

LAW OFFICES

MILLER AND NEELY, P. C.

JERROLD D. MILLER JOHN S. NEELY*

*ADMITTED PA AND DC ONLY

SUITE 704 6900 WISCONSIN AVENUE BETHESDA, MD 20815

(301) 986-4160 FAX: (301) 986-4162

August 9, 2011

Secretary Federal Communications Commission Washington, DC 20554

ATTN: Audio Division (AM)

RE: Form 302-AM (Moment Method Modeling) WRDT(AM) Monroe, Michigan FAC: 25083

Dear Madam Secretary:

Transmitted herewith in triplicate on behalf of WMUZ Radio, Inc., licensee of the above-referenced station is FCC Form 302-AM, an application for moment method modeling.

A \$1,365 filing fee is remitted with this application. The filing fee codes are MOR and MMR. Any questions concerning this matter should be addressed to the undersigned.

Sincerely John S. Neely

encs.

					ANN
Vashington, D. C. 20554					Sv (
FCC 302-AM		ONLY	⁶ 0		
APPLICATION FOR AM			\sim		
BROADCAST STATION LICENSE		FOR CO	MMISSION USE ONLY	40 · 10 · · ·	
(Please read instructions before filling out form.		FILE NO	BMML-201	1/08//ACK	
			*)		
. PAYOR NAME (Last, First, Middle Initial)					
WMUZ Radio, Inc. FRN 0003262383		Conv	otices and comm	inications to .	
MAILING ADDRESS (Line 1) (Maximum 35 characters)			iller and Neely		
P.O. Box 3003		6	900 Wisconsin Av		
/AILING ADDRESS (Line 2) (Maximum 35 characters)		В	ethesda, MD 208	315	
CITY Blue Bell	STATE	E OR COUN	TRY (if foreign address)	ZIP CODE 19422	
ELEPHONE NUMBER (include area code) (215) 628-3500		LETTERS	OTHER FCC ID	ENTIFIER (If applicable)	
2. A. Is a fee submitted with this application?	FA	CID 25	083	X Yes No	
Governmental Entity Noncommerce	ial educational I	licensee	X Other (Please expla	in):	
• •					ces
C. If Yes, provide the following information: Enter in Column (A) the correct Fee Type Code for the service Fee Filing Guide." Column (B) lists the Fee Multiple applicable (A) (B) FEE TYPE FEE MULTIPLE		ation. Enter	fee amount due in Column C) FOR FEE CODE IN		ces
Enter in Column (A) the correct Fee Type Code for the service Fee Filing Guide." Column (B) lists the Fee Multiple applicable (A) (B) FEE TYPE FEE MULTIPLE CODE 0 0	e for this applic	FEE DUE TYPE	fee amount due in Column C) : FOR FEE	(C).	ces
Enter in Column (A) the correct Fee Type Code for the servic ree Filing Guide." Column (B) lists the Fee Multiple applicabl	e for this applic	ation. Enter	fee amount due in Column C) FOR FEE CODE IN	(C).	ces
Enter in Column (A) the correct Fee Type Code for the service Fee Filing Guide." Column (B) lists the Fee Multiple applicable (A) (B) (B) FEE TYPE CODE M M M R	e for this applic	FEE DUE TYPE COLL \$ 635.00	fee amount due in Column C) FOR FEE CODE IN MN (A)	(C). FOR FCC USE ONLY	ces
Enter in Column (A) the correct Fee Type Code for the service Fee Filing Guide." Column (B) lists the Fee Multiple applicable (A) (B) FEE TYPE FEE MULTIPLE CODE 0 0	e for this applic	tion. Enter	fee amount due in Column C) FOR FEE CODE IN MN (A) to list more than one Fee T C)	(C). FOR FCC USE ONLY ype Code.	ces
Inter in Column (A) the correct Fee Type Code for the service Image: Filing Guide." Column (B) lists the Fee Multiple applicable (A) (B) Image: FEE TYPE Image: FEE MULTIPLE Image: CODE 0 0 1 Image: Mode of the service Image: Conde of the service Image: Conde of the service Image: Mode of the service Image: Conde of the service Image: Conde of the service Image: Mode of the service Image: Conde of the service Image: Conde of the service Image: Conde of the service Image: Conde of the service Image: Conde of the service Image: Conde of the service Image: Conde of the service Image: Conde of the service Image: Conde of the service Image: Conde of the service Image: Conde of the service Image: Conde of the service Image: Conde of the service Image: Conde of the service Image: Conde of the service Image: Conde of the service Image: Conde of the service Image: Conde of the service Image: Conde of the service Image: Conde of the service Image: Conde of the service Image: Conde of the service Image: Conde of the service Image: Conde of the service Image: Conde of the service Image: Conde of	e for this applic	FEE DUE TYPE (COLL \$ 635.00 requirement	fee amount due in Column C) FOR FEE CODE IN MN (A) to list more than one Fee T C)	(C). FOR FCC USE ONLY	ces
Enter in Column (A) the correct Fee Type Code for the service Fee Filing Guide." Column (B) lists the Fee Multiple applicable (A) (B) FEE TYPE FEE MULTIPLE M M o be used only when you are requesting concurrent actions w (A) (B) (B) (B) (B) (B) (B) (B)	e for this applic	tion. Enter	fee amount due in Column C) FOR FEE CODE IN MN (A) to list more than one Fee T C)	(C). FOR FCC USE ONLY ype Code.	
Enter in Column (A) the correct Fee Type Code for the service Fee Filing Guide." Column (B) lists the Fee Multiple applicable (A) (B) FEE TYPE FEE MULTIPLE M M o be used only when you are requesting concurrent actions w (A) (B) (B) (B) (B) (B) (B) (B)	e for this applic	TOTAL REMITTED	fee amount due in Column C) FOR FEE CODE IN MN (A) to list more than one Fee T C)	(C). FOR FCC USE ONLY ype Code.	

