5
31 none 9		9.238 9.238	65.578 65.578		0095	5
9:	.568	20.339	65.578			
Number of wi: cu	res rrent node	= 31 = 212				
		minimum			aximum	
Individual w		wire val		wire		
segment lengt radius	-11	18 3.9° 3 9.51	75 E-03	10		
Tautus		3 9.01	2-03	10	.6793	
ELECTRICAL DE	SCRIPTION	I				
Frequencies						
frequenc	чy				ch (wavel	
no. lowest	step		eps minim		maximu	
1 560.	0	1	.0110	417	.01180	56
Sources						
source node	sector	magnitude	phase		type	
1 1	1	316.204	89.		voltage	
2 54	1	423.225	86.3		voltage	
3 107 4 160	1 1	476.571	334.1		voltage	
4 160	Ţ	402.956	334.1		voltage	
IMPEDANCE						
normalizat						
freq resi		Ŧ	phase	VSWR	S11	S12
(KHz) (ohm			(deg)		dB	dB
source = 1; 560. 3.13			88.8	149.86	11592	-15.794
source = 2;						
560. 15.9			85.	45.338	38322	-10.734
source = 3; 560. 83.1			63.7	8.9472	-1.9497	-4.4165
source = 4; 560. 93.4			62.8	9.3705	-1.861	-4.5778

÷ .

CURRENT peak Frequency = 560 KHz Input power = 500. watts Efficiency = 100. $\frac{6}{3}$

coordinates in degrees current mag phase real imaginary no. Х Y Z (amps) (deg) (amps) (amps) 1.20352 GND 0 0 0 .0106534 ~ 2.18351 2 0 0 3.99 2.31082 .2 2.3108 8.44E-03 3 0 0 7.98 2.38798 .2 2.38797 6.89E-03 4 0 0 11.97 2.44548 .1 2.44547 5.51E-03 5 0 0 15.96 2.48739 .1 2.48739 4.23E-03 6 0 0 19.95 2.5155 2.5155 .1 3.02E-03 7 0 0 23.94 2.5308 0.0 2.5308 1.88E-03 8 0 0 27.93 2.53402 0.0 2.53402 8.04E-04 9 0 0 31.92 360. 2.5258 2.5258 -2.01E-04 10 0 0 35.91 2.50683 360. 2.50683 -1.13E-03 11 0 0 39.9 2.478 360. 2.478 -1.98E-03 12 0 0 359.9 2.44047 43.89 2.44047 -2.73E-03 13 0 0 47.88 2.39602 359.9 2.39602 -3.39E-03 14 0 0 51.87 2.34747 359.9 2.34747 -3.92E-03 15 0 0 55.86 359.9 2.29953 2.29953 -4.33E-03 16 0 0 2.25928 59.85 2.25929 359.9 -4.59E-03 17 0 0 63.84 2.22725 359.9 2.22724 -4.71E-03 18 0 0 67.83 359.9 2.18444 2.18445 -4.66E-03 19 0 0 71.82 2.12488 359.9 2.12487 -4.44E-03 END 0 0 75.81 2.05556 359.9 2.05556 -4.07E-03 2J1 0 0 75.81 2.05556 359.9 2.05556 -4.07E-03 END 0 0 79.8 1.96182 359.9 1.96182 -3.4E-03 2J2 0 0 79.8 .660266 359.7 .660254 -4.E-03 359.7 22 .0410104 -2.35184 76.3204 .613206 .613195 -3.66E-03 23 .0820208 -4.70368 72.8408 .550284 359.7 .550274 -3.28E-03 24 .123031 -7.05553 69.3612 .481531 359.6 .481522 -2.96E-03 25 .164042 -9.40737 65.8816 .410426 359.6 .410417 -2.7E-03 END .205052 -11.7592 62.402 .34242 359.6 .342411 -2.52E-03 2J2 0 79.8 0 .662111 .1 .662109 1.68E-03 27 -2.0573 76.3204 1.14033 .615124 .2 .61512 2.18E-03 .3 28 -4.1146 2.28067 72.8408 .55238 .552372 2.95E-03 29 -6.1719 3.421 69.3612 .5 .483902 .483886 3.89E-03 30 -8.2292 4.56133 65.8816 .413155 .7 .413125 4.95E-03 END -10.2865 5.70166 62.402 .34557 1. .345517 6.05E-03 2J2 .639459 0 0 79.8 359.9 .639458 -1.08E-03 32 2.01623 1.21147 76.3204 .592279 359.9 .592278 -9.46E-04 33 4.03246 2.42295 72.8408 .529041 359.9 .52904 -1.12E-03 6.04869 34 3.63442 69.3612 .459766 359.8 .459763 -1.64E-03 35 8.06492 4.84589 65.8816 .387912 359.6 .387904 -2.51E-03 END 10.0811 6.05736 62.402 .318946 359.3 .318925 -3.64E-03 2J3 .205052 -11.7592 62.402 .165464 358.2 .165383 -5.16E-03 37 .100452 357.2 -1.89326 -8.26704 62.402 -4.88E-03 .100333 38 -4.77486 -3.99157 62.402 .0325538 352.3 .0322613 -4.35E-03 39 -6.08988 .0354153 185.9 -.0352301 -3.62E-03 -1.28269 62.402 40 -8.18819 2.20949 62.402 .10317 181.5 -.103135 -2.7E-03 END -10.2865 62.402 -1.67E-03 5.70166 .167878 180.6 -.16787 2J4 -10.2865 5.70166 62.402 .177701 1.4 .177647 4.38E-03 43 .112892 2.7 5.24E-03 -6.21297 5.7728 62.402 .11277 44 -2.13944 5.84394 62.402 .0448603 7.3 .0444935 5.72E-03 45 .0242858 166.3 -.023594 5.76E-03 1.93409 5.91508 62.402 46 6.00762 5.98622 62.402 .0926279 176.7 -.0924761 5.3E-03 END 10.0811 6.05736 62.402 .158559 178.4 -.158499 4.38E-03

