CINCINNATI

COLUMBUS

NEW YORK

June 22, 2011

PECEIVED

Federal Communications Commission Media Bureau P.O. Box 979089 St. Louis, Missouri 63197-9000

Re:

Station KGOL(AM)

Humble, Texas

Facility ID No. 34473 File No. BP-19870331BS

Application for License to Cover Construction Permit

Stop Code 1800B2

Dear Sir:

Transmitted herewith, in triplicate, on behalf of Entravision Holdings, LLC, the licensee of Station KGOL(AM), Humble, Texas, is an application on FCC Form 302-AM. The application requests a license to cover the construction permit for the modification of facilities of the Station authorized in File No. BP-19870331BS.

The application is being filed pursuant to the provisions of Section 73.1620 of the Commission's Rules and the construction permit for KGOL. The Commission is requested to issue program test authority for operation of the Station under the terms of its construction permit.

Also enclosed is FCC Form 159 and a check in the amount of \$1,365.00 for the required filing fee for a license to cover a construction permit and for the AM directional antenna system.

Finally, we are also providing a copy of this submission along with a stamped, self-addressed envelope. We request that a stamped copy of the submission be returned to us in that envelope.

## THOMPSON HINE

Federal Communications Commission 6/21/2011 Page 2

Should there be any questions in regard hereto, please communicate with the undersigned.

Respectfully submitted,

Barry A. Friedman

## Enclosures

cc: Ms. Carmen Aguilar (For Public Inspection)

Mr. Rick Hunt

Ms. Ann Gallagher (FCC Audio Division)

Federal Communications Commission Washington, D. C. 20554 Approved by OMB 3060-0627 Expires 01/31/98

### FOR FCC USE ONLY

## FCC 302-AM APPLICATION FOR AM BROADCAST STATION LICENSE

(Please read instructions before filling out form.

| FOR COMMISSION USI | E ONLY        |
|--------------------|---------------|
| FILE NO. BMM       | L-20110624CGT |

|                                                                         | 1()11                                           | 1111 Dic               | 1.000 100               |
|-------------------------------------------------------------------------|-------------------------------------------------|------------------------|-------------------------|
| SECTION I- APPLICANT FEE INFORMATION                                    |                                                 |                        |                         |
| PAYOR NAME (Last, First, Middle Initial)                                |                                                 |                        |                         |
| Entravision Communications Corporation                                  |                                                 |                        |                         |
| MAILING ADDRESS (Line 1) (Maximum 35 characters) Suite 6000 West        |                                                 |                        |                         |
| MAILING ADDRESS (Line 2) (Maximum 35 characters) 2425 Olympic Boulevard |                                                 |                        |                         |
| CITY<br>Sania Monica                                                    | STATE OR COUNTRY (if fo                         | reign address)         | ZIP CODE<br>90404       |
| TELEPHONE NUMBER (include area code)<br>313.447 (3870)                  | CALL LETTERS<br>KGOL                            | OTHER FCC IDE<br>34473 | NTIFIER (If applicable) |
| 2. A. Is a fee submitted with this application?                         |                                                 |                        | Yes No                  |
| B. If No, indicate reason for fee exemption (see 47 C.F.R. Section      |                                                 | *                      |                         |
| Governmental Entity Noncommercial educ                                  | cational licensee O                             | ther (Please explain   | ):                      |
| C. If Yes, provide the following information:                           |                                                 |                        |                         |
| Enter in Column (A) the correct Fee Type Code for the service you a     |                                                 |                        |                         |
| Fee Filing Guide." Column (B) lists the Fee Multiple applicable for thi | is application. Enter fee amou                  | nt que in Column (C    | <i>i</i> ).             |
| (A) (B)                                                                 | (C)                                             |                        |                         |
| FEE TYPE FEE MULTIPLE                                                   | FEE DUE FOR FEE TYPE CODE IN COLUMN (A)         |                        | FOR FCC USE ONLY        |
| 0 0 0 1                                                                 | \$                                              |                        |                         |
| To be used only when you are requesting concurrent actions which res    | sult in a requirement to list mor               | e than one Fee Typ     | e Code.                 |
| (A) (B) (B) 1                                                           | (C)                                             |                        | FOR FCC USE ONLY        |
|                                                                         |                                                 |                        |                         |
| ADD ALL AMOUNTS SHOWN IN COLUMN C,<br>AND ENTER THE TOTAL HERE.         | TOTAL AMOUNT<br>REMITTED WITH TH<br>APPLICATION | IS                     | FOR FCC USE ONLY        |
| THIS AMOUNT SHOULD EQUAL YOUR ENCLOSED REMITTANCE.                      | \$                                              |                        |                         |

| SECTION II - APPLICAN                                                                                                                                                                                                                                                                                                                                                                                                  | TINFORMATION                                                                                                      |                                     |                                                                            |                                                                                  |                                       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------------|---------------------------------------|
| NAME OF APPLICANT     Enteresina Holdings, LLC                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                   |                                     |                                                                            |                                                                                  |                                       |
| MAILING ADDRESS State 6000 Was: 7405 Over                                                                                                                                                                                                                                                                                                                                                                              | tra: Rentiserate)                                                                                                 |                                     |                                                                            |                                                                                  |                                       |
| CITY Senta Monasa                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                   |                                     | STATE CA                                                                   |                                                                                  | ZIP CODE<br>9(.4).4                   |
| 2. This application is for:                                                                                                                                                                                                                                                                                                                                                                                            | Commercial AM Direct                                                                                              | ctional                             | ☐ Noncomm                                                                  | nercial<br>on-Directional                                                        |                                       |
| Call letters                                                                                                                                                                                                                                                                                                                                                                                                           | Community of License                                                                                              | Construc                            | tion Permit File No.                                                       | Modification of Construction                                                     | Expiration Date of Last               |
| KGQL                                                                                                                                                                                                                                                                                                                                                                                                                   | Humble, Texas                                                                                                     | BP-198                              | 370331BS                                                                   | Permit File No(s).                                                               | Construction Permit<br>January 7 2012 |
| 3. Is the station no accordance with 47 C.F.  If No, explain in an Exhi                                                                                                                                                                                                                                                                                                                                                |                                                                                                                   | to auto                             | matic program                                                              | test authority in                                                                | Yes / No Exhibit No.                  |
| 4. Have all the terms construction permit been                                                                                                                                                                                                                                                                                                                                                                         | ·                                                                                                                 | ations s                            | et forth in the                                                            | above described                                                                  | Yes No Exhibit No.                    |
| 5. Apart from the change the grant of the underly representation contained                                                                                                                                                                                                                                                                                                                                             | ges already reported, ha<br>ying construction permit                                                              | t which v                           | would result in a                                                          | any statement or                                                                 | Yes Y No                              |
| If Yes, explain in an Exl                                                                                                                                                                                                                                                                                                                                                                                              | hibit.                                                                                                            |                                     |                                                                            |                                                                                  | Exhibit No.<br>N스                     |
| 6. Has the permittee fill certification in accordance                                                                                                                                                                                                                                                                                                                                                                  | ed its Ownership Report                                                                                           |                                     |                                                                            | ership                                                                           | Yes No                                |
| If No, explain in an Exhil                                                                                                                                                                                                                                                                                                                                                                                             | bit.                                                                                                              |                                     |                                                                            |                                                                                  | Exhibit No.<br>NA                     |
| 7. Has an adverse finding been made or an adverse final action been taken by any court or administrative body with respect to the applicant or parties to the application in a civil or criminal proceeding, brought under the provisions of any law relating to the following: any felony; mass media related antitrust or unfair competition; fraudulent statements to another governmental unit; or discrimination? |                                                                                                                   |                                     |                                                                            |                                                                                  |                                       |
| If the answer is Yes, a involved, including an id (by dates and file numl information has been required by 47 U.S.C. S of that previous submiss                                                                                                                                                                                                                                                                        | lentification of the court of<br>bers), and the disposition<br>earlier disclosed in corection 1.65(c), the applic | or adminion of the nection ant need | strative body an<br>litigation. Wh<br>with another a<br>l only provide: (i | d the proceeding<br>ere the requisite<br>pplication or as<br>) an identification | Exhibit No.<br>NA                     |

the call letters of the station regarding which the application or Section 1.65 information was filed, and the date of filing; and (ii) the disposition of the previously reported matter.

| 8. Does the applicant, or any party to the application, have the expanded band (1605-1705 kHz) or a permit or license expanded band that is held in combination (pursuant to the 5 with the AM facility proposed to be modified herein?                                                                                                                                                                                    | either in the existing band or                                                                                                                      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| If Yes, provide particulars as an Exhibit.                                                                                                                                                                                                                                                                                                                                                                                 | Exhibit No.                                                                                                                                         |
| The APPLICANT hereby waives any claim to the use of any against the regulatory power of the United States becaus requests and authorization in accordance with this application amended).                                                                                                                                                                                                                                  | e use of the same, whether by license or otherwise, and                                                                                             |
| The APPLICANT acknowledges that all the statements mamaterial representations and that all the exhibits are a material                                                                                                                                                                                                                                                                                                     | • •                                                                                                                                                 |
| CERTIFI                                                                                                                                                                                                                                                                                                                                                                                                                    | CATION                                                                                                                                              |
| 1. By checking Yes, the applicant certifies, that, in the case or she is not subject to a denial of federal benefits that incl to Section 5301 of the Anti-Drug Abuse Act of 1988, 21 U. case of a non-individual applicant (e.g., corporation, partner association), no party to the application is subject to a de includes FCC benefits pursuant to that section. For the de purposes, see 47 C.F.R. Section 1.2002(b). | udes FCC benefits pursuant S.C. Section 862, or, in the ship or other unincorporated enial of federal benefits that finition of a "party" for these |
| <ol><li>Icer tify that the statements in this application are true, co<br/>and are made in good faith.</li></ol>                                                                                                                                                                                                                                                                                                           | emplete, and correct to the best of my knowledge and belief,                                                                                        |
| Name Walter F. Ulloa                                                                                                                                                                                                                                                                                                                                                                                                       | Signature                                                                                                                                           |
| Title Chief Executive Officer                                                                                                                                                                                                                                                                                                                                                                                              | Telephone Number 310-447-3870                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                     |

## WILLFUL FALSE STATEMENTS ON THIS FORM ARE PUND THABLE BY FINE AND/OR IMPRISONMENT (U.S. CODE, TITLE 18, SECTION 1001), AND/OR REVOCATION OF ANY STATION LICENSE OR CONSTRUCTION

FCC NOTICE TO INDIVIDUALS REQUIRED BY THE PRIVACY ACT AND THE PAPERWORK REDUCTION ACT

The solicitation of personal Information requested in this application is authorized by the Communications Act of 1934, as amended. The Commission will use the Information provided in this form to determine whether grant of the application is in the public interest. In reaching that determination, or for law enforcement purposes, it may become necessary to refer personal information contained in this form to another government agency. In addition, all information provided in this form will be available for public inspection. If information requested on the form is not provided, the application may be returned without action having been taken upon it or its processing may be delayed while a request is made to provide the missing information. Your response is required to obtain the requested authorization.

Public reporting burden for this collection of Information is estimated to average 639 hours and 53 minutes per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the burden, can be sent to the Federal Communications Commission, Records Management Branch, Paperwork Reduction Project (3060-0627), Washington, D. C. 20554. Do NOT send completed forms to this address.

THE FOREGOING NOTICE IS REQUIRED BY THE PRIVACY ACT OF 1974, P.L. 93-579, DECEMBER 31, 1974, 5 U.S.C. 552a(e)(3), AND THE PAPERWORK REDUCTION ACT OF 1980, P.L. 96-511, DECEMBER 11, 1980, 44 U.S.C. 3507.

| SECTION III - L<br>Name of Applica                                                                                                                                                                 | ICENSE APPLICATION ENGI           | NEERING DA              | ΓΑ                           |                                    |                                                                                                               |                           |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-------------------------|------------------------------|------------------------------------|---------------------------------------------------------------------------------------------------------------|---------------------------|
|                                                                                                                                                                                                    | SION HOLDINGS, LLC                |                         |                              |                                    |                                                                                                               |                           |
| PURPOSE OF A                                                                                                                                                                                       | AUTHORIZATION APPLIED FOR         | R: (check one)          |                              |                                    |                                                                                                               |                           |
| <b>✓</b>                                                                                                                                                                                           | Station License                   | Direct M                | easurement of F              | Power                              |                                                                                                               |                           |
| 1. Facilities auth                                                                                                                                                                                 | norized in construction permit    |                         |                              |                                    |                                                                                                               |                           |
| Call Sign                                                                                                                                                                                          | File No. of Construction Permit   | 1                       | Hours of Op                  | peration                           | Power                                                                                                         | in kilowatts              |
| KGOL                                                                                                                                                                                               | (if applicable)                   | (kHz)                   | UNLA                         |                                    | Night                                                                                                         | Day                       |
| 2. Station location                                                                                                                                                                                | on                                |                         |                              |                                    |                                                                                                               |                           |
| State<br>TEXAS                                                                                                                                                                                     |                                   |                         | City or Tow<br>HUMB!         |                                    |                                                                                                               |                           |
| 3. Transmitter lo                                                                                                                                                                                  | ocation                           |                         |                              |                                    |                                                                                                               |                           |
| State                                                                                                                                                                                              | County                            |                         | City or Tow                  | n                                  | Street address                                                                                                |                           |
| TX                                                                                                                                                                                                 | MONTGOMERY                        |                         | PORTE                        | R                                  | (or other identi<br>21575 FM 13                                                                               |                           |
| 4. Main studio location                                                                                                                                                                            |                                   |                         |                              |                                    |                                                                                                               |                           |
| State                                                                                                                                                                                              | County                            |                         | City or Tow                  | n                                  | Street address                                                                                                |                           |
| TX                                                                                                                                                                                                 | HARRIS                            |                         | HOUST                        | ON                                 | (or other identi                                                                                              | MA SUITE 450              |
| 5. Remote control point location (specify only if authorized directional antenna)                                                                                                                  |                                   |                         |                              |                                    |                                                                                                               |                           |
| State                                                                                                                                                                                              | County                            |                         | City or Tow                  | n                                  | Street address                                                                                                |                           |
| TX                                                                                                                                                                                                 | HARRIS                            |                         | HOUSTON (or other identifica |                                    |                                                                                                               |                           |
|                                                                                                                                                                                                    | pling system meet the requireme   |                         |                              |                                    | E                                                                                                             | Not Applicable xhibit No. |
| 8. Operating con                                                                                                                                                                                   | ustants:                          |                         |                              |                                    | TOTAL AND THE STREET, |                           |
|                                                                                                                                                                                                    | t or antenna current (in amperes) | ) without               |                              | point or antenna<br>for day system | current (in ampe                                                                                              | res) without              |
| Measured antenna or common point resistance (in ohms) at operating frequency Night  Day  SO  Day  O  O  Measured antenna or common point reactance (in ohms) at operating frequency Night Day O  O |                                   |                         |                              |                                    | e (in ohms) at                                                                                                |                           |
| Antenna indicatio                                                                                                                                                                                  | ns for directional operation      | *1                      |                              |                                    |                                                                                                               |                           |
| Towe                                                                                                                                                                                               | Antenna<br>Phase reading          |                         |                              | nonitor sample<br>nt ratio(s)      | Antenna                                                                                                       | base currents             |
|                                                                                                                                                                                                    | Night                             | Day                     | Night                        | Day                                | Night                                                                                                         | Day                       |
| 1 (Southwest)                                                                                                                                                                                      | 6.0                               | -95,7                   | 1,006                        | 0.534                              | 52.46                                                                                                         | n-y                       |
| 2 (Northwest) 3 (Northeast)                                                                                                                                                                        | 108 G                             | 0.0                     | 0.799                        | 1.000                              |                                                                                                               |                           |
| 4 (Soulbeast)                                                                                                                                                                                      | -177                              | -                       | 0.731                        |                                    |                                                                                                               |                           |
|                                                                                                                                                                                                    |                                   |                         |                              | 9                                  |                                                                                                               |                           |
| √lanufacturer and                                                                                                                                                                                  | I type of antenna monitor:        | gildage, mikilingildage | nec #4419 () at              |                                    |                                                                                                               |                           |

#### SECTION III - Page 2

9. Description of antenna system ((f directional antenna is used, the information requested below should be given for each element of the array. Use separate sheets if necessary.)