હેં. જુવે

4

e	ð				
€.	ę.				
	SECTION II - APPLICAN	T INFORMATION			
	1. NAME OF APPLICANT Kimtron, Inc.	FRN 0003-2623	-83		
·	MAILING ADDRESS				
	P.O. Box 3003		STATE		ZIP CODE
	Blue Bell		PA		19422
	2. This application is for:	X Commercial			
			Noncomm		
		X AM Direc	tional LI AM N	on-Directional	
	Call letters FACD 25083	Community of License	Construction Permit File No.	Modification of Construction	Expiration Date of Last
	WRDT	Monroe, MI	N/A	Permit File No(s). N/A	Construction Permit N/A
	3. Is the station no	ow operating pursuant	to automatic program	test authority in	Yes X No
	accordance with 47 C.F	.R. Section 73.1620?			Exhibit No.
	If No, explain in an Exhi	bit. See MoM E	STA-20110721AAI		N/A
	4. Have all the terms	s, conditions, and oblig	ations set forth in the	above described	Yes No
	construction permit beer	n fully met?			Exhibit No.
	If No, state exceptions in	n an Exhibit.			N/A
	the grant of the underl	ying construction permit	is any cause or circumst t which would result in mit application to be now	any statement or	Yes No
	If Yes, explain in an Ex		The application to be now		Exhibit No. N/A
	-		(FCC Form 323) or own	ership	Yes No
	certification in accordan	ce with 47 C.F.R. Section	n 73.3615(b)?		X Does not apply
	If No, explain in an Exhi	Exhibit No. N/A			
	or administrative body v criminal proceeding, bro	vith respect to the applic bught under the provisior elated antitrust or unfa	verse final action been ta ant or parties to the appli ns of any law relating to t ir competition; fraudule	ication in a civil or he following: any	Yes X No
	involved, including an id (by dates and file num information has been required by 47 U.S.C. S of that previous submis the call letters of the st	dentification of the court bers), and the disposition earlier disclosed in co fection 1.65(c), the applic sion by reference to the tation regarding which the	ull disclosure of the person or administrative body ar on of the litigation. When nnection with another cant need only provide: (file number in the case ne application or Section osition of the previously re-	nd the proceeding nere the requisite application or as i) an identification of an application, a 1.65 information	Exhibit No. N/A

FCC 302-AM (Page 2) August 1995 8. Does the applicant, or any party to the application, have a petition on file to migrate to the expanded band (1605-1705 kHz) or a permit or license either in the existing band or expanded band that is held in combination (pursuant to the 5 year holding period allowed) with the AM facility proposed to be modified herein?