Page 19 of 31

2J5 49 50 51	10.0811 8.10593 6.13071 4.15549	6.05736 2.49405 -1.06927 -4.63258	62.402 62.402 62.402 62.402	.160428 .094325 .0252876 .0431763		.025249	7.34E-04 -4.14E-04 -1.4E-03 2 -2.12E-03
52	2.18027	-8.1959	62.402	.111787	181.3		-2.54E-03
END	.205052	-11.7592	62.402	.177048	180.9		-2.64E-03
GND	45.4401	196.823	0	2.30728	1.3	2.3067	.051603
55	45.4401	196.823	4.25	2.48494	.9	2.48462	.0397587
56	45.4401	196.823	8.5	2.59571	.7	2.59552	.0315972
57	45.4401	196.823	12.75	2.68079	.5	2.68068	.0244545
58 59	45.4401	196.823	17.	2.74573	.4	2.74567	.0179855
59 60	45.4401 45.4401	196.823	21.25	2.79288	.2	2.79285	.0120582
61	45.4401	196.823	25.5 29.75	2.8235	.1	2.82349	6.62E-03
62	45.4401	196.823 196.823	29.75 34.	2.83847	0.0 359.9	2.83847	1.65E-03
63	45.4401	196.823	38.25	2.83852 2.82444	359.9	2.83852 2.82443	-2.86E-03 -6.89E-03
64	45.4401	196.823	42.5	2.79714	359.8	2.02443	-0.89E-03
65	45.4401	196.823	46.75	2.75788	359.7	2.75785	0134847
66	45.4401	196.823	51.	2.7085	359.7	2.70845	0160068
67	45.4401	196.823	55.25	2.65189	359.6	2.65183	0179931
68	45.4401	196.823	59.5	2.59301	359.6	2.59294	0194364
69	45.4401	196.823	63.75	2.54027	359.5	2.54019	0203446
70	45.4401	196.823	68.	2.50035	359.5	2.50026	0207295
71	45.4401	196.823	72.25	2.4538	359.5	2.45371	0205343
72	45.4401	196.823	76.5	2.38606	359.5	2.38598	0197378
END	45.4401	196.823	80.75	2.30681	359.5	2.30674	0184571
2J9	45.4401	196.823	80.75	2.30681	359.5	2.30674	0184571
END	45.4401	196.823	85.	2.17535	359.6	2.1753	0157526
2J10	45.4401	196.823	85.	.711241	359.3	.711187	-8.73E-03
75	47.7419	196.375	81.5156	.66119	359.3	.661142	-7.98E-03
76	50.0436	195.928	78.0312	.590333	359.3	.590285	-7.52E-03
77	52.3453	195.481	74.5468	.512071	359.1	.512014	-7.63E-03
78	54.647	195.033	71.0624	.430658	358.9	.430576	-8.41E-03
END 2J10	56.9488 45.4401	194.586	67.578	.352185	358.4	.352047	-9.85E-03
80	43.9018	196.823 195.053	85. 81.5156	.72532	359.9	.725318	-1.64E-03
81	43.3635	193.283	78.0312	.675404 .604965	360. .1	.675404 .604964	-5.71E-04
82	40.8252	191.513	74.5468	.527333	.2	.527329	7.36E-04 2.E-03
83	39.2868	189.743	71.0624	.446765	.4	.446754	3.14E-03
END	37.7485	187.973	67.578	.369325	.6	.369302	4.09E-03
2J10	45.4401	196.823	85.	.738811	359.6		-5.38E-03
85	44.6768	199.04	81.5156	.688969	359.7	.688956	-4.19E-03
86	43.9135	201.257	78.0312	.618735	359.8	.61873	-2.58E-03
87	43.1502	203.474	74.5468	.54143	359.9	.541429	-8.62E-04
88	42.3869	205.691	71.0624	.461316	.1	.461315	8.59E-04
END	41.6235	207.908	67.578	.384465	.4	.384457	2.46E-03
2J11	56.9488	194.586	67.578	.179425	358.5	.179366	-4.6E-03
90	53.1087	193.263	67.578	.106975	356.8	.106806	-6.01E-03
91	49.2687	191.941	67.578	.0316455	347.3	.0308708	-6.96E-03
92	45.4286	190.618	67.578	.0449058		0442929	
93	41.5885	189.296	67.578	.119994	183.5	119769	-7.34E-03
END	37.7485	187.973	67.578	.191563	182.	191441	-6.84E-03
2J12 96	37.7485	187.973 191.96	67.578	.177882	359.1	.177861	-2.75E-03
96 97	38.5235 39.2985	191.96 195.947	67.578	.106439	359.	.106423	-1.86E-03
98	40.0735	195.947 199.934	67.578 67.578	.0316056		.0315959	-7.82E-04
90 99	40.0735	203.921	67.578	.0425552 .11715	179.4 179.1	0425529 117137	
END	41.6235	207.908	67.578	.188124	179.1	188098	1.77E-03 3.14E-03
2J13	41.6235	207.908	67.578	.196439	1.6	.196359	5.59E-03
							J.J.J. U.J