| and analy. Ode departate                         | o choole it hoodeday.                                                                  |                                                                      |                                   |                                                                      |                                                                                 |  |
|--------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------------------|--|
| Type Radiator                                    | Overall height in meters of radiator above base insulator, or above base, if grounded. | Overall height in meters above ground (without obstruction lighting) |                                   | Overall height in meters above ground (include obstruction lighting) | If antenna is either top loaded or sectionalized, describe fully in an Exhibit. |  |
| guy-uniform                                      | 63.5                                                                                   | 64.6                                                                 |                                   | 65.5                                                                 | Exhibit No.                                                                     |  |
| cross-sect                                       |                                                                                        |                                                                      |                                   |                                                                      |                                                                                 |  |
| Excitation                                       | Series                                                                                 | Shunt                                                                |                                   |                                                                      |                                                                                 |  |
| Geographic coordinates tower location.           | to nearest second. For direct                                                          | tional antenna                                                       | give coordinat                    | es of center of array. For si                                        | ngle vertical radiator give                                                     |  |
| North Latitude 30                                | 08 21                                                                                  | , 11                                                                 | West Longitu                      | de 0<br>95 17                                                        | . 24                                                                            |  |
|                                                  | ove, attach as an Exhibit furth<br>ver and associated isolation ci                     |                                                                      | dimensions ir                     | ncluding any other                                                   | Exhibit No.                                                                     |  |
| Also, if necessary for a dimensions of ground sy | a complete description, attac<br>estem.                                                | ch as an Exhi                                                        | bit a sketch o                    | of the details and                                                   | Exhibit No.                                                                     |  |
| 10. In what respect, if a permit?                | ny, does the apparatus constr                                                          | ructed differ fro                                                    | om that describ                   | ed in the application for cor                                        | struction permit or in the                                                      |  |
| 11. Give reasons for the                         | e change in antenna or commo                                                           | on point resista                                                     | ance.                             |                                                                      |                                                                                 |  |
|                                                  | the applicant in the capacity true to the best of my knowled                           |                                                                      |                                   | nave examined the foregoin                                           | g statement of technical                                                        |  |
| Name (Please Print or T                          | ype)                                                                                   | 5                                                                    | Signature (che                    | ck appropriate box below)                                            |                                                                                 |  |
| Bertram S. Gol                                   | dman                                                                                   |                                                                      | Bur                               | rund to                                                              | Clb                                                                             |  |
| Address (include ZIP Co                          | de)                                                                                    | [                                                                    | Date                              | <u> </u>                                                             |                                                                                 |  |
| 8226 Douglas A                                   | ve. Suite 627                                                                          |                                                                      | 6/20/2011                         |                                                                      |                                                                                 |  |
| Dallas, TX 752                                   | 225                                                                                    | ٦                                                                    | Telephone No. (Include Area Code) |                                                                      |                                                                                 |  |
|                                                  |                                                                                        |                                                                      | 469-619                           | -1005                                                                |                                                                                 |  |
|                                                  |                                                                                        |                                                                      |                                   |                                                                      |                                                                                 |  |
| Technical Director                               |                                                                                        |                                                                      | Registere                         | d Professional Engineer                                              |                                                                                 |  |
| Chief Operator                                   |                                                                                        | X                                                                    | Technical                         | Consultant                                                           |                                                                                 |  |
| Other (specify)                                  |                                                                                        |                                                                      |                                   |                                                                      |                                                                                 |  |
| FCC 302-AM (Page 5)<br>August 1995               |                                                                                        |                                                                      |                                   |                                                                      |                                                                                 |  |

## ENGINEERING STATEMENT IN SUPPORT OF 302-AM

# APPLICATION FOR LICENSE EMPLOYING MOMENT METHOD MODELING

KGOL 1180kHz
Construction Permit BP-19870331BS

50KW DA-D, 3KW DA-N

Humble, TX.

June 20, 2011

# ENGINEERING STATEMENT IN SUPPORT OF 302-AM APPLICATION FOR LICENSE EMPLOYING MOMENT METHOD MODELING

## KGOL 1180kHz BP-19870331BS

June 20, 2011

#### TABLE OF CONTENTS

#### ENGINEERING STATEMENT

FORMS:

**FORM 302-AM** 

Form 302-AM, Exhibit 1 – Station Operation

Form 302-AM, Exhibit 2 – Description of sampling system Form 302-AM, Exhibit 3 – Tower details and isolation circuits

Form 302-AM, Exhibit 4 – Description of ground system

#### **EXECUTIVE SUMMARY:**

#### **EXHIBITS:**

| I. | Tower | Base | Impedance | Measurements |
|----|-------|------|-----------|--------------|
|----|-------|------|-----------|--------------|

- II. Individual Tower Measurements vs. Modeled
- III. MoM Model Parameters
- IV. Derived and measured Operating Parameters
- V. MoM Analysis for Towers driven Individually
- VI. Medium Wave Array Synthesis From Field Ratios
- VII. Tower Base Circuit Analysis Model
- VIII. Reference Field Measurements
- IX. Survey of Towers As Built (towers 3 and 4)

#### Form 302-AM, Exhibit 1 – Station Operation

#### **SUMMARY**

The following engineering statement has been prepared on behalf of Entravision Holdings, LLC. licensee of standard broadcast station KGOL, FCC ID 34473, 1180kHz, Humble, Texas. KGOL holds construction permit BP- 19870331BS which authorizes an increase in nighttime power from 1kW to 3kW along with a reconfiguration in operating parameters and relocation of towers 3 and 4.

The towers and ground system have been constructed in accordance with the terms of the construction permit.

There has been no change in the daytime facilities other than a change in operating parameters and replacement of sample lines in order to comply with the method of moments ("MoM") requirements and calculated values.

The day and night antenna systems have been adjusted to produce monitoring system parameters which are within  $\pm$  5% in field ratio and  $\pm$  3° in phase of the modeled values as required by 73.151(c)(2)(ii).

#### DESCRIPTION OF TRANSMISSION FACILITIES AS CONSTRUCTED

TOWERS Electrical, 90°. Each tower face, 18" uniform cross-section, 1"0.D. leg with Lapp Base insulator (appx. 14pF).

4 identical towers 65.5m AGL including lighting.

Tower 1- 1048052, day and night (no change) Tower 2- 1048053, day and night (no change)

Tower 3- 1048054, night only (ASR modified, new location) Tower 4- 1048055, night only (ASR modified, new location)

GROUND SYSTEM 120 equally spaced, buried, #10 copper radials about the base of each tower,

each 61 meters in length except where intersecting common chords or property lines limit length. Intersecting radials are shortened and bonded to

a transverse copper strap midway between adjacent towers.

## Form 302-AM, Exhibit 2 – Description of sampling system

#### DESCRIPTION OF SAMPLING SYSTEM AS CONSTRUCTED

Samples for the antenna monitor are obtained from toroidal current transformers mounted at the outputs of the antenna coupling units. Samples are returned to the antenna monitor using equal lengths of Andrew LDF4-50A foam phase stabilized coaxial cable with solid copper outer shield.

All sample lines were tested and verified to be within 1° electrical length and with characteristic impedance to be within FCC guidelines. Verification of the sample lines and sampling transformers is included in the attached Method of Moments application.

The phase monitor is a Potomac Instruments AM-19D antenna monitor. Phase monitor accuracy was confirmed by feeding two tower inputs at a time through a splitter and equal length jumpers to confirm equal magnitude and phase on each tower within .002 current ratio and 0.2 degrees phase.

Measured phases and ratios at 1180kHz are shown below:

REF TWR 1

REF TWR 2

| TWR | Ratio | Phase | TWR | Ratio | Phase |
|-----|-------|-------|-----|-------|-------|
| 1   | 1.0   | 0.0   | 1   | 1.002 | +0.1  |
| 1-2 | 1.0   | 0.0   | 2-1 | 1.0   | 0.0   |
| 1-3 | 0.998 | -0.1  | 2-3 | 0.999 | -0.1  |
| 1-4 | 0.999 | +0.1  | 2-4 | 1.001 | +0.1  |

Toroidal sample devices were tested for accuracy and were certified as being within 1 percent ratio and 1 degree phase accuracy. Devices were placed on the same conductor in the transmitter building and then measured connected to the same input of the phase monitor at 1180kHz. Sample devices were measured when connected to the phase monitor with coax jumpers at the exact same length:

| Current Source           | Toroid 1<br>Ratio / Phase | Toroid 2<br>Ratio / Phase | Tor oid 3<br>Ratio / Phase | Toroid 4<br>Ratio / Phase |
|--------------------------|---------------------------|---------------------------|----------------------------|---------------------------|
| 1.0 Amp                  | 1.003/-0.1                | 1.0 / 0                   | 1.001 / -0.4               | 1.002 / -0.4              |
| 2.0 Amp                  | 1.003 / -0.1              | 1.0 / 0                   | 1.001 / -0.3               | 1.002 / -0.3              |
| 2.0 Amp (1&3<br>Swapped) | 1.002 / -0.3              | 1.0 / 0                   | 1.003 / -0.1               | 1.002 / -0.3              |
| 3.0 Amp                  | 1.003 / -0.1              | 1.0 / 0                   | 1.001 / -0.4               | 1.002 / -0.4              |

Impedance measurements were made of the antenna sampling system using an Array Solutions Model AIM4170C Vector Network Analyzer (VNA). The measurements were made looking into the antenna monitor ends of the sample lines with the tower ends open-circuited. All connectors were installed on the sample lines and readings were normalized to include the test leads.

The table below shows the frequencies above and below the carrier frequency where resonance, defined as zero reactance corresponding with low resistance, was found. As the length of distortionless transmission line is 180 electrical degrees at the difference frequency between adjacent frequencies of resonance, and frequencies of resonance occur at odd multiples of 90 degrees electrical length, the sample line length at the resonant frequency above carrier frequency, which is the closest one to the carrier frequency, was found to be 270 electrical degrees. The electrical length at carrier frequency appearing in the table below was calculated by ratioing the frequencies.

**KGOL Tower Sample Measurements** 

|         | Resonance<br>Below 1180Khz | Resonance<br>Above 1180Khz | Calculated<br>Electrical Length | Impedance into<br>TCT @1180kHz |
|---------|----------------------------|----------------------------|---------------------------------|--------------------------------|
| Tower 1 | 552.0                      | 1652.7                     | 192.8                           | 49.8 –j0.5                     |
| Tower 2 | 552.4                      | 1658.0                     | 192.2                           | 50.6 –j0.3                     |
| Tower 3 | 552.6                      | 1656.0                     | 192.4                           | 49.5 –j0.5                     |
| Tower 4 | 552.0                      | 1658.5                     | 192.1                           | 50.8 –j0.6                     |

Max Delta 0.7deg

Based upon the measurements shown above, the sample lines are within the one electrical degree requirement .

To determine the characteristic impedance values of the sample lines, open-circuited measurements were made with frequencies offset to produce ± 45 degrees of electrical length from resonance

The characteristic impedance was calculated using the following formula, where R1 +j X1 and R2 +j X2 are the measured impedances at the +45 and -45 degree offset frequencies, respectively:

$$ZO = ((R1^2 + X1^2)^{\frac{1}{2}} \times (R2^2 + X2^2)^{\frac{1}{2}})^{\frac{1}{2}}$$

KGOL Sample Line Characteristic Impedance Measurements

|         | +45 Degree<br>Offset Frequency<br>(KHz) | +45 Degree<br>Measured<br>Impedance (Ohms) | -45 Degree<br>Offset Frequency<br>(KHz) | -45 Degree<br>Measured<br>Impedance (Ohms) | Calculated<br>Characteristic<br>Impedance<br>(Ohms) |
|---------|-----------------------------------------|--------------------------------------------|-----------------------------------------|--------------------------------------------|-----------------------------------------------------|
| Tower 1 | 1401.3                                  | 2.90 –j44.6                                | 840.8                                   | 3.95 +j54.5                                | 49.42                                               |
| Tower 2 | 1425.0                                  | 2.84j43.4                                  | 855.0                                   | 4.03 +j56.2                                | 49.51                                               |
| Tower 3 | 1418.8                                  | 2.73 -j43.3                                | 851.3                                   | 4.53 +j56.1                                | 49.39                                               |
| Tower 4 | 1422.5                                  | 2.79 –j43.5                                | 853.5                                   | 3.97 +j55.7                                | 49.32                                               |

| MAX Impedance | 49.51 |
|---------------|-------|
| MIN Impedance | 49.32 |

As shown above, the sample lines measured characteristic impedances meet the requirement that they be equal to 50 Ohms within +-2 ohms.

The sampling system for KGOL is type approved under 47CFR 73.68 of the FCC rules.

## Form 302-AM, Exhibit 3 – Tower details and isolation circuits

The following isolation circuits are attached to the KGOL towers and have been included in the MoM analysis:

All Towers: Standard tower lighting (beacon and side markers) fed with an isolation coil inside the phasor.

## Form 302-AM, Exhibit 4 – Description of ground system

#### GROUND SYSTEM

120 equally spaced, buried, #10 copper radials about the base of each tower, each 61 meters in length except where intersecting common chords or property lines limit length. Intersecting radials are shortened and bonded to a transverse copper strap midway between adjacent towers.

New ground system replaced the old system on towers 3 and 4.

#### Post Construction Verification-Certification

As shown in the as-built survey attached as Exhibit IX, all towers were built as specified to within one second of the location specified in the pre-construction documents.

The survey was signed and sealed by Robert D. Ellis, Registered Professional Land Surveyor, Texas registration number 4006. The final survey was completed on 10/20/2010 as indicated on the text block on the attached survey copy. All relative tower orientations and distances are verified to be exactly as specified in the construction permit.

#### Direct Measurement of Power

Common point impedance was measured with a Delta OIB-3 calibrated RF ammeter. The common point current was measured with a Delta TCA toroidal RF current meter permanently installed in the phasing cabinet.

Common point resistance was set to  $50\Omega$  ±j0. The transmitter was adjusted to yield the correct current as reflected on the 302-AM attached.

#### CONCLUSION

All adjustments and measurements were conducted jointly by Bertram Goldman and Kurt Gorman. Method of Moments analysis was conducted by Kurt Gorman. Both Gorman's and Goldman's qualifications are a matter of record with the Federal Communications Commission.

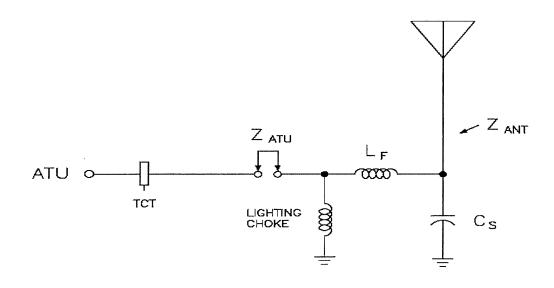
This application was prepared on behalf of Entravision Holdings, LLC. by Bertram Goldman of Independence Broadcast Services, LLC. All statements herein are true and correct to the best of his knowledge.

Bertram S. Goldman

Merter I Golden

V.P. Engineering

Independence Broadcast Services, LLC.


## EXHIBIT I Tower Base Impedance Measurements

The impedance of each tower was measured at the J plug at the output of the T matching network at the base of each tower. All impedance measurements were obtained using a Delta OIB-3 operating impedance bridge with a Potomac Instruments SG-31/SD31 RF generator/ detector operating at 1180kHz. Measurements were taken with the test leads shorted (for reference), from the J plug to the tower with the tower base shorted, and from the J plug to the tower with the tower in-circuit. All measurements were taken for each tower with all other towers open-circuited.

The following exhibit II describes the measurement conditions and assumptions used in the MoM analysis.