If Yes, provide particulars as an Exhibit.

Þ

The APPLICANT hereby waives any claim to the use of any particular frequency or of the electromagnetic spectrum as against the regulatory power of the United States because use of the same, whether by license or otherwise, and requests and authorization in accordance with this application. (See Section 304 of the Communications Act of 1934, as amended).

The APPLICANT acknowledges that all the statements made in this application and attached exhibits are considered material representations and that all the exhibits are a material part hereof and are incorporated herein as set out in full in

CERTIFICATION

1. By checking Yes, the applicant certifies, that, in the case of an individual applicant, he or she is not subject to a denial of federal benefits that includes FCC benefits pursuant to Section 5301 of the Anti-Drug Abuse Act of 1988, 21 U.S.C. Section 862, or, in the case of a non-individual applicant (e.g., corporation, partnership or other unincorporated association), no party to the application is subject to a denial of federal benefits that includes FCC benefits pursuant to that section. For the definition of a "party" for these purposes, see 47 C.F.R. Section 1.2002(b).

2. I certify that the statements in this application are true, complete, and correct to the best of my knowledge and belief, and are made in good faith.

Name	Signature	
Donald B. Crawford	1 /2 Due	Josh
Title	Date	Telephone Number
President	08/01/2011	(215) 628-3500

WILLFUL FALSE STATEMENTS ON THIS FORM ARE PUNISHABLE BY FINE AND/OR IMPRISONMENT (U.S. CODE, TITLE 18, SECTION 1001), AND/OR REVOCATION OF ANY STATION LICENSE OR CONSTRUCTION

FCC NOTICE TO INDIVIDUALS REQUIRED BY THE PRIVACY ACT AND THE PAPERWORK REDUCTION ACT

The solicitation of personal information requested in this application is authorized by the Communications Act of 1934, as amended. The Commission will use the information provided in this form to determine whether grant of the application is in the public interest. In reaching that determination, or for law enforcement purposes, it may become necessary to refer personal information contained in this form to another government agency. In addition, all information provided in this form will be available for public inspection. If information requested on the form is not provided, the application may be returned without action having been taken upon it or its processing may be delayed while a request is made to provide the missing information. Your response is required to obtain the requested authorization.

Public reporting burden for this collection of information is estimated to average 639 hours and 53 minutes per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the burden, can be sent to the Federal Communications Commission, Records Management Branch, Paperwork Reduction Project (3060-0627), Washington, D. C. 20554. Do NOT send completed forms to this address.

THE FOREGOING NOTICE IS REQUIRED BY THE PRIVACY ACT OF 1974, P.L. 93-579, DECEMBER 31, 1974, 5 U.S.C. 552a(e)(3), AND THE PAPERWORK REDUCTION ACT OF 1980, P.L. 96-511, DECEMBER 11, 1980, 44 U.S.C. 3507.

X Yes No	X	Yes	No
----------	---	-----	----

SECTION III - LICENSE APPLICATION ENGINEERING DATA

Name of Applicant WMUZ Radio, Inc.

ų.

\$ i 4

PURPOSE OF AUTHORIZATION APPLIED FOR: (check one)

Direct Measurement of Power

1. Facilities authority	prized in construction permit		,	-				
Call Sign	File No. of Construction Permit	Frequency	Hours of Operation	Power in kilowatts				
WRDT	(if applicable)	(kHz)		Night	Day			
	N/A	560	Unlimited	0.014	0.500			
2. Station location								
State			City or Town					
Michigan			Monroe					
3. Transmitter lo	cation							
State	County		City or Town	Street address (or other identification)				
MI	Monroe		Monroe	5305 Vineyard Drive				
4. Main studio lo	cation							
State	County		City or Town	Street address (or other identification)				
MI	Wayne		Detroit	12300 Radio Place				
5. Remote contro	ol point location (specify only if at	thorized direction	al antenna)					
State	County		City or Town Street address (or other identification)		ation)			
MI	Wayne		Detroit	12300 Radio Pla				
L			1					

6.	Has type-approved stereo generating equipment been installed?	Yes	X No
7.	Does the sampling system meet the requirements of 47 C.F.R. Section 73.68?	X Yes	No No
		Not	Applicable
ļ	Attach as an Exhibit a detailed description of the sampling system as installed.	Exhibit I E-1	No.