L U L

Page 20 of 31

102 103 104 105 END	44.6886 47.7536 50.8187 53.8837 56.9488	205.244 202.579 199.915 197.25 194.586	67.578 67.578 67.578 67.578 67.578	.125435 .0507823 .0255773 .100453 .172761		.125257 .0502614 0245346 100239 172681	6.68E-03 7.26E-03 7.23E-03 6.55E-03 5.25E-03
GND 108 109 110	133.061 133.061 133.061 133.061	176.578 176.578 176.578 176.578	0 3.975 7.95 11.925	2.71466 2.82244 2.90513	270.5 268.6 267.6 266.7	.021002 0643649 120625 167748	-2.81986 -2.90028
111 112 113	133.061 133.061 133.061	176.578 176.578 176.578	15.9 19.875 23.85	2.96797 3.01322 3.04211	266. 265.4 264.8	20834 24348 273698	-2.96065 -3.00337 -3.02977
114 115 116	133.061 133.061 133.061	176.578 176.578 176.578	27.825 31.8 35.775	3.05547 3.05406 3.03872	264.4 264. 263.6	299299 320489 337433	-3.04077 -3.0372 -3.01993
117 118 119	133.061 133.061 133.061	176.578 176.578 176.578	39.75 43.725 47.7	3.01048 2.97077 2.92172	263.3 263.1 262.8	350299 359287 364677	-2.99003 -2.94896 -2.89887
120 121 122 123	133.061 133.061 133.061 133.061	176.578 176.578 176.578 176.578	51.675 55.65 59.625 63.6	2.86678 2.81171 2.76504 2.72705	262.6 262.5 262.4 262.4	366899 366661 365006 362075	-2.8432 -2.7877 -2.74084 -2.70291
124 125 END	133.061 133.061 133.061	176.578 176.578 176.578	67.575 71.55 75.525	2.67482 2.60155 2.5159	262.4 262.4 262.4 262.5	355404 344422 330433	-2.6511 -2.57865 -2.49411
2J17 END 2J18	133.061 133.061 133.061	176.578 176.578 176.578	75.525 79.5 79.5	2.5159 2.39944 .787233	262.5 262.6 262.2	330433 30995 107094	-2.49411 -2.37934 779914
128 129 130	135.399 137.737 140.075	176.21 175.842 175.473	76.0204 72.5408 69.0612	.728255 .649751 .564333	262.3 262.5 262.5	0971722 0852444 0735915	644135
131 END 2J18	142.412 144.75 133.061	175.105 174.737 176.578	65.5816 62.102 79.5	.476321 .392439 .803869	262.4 262.1 262.1		388679 796235
133 134 135	131.596 130.13 128.664	174.75 172.922 171.093	76.0204 72.5408 69.0612	.745472 .667797 .583429	262.3 262.4 262.6	100379 0877783 0750622	57858
136 END 2J18 138	127.199 125.733 133.061 132.233	169.265 167.436 176.578 178.774	65.5816 62.102 79.5 76.0204	.496684 .414223 .80848 .749993		0630371 0527294 0923323 0820393	410853 80319
130 139 140 141	131.404 130.576 129.747	180.97	72.5408 69.0612 65.5816	.672021	263.7 264.1 264.6 265.1	0690688 0557622	668462 584599
END 2J19 143	128.918 144.75 140.947	187.556 174.737 173.277	62.102 62.102 62.102	.417045 .195856 .116009	265.7 263.4 262.6	0315733 022482	415848 194561
144 145 146	137.143 133.34 129.537	171.817 170.357 168.897	62.102 62.102 62.102	.032596 .0503584 .133248	85.3	2.03E-03 .010992	.0503174 .132794
END 2J20 149	125.733 125.733 126.37	167.436 167.436 171.46	62.102 62.102 62.102	.212133 .202343 .123711	84.6 260.6 259.	023594	199648 12144
150 151 152 END	127.007 127.644 128.281 128.918	175.484 179.508 183.532 187.556	62.102 62.102 62.102 62.102		94. 86.5	0133985 -2.95E-03 7.7E-03 .0178893	.0421392 .124375
2J21 155	128.918 128.918 132.085	187.556 187.992	62.102 62.102 62.102	.213357	266.3		212918

. .