## **EXHIBTIT II**

# Tower Impedance Measurements Compared to Method of Moments Model



| TOWER | Specified<br>Cs (pf) | Measured $L_F(\mu H)$ | Measured $X_F(\Omega)$ | Modeled $\mathrm{Z}_{ANT}\left(\Omega ight)$ | Modeled $\mathrm{Z}_{ATU}\left(\Omega ight)$ | Measured $\mathrm{Z}_{	ext{ATU}}\left(\Omega ight)$ |
|-------|----------------------|-----------------------|------------------------|----------------------------------------------|----------------------------------------------|-----------------------------------------------------|
| 1     | 14                   | 3.35                  | +j24.8                 | 50.0 +j 52.2                                 | 48.7 +j 76.2                                 | 49.0 +j 75.5                                        |
| 2     | 14                   | 3.82                  | +j28.3                 | 51.6 +j 51.9                                 | 50.1 +j 79.3                                 | 49.0 +j 77.9                                        |
| 3     | 14                   | 3.44                  | +j25.5                 | 50.4 +j 51.7                                 | 49.0 +j 76.4                                 | 49.5 +j 77.0                                        |
| 4     | 14                   | 3.57                  | +j26.5                 | 50.9 +j 51.2                                 | 49.5 +j 76.8                                 | 50.0 +j 76.5                                        |

## Circuit Analysis for Towers Driven Individually

## BASE NETWORK COMPUTATION PHASETEK INC. QUAKERTOWN PA

CUSTOMER : KGOL

NETWORK ID : TOWER 1 (OTHERS OPEN)

FREQUENCY: 1180.00 kHz

ATU SHUNT IMPEDANCE (R,X) : 0.00, 4000.00 OHMS
TOWER FEED IMPEDANCE (R,X) : 0.00, 24.80 OHMS
TOWER SHUNT IMPEDANCE (R,X) : 0.00, -9634.10 OHMS
TOWER IMPEDANCE (R,X) : 50.00, 52.20 OHMS

|      |    |        | IMPEDANCE | (OHMS)  |
|------|----|--------|-----------|---------|
| NODE | TO | NODE   | R         | X       |
|      |    |        |           |         |
| 1    |    | GROUND | 0.00      | 4000.00 |
| 2    |    | GROUND | 50.54     | 52.22   |
| 1    |    | 2      | 0.00      | 24.80   |

|      | VOLTAG    | E      |
|------|-----------|--------|
| NODE | MAGNITUDE | PHASE  |
| 1    | 100.00    | 0.00   |
| 2    | 78.89     | -10.79 |

|                          | REAL  | IMAGINARY | MAGNITUDE | PHASE  |
|--------------------------|-------|-----------|-----------|--------|
| INPUT IMPEDANCE (OHMS) : | 48.65 | 76.17     | 90.38     | 57.44  |
| INPUT CURRENT (AMPS) :   | 0.60  | -0.93     | 1.11      | -57.44 |
| OUTPUT CURRENT (AMPS) :  | 0.59  | -0.92     | 1.09      | -57.02 |

INPUT/OUTPUT CURRENT RATIO = 1.0138 INPUT/OUTPUT PHASE = -0.41 DEGREES

NETWORK ID : TOWER 2 (OTHERS OPEN)

FREQUENCY: 1180.00 kHz

ATU SHUNT IMPEDANCE (R,X): 0.00, 4000.00 OHMS
TOWER FEED IMPEDANCE (R,X): 0.00, 28.30 OHMS
TOWER SHUNT IMPEDANCE (R,X): 0.00, -9634.10 OHMS
TOWER IMPEDANCE (R,X): 51.60, 51.90 OHMS

IMPEDANCE (OHMS)
NODE TO NODE R X

1 GROUND 0.00 4000.00
2 GROUND 52.16 51.90
1 2 0.00 28.30

 NODE
 MAGNITUDE
 PHASE

 1
 100.00
 0.00

 2
 76.91
 -12.10

|                          | REAL  | IMAGINARY | MAGNITUDE | PHASE  |
|--------------------------|-------|-----------|-----------|--------|
| INPUT IMPEDANCE (OHMS) : | 50.12 | 79.26     | 93.78     | 57.69  |
| INPUT CURRENT (AMPS) :   | 0.57  | -0.90     | 1.07      | -57.69 |
| OUTPUT CURRENT (AMPS) :  | 0.57  | -0.88     | 1.05      | -57.27 |

INPUT/OUTPUT CURRENT RATIO = 1.0147
INPUT/OUTPUT PHASE = -0.42 DEGREES

NETWORK ID : TOWER 3 (OTHERS OPEN)

FREQUENCY: 1180.00 kHz

ATU SHUNT IMPEDANCE (R,X): 0.00, 4000.00 OHMS TOWER FEED IMPEDANCE (R,X): 0.00, 25.50 OHMS
TOWER SHUNT IMPEDANCE (R,X): 0.00, -9634.10 OHMS
TOWER IMPEDANCE (R,X): 50.40, 51.70 OHMS

|      |    |        | IMPEDANCE | (OHMS)  |
|------|----|--------|-----------|---------|
| NODE | TO | NODE   | R         | X       |
| 1    |    | GROUND | 0.00      | 4000.00 |
| 2    |    | GROUND | 50.94     | 51.71   |
| 1    |    | 2      | 0.00      | 25.50   |

VOLTAGE NODE MAGNITUDE PHASE 100.00 0.00 78.47 -11.15 1 2

|                          | REAL  | IMAGINARY | MAGNITUDE | PHASE  |
|--------------------------|-------|-----------|-----------|--------|
| INPUT IMPEDANCE (OHMS) : | 49.03 | 76.36     | 90.74     | 57.30  |
| INPUT CURRENT (AMPS) :   | 0.60  | -0.93     | 1.10      | -57.30 |
| OUTPUT CURRENT (AMPS) :  | 0.59  | -0.91     | 1.09      | -56.88 |

INPUT/OUTPUT CURRENT RATIO = 1.0139 INPUT/OUTPUT PHASE = -0.41 DEGREES

NETWORK ID : TOWER 4 (OTHERS OPEN)

FREQUENCY: 1180.00 kHz

ATU SHUNT IMPEDANCE (R,X): 0.00, 4000.00 OHMS TOWER FEED IMPEDANCE (R,X): 0.00, 26.50 OHMS
TOWER SHUNT IMPEDANCE (R,X): 0.00, -9634.10 OHMS
TOWER IMPEDANCE (R,X): 50.90, 51.20 OHMS

|      |    |        | IMPEDANCE | (OHMS)  |
|------|----|--------|-----------|---------|
| NODE | TO | NODE   | R         | X       |
| 1    |    | GROUND | 0.00      | 4000.00 |
| 2    |    | GROUND | 51.44     | 51.20   |
| 1    |    | 2      | 0.00      | 26.50   |

VOLTAGE NODE MAGNITUDE PHASE 100.00 0.00 77.89 -11.63 1

|                          | REAL  | IMAGINARY | MAGNITUDE | PHASE  |
|--------------------------|-------|-----------|-----------|--------|
| INPUT IMPEDANCE (OHMS) : | 49.49 | 76.84     | 91.40     | 57.22  |
| INPUT CURRENT (AMPS) :   | 0.59  | -0.92     | 1.09      | -57.22 |
| OUTPUT CURRENT (AMPS) :  | 0.59  | -0.90     | 1.08      | -56.80 |

INPUT/OUTPUT CURRENT RATIO = 1.0141 INPUT/OUTPUT PHASE = -0.42 DEGREES

## EXHIBIT III

## MoM Model Parameters

| Tower | Wire No. | No.<br>Segments | Base Node | Radius | Model<br>Length<br>(degrees) | Physical<br>Length<br>(degrees) |
|-------|----------|-----------------|-----------|--------|------------------------------|---------------------------------|
| 1     | 1 .      | 12              | 1         | .24    | 96.2                         | 90.0                            |
| 2     | 2        | 12              | 13        | .24    | 96.0                         | 90.0                            |
| 3     | 3        | 12              | 25        | .24    | 96.1                         | 90.0                            |
| 4     | 4        | 12              | 37        | .24    | 96.0                         | 90.0                            |

Tower 1-4 base insulators- Lapp, 14pF

## EXHIBIT IV KGOL DERIVED AND MEASURED OPERATING PARAMETERS

KGOL Calculated / Operating Parameters- DAY

| TOWER | Input to Base<br>Network<br>Current | TCT Value<br>Ratio/ Phase <sup>1</sup> | Indicated<br>Ratio/Phase* |  |
|-------|-------------------------------------|----------------------------------------|---------------------------|--|
| 1     | 15.36/-92.9°                        | .534/-95.7°                            | .540/-95.9°               |  |
| 2     | 28.78/3.59°                         | 1.00/ +0.0°                            | 1.00/ +0.0°               |  |
| 3     | Tower detuned +j497.3               |                                        |                           |  |
| 4     | Tower detuned +j496.9               |                                        |                           |  |

## KGOL Calculated / Operating Parameters - NIGHT

| TOWER | Input to Base<br>Network<br>Current | TCT Value<br>Ratio/ Phase <sup>1</sup> | Indicated<br>Ratio/Phase* |
|-------|-------------------------------------|----------------------------------------|---------------------------|
| 1     | 5.58/4.42°                          | 1.00/0.0°                              | 1.00/+0.0°                |
| 2     | 5.96/ 112.42°                       | 1.068/+108.0°                          | 1.044/+108.3°             |
| 3     | 4.46/ 109.24°                       | .799/+104.8°                           | .802/+104.7°              |
| 4     | 4.08/ -13.30°                       | .731/ -17.7°                           | .731/ -18.0°              |

<sup>&</sup>lt;sup>1</sup>These numbers are submitted as final operating parameters on FCC 302-AM application.

<sup>\*</sup> Final antenna monitor indications from Potomac Instruments AM-19D antenna monitor.

#### EXHIBIT V

## Method of Moment Analysis

## (KGOL) Tower 1 (SW) Tower-Others Floating

#### KGOL

#### GEOMETRY

Wire coordinates in degrees; other dimensions in meters Environment: perfect ground

| wire | caps | Distance | Angle | Z    | radius | segs |
|------|------|----------|-------|------|--------|------|
| 1    | none | 0        | 0     | 0 .  | .24    | 12   |
|      |      | 0        | 0     | 96.2 |        |      |
| 2    | none | 90.      | 29.   | 0    | . 24   | 12   |
|      |      | 90.      | 29.   | 96.  |        |      |
| 3    | none | 273.9    | 58.6  | 0    | .24    | 12   |
|      |      | 273.9    | 58.6  | 96.1 |        |      |
| 4    | none | 234.3    | 75.9  | 0    | .24    | 12   |
|      |      | 234.3    | 75.9  | 96.  |        |      |

Number of wires = 4 current nodes = 48

|                  | mini | mum   | maximum |         |  |
|------------------|------|-------|---------|---------|--|
| Individual wires | wire | value | wire    | value   |  |
| segment length   | 2    | 8.    | 1       | 8.01667 |  |
| radius           | 1    | .24   | 1       | .24     |  |

#### ELECTRICAL DESCRIPTION

Frequencies (MHz)

|     | frequency |      | no. of | segment length | (wavelengths) |
|-----|-----------|------|--------|----------------|---------------|
| no. | lowest    | step | steps  | minimum        | maximum       |
| 1   | 1.18      | 0    | 1      | .022222        | .0222685      |

#### Sources

| source | node | sector | magnitude | phase | type    |
|--------|------|--------|-----------|-------|---------|
| 1      | 1    | 1      | 1.        | 0     | voltage |

#### Lumped loads

|      |      | resistance | reactance | inductance | capacitance | passive |
|------|------|------------|-----------|------------|-------------|---------|
| load | node | (ohms)     | (ohms)    | (mH)       | (uF)        | circuit |
| 1    | 13   | 0          | -9,634.1  | 0          | 0           | 0       |
| 2    | 25   | 0          | -9,634.1  | 0          | 0           | 0       |
| 3    | 37   | 0          | -9,634.1  | 0          | 0           | 0       |

C:\Documents and Settings\KURT\Desktop\ENGINEER\KGOLMOM\KGOLT1 04-17-2011
13:07:55

#### IMPEDANCE

| freq     | resist  | react    | imped  | phase | VSWR   | S11     | S12     |
|----------|---------|----------|--------|-------|--------|---------|---------|
| (MHz)    | (ohms)  | (ohms)   | (ohms) | (deg) |        | dB      | dB      |
| source = | 1; node | 1, secto | or 1   |       |        |         |         |
| 1.18     | 49.969  | 52.182   | 72.249 | 46.2  | 2.7225 | -6.6934 | -1.0464 |

## (KGOL2) Tower 2 (NW) Tower- Others Floating

#### KGOL

#### GEOMETRY

Wire coordinates in degrees; other dimensions in meters

Environment: perfect ground

| wire | caps | Distance | Angle | Z    | radius | segs |
|------|------|----------|-------|------|--------|------|
| 1    | none | 0        | 0     | 0    | . 24   | 12   |
|      |      | 0        | 0     | 96.2 |        |      |
| 2    | none | 90.      | 29.   | 0    | .24    | 12   |
|      |      | 90.      | 29.   | 96.  |        |      |
| 3    | none | 273.9    | 58.6  | 0    | . 24   | 12   |
|      |      | 273.9    | 58.6  | 96.1 |        |      |
| 4    | none | 234.3    | 75.9  | 0    | .24    | 12   |
|      |      | 234.3    | 75.9  | 96.  |        |      |

Number of wires = 4

current nodes = 48

|                  | mini | mum   | maximum |         |  |
|------------------|------|-------|---------|---------|--|
| Individual wires | wire | value | wire    | value   |  |
| segment length   | 2    | 8.    | 1       | 8.01667 |  |
| radius           | 1    | .24   | 1       | . 24    |  |

#### ELECTRICAL DESCRIPTION

Frequencies (MHz)

|     | frequency |      | no. of | segment length | (wavelengths) |
|-----|-----------|------|--------|----------------|---------------|
| no. | lowest    | step | steps  | minimum        | maximum       |
| 1   | 1.18      | 0    | 1      | .0222222       | .0222685      |

#### Sources

| source | node | sector | magnitude | phase | type    |
|--------|------|--------|-----------|-------|---------|
| 1      | 13   | 1      | 1.        | 0     | voltage |

#### Lumped loads

|      |      | resistance | reactance | inductance | capacitance | passive |
|------|------|------------|-----------|------------|-------------|---------|
| load | node | (ohms)     | (ohms)    | (mH)       | (uF)        | circuit |
| 1    | 1    | 0          | -9,634.1  | 0          | 0           | 0       |
| 2    | 25   | 0          | -9,634.1  | 0          | 0           | 0       |
| 3    | 37   | 0          | -9,634.1  | 0          | 0           | 0       |

C:\Documents and Settings\KURT\Desktop\ENGINEER\KGOLMOM\KGOLT2 04-17-2011
13:10:14

#### IMPEDANCE

| freq                          | resist | react  | imped  | phase | VSWR  | S11     | S12     |  |
|-------------------------------|--------|--------|--------|-------|-------|---------|---------|--|
| (MHz)                         | (ohms) | (ohms) | (ohms) | (deg) |       | dB      | đВ      |  |
| source = 1; node 13, sector 1 |        |        |        |       |       |         |         |  |
| 1.18                          | 51.599 | 51.929 | 73.206 | 45.2  | 2.672 | -6.8334 | -1.0091 |  |

## (KGOL3) Tower 3 (NE) Tower-Others Floating

#### KGOL

#### GEOMETRY

Wire coordinates in degrees; other dimensions in meters Environment: perfect ground

| wire | caps | Distance | Angle | Z    | radius | segs |
|------|------|----------|-------|------|--------|------|
| 1    | none | 0        | 0     | 0    | .24    | 12   |
|      |      | 0        | 0     | 96.2 |        |      |
| 2    | none | 90.      | 29.   | 0    | . 24   | 12   |
|      |      | 90.      | 29.   | 96.  |        |      |
| 3    | none | 273.9    | 58.6  | 0    | . 24   | 12   |
|      |      | 273.9    | 58.6  | 96.1 |        |      |
| 4    | none | 234.3    | 75.9  | 0    | .24    | 12   |
|      |      | 234.3    | 75.9  | 96.  |        |      |

Number of wires = 4 current nodes = 48

|                  | mini | mum   | maximum |         |  |
|------------------|------|-------|---------|---------|--|
| Individual wires | wire | value | wire    | value   |  |
| segment length   | 2    | 8.    | 1       | 8.01667 |  |
| radius           | 1    | .24   | 1       | .24     |  |

#### ELECTRICAL DESCRIPTION

Frequencies (MHz)

|     | frequency |      | no. of | segment length | (wavelengths) |
|-----|-----------|------|--------|----------------|---------------|
| no. | lowest    | step | steps  | minimum        | maximum       |
| l   | 1.18      | 0    | 1      | .022222        | .0222685      |

#### Sources

| source | node | sector | magnitude | phase | type    |
|--------|------|--------|-----------|-------|---------|
| 1      | 25   | 1      | 1.        | 0     | voltage |

#### Lumped loads

|      |      | resistance | reactance | inductance | capacitance | passive |
|------|------|------------|-----------|------------|-------------|---------|
| load | node | (ohms)     | (ohms)    | (mH)       | (uF)        | circuit |
| 1    | 1    | 0          | -9,634.1  | 0          | 0           | 0       |
| 2    | 13   | 0          | -9,634.1  | 0          | 0           | 0       |
| 3    | 37   | 0          | -9,634.1  | 0          | 0           | 0       |

C:\Documents and Settings\KURT\Desktop\ENGINEER\KGOLMOM\KGOLT3 04-17-2011 13:12:32

#### IMPEDANCE

| freq   | resist    | react    | imped  | phase | VSWR   | S11     | S12     |
|--------|-----------|----------|--------|-------|--------|---------|---------|
| (MHz)  | (ohms)    | (ohms)   | (ohms) | (deg) |        | dB      | dВ      |
| source | = 1; node | 25, sect | tor 1  |       |        |         |         |
| 1.18   | 50.428    | 51.735   | 72.246 | 45.7  | 2.6898 | -6.7833 | -1.0223 |

## (KGOL4) Tower 4 (SE) Tower- Others Floating

#### KGOL

#### GEOMETRY

Wire coordinates in degrees; other dimensions in meters Environment: perfect ground

| wire | caps | Distance | Angle | Z    | radius | segs |
|------|------|----------|-------|------|--------|------|
| 1    | none | 0        | 0     | 0    | . 24   | 12   |
|      |      | 0        | 0     | 96.2 |        |      |
| 2    | none | 90.      | 29.   | 0    | .24    | 12   |
|      |      | 90.      | 29.   | 96.  |        |      |
| 3    | none | 273.9    | 58.6  | 0    | .24    | 12   |
|      |      | 273.9    | 58.6  | 96.1 |        |      |
| 4    | none | 234.3    | 75.9  | 0,   | . 24   | 12   |
|      |      | 234.3    | 75.9  | 96.  |        |      |

Number of wires = 4 current nodes = 48

|                  | mini | mum   | max  | imum    |
|------------------|------|-------|------|---------|
| Individual wires | wire | value | wire | value   |
| segment length   | 2    | 8.    | 1    | 8.01667 |
| radius           | 1    | .24   | 1    | .24     |

#### ELECTRICAL DESCRIPTION

Frequencies (MHz)

|     | frequency |      | no. of | segment length | (wavelengths) |
|-----|-----------|------|--------|----------------|---------------|
| no. | lowest    | step | steps  | minimum        | maximum       |
| 1   | 1.18      | 0    | 1      | .022222        | .0222685      |