8. Operating constants: RF common point or antenna current (in amperes) without modulation for night system 0.4 Measured antenna or common point resistance (in ohms) at operating frequency			RF common point or antenna current (in amperes) without modulation for day system 3.3				
			Night	Day		Night	•
50	50				0		
Antenna indications for dir	ectional operation		- I				
Towers		Antenna monitor Phase reading(s) in degrees		Antenna monitor sample current ratio(s)		Antenna base currents	
	Night	Day	Night	Day	Night	Day	
1		-1.5		1.026			
2		0.0		1.000			
3		-88.6		1.117			
4		-89.6		0.972			
Manufacturer and type of	antenna monitor: Po	tomac Instrum	ents Type 1901				

SECTION III - Page 2

permit?

9. Description of antenna system ((f directional antenna is used, the information requested below should be given for each element of the array. Use separate sheets if necessary.) See Exhibit E-1 page 28.

Type Radiator	Overall height in meters of radiator above base insulator, or above base, if grounded.	above ground (without	Overall height in meters above ground (include obstruction lighting)	If antenna is either top loaded or sectionalized, describe fully in an Exhibit.
See E-1	See E-1	See E-1	See E-1	Exhibit No. See E-1
Excitation	X Series	Shunt		

Geographic coordinates to nearest second. For directional antenna give coordinates of center of array. For single vertical radiator give tower location.

North Latitude	41	0	53	28	n	West Longitude	083	0	25	,	39	n

If not fully described above, attach as an Exhibit further details and dimensions including any other antenna mounted on tower and associated isolation circuits.

Exhibit No. See E-1

Exhibit No.

Also, if necessary for a complete description, attach as an Exhibit a sketch of the details and dimensions of ground system. On file - no change.

10. In what respect, if any, does the apparatus constructed differ from that described in the application for construction permit or in the

N1/A
N/A

11. Give reasons for the change in antenna or common point resistance.

No change in common point resistance - moment-method license application only.	·····
	i.
	Marris .

I certify that I represent the applicant in the capacity indicated below and that I have examined the foregoing statement of technical information and that it is true to the best of my knowledge and belief.

Name (Please Print or Type)	Signature (check appropriate box below)
W.C. Alexander	Williama
Address (include ZIP Code)	Date
2821 S. Parker Road	08/01/2011
Suite 1205	Telephone No. (Include Area Code)
Aurora, CO 80014	(303) 433-0104

X	Technical Director	Registered Professional Engineer
	Chief Operator	Technical Consultant

FCC 302-AM (Page 5) August 1995

Other (specify)

EXHIBIT E-1

Υ.

5. 51 L

APPLICATION FOR LICENSE INFORMATION RADIO STATION WRDT MONROE, MICHIGAN

WMUZ Radio, Inc.

August 1, 2011

560 kHz 0.5 kW-D/0.014 kW-N DA-D

EXECUTIVE SUMMARY

This engineering exhibit supports an application for license for the existing daytime directional antenna system of radio station WRDT in Monroe, Michigan (FCC FID No. 25083) pursuant to the AM technical rules permitting moment-method modeling of eligible AM directional arrays.

FCC Special Temporary Authority (BSTA-20110721AAI) was obtained on July 21, 2011 to permit operation with parameters at variance from the licensed values while making reference field measurements and performing other tasks relevant to moment-method modeling of the WRDT daytime array.

Information is provided herein showing that the directional antenna parameters for the day pattern authorized by the FCC have been determined in accordance with the requirements of 47 C.F.R. §73.151(c). The system has been adjusted to produce antenna monitor parameters within \pm 5 percent in ratio and \pm 3 degrees in phase of the modeled values, as required by the Rules. A modified station license is requested herewith specifying the new night operating parameters.