Page 21 of 31

		100 100					
156	135.251	182.428	62.102	.0516158		5.99E-03	0512673
157	138.417	179.864	62.102	.0347604		.015235	.0312439
158	141.584	177.301	62.102	.117006	78.2	.0239609	.114526
END	144.75	174.737	62.102	.196692	80.7	.0317142	.194118
GND	87.6933	-20.2456	0	1, 17092	174.2	.0435614	-1.97044
161	87.6933	-20.2456	4.15	2.12098	269.2	0309153	-2.12075
162	87.6933	-20.2456	8.3	2.21557	267.9	0803579	-2.21411
163	87.6933	-20.2456	12.45	2.28899	266.9	121881	-2.28574
164	87.6933	-20.2456	16.6	2.34567	266.1	157738	-2.34036
165	87.6933	-20.2456	20.75	2.38747	265.5	188853	-2.37999
166	87.6933	-20.2456	24.9	2.4154	264.9	215676	-2.40575
167	87.6933	-20.2456	29.05	2.43011	264.4	238465	-2.41838
168	87.6933	-20.2456	33.2	2.43221	263.9	25739	-2.41855
169	87.6933	-20.2456	37.35	2.42233	263.5	272591	-2.40694
170	87.6933	-20.2456	41.5	2.42233	263.2		
						284207	-2.38438
171	87.6933	-20.2456	45.65	2.37008	262.9	292403	-2.35197
172	87.6933	-20.2456	49.8	2.33043	262.7	297409	-2.31137
173	87.6933	-20.2456	53.95	2.28489	262.5	299571	-2.26517
174	87.6933	-20.2456	58.1	2.23793	262.3	299468	-2.2178
175	87.6933	-20.2456	62.25	2.19681	262.2	298025	-2.1765
176	87.6933	-20.2456	66.4	2.16547	262.1	295805	-2.14517
177	87.6933	-20.2456	70.55	2.12565	262.1	290775	-2.10567
178	87.6933	-20.2456	74.7	2.0674	262.2	281929	-2.04809
179	87.6933	-20.2456	78.85	1.99689	262.2	270197	-1.97852
END	87.6933	-20.2456	83.	1.9224	262.3	256896	-1.90516
2J25	87.6933	-20.2456	83.	.644403	263.3	0750594	640017
181	87.3264	-22.5618	79.5156	.594735	263.6	0662915	591029
182	86.9596	-24.878	76.0312	.532146	264.	0559389	529198
183	86.5927	-27.1942	72.5468	.464287	264.4	0454524	462057
184	86.2258	-29.5104	69.0624	.394323	264.8	0354173	
END	85.859	-31.8266	65.578	.327568	265.3	0266467	
2J25	87.6933	-20.2456	83.	.647973	262.2	0876756	
186	85.871	-18.7698	79.5156	.598429	262.4	0788167	
187	84.0486	-17.2941	76.0312	.536222	262.7	0682085	
188	82.2263	-15.8183	72.5468	.468968	263.	0572948	
189	80.4039	-14.3426	69.0624	.399805	263.3	0466619	
END	78.5816	-12.8668	65.578	.333986	263.6	0371588	
2J25	87.6933	-20.2456	83.	.630201	261.4	0941608	
191	89.8826	-19.4051	79.5156	.58054		0856836	
191	92.0719	-19.4031 -18.5647		.518086			
192			76.0312			0760672	
	94.2612	-17.7242	72.5468	.450436		0667328	
194	96.4505	-16.8838	69.0624	.380723		0582383	
END	98.6398	-16.0433	65.578	.31423	260.6	0513038	
2J26	85.859	-31.8266	65.578	.159528		0181926	
196	84.4035	-28.0347	65.578	.0960138		0102304	
197	82.948	-24.2427	65.578	.0296228			0295795
198	81.4925	-20.4507	65.578	.0363692			.0356502
199	80.0371	-16.6588	65.578		80.9	.0161442	
END	78.5816	-12.8668	65.578			.0247124	.163255
2J27	78.5816		65.578		265.8	0124464	168657
202	82.5932		65.578		267.7	-4.26E-03	10651
203	86.6049	-14.1374	65.578	.0412702	275.3	3.78E-03	0410964
204	90.6165		65.578	.0266057	65.	.0112406	.0241146
205	94.6282	-15.408	65.578	.0918251		.018196	.0900042
END	98.6398	-16.0433	65.578		81.		.153047
2J28	98.6398	-16.0433	65.578		260.2	0269885	
208	96.0837	-19.2	65.578		257.4	0208883	
209	93.5275		65.578		242.9	0140264	
210	90.9713		65.578	.0390913		-6.78E-03	
		20.0100	00.070	.000010	±00.	0.000000	.0007902

Page 22 of 31

211	88.4151	-28.67	65.578	.104809	89.5	8.67E-04	.104805
END	85.859	-31.8266	65.578	.168208	87.1	8.45E-03	.167995

CURRENT MOMENTS (amp-degrees) peak

Frequency = 560 KHz Input power = 500. watts

· · · ·

Input	power = 500 .	watts			
				vertical cur	rent moment
wire	magnitude	phase	(deg)		phase (deg)
1	273.828	360.		273.828	360.
2	5.82029	359.9		5.82029	359.9
3	15.9695	359.6		13.2302	179.6
4	16.0419	.4		13.2901	180.4
5	15.2912	359.8		12.6682	179.8
6	.122493	249.7		0	0
7	.346693	27.5		0	0
8	.268025	189.7		0	0
9	325.317	360.		325.317	360.
10	6.87432	359.6		6.87432	359.6
11	17.0254	359.1		14.1249	179.1
12	17.4994	.1		14.5178	180.1
13	17.9381	359.8		14.8821	179.8
14	.281236	225.9		0	0
15	.161818	180.5		0	0
16	.427686	27.9		0	0
17	329.338	264.2		329.338	264.2
18	7.09183	262.6		7.09183	262.6
19	18.8269	262.4		15.5675	82.4
20	19.3544	262.4		16.0535	82.4
21	19.4847	264.3		16.1541	84.3
22	.275772	102.4		0	0
23	.24492	169.6		0	0
24	.425694	315.8		0	0
25	278.617	264.2		278.617	264.2
26	15.4358	264.1		12.8057	84.1
27	15.5792	262.8		12.9248	82.8
28	15.0026	261.4		12.4462	81.4
29	.123227	43.6		0	0
30	.326556	310.2		0	0
31	.345748	151.1		0	0