#### Sources

| source | node | sector | magnitude | phase | type    |
|--------|------|--------|-----------|-------|---------|
| 1      | 37   | 1      | 1.        | 0     | voltage |

#### Lumped loads

|      |      | resistance | reactance | inductance | capacitance | passive |
|------|------|------------|-----------|------------|-------------|---------|
| load | node | (ohms)     | (ohms)    | (mH)       | (uF)        | circuit |
| 1    | 1    | 0          | -9,634.1  | 0          | 0           | 0       |
| 2    | 13   | 0          | -9,634.1  | 0          | 0           | 0       |
| 3    | 25   | 0          | -9,634.1  | 0          | 0           | 0       |

C:\Documents and Settings\KURT\Desktop\ENGINEER\KGOLMOM\KGOLT4 04-17-2011
13:13:56

#### IMPEDANCE

| freq     | resist    | react   | imped  | phase | VSWR   | S11     | S12   |
|----------|-----------|---------|--------|-------|--------|---------|-------|
| (MHz)    | (ohms)    | (ohms)  | (ohms) | (deg) |        | dB      | đВ    |
| source = | = 1; node | 37, sec | tor 1  |       |        |         |       |
| 1.18     | 50.928    | 51.169  | 72.194 | 45.1  | 2.6514 | -6.8922 | 99382 |

#### EXHIBIT VI

## (KGOLDA-DAY) Medium Wave Array Synthesis From Field Ratios

#### MEDIUM WAVE ARRAY SYNTHESIS FROM FIELD RATIOS

Frequency = 1.18 MHz

|       | field ratio |       |       |
|-------|-------------|-------|-------|
| tower | magnitude   | phase | (deg) |
| 1     | . 6         | -100. |       |
| 2     | 1.          | 0     |       |
| 3     | 0           | 0     |       |
| 4     | 0           | 0     |       |
|       |             |       |       |

#### VOLTAGES AND CURRENTS - rms

| source | voltage   |                 | current    |             |
|--------|-----------|-----------------|------------|-------------|
| node   | magnitude | phase (deg)     | magnitude  | phase (deg) |
| 1      | 2,101.89  | 317.1           | 15.0376    | 268.7       |
| 13     | 1,524.11  | 51.8            | 28.4101    | 3.9         |
| 25     | 294.611   | 218.6           | .59236     | 307.5       |
| 37     | 369.559   | 217.            | .743618    | 305.9       |
| Sum of | square of | source currents | = 2,068.34 |             |

Total power = 50,000. watts

#### TOWER ADMITTANCE MATRIX

| admittance | real (mhos) | imaginary (mhos) |
|------------|-------------|------------------|
| Y(1, 1)    | .00780073   | 00825471 ·       |
| Y(1, 2)    | .00462429   | .0032675         |
| Y(1, 3)    | .000371949  |                  |
| Y(1, 4)    | .00148693   | 00161515         |
| Y(2, 1)    | .00462428   | .00326752        |
| Y(2, 2)    | .0102189    | 00791463         |
| Y(2, 3)    | .00333751   | 00119985         |
| Y(2, 4)    | .00493206   | 000526812        |
| Y(3, 1)    | .000371948  | 000613982        |
| Y(3, 2)    | .00333751   | 00119986         |
| Y(3, 3)    | .00819679   | 00817831         |
| Y(3, 4)    | .00478849   | .00398008        |
| Y(4, 1)    | .00148692   | 00161515         |
| Y(4, 2)    | .00493206   | 000526814        |
| Y(4, 3)    | .00478849   | .00398009        |
| Y(4, 4)    | .00897052   | 00810871         |

#### TOWER IMPEDANCE MATRIX

| impedance | real (ohms) | imaginary (ohms) |
|-----------|-------------|------------------|
| Z(1, 1)   | 50.1389     | 52.2211          |
| Z(1, 2)   | 25.7749     | -25.7258         |
| Z(1, 3)   | -13.5013    | 11.0602          |
| Z(1, 4)   | -18.0658    | 214263           |
| Z(2, 1)   | 25.7748     | -25.7258         |
| Z(2, 2)   | 51.6567     | 51.939           |
| Z(2, 3)   | -16.3368    | -11.2547         |
| Z(2, 4)   | -13.3874    | -15.4629         |
| Z(3, 1)   | -13.5013    | 11.0602          |
| Z(3, 2)   | -16.3368    | -11.2547         |
| Z(3, 3)   | 50.561      | 51.7754          |
| Z(3, 4)   | 27.6602     | -24.1039         |
| Z(4, 1)   | -18.0657    | 214291           |
| Z(4, 2)   | -13.3875    | -15.4629         |
| Z(4, 3)   | 27.6602     | -24.1039         |
| Z(4, 4)   | 51.024      | 51.2146          |

#### KGOL

#### GEOMETRY

Wire coordinates in degrees; other dimensions in meters Environment: perfect ground

| wire | caps | Distance | Angle | Z    | radius | segs |
|------|------|----------|-------|------|--------|------|
| 1    | none | 0 ·      | 0     | 0    | .24    | 12   |
|      |      | 0        | 0     | 96.2 |        |      |
| 2    | none | 90.      | 29.   | 0    | .24    | 12   |
|      |      | 90.      | 29.   | 96.  |        |      |
| 3    | none | 273.9    | 58.6  | 0    | .24    | 12   |
|      |      | 273.9    | 58.6  | 96.1 |        |      |
| 4    | none | 234.3    | 75.9  | 0    | .24    | 12   |
|      |      | 234.3    | 75.9  | 96.  |        |      |
|      |      |          |       |      |        |      |

Number of wires = 4 current nodes = 48

|                  | mini | mum   | maximum |         |  |
|------------------|------|-------|---------|---------|--|
| Individual wires | wire | value | wire    | value   |  |
| segment length   | 2    | 8.    | 1       | 8.01667 |  |
| radius           | 1    | .24   | 1       | .24     |  |

#### ELECTRICAL DESCRIPTION

Frequencies (MHz)

| Frequ | iencies (MHZ) |      |      |    |          |        |               |
|-------|---------------|------|------|----|----------|--------|---------------|
|       | frequency     |      | no.  | of | segment  | length | (wavelengths) |
| no.   | lowest        | step | step | S  | minimum  |        | maximum       |
| 1     | 1.18          | 0    | 1    |    | .0222222 | 2      | .0222685      |

#### Sources

| source | node | sector | magnitude | phase | type    |
|--------|------|--------|-----------|-------|---------|
| 1      | 1    | 1      | 2,972.52  | 317.1 | voltage |
| 2      | 13   | 1      | 2,155.42  | 51.8  | voltage |

#### Lumped loads

|      |      | resistance | reactance | inductance | capacitance | passive |
|------|------|------------|-----------|------------|-------------|---------|
| load | node | (ohms)     | (ohms)    | (mH)       | (uF)        | circuit |
| 1    | 25   | 0          | 497.26    | 0          | 0           | 0       |
| 2    | 37   | 0          | 496.87    | 0          | 0           | 0       |

C:\Documents and Settings\KURT\Desktop\ENGINEER\KGOLMOM\KGOLDAY1 04-18-2011 13:47:12

#### IMPEDANCE

| freq     | resist  | react    | imped  | phase | VSWR   | S11     | S12     |
|----------|---------|----------|--------|-------|--------|---------|---------|
| (MHz)    | (ohms)  | (ohms)   | (ohms) | (deg) |        | dB      | dB      |
| source = | 1; node | 1, secto | r l    |       |        |         |         |
| 1.18     | 92.75   | 104.57   | 139.78 | 48.4  | 4.5314 | -3.8978 | -2.2738 |
|          |         |          |        |       |        |         |         |
| source = | 2; node | 13, sect | or 1   |       |        |         |         |
| 1.18     | 35.946  | 39.81    | 53.637 | 47.9  | 2.6083 | -7.0187 | 96188   |

#### CURRENT rms

ŧ.