Daytime Towers Tower #1 - ASRN 1000331 Tower #2 - ASRN 1000332 Tower #3 - ASRN 1000333 Tower #4 - ASRN 1000334 Nighttime Tower ASRN 1001506

\$) { É

Analysis of Tower Impedance Measurements to Verify Method of Moments Model

2: 3

Tower base impedance measurements were made at the final J-plugs within the WRDT ATUs using a Delta Electronics OIB-1 impedance bridge. Downstream of the final J-plug at the ATU output at each tower there is only a piece of feed tubing connecting the ATU output and the tower base. The other WRDT towers were all open-circuited at the output J-plugs.

Expert MININEC Broadcast Professional (version 14.5) was used to model the WRDT night array.

A lumped load with a reactance of -j10,000 ohms was modeled at the base of the other WRDT towers to simulate an open circuit at each tower base.

The WRDT tower heights were adjusted in the model in order to achieve calibration of the model with the measured base impedances. All modeled tower heights were within 75 to 125 percent of the physical tower height as required by the FCC Rules.

All the WRDT towers employ 21 electrical degrees of top-loading. This top-loading is achieved by means of the segments of the top guy wires closest to the towers, which are electrically bonded to the towers. The ends of the top-load segments are connected together in "spider-web" fashion. Top-load wires were modeled at their full electrical lengths and at the actual radius of the wires employed.

The nominal modeled radius for each WRDT tower was 0.2911 meters, which amounts to 100% of the physical radius of the tower as determined by the formula $3T/2\pi$, where T is the tower face width in meters. The WRDT radiators are uniform cross-section triangular towers and have face widths of 0.6097 meters.

Three of the WRDT towers support STL/ICR antennas near the top. Towers 1 and 3 each support a 72-inch parabolic dish antenna at the 121.9-meter level; tower 2 supports a 120-inch parabolic dish at the 121.9 meter level. The top segment of the tower 1, 2 and 3 models was increased in radius to compensate for the aperture of the STL antennas. Isocouplers are in place on towers 2 and 3; the parabolic dish antenna on tower 1 is unused and no isocoupler is in place.

As noted above, each WRDT tower is fed with a length of copper tubing that exhibits a small amount of series inductive reactance, depending on the length. This tubing connects to each tower immediately above the base insulator.

A circuit model was constructed for each tower using the assumed series feed tubing and shunt base region reactances. This model was used with WCAP Professional version 1.1.02 to determine the effects of these reactances on the ATU output impedance at each tower. In each of the WCAP tabulations, node 2 represents the ATU output reference point and node 3 represents the tower base as shown on the circuit model schematic provided with each tabulation. Node 0 represents ground potential. The ATU output impedances can be found in the "TO IMPEDANCE" column of each WCAP tabulation, following the phantom 1.0 ohm resistor inserted in the model to provide a calculation point for the impedance. The complex base impedance of each tower from the moment method model is represented in each case by the complex load from node 3 to ground. A value of 50 pF was assumed for the base insulator. The WCAP circuit model tabulation immediately follows the model for each tower.

373.151(c)(1)(vii) permits the use of a lumped series inductance of 10 uH or less between the output port of each antenna tuning unit and the associated tower. In each case, the value of lumped series inductance was below this 10 uH limit.

The modeled and measured impedances at the ATU output J-plugs with the other towers opencircuited at their ATU output J-plugs agree within ± 2 ohms and ± 4 percent as required by the FCC rules.

é

In the table below, the top and bottom values in the "Shunt C pF" column represent the shunt capacitances of the base insulator and isocoupler, respectively. The top and bottom values in the "Model Radius (m)" and "% Phys. Rad." columns represent for towers 1, 2 and 3 the radius values and percentages for the bottom 19 segments and the top segment respectively.