Medium wave array vertical current moment (amps-degrees) peak (Calculation assumes tower wires are grouped together. The first wire of each group must contain the source.)

tower	magnitude	phase	(deg)
1	240.461	360.	
2	288.668	360.	
3	288.669	264.4	
4	240.461	264.4	

		- [- -		² ₂ [−]			
WCA	P - WRDT	Tower 1 DA-D					
WCA	P OUTPUT	AT FREQUENCY	: 0.560 MHz				
NODI	E VOLTAG	ES					
Node		332.7231 4	88.7569° V				
Node		332.6714 4	89.1232° V				
Node		316.2034 4	89.0602° V				
	WCAP PA	RT	BRANCI	H VOLTAGE	BRANCH	CURRENT	
R	1→2	1.0000000) 2.13 4	0.332° V	2.13 4	er er per son al	
L	2→3	2.2000000) 16.47 4	90.332° V	2.13 4	0.332° A	
С	30	0.00005000) 316.20 4	89.060° V	0.06 4	179.060° A	
R	3-+0	3.13220000) 316.20 4	89.060° V	2.18 4	0.300° A	
	WCAP PA	RT	FROM	IMPEDANCE	TO IMPE	DANCE	
R	12	1.0000000) 4.30 + 5	j 156.303	3.30 + j	156.303	
L	23	2.2000000) 3.30 +	j 156.303	3.30 + j	148.562	
С	3-+0	0.00005000			0.00 + j	0.000	
R	3→0	3.13220000) 3.13 + j	j 144.780	0.00 + j	0.000	
WCAE	P INPUT I						
Ŧ	0.560						
I		12790000 0	1 0.3320				
R L		20000000 1 20000000 2	2 0.0000				
с Г		20000000 2 00005000 3	3 0.0000 0	10000			
R		13220000 3	0 144.7800	0000 -			
			- 1-1-1-7000				

Carlos Transitions and Pres

WCAP - WRDT Tower 2 DA-D

WCAP OUTPUT AT FREQUENCY: 0.560 MHz

NODE V	OLTAG	ES		
Node:	1	496.1008 #	86	.8860° V
Node:	2	495.9253 4	87	.1259° V
Node:	3	423.2252 #	L 86	.3151° V

	WCAP PART	r	BRANCH	VOLTAGE	BRANCH (CURRENT
R	1-2	1.00000000	2.08 🗚	1.833° V	2.08 <i></i>	1.833° A
\mathbf{L}	2-+3	9.95000000	72.99 4	91.833° V	2.08 4	1.833° A
С	3-0	0.00005000	423.23 4	86.315° V	0.07 4	176.315° A
С	3-0	0.00010000	423.23 4	86.315° V	0.15 🗚	176.315° A
R	3-+0	15.93800000	423.23 4	86.315° V	2.31 4	1.300° A
	WCAP PART	ſ	FROM IM	PEDANCE	TO IMPEI	DANCE
R	1-2	1.00000000	20.52 + j	237.074	19.52 + j	237.074
L	23	9.95000000	19.52 + j	237.074	19.52 + j	202.064
С	3→0	0.00005000	0.00 - j	5684.105	0.00 + j	0.000
С	3-+0	0.00010000	0.00 - j	2842.053	0.00 + j	0.000
R	30	15,93800000	15.94 + i	182,740	0.00 + i	0.000

WCAP INPUT DATA:

.

	0.5600	0.000	00000	0
Ι	2.08480000	0 0	1	1.83300000
R	1.0000000) 1	2	0.0000000
L	9.9500000) 2	3	0.0000000
С	0.00005000) 3	0	
С	0.00010000) 3	0	
R	15.93800000) 3	0	182.74000000

WCAP - WRDT Tower 3 DA-D

•

WCAP OUTPUT AT FREQUENCY: 0.560 MHz

 NODE
 VOLTAGES

 Node:
 1
 524.9358 **4** -23.2106° V

 Node:
 2
 523.9066 **4** -22.9836° V

 Node:
 3
 476.5678 **4** -25.8251° V

	WCAP PART		BRANCH	VOLTAGE	BRANCH	CURRENT
R	1-2	1.00000000	2.32 🗚	-86.742° V		2 - C
L	23	6.55000000	53.43 4	3.258° V	2.32 4	-86.742° A
С	3-+0	0.00005000	476.57 4	-25.825° V	0.08 4	64.175° A
С	3-0	0.00010000	476.57 4	-25.825° V	0.17 4	64.175° A
R	30	83.16800000	476.57 4	-25.825° V	2.54 4	-89.500° A
	WCAP PART		FROM I	MPEDANCE	TO IMPE	DANCE
R	1-2	1.00000000	100.92 +	j 202.688	99.92 + j	202.688
L	23	6.55000000	99.92 +	j 202.688	99.92 + j	179.641
С	3-0	0.00005000	0.00 -	j 5684.105	0.00 + j	0.000
С	3-+0	0.00010000	0.00 -	j 2842.053	0.00 + j	0.000
R	3→0	83.16800000	83.17 + :	j 168.090	0.00 + j	0.000

WCAP	INPUT DATA:			
	0.5600 6	0.0000	0000	0
I	2.31840000	0 0	1	273.25800000
R	1.00000000	1 C	2	0.00000000
Γ,	ö.55000000) 2	3	0.00000000
С	0.00005000) 3	0	
С	0.00010000) 3	0	
R	83.16800000) 3	0	168.09000000

e - { . .