Frequency = 1.18 MHz
Input power = 50,000. watts

Efficiency = 100. % coordinates in degrees

|                                                                                                                    | inates in o                                                                                                                                                                                                                                     | aegrees                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                        |                                                                                                                                                                                                 |                                                                                                                                                                                                         | _                                                                                                                                                                                                                                                                    |                                                                                                                                                                                    |
|--------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| curre                                                                                                              |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                        | mag                                                                                                                                                                                             | phase                                                                                                                                                                                                   | real                                                                                                                                                                                                                                                                 | imaginary                                                                                                                                                                          |
| no.                                                                                                                | X                                                                                                                                                                                                                                               | Y                                                                                                                                                                                                                                                                                                        | Z                                                                                                                                                                                                                      | (amps)                                                                                                                                                                                          | (deg)                                                                                                                                                                                                   | (amps)                                                                                                                                                                                                                                                               | (amps)                                                                                                                                                                             |
| GND                                                                                                                | 0                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                      | 15.0379                                                                                                                                                                                         | 268.7                                                                                                                                                                                                   | 348609                                                                                                                                                                                                                                                               | -15.0339                                                                                                                                                                           |
| 2                                                                                                                  | 0                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                        | 8.01667                                                                                                                                                                                                                | 16.157                                                                                                                                                                                          | 264.9                                                                                                                                                                                                   | -1.44164                                                                                                                                                                                                                                                             | -16.0926                                                                                                                                                                           |
| 3                                                                                                                  | 0                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                        | 16.0333                                                                                                                                                                                                                | 16.5818                                                                                                                                                                                         | 262.7                                                                                                                                                                                                   | -2.09822                                                                                                                                                                                                                                                             | -16.4485                                                                                                                                                                           |
| 4                                                                                                                  | 0                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                        | 24.05                                                                                                                                                                                                                  | 16.5643                                                                                                                                                                                         | 261.1                                                                                                                                                                                                   | -2.55854                                                                                                                                                                                                                                                             | -16.3655                                                                                                                                                                           |
| 5                                                                                                                  | 0                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                        | 32.0667                                                                                                                                                                                                                | 16.1381                                                                                                                                                                                         | 259.8                                                                                                                                                                                                   | -2.85189                                                                                                                                                                                                                                                             | -15.8841                                                                                                                                                                           |
| 6                                                                                                                  | 0                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                        | 40.0833                                                                                                                                                                                                                | 15.3235                                                                                                                                                                                         | 258.7                                                                                                                                                                                                   | -2.99003                                                                                                                                                                                                                                                             | -15.0289                                                                                                                                                                           |
| 7                                                                                                                  | 0                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                        | 48.1                                                                                                                                                                                                                   | 14.1399                                                                                                                                                                                         | 257.8                                                                                                                                                                                                   | -2.97998                                                                                                                                                                                                                                                             | -13.8223                                                                                                                                                                           |
| 8                                                                                                                  | 0                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                        | 56.1167                                                                                                                                                                                                                | 12.6088                                                                                                                                                                                         | 257.                                                                                                                                                                                                    | -2.82782                                                                                                                                                                                                                                                             | -12.2876                                                                                                                                                                           |
| 9                                                                                                                  | 0                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                        | 64.1333                                                                                                                                                                                                                | 10.7534                                                                                                                                                                                         | 256.3                                                                                                                                                                                                   | -2.53977                                                                                                                                                                                                                                                             | -10.4492                                                                                                                                                                           |
| 10                                                                                                                 | 0                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                        | 72.15                                                                                                                                                                                                                  | 8.59622                                                                                                                                                                                         | 255.7                                                                                                                                                                                                   | -2.12184                                                                                                                                                                                                                                                             | -8.33023                                                                                                                                                                           |
| 11                                                                                                                 | 0                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                        | 80.1667                                                                                                                                                                                                                | 6.15163                                                                                                                                                                                         | 255.1                                                                                                                                                                                                   | -1.578                                                                                                                                                                                                                                                               | -5.94579                                                                                                                                                                           |
| 12                                                                                                                 | 0                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                        | 88.1833                                                                                                                                                                                                                | 3.40391                                                                                                                                                                                         | 254.6                                                                                                                                                                                                   | 903857                                                                                                                                                                                                                                                               | -3.28172                                                                                                                                                                           |
| END                                                                                                                | 0                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                        | 96.2                                                                                                                                                                                                                   | 0                                                                                                                                                                                               | 0                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                  |
| GND                                                                                                                | 78.7158                                                                                                                                                                                                                                         | -43.6329                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                      | 28.4162                                                                                                                                                                                         | 3.9                                                                                                                                                                                                     | 28.3511                                                                                                                                                                                                                                                              | 1.92282                                                                                                                                                                            |
| 14                                                                                                                 | 78.7158                                                                                                                                                                                                                                         | -43.6329                                                                                                                                                                                                                                                                                                 | 8.                                                                                                                                                                                                                     | 29.0635                                                                                                                                                                                         | 2.3                                                                                                                                                                                                     | 29.0394                                                                                                                                                                                                                                                              | 1.18469                                                                                                                                                                            |
| 15                                                                                                                 | 78.7158                                                                                                                                                                                                                                         | -43.6329                                                                                                                                                                                                                                                                                                 | 16.                                                                                                                                                                                                                    | 28.9238                                                                                                                                                                                         | 1.4                                                                                                                                                                                                     | 28.9154                                                                                                                                                                                                                                                              | .696064                                                                                                                                                                            |
| 16                                                                                                                 | 78.7158                                                                                                                                                                                                                                         | -43.6329                                                                                                                                                                                                                                                                                                 | 24.                                                                                                                                                                                                                    | 28.1923                                                                                                                                                                                         | .6                                                                                                                                                                                                      | 28.1907                                                                                                                                                                                                                                                              | .300051                                                                                                                                                                            |
| 17                                                                                                                 | 78.7158                                                                                                                                                                                                                                         | -43.6329                                                                                                                                                                                                                                                                                                 | 32.                                                                                                                                                                                                                    | 26.907                                                                                                                                                                                          | 360.                                                                                                                                                                                                    | 26.907                                                                                                                                                                                                                                                               | 0204817                                                                                                                                                                            |
| 18                                                                                                                 | 78.7158                                                                                                                                                                                                                                         | -43.6329                                                                                                                                                                                                                                                                                                 | 40.                                                                                                                                                                                                                    | 25.0989                                                                                                                                                                                         | 359.4                                                                                                                                                                                                   | 25.0974                                                                                                                                                                                                                                                              | 270362                                                                                                                                                                             |
| 19                                                                                                                 | 78.7158                                                                                                                                                                                                                                         | -43.6329                                                                                                                                                                                                                                                                                                 | 48.                                                                                                                                                                                                                    | 22.801                                                                                                                                                                                          | 358.9                                                                                                                                                                                                   | 22.7965                                                                                                                                                                                                                                                              | 450596                                                                                                                                                                             |
| 20                                                                                                                 | 78.7158                                                                                                                                                                                                                                         | -43.6329                                                                                                                                                                                                                                                                                                 | 56.                                                                                                                                                                                                                    | 20.05                                                                                                                                                                                           | 358.4                                                                                                                                                                                                   | 20.0422                                                                                                                                                                                                                                                              | 561019                                                                                                                                                                             |
| 21                                                                                                                 | 78.7158                                                                                                                                                                                                                                         | -43.6329                                                                                                                                                                                                                                                                                                 | 64.                                                                                                                                                                                                                    | 16.8849                                                                                                                                                                                         | 358.                                                                                                                                                                                                    | 16.8742                                                                                                                                                                                                                                                              | 601223                                                                                                                                                                             |
| 22                                                                                                                 | 78.7158                                                                                                                                                                                                                                         | -43.6329                                                                                                                                                                                                                                                                                                 | 72.                                                                                                                                                                                                                    | 13.3422                                                                                                                                                                                         | 357.5                                                                                                                                                                                                   | 13.33                                                                                                                                                                                                                                                                | 570749                                                                                                                                                                             |
| 23                                                                                                                 | 78.7158                                                                                                                                                                                                                                         | -43.6329                                                                                                                                                                                                                                                                                                 | 80.                                                                                                                                                                                                                    | 9.44591                                                                                                                                                                                         | 357.2                                                                                                                                                                                                   | 9.43428                                                                                                                                                                                                                                                              | 46859                                                                                                                                                                              |
| 24                                                                                                                 | 78.7158                                                                                                                                                                                                                                         | -43.6329                                                                                                                                                                                                                                                                                                 | 88.                                                                                                                                                                                                                    | 5.17399                                                                                                                                                                                         | 356.8                                                                                                                                                                                                   | 5.1658                                                                                                                                                                                                                                                               | 290999                                                                                                                                                                             |
|                                                                                                                    |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                        |                                                                                                                                                                                                 |                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                    |
|                                                                                                                    |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                        |                                                                                                                                                                                                 |                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                    |
| END                                                                                                                | 78.7158                                                                                                                                                                                                                                         | -43.6329                                                                                                                                                                                                                                                                                                 | 96.                                                                                                                                                                                                                    | 0                                                                                                                                                                                               | 0                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                  |