				Series	Shunt	Phys.	Model	%	Model	%
	Z _{BASE}	Z _{ATU}	Z _{ATU}	L	С	Height	Height	Phys.	Radius	Phys.
Twr.	(Modeled)	(Modeled)	(Measured)	(uH)	pF	(deg.)	(deg.)	Height	(m)	Rad.
1									0.2911	100.0
	63.9+j167.2	67.8 +j179.2	68.0 +j179.2	2.20	50	84.0	79.80	95.0	0.4852	100.0
2					50				0.2911	100.0
	83.4 +j211.8	105.5 +j268.2	105.0 +j274.4	9.95	100	84.0	85.0	101.2	0.6793	100.0
3					50				0.2911	100.0
	62.6+j164.7	75.0 +j200.7	75.0 +j201.0	6.55	100	84.0	79.5	94.6	0.4852	100.0
4										
	75.3 +j194.3	80.7 +j203.6	81.0 +j196.6	1.00	50	84.0	83.0	98.8	0.2911	100.0

Table 1 – Analysis of Tower Impedance Measurements to Verify Moment Method Model

WRDT Calibration Model Tower 1 driven, all others floated

e s P

GEOMETRY Wire coordinates in degrees; other dimensions in meters Environment: perfect ground

wire 1	caps none	Distance 0 0	Angle O O	Z 0 75 01	radius s .2911	segs 19
2	none		0	75.81 75.81 79.8	.4852	1
3	none	-	0 89.001	79.8 62.402	.0095	5
4	none		0 208.999	79.8 62.402	.0095	5
5	none		0 329.	79.8 62.402	.0095	5
6	none	11.761 11.761	89.001 208.999	62.402 62.402	.0095	5
7	none	11.761 11.761	208.999 329.	62.402 62.402	.0095	5
8	none	11.761 11.761	329. 89.001	62.402 62.402	.0095	5
9	none	202. 202.	283. 283.	0 80.75	.2911	19
10	none	202. 202.	283. 283.	80.75 85.	.6793	1
11	none	202. 202.748	283. 286.313	85. 67.578	.019	5
12	none	202. 191.726	283. 281.355	85. 67.578	.019	5
13	none	202. 212.034	283. 281.321	85. 67.578	.019	5
14	none	202.748 191.726	286.313 281.355	67.578 67.578	.0095	5
15	none	191.726 212.034	281.355 281.321	67.578 67.578	.0095	5
16	none	212.034 202.748	281.321 286.313	67.578 67.578	.0095	5
17	none	221.1 221.1	307. 307.	0 75.525	.2911	19
18	none	221.1 221.1	307. 307.	75.525 79.5	.4852	1
19	none	221.1 226.904	307. 309.638	79.5 62.102	.0095	5
20	none	221.1 209.389	307. 306.904	79.5 62.102	.0095	5
21	none	221.1 227.59	307. 304.503	79.5 62.102	.0095	5
22	none	226.904 209.389	309.638 306.904	62.102 62.102	.0095	5
23	none	209.389 227.59	306.904 304.503	62.102 62.102	.0095	5
24	none	227.59 226.904	304.503 309.638	62.102 62.102	.0095	5
25	none	90. 90.	13. 13.	0 83.	.2911	20

Page 4 of 31

26	none 90.	1	3.	83.	.0	095	5
27	91. none 90.		0.339 3.	65.578 83.	.0	095	5
28	79. none 90.		.299 3.	65.578 83.	. 0()95	5
29		936 9	.238 0.339	65.578 65.578		095	5
	79.	628 9	.299	65.578			
30		936 9	.299 .238	65.578 65.578	.0	095	5
31	none 99. 91.		.238 0.339	65.578 65.578	.0	095	5
Numbe	r of wire curr		= 31 = 212				
	idual wir nt length s	es wir	inimum e value 3.975 9.5E-0)3	max wire 9 10	kimum value 4.25 .6793	
Frequ no.	RICAL DES encies (K frequency lowest 560.	(Hz)	no. o step: 1		ım	h (wavele maximum .011805	-
Sourc sourc 1	es e node 1	sector ma 1 1.	gnitude	phase 0		type voltage	
Lumpe	d loads						
load 1 2 3		1	reactance (ohms) -10,000. -10,000. -10,000.	e indu (mH 0 0 0	uctance)	capacita (uF) 0 0 0	nce passive circuit 0 0 0
freq (KHz)	rmalizati resis (ohms	t react	imped (ohms)	phase (deg)	VSWR	S11 dB	S12 dB
560.	63.88		178.94	69.1	10.713	-1.6263	-5.0536