A second s

and the second second

WCAP - WRDT Tower 4 DA-D

WCAP OUTPUT AT FREQUENCY: 0.560 MHz

NODE VOLTAGES

•

Node:	1	409.7585 4	-25.7032° V
Node:	2	408.8669 4	-25.4670° V
Node:	3	402.9368 4	-25.9114° V

	WCAP PART		BRANCH	VOLTAGE	BRANCH	CURRENT
R	1-+2	1.00000000	1.91 4	-87.727° V	1.91 4	-87.727° A
L	2→3	1.00000000	6.71 4	2.273° V	1.91 4	-87.727° A
С	3-+0	0.00005000	402.94 4	-25.911° V	0.07 \$	64.089° A
R	3-+0	93.48700000	402.94 4	-25.911° V	1.97 4	-88.700° A
	WCAP PART		FROM I	MPEDANCE	TO IMPE	DANCE
R	1-+2	1.00000000	100.74 +	j 189.652	99.74 + j	189.652
L	23	1.00000000	99.74 +	j 189.652	99.74 + j	186.134
С	3→0	0.00005000	0.00 -	j 5684.105	0.00 + j	0.000
R	3-+0	93.48700000	93.49 +	j 181.820	0.00 + j	0.000
WCA	P INPUT DAT	ra:	_			

	0.5600	0.0000	0000	0
1	1.9081000	0 0	1	272.27300000
R	1.0000000	01	2	0.00000000
L	1.0000000) 2	3	0.0000000
С	0.00005000	3	0	
R	93.48700000) 3	0	181.82000000

With respect to Question 9, Section III, Page 2 of the attached Form 302-AM, the tower information is as follows:

Tower		Height above	Height above ground	Overall height
No.		base insulator	w/o obst. lighting	above ground
	ASRN	(meters)	(meters)	(meters)
1	1000331	124.9	126.2	127.0
2	1000332	124.9	126.2	127.0
3	1000333	124.9	126.2	127.0
4	1000334	124.9	126.2	127.0

All towers are uniform cross-section, steel, guyed vertical radiators.

Because WRDT is an existing licensed facility, in accordance with the Public Notice, <u>Media Bureau</u> <u>Clarifies Procedures for AM Directional Antenna Performance Verification Using Moment Method</u> <u>Modeling</u> (FCC DA 09-2340) dated October 29, 2009, it is exempt from the requirement to submit a surveyor's certification.

Sampling System

The sampling system consists of Delta Electronics TCT-3 current transformers installed at the output of each antenna tuning unit, immediately adjacent to the final ATU J-plug. Samples from the current transformers are fed to the antenna monitor via equal lengths of 3/8-inch foam-dielectric coaxial transmission lines. The antenna monitor is a Potomac Instruments Type 1901, which was calibrated according to the manufacturer's instructions.

Impedance measurements were made of the antenna sampling system using an Agilent 8735A network analyzer. The measurements were made looking into the antenna monitor ends of the sample lines with the tower ends of the sample lines open-circuited.

The table below shows the frequencies above the carrier frequency where resonance, defined as zero reactance corresponding with low resistance, was found. No resonant frequency was found below the carrier frequency within the network analyzer's operating range. As the length of distortionless transmission line is 180 electrical degrees at the difference frequency between adjacent frequencies of resonance, and frequencies of resonance occur at odd multiples of 90 degrees electrical length, the sample line length at the resonant frequency immediately above carrier frequency, which is the closest one to the carrier frequency, was found to be 270 electrical degrees. The electrical length at carrier frequency appearing in the table below was calculated by ratioing the frequencies.

[Sample Line	Sample Line
	Open-Circuited	Calculated
	Resonance	
		Electrical Length
	Above 560 kHz	At 560 kHz
Twr.	(kHz)	(deg.)
l	720.48	209.86
2	722.76	209.20
3	723.60	208.96
4	722.52	209.27

The length difference between the longest and shortest sample lines amounts to 0.90 degrees at the carrier frequency. As such, the sample lines meet the requirement in the Rules that they be equal in length within one electrical degree.

To determine the characteristic impedance values of the sample lines, open-circuited measurements were made with frequencies offset to produce ± 45 degrees of electrical length from resonance.

The characteristic impedance was calculated using the following formula, where $R_1 + j X_1$ and $R_2 + j X_2$ are the measured impedances at the +45 and -45 degree offset frequencies, respectively:

 $Z_{\rm O} = ((R_1^2 + X_1^2)^{1/2} \times (R_2^2 + X_2^2)^{1/2})^{1/2}$

		+ 45 Deg.	+45 Deg.	- 45 Deg.	-45 Deg.	Calculated
		Offset	Measured	Offset	Measured	Characteristic
		Frequency	Impedance	Frequency	Impedance	Impedance
	Twr.	(kHz)	(ohms)	(kHz)	(ohms)	(ohms)
	1	840.56	14.2 +j46.6	600.40	9.8 j48.3	49.0
l	2	843.22	14.5 +j47.1	602.30	9.8 –j48.0	49.1
	3	844.20	14.3 +j47.2	603.00	9.6 -j48.3	49.3
	4	842.94	14.4 +j46.5	602.10	9.7 –j47.5	48.6

The sample line measured characteristic impedances meet the requirement that they be equal within 2 ohms.