| END<br>GND                                                                                                         | 78.7158<br>142.705                                                                                                                                                                                                                              | -43.6329<br>-233.788                                                                                                                                                                                                                                                                                     | 96.<br>0                                                                                                                                                                                                               | 0<br>.590846                                                                                                                                                                                    | 0<br>308.5                                                                                                                                                                                              | 0<br>.367741                                                                                                                                                                                                                                                         | 0<br>462456                                                                                                                                                                        |
| END<br>GND<br>26                                                                                                   | 78.7158<br>142.705<br>142.705                                                                                                                                                                                                                   | -43.6329<br>-233.788<br>-233.788                                                                                                                                                                                                                                                                         | 96.<br>0<br>8.00833                                                                                                                                                                                                    | 0<br>.590846<br>.361141                                                                                                                                                                         | 0<br>308.5<br>308.6                                                                                                                                                                                     | 0<br>.367741<br>.225075                                                                                                                                                                                                                                              | 0<br>462456<br>282425                                                                                                                                                              |
| END<br>GND<br>26<br>27                                                                                             | 78.7158<br>142.705<br>142.705<br>142.705                                                                                                                                                                                                        | -43.6329<br>-233.788<br>-233.788<br>-233.788                                                                                                                                                                                                                                                             | 96.<br>0<br>8.00833<br>16.0167                                                                                                                                                                                         | 0<br>.590846<br>.361141<br>.210264                                                                                                                                                              | 0<br>308.5<br>308.6<br>308.9                                                                                                                                                                            | 0<br>.367741<br>.225075<br>.132046                                                                                                                                                                                                                                   | 0<br>462456<br>282425<br>16363                                                                                                                                                     |
| END<br>GND<br>26<br>27<br>28                                                                                       | 78.7158<br>142.705<br>142.705<br>142.705<br>142.705                                                                                                                                                                                             | -43.6329<br>-233.788<br>-233.788<br>-233.788<br>-233.788                                                                                                                                                                                                                                                 | 96.<br>0<br>8.00833<br>16.0167<br>24.025                                                                                                                                                                               | 0<br>.590846<br>.361141<br>.210264<br>.0892104                                                                                                                                                  | 0<br>308.5<br>308.6<br>308.9<br>310.6                                                                                                                                                                   | 0<br>.367741<br>.225075<br>.132046<br>.058045                                                                                                                                                                                                                        | 0<br>462456<br>282425<br>16363<br>0677442                                                                                                                                          |
| END<br>GND<br>26<br>27<br>28<br>29                                                                                 | 78.7158<br>142.705<br>142.705<br>142.705<br>142.705<br>142.705                                                                                                                                                                                  | -43.6329<br>-233.788<br>-233.788<br>-233.788<br>-233.788<br>-233.788                                                                                                                                                                                                                                     | 96.<br>0<br>8.00833<br>16.0167<br>24.025<br>32.0333                                                                                                                                                                    | 0<br>.590846<br>.361141<br>.210264<br>.0892104<br>9.5E-03                                                                                                                                       | 0<br>308.5<br>308.6<br>308.9<br>310.6<br>93.2                                                                                                                                                           | 0<br>.367741<br>.225075<br>.132046<br>.058045<br>-5.28E-04                                                                                                                                                                                                           | 0<br>462456<br>282425<br>16363<br>0677442<br>9.48E-03                                                                                                                              |
| END<br>GND<br>26<br>27<br>28<br>29<br>30                                                                           | 78.7158 142.705 142.705 142.705 142.705 142.705 142.705                                                                                                                                                                                         | -43.6329<br>-233.788<br>-233.788<br>-233.788<br>-233.788<br>-233.788<br>-233.788                                                                                                                                                                                                                         | 96.<br>0<br>8.00833<br>16.0167<br>24.025<br>32.0333<br>40.0417                                                                                                                                                         | 0<br>.590846<br>.361141<br>.210264<br>.0892104<br>9.5E-03<br>.0826391                                                                                                                           | 0<br>308.5<br>308.6<br>308.9<br>310.6<br>93.2<br>123.                                                                                                                                                   | 0<br>.367741<br>.225075<br>.132046<br>.058045<br>-5.28E-04                                                                                                                                                                                                           | 0<br>462456<br>282425<br>16363<br>0677442<br>9.48E-03<br>.0693252                                                                                                                  |
| END<br>GND<br>26<br>27<br>28<br>29<br>30<br>31                                                                     | 78.7158 142.705 142.705 142.705 142.705 142.705 142.705 142.705                                                                                                                                                                                 | -43.6329<br>-233.788<br>-233.788<br>-233.788<br>-233.788<br>-233.788<br>-233.788<br>-233.788                                                                                                                                                                                                             | 96.<br>0<br>8.00833<br>16.0167<br>24.025<br>32.0333<br>40.0417<br>48.05                                                                                                                                                | 0<br>.590846<br>.361141<br>.210264<br>.0892104<br>9.5E-03<br>.0826391<br>.135439                                                                                                                | 0<br>308.5<br>308.6<br>308.9<br>310.6<br>93.2<br>123.                                                                                                                                                   | 0<br>.367741<br>.225075<br>.132046<br>.058045<br>-5.28E-04<br>0449805<br>0759595                                                                                                                                                                                     | 0<br>462456<br>282425<br>16363<br>0677442<br>9.48E-03<br>.0693252<br>.112133                                                                                                       |
| END<br>GND<br>26<br>27<br>28<br>29<br>30<br>31<br>32                                                               | 78.7158 142.705 142.705 142.705 142.705 142.705 142.705 142.705 142.705                                                                                                                                                                         | -43.6329<br>-233.788<br>-233.788<br>-233.788<br>-233.788<br>-233.788<br>-233.788<br>-233.788<br>-233.788                                                                                                                                                                                                 | 96.<br>0<br>8.00833<br>16.0167<br>24.025<br>32.0333<br>40.0417<br>48.05<br>56.0583                                                                                                                                     | 0 .590846 .361141 .210264 .0892104 9.5E-03 .0826391 .135439 .166934                                                                                                                             | 0<br>308.5<br>308.6<br>308.9<br>310.6<br>93.2<br>123.<br>124.1<br>124.3                                                                                                                                 | 0<br>.367741<br>.225075<br>.132046<br>.058045<br>-5.28E-04<br>0449805<br>0759595<br>0939567                                                                                                                                                                          | 0<br>462456<br>282425<br>16363<br>0677442<br>9.48E-03<br>.0693252<br>.112133<br>.137982                                                                                            |
| END<br>GND<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33                                                         | 78.7158 142.705 142.705 142.705 142.705 142.705 142.705 142.705 142.705                                                                                                                                                                         | -43.6329<br>-233.788<br>-233.788<br>-233.788<br>-233.788<br>-233.788<br>-233.788<br>-233.788<br>-233.788<br>-233.788                                                                                                                                                                                     | 96.<br>0<br>8.00833<br>16.0167<br>24.025<br>32.0333<br>40.0417<br>48.05<br>56.0583<br>64.0667                                                                                                                          | 0<br>.590846<br>.361141<br>.210264<br>.0892104<br>9.5E-03<br>.0826391<br>.135439<br>.166934<br>.177398                                                                                          | 0<br>308.5<br>308.6<br>308.9<br>310.6<br>93.2<br>123.<br>124.1<br>124.3                                                                                                                                 | 0<br>.367741<br>.225075<br>.132046<br>.058045<br>-5.28E-04<br>0449805<br>0759595<br>0939567<br>0994695                                                                                                                                                               | 0<br>462456<br>282425<br>16363<br>0677442<br>9.48E-03<br>.0693252<br>.112133<br>.137982<br>.146887                                                                                 |
| END<br>GND<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33                                                         | 78.7158 142.705 142.705 142.705 142.705 142.705 142.705 142.705 142.705 142.705                                                                                                                                                                 | -43.6329<br>-233.788<br>-233.788<br>-233.788<br>-233.788<br>-233.788<br>-233.788<br>-233.788<br>-233.788<br>-233.788                                                                                                                                                                                     | 96.<br>0<br>8.00833<br>16.0167<br>24.025<br>32.0333<br>40.0417<br>48.05<br>56.0583<br>64.0667<br>72.075                                                                                                                | 0<br>.590846<br>.361141<br>.210264<br>.0892104<br>9.5E-03<br>.0826391<br>.135439<br>.166934<br>.177398<br>.167118                                                                               | 0<br>308.5<br>308.6<br>308.9<br>310.6<br>93.2<br>123.<br>124.1<br>124.3<br>124.1                                                                                                                        | 0<br>.367741<br>.225075<br>.132046<br>.058045<br>-5.28E-04<br>0449805<br>0759595<br>0939567<br>0994695<br>0930282                                                                                                                                                    | 0<br>462456<br>282425<br>16363<br>0677442<br>9.48E-03<br>.0693252<br>.112133<br>.137982<br>.146887<br>.138831                                                                      |
| END<br>GND<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33<br>34<br>35                                             | 78.7158 142.705 142.705 142.705 142.705 142.705 142.705 142.705 142.705 142.705 142.705                                                                                                                                                         | -43.6329<br>-233.788<br>-233.788<br>-233.788<br>-233.788<br>-233.788<br>-233.788<br>-233.788<br>-233.788<br>-233.788<br>-233.788                                                                                                                                                                         | 96.<br>0<br>8.00833<br>16.0167<br>24.025<br>32.0333<br>40.0417<br>48.05<br>56.0583<br>64.0667<br>72.075<br>80.0833                                                                                                     | 0<br>.590846<br>.361141<br>.210264<br>.0892104<br>9.5E-03<br>.0826391<br>.135439<br>.166934<br>.177398<br>.167118<br>.136219                                                                    | 0<br>308.5<br>308.6<br>308.9<br>310.6<br>93.2<br>123.<br>124.1<br>124.3<br>124.1<br>123.8<br>123.5                                                                                                      | 0<br>.367741<br>.225075<br>.132046<br>.058045<br>-5.28E-04<br>0449805<br>0759595<br>0939567<br>0994695<br>0930282<br>0751123                                                                                                                                         | 0<br>462456<br>282425<br>16363<br>0677442<br>9.48E-03<br>.0693252<br>.112133<br>.137982<br>.146887<br>.138831<br>.113639                                                           |
| END<br>GND<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33<br>34<br>35<br>36                                       | 78.7158 142.705 142.705 142.705 142.705 142.705 142.705 142.705 142.705 142.705 142.705                                                                                                                                                         | -43.6329<br>-233.788<br>-233.788<br>-233.788<br>-233.788<br>-233.788<br>-233.788<br>-233.788<br>-233.788<br>-233.788<br>-233.788<br>-233.788<br>-233.788                                                                                                                                                 | 96.<br>0<br>8.00833<br>16.0167<br>24.025<br>32.0333<br>40.0417<br>48.05<br>56.0583<br>64.0667<br>72.075<br>80.0833<br>88.0917                                                                                          | 0<br>.590846<br>.361141<br>.210264<br>.0892104<br>9.5E-03<br>.0826391<br>.135439<br>.166934<br>.177398<br>.167118<br>.136219<br>.0840139                                                        | 0<br>308.5<br>308.6<br>308.9<br>310.6<br>93.2<br>123.<br>124.1<br>124.3<br>124.1<br>123.8<br>123.5<br>123.                                                                                              | 0<br>.367741<br>.225075<br>.132046<br>.058045<br>-5.28E-04<br>0449805<br>0759595<br>0939567<br>0994695<br>0930282<br>0751123<br>0458008                                                                                                                              | 0<br>462456<br>282425<br>16363<br>0677442<br>9.48E-03<br>.0693252<br>.112133<br>.137982<br>.146887<br>.138831<br>.113639<br>.0704316                                               |
| END<br>GND<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33<br>34<br>35<br>36<br>END                                | 78.7158 142.705 142.705 142.705 142.705 142.705 142.705 142.705 142.705 142.705 142.705 142.705 142.705                                                                                                                                         | -43.6329<br>-233.788<br>-233.788<br>-233.788<br>-233.788<br>-233.788<br>-233.788<br>-233.788<br>-233.788<br>-233.788<br>-233.788<br>-233.788<br>-233.788<br>-233.788                                                                                                                                     | 96.<br>0<br>8.00833<br>16.0167<br>24.025<br>32.0333<br>40.0417<br>48.05<br>56.0583<br>64.0667<br>72.075<br>80.0833<br>88.0917<br>96.1                                                                                  | 0 .590846 .361141 .210264 .0892104 9.5E-03 .0826391 .135439 .166934 .177398 .167118 .136219 .0840139 0                                                                                          | 0<br>308.5<br>308.6<br>308.9<br>310.6<br>93.2<br>123.<br>124.1<br>124.3<br>124.1<br>123.8<br>123.5<br>123.                                                                                              | 0<br>.367741<br>.225075<br>.132046<br>.058045<br>-5.28E-04<br>0449805<br>0759595<br>0939567<br>0994695<br>0930282<br>0751123<br>0458008                                                                                                                              | 0<br>462456<br>282425<br>16363<br>0677442<br>9.48E-03<br>.0693252<br>.112133<br>.137982<br>.146887<br>.138831<br>.113639<br>.0704316                                               |
| END<br>GND<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33<br>34<br>35<br>36<br>END<br>GND                         | 78.7158 142.705 142.705 142.705 142.705 142.705 142.705 142.705 142.705 142.705 142.705 142.705 142.705 142.705                                                                                                                                 | -43.6329<br>-233.788<br>-233.788<br>-233.788<br>-233.788<br>-233.788<br>-233.788<br>-233.788<br>-233.788<br>-233.788<br>-233.788<br>-233.788<br>-233.788<br>-233.788<br>-233.788                                                                                                                         | 96.<br>0<br>8.00833<br>16.0167<br>24.025<br>32.0333<br>40.0417<br>48.05<br>56.0583<br>64.0667<br>72.075<br>80.0833<br>88.0917<br>96.1                                                                                  | 0 .590846 .361141 .210264 .0892104 9.5E-03 .0826391 .135439 .166934 .177398 .167118 .136219 .0840139 0 .741842                                                                                  | 0<br>308.5<br>308.6<br>308.9<br>310.6<br>93.2<br>123.<br>124.1<br>124.3<br>124.1<br>123.8<br>123.5<br>123.5                                                                                             | 0 .367741 .225075 .132046 .058045 -5.28E-040449805075959509395670994695093028207511230458008 0 .445856                                                                                                                                                               | 0<br>462456<br>282425<br>16363<br>0677442<br>9.48E-03<br>.0693252<br>.112133<br>.137982<br>.146887<br>.138831<br>.113639<br>.0704316<br>0<br>592909                                |
| END<br>GND<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33<br>34<br>35<br>36<br>END<br>GND<br>38                   | 78.7158 142.705 142.705 142.705 142.705 142.705 142.705 142.705 142.705 142.705 142.705 142.705 142.705 142.705 142.705                                                                                                                         | -43.6329<br>-233.788<br>-233.788<br>-233.788<br>-233.788<br>-233.788<br>-233.788<br>-233.788<br>-233.788<br>-233.788<br>-233.788<br>-233.788<br>-233.788<br>-233.788<br>-233.788<br>-233.788                                                                                                             | 96.<br>0<br>8.00833<br>16.0167<br>24.025<br>32.0333<br>40.0417<br>48.05<br>56.0583<br>64.0667<br>72.075<br>80.0833<br>88.0917<br>96.1<br>0<br>8.                                                                       | 0 .590846 .361141 .210264 .0892104 9.5E-03 .0826391 .135439 .166934 .177398 .167118 .136219 .0840139 0 .741842 .453804                                                                          | 0<br>308.5<br>308.6<br>308.9<br>310.6<br>93.2<br>123.<br>124.1<br>124.3<br>124.1<br>123.8<br>123.5<br>123.<br>0<br>306.9<br>307.                                                                        | 0 .367741 .225075 .132046 .058045 -5.28E-040449805075959509395670994695093028207511230458008 0 .445856 .273154                                                                                                                                                       | 0<br>462456<br>282425<br>16363<br>0677442<br>9.48E-03<br>.0693252<br>.112133<br>.137982<br>.146887<br>.138831<br>.113639<br>.0704316<br>0<br>592909<br>362388                      |
| END<br>GND<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33<br>34<br>35<br>36<br>END<br>GND<br>38<br>39             | 78.7158 142.705 142.705 142.705 142.705 142.705 142.705 142.705 142.705 142.705 142.705 142.705 142.705 142.705 142.705 142.705 142.705 142.705 142.705 142.705 142.705 142.705                                                                 | -43.6329 -233.788 -233.788 -233.788 -233.788 -233.788 -233.788 -233.788 -233.788 -233.788 -233.788 -233.788 -233.788 -233.788 -233.788 -233.788 -237.241 -227.241                                                                                                                                        | 96.<br>0<br>8.00833<br>16.0167<br>24.025<br>32.0333<br>40.0417<br>48.05<br>56.0583<br>64.0667<br>72.075<br>80.0833<br>88.0917<br>96.1<br>0<br>8.                                                                       | 0 .590846 .361141 .210264 .0892104 9.5E-03 .0826391 .135439 .166934 .177398 .167118 .136219 .0840139 0 .741842 .453804 .264518                                                                  | 0<br>308.5<br>308.6<br>308.9<br>310.6<br>93.2<br>123.<br>124.1<br>124.3<br>124.1<br>123.8<br>123.5<br>123.<br>0<br>306.9<br>307.                                                                        | 0 .367741 .225075 .132046 .058045 -5.28E-040449805075959509395670994695093028207511230458008 0 .445856 .273154 .160586                                                                                                                                               | 0<br>462456<br>282425<br>16363<br>0677442<br>9.48E-03<br>.0693252<br>.112133<br>.137982<br>.146887<br>.138831<br>.113639<br>.0704316<br>0<br>592909<br>362388<br>210196            |
| END<br>GND<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33<br>34<br>35<br>36<br>END<br>GND<br>38<br>39<br>40       | 78.7158 142.705 142.705 142.705 142.705 142.705 142.705 142.705 142.705 142.705 142.705 142.705 142.705 142.705 142.705 142.705 142.705 142.705 142.705 142.705 142.705 142.705 142.705 142.705                                                 | -43.6329 -233.788 -233.788 -233.788 -233.788 -233.788 -233.788 -233.788 -233.788 -233.788 -233.788 -233.788 -233.788 -233.788 -233.788 -233.788 -237.241 -227.241 -227.241                                                                                                                               | 96.<br>0<br>8.00833<br>16.0167<br>24.025<br>32.0333<br>40.0417<br>48.05<br>56.0583<br>64.0667<br>72.075<br>80.0833<br>88.0917<br>96.1<br>0<br>8.<br>16.<br>24.                                                         | 0 .590846 .361141 .210264 .0892104 9.5E-03 .0826391 .135439 .166934 .177398 .167118 .136219 .0840139 0 .741842 .453804 .264518 .112541                                                          | 0<br>308.5<br>308.6<br>308.9<br>310.6<br>93.2<br>123.<br>124.1<br>124.3<br>124.1<br>123.8<br>123.5<br>123.5<br>0<br>306.9<br>307.<br>307.4<br>309.2                                                     | 0 .367741 .225075 .132046 .058045 -5.28E-040449805075959509395670994695093028207511230458008 0 .445856 .273154 .160586 .0710732                                                                                                                                      | 0<br>462456<br>282425<br>16363<br>0677442<br>9.48E-03<br>.0693252<br>.112133<br>.137982<br>.146887<br>.138831<br>.113639<br>.0704316<br>0<br>592909<br>362388<br>210196<br>0872587 |
| END<br>GND<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33<br>34<br>35<br>36<br>END<br>GND<br>38<br>39<br>40<br>41 | 78.7158 142.705 142.705 142.705 142.705 142.705 142.705 142.705 142.705 142.705 142.705 142.705 142.705 142.705 142.705 142.705 142.705 142.705 142.705 142.705 142.705 142.705 142.705 142.705 142.705 142.705 142.705 142.705 142.705 142.705 | -43.6329 -233.788 -233.788 -233.788 -233.788 -233.788 -233.788 -233.788 -233.788 -233.788 -233.788 -233.788 -233.788 -233.788 -233.788 -237.241 -227.241 -227.241 -227.241                                                                                                                               | 96.<br>0<br>8.00833<br>16.0167<br>24.025<br>32.0333<br>40.0417<br>48.05<br>56.0583<br>64.0667<br>72.075<br>80.0833<br>88.0917<br>96.1<br>0<br>8.<br>16.<br>24.<br>32.                                                  | 0 .590846 .361141 .210264 .0892104 9.5E-03 .0826391 .135439 .166934 .177398 .167118 .136219 .0840139 0 .741842 .453804 .264518 .112541 .0118496                                                 | 0<br>308.5<br>308.6<br>308.9<br>310.6<br>93.2<br>123.<br>124.1<br>124.3<br>124.1<br>123.8<br>123.5<br>123.5<br>123.0<br>0<br>306.9<br>307.3<br>307.4<br>309.2<br>88.8                                   | 0 .367741 .225075 .132046 .058045 -5.28E-040449805075959509395670994695093028207511230458008 0 .445856 .273154 .160586 .0710732 2.53E-04                                                                                                                             | 0462456282425163630677442 9.48E-03 .0693252 .112133 .137982 .146887 .138831 .113639 .0704316 05929093623882101960872587 .0118469                                                   |
| END GND 26 27 28 29 30 31 32 33 34 35 36 END GND 38 39 40 41 42                                                    | 78.7158 142.705 142.705 142.705 142.705 142.705 142.705 142.705 142.705 142.705 142.705 142.705 142.705 142.705 7.079 7.079 7.079 57.079 57.079 57.079                                                                                          | -43.6329 -233.788 -233.788 -233.788 -233.788 -233.788 -233.788 -233.788 -233.788 -233.788 -233.788 -233.788 -233.788 -233.788 -233.788 -233.788 -237.241 -227.241 -227.241 -227.241 -227.241                                                                                                             | 96.<br>0<br>8.00833<br>16.0167<br>24.025<br>32.0333<br>40.0417<br>48.05<br>56.0583<br>64.0667<br>72.075<br>80.0833<br>88.0917<br>96.1<br>0<br>8.<br>16.<br>24.<br>32.<br>40.                                           | 0 .590846 .361141 .210264 .0892104 9.5E-03 .0826391 .135439 .166934 .177398 .167118 .136219 .0840139 0 .741842 .453804 .264518 .112541 .0118496 .103586                                         | 0<br>308.5<br>308.6<br>308.9<br>310.6<br>93.2<br>123.<br>124.1<br>124.3<br>124.1<br>123.8<br>123.5<br>123.5<br>123.0<br>0<br>306.9<br>307.<br>307.4<br>309.2<br>88.8<br>121.1                           | 0<br>.367741<br>.225075<br>.132046<br>.058045<br>-5.28E-04<br>0449805<br>0759595<br>0939567<br>0994695<br>0930282<br>0751123<br>0458008<br>0<br>.445856<br>.273154<br>.160586<br>.0710732<br>2.53E-04<br>0534674                                                     | 0462456282425163630677442 9.48E-03 .0693252 .112133 .137982 .146887 .138831 .113639 .0704316 05929093623882101960872587 .0118469 .0887204                                          |
| END GND 26 27 28 29 30 31 32 33 34 35 36 END GND 38 39 40 41 42 43                                                 | 78.7158 142.705 142.705 142.705 142.705 142.705 142.705 142.705 142.705 142.705 142.705 142.705 142.705 142.705 142.705 142.705 142.705 57.079 57.079 57.079 57.079 57.079 57.079                                                               | -43.6329 -233.788 -233.788 -233.788 -233.788 -233.788 -233.788 -233.788 -233.788 -233.788 -233.788 -233.788 -233.788 -233.788 -233.788 -237.241 -227.241 -227.241 -227.241 -227.241 -227.241                                                                                                             | 96.<br>0<br>8.00833<br>16.0167<br>24.025<br>32.0333<br>40.0417<br>48.05<br>56.0583<br>64.0667<br>72.075<br>80.0833<br>88.0917<br>96.1<br>0<br>8.<br>16.<br>24.<br>32.<br>40.<br>48.                                    | 0 .590846 .361141 .210264 .0892104 9.5E-03 .0826391 .135439 .166934 .177398 .167118 .136219 .0840139 0 .741842 .453804 .264518 .112541 .0118496 .103586 .170099                                 | 0<br>308.5<br>308.6<br>308.9<br>310.6<br>93.2<br>123.<br>124.1<br>124.3<br>124.1<br>123.8<br>123.5<br>123.5<br>123.0<br>306.9<br>307.4<br>309.2<br>88.8<br>121.1<br>122.3                               | 0<br>.367741<br>.225075<br>.132046<br>.058045<br>-5.28E-04<br>0449805<br>0759595<br>0939567<br>0930282<br>0751123<br>0458008<br>0<br>.445856<br>.273154<br>.160586<br>.0710732<br>2.53E-04<br>0534674<br>0908856                                                     | 0462456282425163630677442 9.48E-03 .0693252 .112133 .137982 .146887 .138831 .113639 .0704316 05929093623882101960872587 .0118469 .0887204 .143783                                  |
| END GND 26 27 28 29 30 31 32 33 34 35 36 END GND 38 39 40 41 42 43 44                                              | 78.7158 142.705 142.705 142.705 142.705 142.705 142.705 142.705 142.705 142.705 142.705 142.705 142.705 142.705 142.705 142.705 57.079 57.079 57.079 57.079 57.079 57.079 57.079                                                                | -43.6329 -233.788 -233.788 -233.788 -233.788 -233.788 -233.788 -233.788 -233.788 -233.788 -233.788 -233.788 -233.788 -233.788 -237.241 -227.241 -227.241 -227.241 -227.241 -227.241 -227.241 -227.241 -227.241                                                                                           | 96.<br>0<br>8.00833<br>16.0167<br>24.025<br>32.0333<br>40.0417<br>48.05<br>56.0583<br>64.0667<br>72.075<br>80.0833<br>88.0917<br>96.1<br>0<br>8.<br>16.<br>24.<br>32.<br>40.<br>48.<br>56.                             | 0 .590846 .361141 .210264 .0892104 9.5E-03 .0826391 .135439 .166934 .177398 .167118 .136219 .0840139 0 .741842 .453804 .264518 .112541 .0118496 .103586 .170099 .209872                         | 0<br>308.5<br>308.6<br>308.9<br>310.6<br>93.2<br>123.<br>124.1<br>124.3<br>124.1<br>123.8<br>123.5<br>123.5<br>123.0<br>306.9<br>307.307.4<br>309.2<br>88.8<br>121.1<br>122.3<br>122.5                  | 0<br>.367741<br>.225075<br>.132046<br>.058045<br>-5.28E-04<br>0449805<br>0759595<br>0939567<br>0994695<br>0930282<br>0751123<br>0458008<br>0<br>.445856<br>.273154<br>.160586<br>.0710732<br>2.53E-04<br>0534674<br>0908856<br>112613                                | 0462456282425163630677442 9.48E-03 .0693252 .112133 .137982 .146887 .138831 .113639 .0704316 05929093623882101960872587 .0118469 .0887204 .143783 .177101                          |
| END GND 26 27 28 29 30 31 32 33 34 35 36 END GND 38 39 40 41 42 43 44 45                                           | 78.7158 142.705 142.705 142.705 142.705 142.705 142.705 142.705 142.705 142.705 142.705 142.705 142.705 142.705 142.705 57.079 57.079 57.079 57.079 57.079 57.079 57.079 57.079                                                                 | -43.6329 -233.788 -233.788 -233.788 -233.788 -233.788 -233.788 -233.788 -233.788 -233.788 -233.788 -233.788 -233.788 -233.788 -237.241 -227.241 -227.241 -227.241 -227.241 -227.241 -227.241 -227.241 -227.241 -227.241 -227.241                                                                         | 96.<br>0<br>8.00833<br>16.0167<br>24.025<br>32.0333<br>40.0417<br>48.05<br>56.0583<br>64.0667<br>72.075<br>80.0833<br>88.0917<br>96.1<br>0<br>8.<br>16.<br>24.<br>32.<br>40.<br>48.<br>56.<br>64.<br>64.               | 0 .590846 .361141 .210264 .0892104 9.5E-03 .0826391 .135439 .166934 .177398 .167118 .136219 .0840139 0 .741842 .453804 .264518 .112541 .0118496 .103586 .170099 .209872 .223201                 | 0<br>308.5<br>308.6<br>308.9<br>310.6<br>93.2<br>123.<br>124.1<br>124.3<br>124.1<br>123.8<br>123.5<br>123.5<br>123.<br>0<br>306.9<br>307.<br>307.4<br>309.2<br>88.8<br>121.1<br>122.3<br>122.5<br>122.3 | 0<br>.367741<br>.225075<br>.132046<br>.058045<br>-5.28E-04<br>0449805<br>0759595<br>0939567<br>0994695<br>0930282<br>0751123<br>0458008<br>0<br>.445856<br>.273154<br>.160586<br>.0710732<br>2.53E-04<br>0534674<br>0908856<br>112613<br>119274                      | 0462456282425163630677442 9.48E-03 .0693252 .112133 .137982 .146887 .138831 .113639 .0704316 05929093623882101960872587 .0118469 .0887204 .143783 .177101 .18866                   |
| END GND 26 27 28 29 30 31 32 33 34 35 36 END GND 38 39 40 41 42 43 44 45 46                                        | 78.7158 142.705 142.705 142.705 142.705 142.705 142.705 142.705 142.705 142.705 142.705 142.705 142.705 142.705 57.079 57.079 57.079 57.079 57.079 57.079 57.079 57.079 57.079                                                                  | -43.6329 -233.788 -233.788 -233.788 -233.788 -233.788 -233.788 -233.788 -233.788 -233.788 -233.788 -233.788 -233.788 -233.788 -237.241 -227.241 -227.241 -227.241 -227.241 -227.241 -227.241 -227.241 -227.241 -227.241 -227.241 -227.241 -227.241                                                       | 96.<br>0<br>8.00833<br>16.0167<br>24.025<br>32.0333<br>40.0417<br>48.05<br>56.0583<br>64.0667<br>72.075<br>80.0833<br>88.0917<br>96.1<br>0<br>8.<br>16.<br>24.<br>32.<br>40.<br>48.<br>56.<br>64.<br>72.               | 0 .590846 .361141 .210264 .0892104 9.5E-03 .0826391 .135439 .166934 .177398 .167118 .136219 .0840139 0 .741842 .453804 .264518 .112541 .0118496 .103586 .170099 .209872 .223201 .210412         | 0<br>308.5<br>308.6<br>308.9<br>310.6<br>93.2<br>123.<br>124.1<br>124.3<br>124.1<br>123.8<br>123.5<br>123.0<br>306.9<br>307.<br>307.4<br>309.2<br>88.8<br>121.1<br>122.3<br>122.5<br>122.3              | 0<br>.367741<br>.225075<br>.132046<br>.058045<br>-5.28E-04<br>0449805<br>0759595<br>0939567<br>0994695<br>0930282<br>0751123<br>0458008<br>0<br>.445856<br>.273154<br>.160586<br>.0710732<br>2.53E-04<br>0534674<br>0908856<br>112613<br>119274<br>111538            | 0462456282425163630677442 9.48E-03 .0693252 .112133 .137982 .146887 .138831 .113639 .0704316 05929093623882101960872587 .0118469 .0887204 .143783 .177101 .18866 .178417           |
| END GND 26 27 28 29 30 31 32 33 34 35 36 END GND 38 39 40 41 42 43 44 45 46 47                                     | 78.7158 142.705 142.705 142.705 142.705 142.705 142.705 142.705 142.705 142.705 142.705 142.705 142.705 142.705 57.079 57.079 57.079 57.079 57.079 57.079 57.079 57.079 57.079 57.079 57.079                                                    | -43.6329 -233.788 -233.788 -233.788 -233.788 -233.788 -233.788 -233.788 -233.788 -233.788 -233.788 -233.788 -233.788 -233.788 -237.241 -227.241 -227.241 -227.241 -227.241 -227.241 -227.241 -227.241 -227.241 -227.241 -227.241 -227.241 -227.241 -227.241 -227.241 -227.241 -227.241 -227.241 -227.241 | 96.<br>0<br>8.00833<br>16.0167<br>24.025<br>32.0333<br>40.0417<br>48.05<br>56.0583<br>64.0667<br>72.075<br>80.0833<br>88.0917<br>96.1<br>0<br>8.<br>16.<br>24.<br>32.<br>40.<br>48.<br>56.<br>64.<br>64.<br>72.<br>80. | 0 .590846 .361141 .210264 .0892104 9.5E-03 .0826391 .135439 .166934 .177398 .167118 .136219 .0840139 0 .741842 .453804 .264518 .112541 .0118496 .103586 .170099 .209872 .223201 .210412 .171621 | 0<br>308.5<br>308.6<br>308.9<br>310.6<br>93.2<br>123.<br>124.1<br>124.3<br>124.1<br>123.8<br>123.5<br>123.<br>0<br>306.9<br>307.<br>307.4<br>309.2<br>88.8<br>121.1<br>122.3<br>122.5<br>122.3<br>122.3 | 0<br>.367741<br>.225075<br>.132046<br>.058045<br>-5.28E-04<br>0449805<br>0759595<br>0939567<br>0994695<br>0930282<br>0751123<br>0458008<br>0<br>.445856<br>.273154<br>.160586<br>.0710732<br>2.53E-04<br>0534674<br>0908856<br>112613<br>119274<br>111538<br>0900173 | 0462456282425163630677442 9.48E-03 .0693252 .112133 .137982 .146887 .138831 .113639 .0704316 05929093623882101960872587 .0118469 .0887204 .143783 .177101 .18866 .178417 .146118   |
| END GND 26 27 28 29 30 31 32 33 34 35 36 END GND 38 39 40 41 42 43 44 45 46                                        | 78.7158 142.705 142.705 142.705 142.705 142.705 142.705 142.705 142.705 142.705 142.705 142.705 142.705 142.705 57.079 57.079 57.079 57.079 57.079 57.079 57.079 57.079 57.079                                                                  | -43.6329 -233.788 -233.788 -233.788 -233.788 -233.788 -233.788 -233.788 -233.788 -233.788 -233.788 -233.788 -233.788 -233.788 -237.241 -227.241 -227.241 -227.241 -227.241 -227.241 -227.241 -227.241 -227.241 -227.241 -227.241 -227.241 -227.241                                                       | 96.<br>0<br>8.00833<br>16.0167<br>24.025<br>32.0333<br>40.0417<br>48.05<br>56.0583<br>64.0667<br>72.075<br>80.0833<br>88.0917<br>96.1<br>0<br>8.<br>16.<br>24.<br>32.<br>40.<br>48.<br>56.<br>64.<br>72.               | 0 .590846 .361141 .210264 .0892104 9.5E-03 .0826391 .135439 .166934 .177398 .167118 .136219 .0840139 0 .741842 .453804 .264518 .112541 .0118496 .103586 .170099 .209872 .223201 .210412         | 0<br>308.5<br>308.6<br>308.9<br>310.6<br>93.2<br>123.<br>124.1<br>124.3<br>124.1<br>123.8<br>123.5<br>123.0<br>306.9<br>307.<br>307.4<br>309.2<br>88.8<br>121.1<br>122.3<br>122.5<br>122.3              | 0<br>.367741<br>.225075<br>.132046<br>.058045<br>-5.28E-04<br>0449805<br>0759595<br>0939567<br>0994695<br>0930282<br>0751123<br>0458008<br>0<br>.445856<br>.273154<br>.160586<br>.0710732<br>2.53E-04<br>0534674<br>0908856<br>112613<br>119274<br>111538            | 0462456282425163630677442 9.48E-03 .0693252 .112133 .137982 .146887 .138831 .113639 .0704316 05929093623882101960872587 .0118469 .0887204 .143783 .177101 .18866 .178417           |