ت چ ق

્ર હું ર

Frequency Range: ±0 kHz

Frequency Step: 0 kHz

WCAP - WRDT Tower 1 Calibration

WCAP OUTPUT AT FREQUENCY: 0.560 MHz

NODE VOLTAGES

Node:	1	191.9826 4	68.9928° V
Node:	2	191.6264 4	69.2720° V
Node:	3	184.4069 本	68.4207° V

	WCAP PART		BRANCH V	/OLTAGE	BRANCH (CURRENT
R	1→2	1.00000000	1.00 ∡	0.000° V	1.00 ∡	0.000° A
L	2→3	2.20000000	7.74 4	90.000° V	1.00 4	0.000° A
С	3→0	0.00005000	184.41 4	68.421° V	0.03 4	158.421° A
R	3→0	63.90000000	184.41 ∡	68.421° V	1.03 4	-0.664° A
	WCAP PART		FROM IM	PEDANCE	TO IMPE	DANCE
R	1→2	1.00000000	68.82 + j	179.223	67.82 + j	179.223
L	2→3	2.20000000	67.82 + j	179.223	67.82 + j	171.482
С	3→0	0.00005000	0.00 - j	5684.105	0.00 + j	0.000
R	3→0	63.90000000	63.90 + j	167.200	0.00 + j	0.000
WCA	AP INPUT DAT	FA:				
	0.5600	0.0000000	0			
I	1.000	000000 0 1	0.00000	000		
P	1 000	100000 1 2	0 00000	חחר		

R	1.0000000	1	2	0.0000000
L	2.20000000	2	3	0.00000000
С	0.00005000	3	0	
R	63.90000000	3	0	167.20000000

WRDT Calibration Model Tower 2 driven, all others floated

ġ:

GEOMETRY Wire coordinates in degrees; other dimensions in meters Environment: perfect ground

wire 1	caps none		0	Z. O	radius .2911	segs 19
2	none	0 0 0	0 0 0	75.81 75.81 79.8	.4852	1
3	none	-	0 89.001	79.8	.0095	5
4	none		0 208.999	79.8 62.402	.0095	5
5	none		0 329.	79.8 62.402	.0095	5
6	none	11.761 11.761	89.001 208.999	62.402 62.402	.0095	5
7	none	11.761 11.761	208.999 329.	62.402 62.402	.0095	5
8	none	11.761 11.761	329. 89.001	62.402 62.402	.0095	5
9	none		283. 283.	0 80.75	.2911	19
10	none	202.	283. 283.	80.75 85.	.6793	1
11	none	202. 202.748	283. 286.313	85. 67.578	.019	5
12	none		283. 281.355	85. 67.578	.019	5
13	none	202. 212.034	283. 281.321	85. 67.578	.019	5
14	none	202.748 191.726	286.313 281.355	67.578 67.578	.0095	5
15	none	191.726 212.034	281.355 281.321	67.578 67.578	.0095	5
16	none	212.034 202.748	281.321 286.313	67.578 67.578	.0095	5
17	none	221.1 221.1	307. 307.	0 75.525	.2911	19
18	none	221.1 221.1	307. 307.	75.525 79.5	.4852	1
19	none	221.1 226.904	307. 309.638	79.5 62.102	.0095	5
20	none	221.1 209.389	307. 306.904	79.5 62.102	.0095	5
21	none	221.1 227.59	307. 304.503	79.5 62.102	.0095	5
22	none	226.904 209.389	309.638 306.904	62.102 62.102	.0095	5
23	none	209.389 227.59	306.904 304.503	62.102 62.102	.0095	5
24	none	227.59 226.904	304.503 309.638	62.102 62.102	.0095	5
25	none	90. 90.	13. 13.	0 83.	.2911	20
26	none	90.	13.	83.	.0095	5