The calibration of the Delta TCT-3 current transformers was verified by removing them all from the ATUs and installing them on a test jig so that each was located very close to the adjacent transformer (spacing of less than two inches). Short transmission lines of equal length were connected between the outputs of all four current transformers and the inputs of the antenna monitor. As noted above, the Potomac 1901 antenna monitor was calibrated using the internal calibration function. A single source of RF current on the carrier frequency was fed through a conductor passing through all of the current transformers, and the differential phases and ratios were noted on the antenna monitor as follows:

	Serial		Phase
Twr.	No.	Ratio	(deg.)
1	004	0.994	+0.9
2	003	1.000	0.0
3	005	0.995	-0.2
4	002	0.996	-0.5

The requirement that the sample current transformers are accurate to within the manufacturer's specification ($\pm 2\%$ ratio and ± 2 degrees phase) has thus been demonstrated.

The impedance of each of the sample lines was measured on the carrier frequency with the sample current transformers attached. These impedances are tabulated below:

Γ		R	X
	Twr.	(ohms)	(ohms)
Γ	1	53.7	+0.6
F	2	53.4	+0.3
Γ	3	53.5	+0.6
Γ	4	53.5	+0.3

Common point impedance measurements were made using a Delta CPB-1 common point bridge installed in the common point bus of the phasing and coupling system. The resistance value was adjusted to 50 ohms and the reactance value was adjusted to zero.

5

Appendix A

. *

Reference Field Strength Measurements

Reference field strength measurements were made on October 26, 2011 using Potomac Instruments FIM-41 serial No. 2143, calibrated August 14, 2002, at three locations along each of the major lobe and null radials of each pattern. This meter was checked on 560 kHz against FIM-41 serial number 1898, calibrated October 27, 2009, and was found to be in agreement. The calibration certificate for FIM-41 S/N 1898 is included herewith. The measured field strengths and descriptions and NAD-83 GPS coordinates for the reference measurement points are shown in the following tables.

Radial 13.0°							
Point	Dist.			1		Field	
No.	km	Latitude	Longitude	Date	Time	mV/m	Description
1	3.90	41-55-32.6	83-25-00.4	10/26/11	1413	110	1 st Baptist Church lot
2						90	NE corner Lorain &
	4.63	41-55-54.3	83-24-53.8	10/26/11	1417		John Rolfe
3	5.43	41-56-19.3	83-24-46.3	10/26/11	1423	86	1621 Northridge Drive

Radial 13.0°

Radial	76 5°
Magiai	10.5

Point	Dist.]		Field	
No.	km	Latitude	Longitude	Date	Time	mV/m	Description
1	4.15	41-53-58.9	83-22-43.9	10/26/11	1451	3.9	623 Norwood Drive
2	5.00	41-54-05.2	83-22-09.2	10/26/11	1458	3.6	Water Treatment Plant
3							E. Elm Ave. 50' west of
	5.68	41-54-10.6	83-21-38.6	10/26/11	1503	2.2	utility pole S10WE844

Radial 97.5°

Point	Dist.					Field	
No.	km	Latitude	Longitude	Date	Time	mV/m	Description
1	1.6	41-53-21.1	83-24-30.3	10/26/11	1516	43	371 Holly Glen St.
2	1.9	41-53-19.6	83-24-17.1	10/26/11	0901	36	15207 Hull Road
3							N. side of Laplaisance
<u> </u>	2.65	41-53-17.0	83-23-44.9	10/26/11	0908	22	Rd.

Radial 131.5°

Point	Dist.					Field	
No.	km	Latitude	Longitude	Date	Time	mV/m	Description
1							Hull Rd. and Albain
	2.52	41-52-34.9	83-24-18.8	10/26/11	0916	4.1	Rd.
2							SB I-75 0.1 mi. south of
	3.09	41-52-21.6	83-24-00.4	10/26/11	0925	4.7	Albain Rd.
3							Laplaisande Rd. 20'
	4.02	41-52-02.0	83-23-27.7	10/26/11	0934	2.8	SW of mail box 13773

Radial	149.5°

Point	Dist.			1		Field	
No.	km	Latitude	Longitude	Date	Time	mV/m	Description
1	3.60	41-51-48.1	83-24-17.8	10/26/11	0954	5.8	I-75N service plaza
2	3.81	41-51-41.6	83-24-14.8	10/26/11	0938	4.8	13308 Lighthouse Rd.
3							Allen Hurst Rd. N. of
Ľ	4.74	41-51-16.6	83-23-54.0	10/26/11	1004	4.4	Mortor Creek Rd.

	Radial 172.5°										
Point	Dist.					Field					
No.	km	Latitude	Longitude	Date	Time	mV/m	Description				
1							Laplaisance Rd. 210 ft.				
	3.77	41-51-27.5	83-25-17.5	10/26/11	1118	4.3	SW of 12904				
2							5633 N. Otter Creek				
	4.91	41-50-51.9	83-25-11.6	10/26/11	1014	2.2	Rd.				
3							S. Otter Creek Rd. 300				
	5.42	41-50-34.5	83-25-08.5	10/26/11	1021	3.0	ft. NW of N 75 Sign				

+ - - - - - *

•

.