## (KGOLDA-NIGHT) Medium Wave Array Synthesis From Field Ratios

#### MEDIUM WAVE ARRAY SYNTHESIS FROM FIELD RATIOS

Frequency = 1.18 MHz

|       | field ratio |       |       |
|-------|-------------|-------|-------|
| tower | magnitude   | phase | (deg) |
| 1     | 1.          | 0     |       |
| 2     | 1.          | 111.8 |       |
| 3     | .745        | 107.6 |       |
| 4     | .732        | -19.  |       |

#### VOLTAGES AND CURRENTS - rms

| source | voltage   |             | current   |             |
|--------|-----------|-------------|-----------|-------------|
| node   | magnitude | phase (deg) | magnitude | phase (deg) |
| 1      | 507.183   | 62.4        | 5.48576   | 4.9         |
| 13     | 249.473   | 195.        | 5.88407   | 112.5       |
| 25     | 183.506   | 177.9       | 4.40677   | 109.3       |
| 37     | 410.543   | 38.8        | 4.00196   | 347.3       |
|        |           |             |           |             |

Sum of square of source currents = 200.302

Total power = 3,000. watts

#### TOWER ADMITTANCE MATRIX

| admittance | real (mhos) | imaginary (mhos) |
|------------|-------------|------------------|
| Y(1, 1)    | .00780073   | 00825471         |
| Y(1, 2)    | .00462429   | .0032675         |
| Y(1, 3)    | .000371949  | 000613983        |
| Y(1, 4)    | .00148693   | 00161515         |
| Y(2, 1)    | .00462428   | .00326752        |
| Y(2, 2)    | .0102189    | 00791463         |
| Y(2, 3)    | .00333751   | 00119985         |
| Y(2, 4)    | .00493206   | 000526812        |
| Y(3, 1)    | .000371948  | 000613982        |
| Y(3, 2)    | .00333751   | 00119986         |
| Y(3, 3)    | .00819679   | 00817831         |
| Y(3, 4)    | .00478849   | .00398008        |
| Y(4, 1)    | .00148692   | 00161515         |
| Y(4, 2)    | .00493206   | 000526814        |
| Y(4, 3)    | .00478849   | .00398009        |
| Y(4, 4)    | .00897052   | 00810871         |
|            |             |                  |

#### TOWER IMPEDANCE MATRIX

| impedance | real (ohms) | imaginary (ohms) |
|-----------|-------------|------------------|
| Z(1, 1)   | 50.1389     | 52.2211          |
| Z(1, 2)   | 25.7749     | -25.7258         |
| Z(1, 3)   | -13.5013    | 11.0602          |
| Z(1, 4)   | -18.0658    | 214263           |
| Z(2, 1)   | 25.7748     | -25.7258         |
| Z(2, 2)   | 51.6567     | 51.939           |
| Z(2, 3)   | -16.3368    | -11.2547         |
| Z(2, 4)   | -13.3874    | -15.4629         |
| Z(3, 1)   | -13.5013    | 11.0602          |
|           | -16.3368    |                  |
| Z(3, 3)   | 50.561      | 51.7754          |
|           | 27.6602     |                  |
|           | -18.0657    |                  |
| Z(4, 2)   | -13.3875    | -15.4629         |
| Z(4, 3)   | 27.6602     | -24.1039         |
| Z(4, 4)   | 51.024      | 51.2146          |

#### KGOL

#### GEOMETRY

Wire coordinates in degrees; other dimensions in meters Environment: perfect ground

| wire | caps | Distance | Angle | Z    | radius | segs |
|------|------|----------|-------|------|--------|------|
| 1    | none | 0        | 0     | 0    | . 24   | 12   |
|      |      | 0        | 0     | 96.2 |        |      |
| 2    | none | 90.      | 29.   | 0    | .24    | 12   |
|      |      | 90.      | 29.   | 96.  |        |      |
| 3    | none | 273.9    | 58.6  | 0    | .24    | 12   |
|      |      | 273.9    | 58.6  | 96.1 |        |      |
| 4    | none | 234.3    | 75.9  | 0    | . 24   | 12   |
|      |      | 234.3    | 75.9  | 96.  |        |      |

Number of wires = 4 current nodes = 48

|                  | mini | mum   | maximum |         |
|------------------|------|-------|---------|---------|
| Individual wires | wire | value | wire    | value   |
| segment length   | 2    | 8.    | 1       | 8.01667 |
| radius           | 1    | .24   | 1       | .24     |

#### ELECTRICAL DESCRIPTION

Frequencies (MHz)

|      | rrequency |      | no. or | segment length | (wavelengths) |
|------|-----------|------|--------|----------------|---------------|
| no.  | lowest    | step | steps  | minimum        | maximum       |
| 1    | 1.18      | 0    | 1      | .022222        | .0222685      |
| Sour | ces       |      |        |                |               |

| source | node | sector | magnitude | phase | type    |
|--------|------|--------|-----------|-------|---------|
| 1      | 1    | 1      | 717.265   | 62.4  | voltage |
| 2      | 13   | 1      | 352.808   | 195.  | voltage |
| 3      | 25   | 1      | 259.517   | 177.9 | voltage |
| 4      | 37   | 1      | 580.596   | 38.8  | voltage |

C:\Documents and Settings\KURT\Desktop\ENGINEER\KGOLMOM\KGOLNIGHT1 04-17-2011
13:18:44

#### IMPEDANCE

| (MHz) | resist (ohms)     | (ohms) | (ohms) | -    | VSWR   | S11<br>dB | S12<br>dB |
|-------|-------------------|--------|--------|------|--------|-----------|-----------|
|       | 1; node<br>49.582 | •      |        | 57.6 | 4.2194 | -4.1969   | -2.0793   |
|       | 2; node<br>5.5107 | •      |        | 82.5 | 15.533 | -1.1199   | -6.4338   |
|       | 3; node<br>15.244 | •      |        | 68.5 | 5.3689 | -3.2738   | -2.7618   |
|       | 4; node<br>63.756 | •      |        | 51.6 | 3.824  | -4.6508   | -1.8224   |

CURRENT rms

Frequency = 1.18 MHz
Input power = 3,000. watts

Efficiency = 100. % coordinates in degrees

|       |         | degrees  |         |         | 3     | 7        | . ,       |
|-------|---------|----------|---------|---------|-------|----------|-----------|
| curre |         |          |         | mag     | phase | real     | imaginary |
| no.   | X       | Y        | Z       | (amps)  | (deg) | (amps)   | (amps)    |
| GND   | 0       | 0        | 0       | 5.48576 | 4.9   | 5.46588  | .466583   |
| 2     | 0       | 0        | 8.01667 | 5.77333 | 2.8   | 5.76638  | .283259   |
| 3     | 0       | 0        | 16.0333 | 5.84667 | 1.6   | 5.84439  | .163326   |
| 4     | 0       | 0        | 24.05   | 5.7778  | . 7   | 5.77741  | .0675717  |
| 5     | 0       | 0        | 32.0667 | 5.57793 | 359.9 | 5.57792  | -8.52E-03 |
| 6     | 0       | 0        | 40.0833 | 5.25448 | 359.3 | 5.25406  | 0664977   |
| 7     | 0       | 0        | 48.1    | 4.81468 | 358.7 | 4.81349  | 107046    |
| 8     | 0       | 0        | 56.1167 | 4.26634 | 358.2 | 4.81349  |           |
| 9     | 0       | 0        | 64.1333 | 3.61773 | 350.2 |          | 130636    |
|       |         |          |         |         |       | 3.61511  | 137735    |
| 10    | 0       | 0        | 72.15   | 2.87677 | 357.4 | 2.87388  | 12883     |
| 11    | 0       | 0        | 80.1667 | 2.04856 | 357.1 | 2.04591  | 104298    |
| 12    | 0       | 0        | 88,1833 | 1.12825 | 356.8 | 1.12644  | 0638975   |
| END   | 0       | 0        | 96.2    | 0       | 0     | 0        | 0         |
| GND   | 78.7158 | -43.6329 | 0       | 5.88406 | 112.5 | -2.2488  | 5.43738   |
| 14    | 78.7158 | -43.6329 | 8.      | 6.02606 | 112.2 | -2.27982 | 5.57816   |
| 15    | 78.7158 | -43.6329 | 16.     | 5.99994 | 112.1 | -2.25498 | 5.56006   |
| 16    | 78.7158 | -43.6329 | 24.     | 5.84936 | 111.9 | -2.18605 | 5.42551   |
| 17    | 78.7158 | -43.6329 | 32.     | 5.58294 | 111.8 | -2.07585 | 5.18267   |
| 18    | 78.7158 | -43.6329 | 40.     | 5.20754 | 111.7 | -1.92697 | 4.8379    |
| 19    | 78.7158 | -43.6329 | 48.     | 4.73029 | 111.6 | -1.74225 | 4.39775   |
| 20    | 78.7158 | -43.6329 | 56.     | 4.159   | 111.5 | -1.52483 | 3.86939   |
| 21    | 78.7158 | -43.6329 | 64.     | 3.50188 | 111.4 | -1.27807 | 3.26032   |
| 22    | 78.7158 | -43.6329 | 72.     | 2.76667 | 111.3 | -1.00512 | 2.57763   |
| 23    | 78.7158 | -43.6329 | 80.     | 1.95839 | 111.2 | 708174   | 1.82586   |
|       |         |          | 88.     |         |       |          |           |
| 24    | 78.7158 | -43.6329 |         | 1.07254 | 111.1 | 386002   | 1.00067   |
| END   | 78.7158 | -43.6329 | 96.     | 0       | 0     | 0        | 0         |
| GND   | 142.705 | -233.788 | 0       | 4.40677 | 109.3 | -1.45841 | 4.15844   |
| 26    | 142.705 | -233.788 | 8.00833 | 4.50228 | 108.7 | -1.44112 | 4.26541   |
| 27    | 142.705 | -233.788 | 16.0167 | 4.47618 | 108.3 | -1.40204 | 4.25094   |
| 28    | 142.705 | -233.788 | 24.025  | 4.35866 | 107.9 | -1.34067 | 4.14735   |
| 29    | 142.705 | -233.788 | 32.0333 | 4.15583 | 107.6 | -1.25789 | 3.96089   |
| 30    | 142,705 | -233.788 | 40.0417 | 3.87275 | 107.4 | -1.15506 | 3.69649   |
| 31    | 142.705 | -233.788 | 48.05   | 3.51472 | 107.1 | -1.0339  | 3.35922   |
| 32    | 142.705 | -233.788 | 56.0583 | 3.08761 | 106.9 | 89635    | 2.95464   |
| 33    | 142.705 | -233.788 | 64.0667 | 2.59758 | 106.7 | 744513   | 2.4886    |
| 34    | 142.705 | -233.788 | 72.075  | 2.0505  | 106.4 | 58039    | 1.96665   |
| 35    | 142.705 | -233.788 | 80.0833 | 1.4502  | 106.2 | 405405   | 1.39239   |
| 36    | 142.705 | -233.788 | 88.0917 | .793508 | 106.  | 21906    | .762671   |
| END   | 142.705 | -233.788 | 96.1    | 0       | 0     | 0        | 0         |
| GND   | 57.079  | -227.241 | 0       | 4.00197 | 347.3 | 3.90338  | 882794    |
| 38    | 57.079  | -227.241 | 8.      | 4.22023 | 344.6 | 4.06883  | -1.12026  |
| 39    | 57.079  | -227.241 | 16.     | 4.28022 | 343.1 | 4.09444  | -1.24733  |
|       |         |          |         | 4.23521 |       |          |           |
| 40    | 57.079  | -227.241 | 24.     |         | 341.9 | 4.0249   | -1.31801  |
| 41    | 57.079  | -227.241 | 32.     | 4.0932  | 340.9 | 3.86787  | -1.33935  |
| 42    | 57.079  | -227.241 | 40.     | 3.85952 | 340.1 | 3.62872  | -1.31467  |
| 43    | 57.079  | -227.241 | 48.     | 3.5394  | 339.4 | 3.31269  | -1.24638  |
| 44    | 57.079  | -227.241 | 56.     | 3.13855 | 338.8 | 2.92542  | -1.13684  |
| 45    | 57.079  | -227.241 | 64.     | 2.66305 | 338.2 | 2.47282  | 988436    |
| 46    | 57.079  | -227.241 | 72.     | 2.11877 | 337.7 | 1.9605   | 803506    |
| 47    | 57.079  | -227.241 | 80.     | 1.50952 | 337.3 | 1.39214  | 583606    |
| 48    | 57.079  | -227.241 | 88.     | .831756 | 336.8 | .764644  | 327319    |
| END   | 57.079  | -227.241 | 96.     | 0       | 0     | 0        | 0         |
|       |         |          |         |         |       |          |           |

## EXHIBIT VII Tower Base Circuit Analysis Model

Circuit analysis was performed on each tower of the KGOL model. "Phasetek" nodal circuit Analysis program was used to compute base model input/output voltages and currents. For the directional modes, the calculated Mininec tower base drive voltage was used to Determine the base network input current. This point is the location of the sampling TCT.

### BASE NETWORK COMPUTATION PHASETEK INC. QUAKERTOWN PA

#### **TOWER ANALYSIS - DAY**

CUSTOMER : KGOL

NETWORK ID : TOWER 1 DAY

FREQUENCY: 1180.00 kHz
ATU SHUNT IMPEDANCE (R,X): 0.00, 4000.00 OHMS
TOWER FEED IMPEDANCE (R,X): 0.00, 24.80 OHMS
TOWER SHUNT IMPEDANCE (R,X): 0.00, -9634.10 OHMS
TOWER IMPEDANCE (R,X): 92.75, 104.57 OHMS

| NODE | то | NODE   | IMPEDANCE<br>R | (OHMS)<br>X |
|------|----|--------|----------------|-------------|
| 1    |    | GROUND | 0.00           | 4000.00     |
| 2    |    | GROUND | 94.79          | 104.79      |
| 1    |    | 2      | 0.00           | 24.80       |

|      | VOLTAC    | SE .   |
|------|-----------|--------|
| NODE | MAGNITUDE | PHASE  |
| 1    | 2388.33   | -36.95 |
| 2    | 2101.89   | 317.10 |

|                          | REAL  | IMAGINARY | MAGNITUDE | PHASE  |
|--------------------------|-------|-----------|-----------|--------|
| INPUT IMPEDANCE (OHMS) : | 88.89 | 127.57    | 155.48    | 55.13  |
| INPUT CURRENT (AMPS) :   | -0.56 | -15.35    | 15.36     | -92.09 |
| OUTPUT CURRENT (AMPS) :  | -0.35 | -15.03    | 15.04     | -91.33 |

INPUT/OUTPUT CURRENT RATIO = 1.0215 INPUT/OUTPUT PHASE = -0.76 DEGREES

NETWORK ID : TOWER 2 DAY

FREQUENCY: 1180.00 kHz
ATU SHUNT IMPEDANCE (R,X): 0.00, 4000.00 OHMS
TOWER FEED IMPEDANCE (R,X): 0.00, 28.30 OHMS
TOWER SHUNT IMPEDANCE (R,X): 0.00, -9634.10 OHMS
TOWER IMPEDANCE (R,X): 35.95, 39.81 OHMS

| NODE | то | NODE             | IMPEDANCE<br>R        | (OHMS)<br>X               |
|------|----|------------------|-----------------------|---------------------------|
| 1 2  |    | GROUND<br>GROUND | 0.00<br>36.25<br>0.00 | 4000.00<br>39.84<br>28.30 |

|      | VOLTAG      | E     |
|------|-------------|-------|
| NODE | MAGNITUDE " | PHASE |
| 1    | 2183.96     | 66.09 |
| 2    | 1524.11     | 51.80 |

|                         | REAL    | IMAGINARY | MAGNITUDE | PHASE |
|-------------------------|---------|-----------|-----------|-------|
| INPUT IMPEDANCE (OHMS)  | : 35.04 | 67.31     | 75.89     | 62.50 |
| INPUT CURRENT (AMPS) :  | 28.72   | 1.80      | 28.78     | 3.59  |
| OUTPUT CURRENT (AMPS) : | 28.35   | 1.92      | 28.41     | 3.88  |