	Radial 193.0°										
Point	Dist.	T - dia 1	T - 1	D		Field	N •				
No.	km	Latitude	Longitude	Date	Time	mV/m	Description				
1				1			Across from 4856				
	3.85	41-51-26.7	83-26-15.8	10/26/11	1046	7.0	Laplaisance Rd.				
2							Stein Rd. at RR				
	5.52	41-50-35.3	83-26-31.9	10/26/11	1038	4.6	Crossing Sign				
3							At Left Curve sign on				
	7.11	41-49-44.9	83-26-47.9	10/26/11	1106	3.6	Kelly Rd.				

Radial 213.5°

Point	Dist.					Field	
No.	km	Latitude	Longitude	Date	Time	mV/m	Description
1	3.79	41-51-45.7	83-27-10.1	10/26/11	0946	2.7	4118 S. Otter Creek Rd.
2	6.17	41-50-44.4	83-28-04.0	10/26/11	1054	1.2	12294 S. Dixie Hwy.
3							300 ft. SE of 2966
	7.49	41-50-05.9	83-28-38.7	10/26/11	1058	1.4	Wood Rd.

Radial 236.5°

Point	Dist.		**************************************			Field	
No.	km	Latitude	Longitude	Date	Time	mV/m	Description
1							3534 N. Otter Creek
	3.42	41-52-26.7	83-27-44.6	10/26/11	1127	8.4	Rd.
2	5.52	41-51-49.6	83-28-58.4	10/26/11	1139	5.6	13546 Dunlap Rd.
3							150 ft. W. of 2160 W.
	7.68	41-51-12.0	83-30-15.3	10/26/11	1144	3.1	Stein Rd.

Radial 254.5°

Point	Dist.					Field	
No.	km	Latitude	Longitude	Date	Time	mV/m	Description
1							2843 N. Otter Creek
	4.51	41-52-49.0	83-28-47.6	10/26/11	1131	3.3	Rd.
2	6.66	41-52-30.1	83-30-19.3	10/26/11	1259	1.7	1906 S. Otter Creek Rd.
3							Strausburg Rd. S. of S.
	7.34	41-52-24.7	83-30-46.1	10/26/11	1306	2.5	Otter Creek Rd.

Radial 288.5°

•

•

Point	Dist.	· · · ·				Field	
No.	km	Latitude	Longitude	Date	Time	mV/m	Description
1	3.91	41-54-08.3	83-28-19.6	10/26/11	1331	16.0	15795 Virginia Court
2	6.74	41-54-36.7	83-30-16.9	10/26/11	1316	11.0	2112 Strausburg Rd.
3	8.71	41-54-57.3	83-31-38.2	10/26/11	1321	8.0	S. of 1984 Martell Rd.

Radial 309.5°

Point	Dist.					Field	
No.	km	Latitude	Longitude	Date	Time	mV/m	Description
1	3.46	41-54-38.3	83-27-34.3	10/26/11	1335	13.0	16000 Hodge Rd.
2	4.71	41-55-05.6	83-28-16.8	10/26/11	1341	10.0	1500 Raisenville Rd.
3	7.02	41-55-52.3	83-29-34.4	10/26/11	1347	5.8	1011 Strausburg Rd.

Appendix B

Field Intensity Meter Certificate of Calibration

POTOMAC INSTRUMENTS, INC.

Frederick, Maryland

CERTIFICATE OF CALIBRATION

Field Intensity Meter Type FIM-41

Serial Number 1898

This instrument was calibrated in an induction field of 220.0 millivolts per meter. At each measurement frequency the measured field was recorded and a correction factor K was computed; the indicated field must be multiplied by K to obtain the true field.

<u>kHz</u>	K	<u>kHz</u>	<u>K</u>	<u>MHz</u>	<u>K</u>	MHz	<u>K</u>
540	1.000	1100	1.000	1.6	1.000	3.5	1.000
600	1.000	1200	1.000	1.9	1.000	3.8	1.000
700	1.000	1300	1.000	2.2	1.000	4.1	1.000
800	1.000	1400	1.000	2.5	1.000	4.4	1.000
900	1.000	1500	1.000	2.8	1.000	4.7	1.000
1000	1.000	1600	1.000	3.2	1.000	5.0	1.000

The calibrating field is maintained equal to the National Institute of Standards and Technology (NIST) standard field within an accuracy of 1.0 percent. NIST states that the absolute accuracy of its field is "believed to be within 3.0 percent."

The error at points on the meter scale other than the calibration point is less than 3.0 percent. The attenuator ratios are correct within 2.0 percent. These accuracies apply for battery voltages that are indicated by the instrument's battery check circuit to be useable.

NEXT RECOMMENDED CALIBRATION DATE, 2011

Calibrated by Der Vel

Date: Oct. 27, 2009

STATE OF MARYLAND

Personally appeared before me on, October 29, 2009, Neil Telfer, who testified under oath that the above calibration was made either by himself or under his direction and that the statements in the above certificate are true to the best of his knowledge and belief.

Marcella R. Laliberte NOTARY PUBLIC Frederick County State of Maryland My Commission Expires December 17, 2012

Notary Pub