INPUT/OUTPUT CURRENT RATIO = 1.0129 INPUT/OUTPUT PHASE = -0.30 DEGREES

### BASE NETWORK COMPUTATION PHASETEK INC. QUAKERTOWN PA

#### TOWER ANALYSIS - NIGHT

CUSTOMER : KGOL NETWORK ID : TOWER 1 NIGHT

FREQUENCY: 1180.00 kHz ATU SHUNT IMPEDANCE (R,X): 0.00, 4000.00 OHMS TOWER FEED IMPEDANCE (R,X): 0.00, 24.80 OHMS TOWER SHUNT IMPEDANCE (R,X): 0.00, -9634.10 OHMS TOWER IMPEDANCE (R,X): 49.58, 78.04 OHMS

|      |      |        | IMPEDANCE | (OHMS)  |
|------|------|--------|-----------|---------|
| NODE | , TO | NODE   | R         | ×       |
| 1    |      | GROUND | 0.00      | 4000.00 |
| 2    |      | GROUND | 50.39     | 78.42   |
| 1    |      | 2      | 0.00      | 24.80   |

|      | VOLTAG    | ΞE    |
|------|-----------|-------|
| NODE | MAGNITUDE | PHASE |
| 1    | 624.97    | 69.10 |
| 2    | 507.18    | 62.40 |

|                          | REAL  | <b>IMAGINARY</b> | MAGNITUDE | PHASE |
|--------------------------|-------|------------------|-----------|-------|
| INPUT IMPEDANCE (OHMS) : | 47.88 | 101.21           | 111.96    | 64.68 |
| INPUT CURRENT (AMPS) :   | 5.57  | 0.43             | 5.58      | 4.42  |
| OUTPUT CURRENT (AMPS) :  | 5.47  | 0.46             | 5.49      | 4.83  |

INPUT/OUTPUT CURRENT RATIO = 1.0176 INPUT/OUTPUT PHASE = -0.41 DEGREES

NETWORK ID : TOWER 2 NIGHT

FREQUENCY: 1180.00 kHz ATU SHUNT IMPEDANCE (R,X): 0.00, 4000.00 OHMS TOWER FEED IMPEDANCE (R,X): 0.00, 28.30 OHMS TOWER SHUNT IMPEDANCE (R,X): 0.00, -9634.10 OHMS TOWER IMPEDANCE (R,X): 5.51, 42.04 OHMS

| NODE | то | NODE   | IMPEDANCE<br>R | (OHMS)<br>X |
|------|----|--------|----------------|-------------|
| 1    |    | GROUND | 0.00           | 4000.00     |
| 2    |    | GROUND | 5.56           | 42.22       |
| 1    |    | 2      | 0.00           | 28.30       |

|      | VOLTA     | .GE     |  |
|------|-----------|---------|--|
| NODE | MAGNITUDE | PHASE   |  |
| 1    | 414.40    | -162.01 |  |
| 2    | 249.47    | 195.00  |  |

|                          | REAL  | IMAGINARY | MAGNITUDE | PHASE  |
|--------------------------|-------|-----------|-----------|--------|
| INPUT IMPEDANCE (OHMS) : | 5.37  | 69.31     | 69.51     | 85.57  |
| INPUT CURRENT (AMPS) :   | -2.27 | 5.51      | 5.96      | 112.42 |
| OUTPUT CURRENT (AMPS) :  | -2.25 | 5.44      | 5.88      | 112.47 |

INPUT/OUTPUT CURRENT RATIO = 1.0132 INPUT/OUTPUT PHASE = -0.05 DEGREES

NETWORK ID : TOWER 3 NIGHT

FREQUENCY: 1180.00 kHz
ATU SHUNT IMPEDANCE (R,X): 0.00, 4000.00 OHMS
TOWER FEED IMPEDANCE (R,X): 0.00, 25.50 OHMS
TOWER SHUNT IMPEDANCE (R,X) 0.00, -9634.10 OHMS
TOWER IMPEDANCE (R,X): 15.24, 38.75 OHMS

| NODE | то | NODE   | IMPEDANCE<br>R | (OHMS)<br>X |
|------|----|--------|----------------|-------------|
| 1    |    | GROUND | 0.00           | 4000.00     |
| 2    |    | GROUND | 15.36          | 38.88       |
| 1    |    | 2      | 0.00           | 25.50       |

|      | VOLTA     | .GE     |  |
|------|-----------|---------|--|
| NODE | MAGNITUDE | PHASE   |  |
| 1    | 290.54    | -173.96 |  |
| 2    | 183.51    | 177.90  |  |

|                          | REAL  | IMAGINARY | MAGNITUDE | PHASE  |
|--------------------------|-------|-----------|-----------|--------|
| INPUT IMPEDANCE (OHMS) : | 14.88 | 63.42     | 65.14     | 76.80  |
| INPUT CURRENT (AMPS) :   | -1.47 | 4.21      | 4.46      | 109.24 |
| OUTPUT CURRENT (AMPS) :  | -1.46 | 4.16      | 4.41      | 109.37 |

INPUT/OUTPUT CURRENT RATIO = 1.0120
INPUT/OUTPUT PHASE = -0.13 DEGREES

in the second se

CUSTOMER : KGOL NETWORK ID : TOWER 4 NIGHT

FREQUENCY: 1180.00 kHz ATU SHUNT IMPEDANCE (R,X): 0.00, 4000.00 OHMS TOWER FEED IMPEDANCE (R,X): 0.00, 26.50 OHMS TOWER SHUNT IMPEDANCE (R,X): 0.00, -9634.10 OHMS TOWER IMPEDANCE (R,X): 63.76, 80.37 OHMS

| NODE | то | NODE   | IMPEDANCE<br>R | (OHMS)<br>X |
|------|----|--------|----------------|-------------|
| 1    |    | GROUND | 0.00           | 4000.00     |
| 2    |    | GROUND | 64.83          | 80.61       |
| 1    |    | 2      | 0.00           | 26.50       |

|      | VOLTAG    | Ε     |
|------|-----------|-------|
| NODE | MAGNITUDE | PHASE |
| 1    | 496.88    | 46.42 |
| 2    | 410.54    | 38.80 |

|                          | REAL  | <b>IMAGINARY</b> | MAGNITUDE | PHASE  |
|--------------------------|-------|------------------|-----------|--------|
| INPUT IMPEDANCE (OHMS) : | 61.48 | 105.29           | 121.93    | 59.72  |
| INPUT CURRENT (AMPS) :   | 3.97  | -0.94            | 4.08      | -13.30 |
| OUTPUT CURRENT (AMPS) :  | 3.90  | -0.88            | 4.00      | -12.77 |

INPUT/OUTPUT CURRENT RATIO = 1.0184 INPUT/OUTPUT PHASE = -0.52 DEGREES

## Reference Field Strength Measurements- KGOL

Reference field strength measurements were made using a Potomac Instruments FIM-41 of known calibration at three locations along radials at the azimuths with radiation values specified on the construction permit and, additionally, on the major lobe radial.

The measured field strengths, descriptions, and GPS coordinates for the reference measurement points are shown on the following pages. All locations indicated are listed using NAD 83 datum. All measurements were taken on June 2, 2011.

DAY 1.5° Radial

| Point | Dist. Km. | Latitude    | Longitude   | Time | Field | Comments                              |
|-------|-----------|-------------|-------------|------|-------|---------------------------------------|
| No    |           |             |             |      | mV/m  |                                       |
| 1     | 1.73      | 30° 09′ 16″ | 95° 17′ 23″ | 1129 | 117   | 18539 Rolling Hills Rd.               |
| 2     | 3.36      | 30° 10′ 09″ | 95° 17' 21" | 1105 | 110   | Past Wal-Mart Distrib ctr W. of truck |
|       |           |             |             |      |       | entrance on Gene Campbell Pkwy.       |
| 3     | 4.67      | 30° 10′ 51″ | 95° 17′ 20″ | 1116 | 56    | End of Country Place Dr.              |

#### DAY56.5° Radial

| Point | Dist. Km. | Latitude    | Longitude   | Time | Field | Comments                             |
|-------|-----------|-------------|-------------|------|-------|--------------------------------------|
| No    |           |             |             |      | mV/m  |                                      |
| 1     | 6.08      | 30° 10′ 10″ | 95° 14′ 24″ | 1058 | 78    | FM1485 at Tri-Star driveway          |
| 2     | 7.21      | 30° 10′ 29″ | 95° 13′ 37″ | 1043 | 24    | 22194 Brooke Forest at mailbox       |
| 3     | 8.63      | 30° 10′ 59″ | 95° 12′ 49″ | 1026 | 23    | Telco riser 21972 on Blazing Trail   |
| 4     | 11.04     | 30° 11′ 38″ | 95° 11′ 40″ | 1017 | 16    | State Hwy. 242 at deer crossing sign |

#### DAY 209.1° Radial

| Point | Dist. Km. | Latitude    | Longitude   | Time | Field | Comments                                         |
|-------|-----------|-------------|-------------|------|-------|--------------------------------------------------|
| No    |           |             |             |      | mV/m  |                                                  |
| 1     | 1.19      | 30° 07′ 48″ | 95° 17′ 46″ | 1135 | 2.2V  | SE Corner Hollow Oaks, Woodmass                  |
| 2     | 2.51      | 30° 07′ 10″ | 95° 18′ 10″ | 1149 | 950   | 300ft before end of Mersey Telco<br>Riser F19407 |
| 3     | 3.03      | 30° 06′ 55″ | 95° 18′ 18″ | 1155 | 580   | 19358 Riverwalk across street.                   |
| 4     | 3.78      | 30° 06′ 33″ | 95° 18′ 31″ | 1201 | 450   | Lot 15 on Serpentine Dr.                         |

## NIGHT 40° Radial

| Point | Dist. Km. | Latitude    | Longitude   | Time | Field | Comments                                        |
|-------|-----------|-------------|-------------|------|-------|-------------------------------------------------|
| No    | ,         |             |             |      | mV/m  |                                                 |
| 1     | 4.45      | 30° 10′ 11″ | 95° 15′ 36″ | 1419 | 7.8   | 21405 Gene Campbell Pkwy                        |
| 2     | 6.39      | 30° 11′ 01″ | 95° 14′ 50″ | 1426 | 7.4   | FM1485 Telco riser 330 across st from red house |
| 3     | 7.6       | 30° 11′ 29″ | 95° 14′ 20″ | 1433 | 2.8   | W. Pine Dr. 300ft before Gardenia               |

## NIGHT 103.5° Radial

| Point | Dist. Km. | Latitude    | Longitude   | Time | Field | Comments                                                          |
|-------|-----------|-------------|-------------|------|-------|-------------------------------------------------------------------|
| No    |           |             |             |      | mV/m  |                                                                   |
| 1     | 2.39      | 30° 08′ 04″ | 95° 15' 57" | 1328 | 23    | On Alyssa La. just No. of intersection at neighborhood watch sign |
| 2     | 2.94      | 30° 07′ 58″ | 95° 15′ 37″ | 1333 | 17    | 1435 Furguson Rd.                                                 |
| 3     | 6.75      | 30° 07' 28" | 95° 13′ 19″ | 1305 | 6     | 22216 Rt. 194, dentists office                                    |

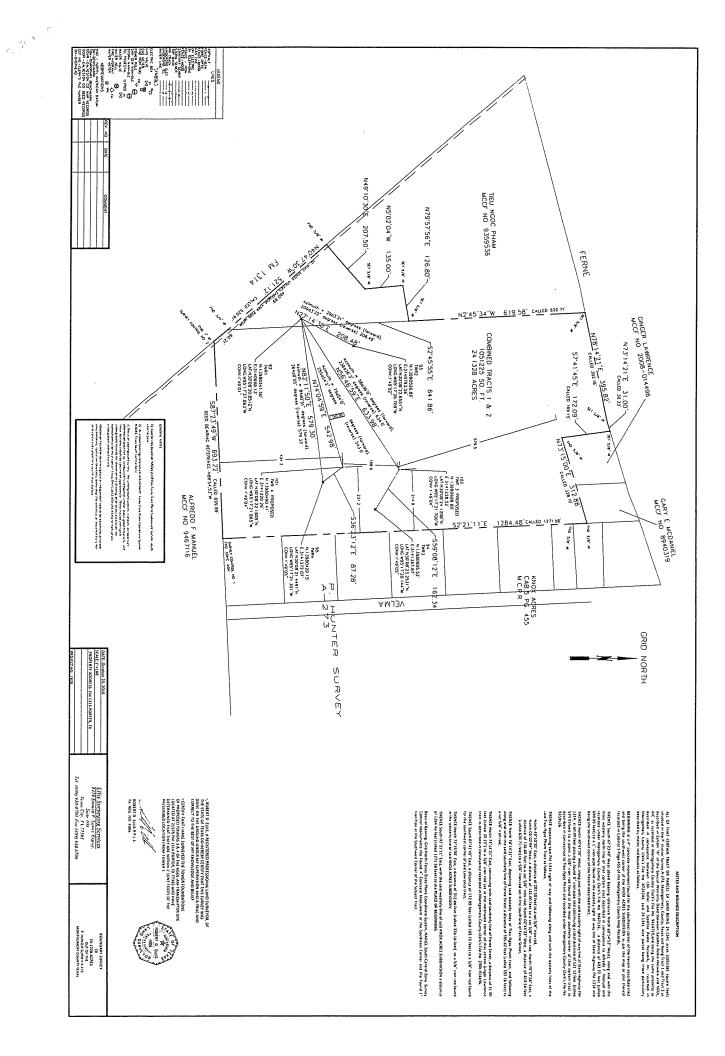
## NIGHT 164° Radial

| Point | Dist. Km. | Latitude    | Longitude   | Time | Field | Comments                     |
|-------|-----------|-------------|-------------|------|-------|------------------------------|
| No    |           |             |             |      | mV/m  |                              |
| 1     | 2.47      | 30° 07′ 04″ | 95° 16′ 57″ | 1234 | 380   | 1909 Bernarder Riser F19095  |
| 2     | 2.75      | 30° 06′ 45″ | 95° 10′ 32″ | 1242 | 230   | NE Corner Volga & Rio Grande |
| 3     | 5.95      | 30° 06′ 35″ | 95° 16′ 48″ | 1246 | 190   | 19597 Desna Dr.              |

## NIGHT 214° Radial

| Point | Dist. Km. | Latitude    | Longitude   | Time | Field | Comments                        |
|-------|-----------|-------------|-------------|------|-------|---------------------------------|
| No    |           |             |             |      | mV/m  |                                 |
| 1     | 1.20      | 30° 07′ 48″ | 95° 17' 49" | 1344 | 270   | Fire Hydrant Misty Moss & New   |
|       |           |             | ,           |      |       | Forest ·                        |
| 2     | 2.89      | 30° 07' 03" | 95° 18′ 25″ | 1224 | 89    | Serpentine Dr. Riser F18331     |
| 3     | 3.63      | 30° 06' 44" | 95° 18′ 31″ | 1220 | 55    | SE Corner Elbe & Serpentine Dr. |

## NIGHT 250.5° Radial


| Point | Dist. Km. | Latitude    | Longitude   | Time | Field | Comments                                                  |
|-------|-----------|-------------|-------------|------|-------|-----------------------------------------------------------|
| No    |           | •           |             |      | mV/m  |                                                           |
| 1     | 7.95      | 30° 06' 55" | 95° 22′ 04″ | 1639 | 14    | 28427 Benders Landing Rd.                                 |
| 2     | 8.94      | 30° 06′ 43″ | 95° 22′ 39" | 1629 | 8.5   | On Birnham Woods Rd. parallel to goalpost at high school. |
| 3     | 10.22     | 30° 06′ 30″ | 95° 23′ 24″ | 1615 | 5.3   | Riley-Fuzzell @ Discovery Creek                           |

## NIGHT 250.5° Radial

| Point | Dist. Km. | Latitude    | Longitude     | Time | Field | Comments                                                  |
|-------|-----------|-------------|---------------|------|-------|-----------------------------------------------------------|
| No    |           |             |               |      | mV/m  |                                                           |
| 1     | 7.95      | 30° 06′ 55″ | 95° 22' 04"   | 1639 | 14    | 28427 Benders Landing Rd.                                 |
| 2     | 8.94      | 30° 06′ 43″ | 95° 22′ 39″ . | 1629 | 8.5   | On Birnham Woods Rd. parallel to goalpost at high school. |
| 3     | 10.22     | 30° 06′ 30″ | 95° 23' 24"   | 1615 | 5.3   | Riley-Fuzzell @ Discovery Creek                           |

## NIGHT 338.5° Radial

| Point | Dist. Km. | Latitude    | Longitude   | Time | Field | Comments                                 |
|-------|-----------|-------------|-------------|------|-------|------------------------------------------|
| No    |           |             |             |      | mV/m  |                                          |
| 1     | 1.80      | 30° 09′ 15″ | 95° 17' 50" | 1356 | 23    | 18074 Rolling Hills                      |
| 2     | 3.16      | 30° 10′ 00″ | 95° 18' 30" | 1414 | 22    | Gene Campbell Blvd. Yellow dot in street |
| 3     | 6.24      | 30° 11′ 29″ | 95° 18' 49" | 1448 | 10    | 18309 Old Houston Rd,                    |