Page 7 of 31

	9	1.568	20.33	39	65.578			
27	none 9		13.	2	83.	.0	095	5
28	none 9	9.628	9.299 13.	9	65.578 83.	.00)95	5
2.0	-	9.936	9.238	-	65.578	0	0.0 5	E
29	none 9 7	9.628	20.33 9.299		65.578 65.578	.0	095	5
30	none 7		9.299		65.578	.0	095	5
31	none 9	9.936 9.936 1.568	9.238 9.238 20.33	8	65.578 65.578 65.578	.0	095	5
Numbe	er of wi cu	res rrent noc		31 212				
			minin	num		max	kimum	
	vidual w ent leng		wire 18	value 3.975		wire 9	value 4.25	
radiu			3	9.5E-C	3	10	.6793	
Frequ no.	RICAL E encies frequen lowest 560.			no. c steps 1		um	h (wavele maximum .011805	- 1
Sourc	ces							
sourc 1	e node 54	sector 1	magnit	tude	phase 0		type voltage	
-		_	±•		0		, o 1 0 a g o	
Lumpe	ed loads	resistar	.ce re	eactance	e ind	uctance	capacita	nce passive
load	node	(ohms)		ohms)	(mH)	(uF)	circuit
1 2	1 107	0 0		10,000.	0 0		0	0
3	160	0		10,000.	0		0	0
IMPED	DANCE							
		tion = 50		,	,		011	C1 O
freq (KHz)		sist rea mms) (oł		mped ohms)	phase (deg)	VSWR	S11 dB	S12 dB
sourc	e = 1;	node 54,	sector	1	-	10 051	1 0 4 4	
560.	83.	402 211	83 22	27.66	68.5	12.951	-1.344	-5.7485

21 V K

¢:

Frequency Range: ±0 kHz

Frequency Step: 0 kHz

WCAP - WRDT Tower 2 Calibration

WCAP OUTPUT AT FREQUENCY: 0.560 MHz

NODE VOLTAGES

Node:	1	288.5916 4	68.3537° V
Node:	2	288.2242 4	68.5385° V
Node:	3	255.9625 4	65.6700° V

	WCAP PART		BRANCH	I VOLTAGE		BRANCH	CURRENT
R	1→2	1.00000000	1.00 ∡	0.000°	V	1.00 4	0.000° A
L	2-3	9.95000000	35.01 ∡	90.000°	V	1.00 🗚	0.000° A
С	3→0	0.00005000	255.96 ∡	65.670°	V	0.05 4	155.670° A
С	3→0	0.00010000	255.96 4	65.670°	V	0.09 4	155.670° A
R	3→0	83.40000000	255.96 4	65.670°	v	1.12 🗚	-2.837° A

	WCAP PART		FROM IMP	EDANCE	TO IMPEDA	NCE
R	1→2	1.00000000	106.45 + j	268.240	105.45 + j	268.240
L	2→3	9.95000000	105.45 + j	268.240	105.45 + j	233.230
С	3→0	0.00005000	-0.00 - j	5684.105	0.00 + j	0.000
С	3→0	0.00010000	-0.00 - j	2842.053	0.00 + j	0.000
R	3→0	83.40000000	83.40 + j	211.800	0.00 + j	0.000

WCAP	INPUT DATA:			
	0.5600 0	.0000	0000	0
I	1.00000000	0	1	0.0000000
R	1.00000000	1	2	0.0000000
L	9.95000000	2	3	0.0000000
С	0.00005000	3	0	
C	0.00010000	3	0	
R	83.4000000	3	0	211.80000000

Page 9 of 31

.

WRDT Calibration Model Tower 3 driven, all others floated

GEOMETRY

¢ 1

8.5

Wire coordinates in degrees; other dimensions in meters Environment: perfect ground

wire 1	caps none	Distance	Angle O	Z O	radius .2911	segs 19
T	none	0	0	75.81	. 2 9 1 1	19
2	none		0	75.81 79.8	.4852	1
3	none		0 89.001	79.8 62.402	.0095	5
4	none		0 208.999	79.8 62.402	.0095	5
5	none	0 11.761	0 329.	79.8 62.402	.0095	5
6	none	11.761 11.761	89.001 208.999	62.402 62.402	.0095	.5
7	none	11.761 11.761	208.999 329.	62.402 62.402	.0095	5
8	none	11.761 11.761	329. 89.001	62.402 62.402	.0095	5
9	none	202. 202.	283. 283.	0 80.75	.2911	19
10	none	202. 202.	283. 283.	80.75 85.	.6793	1
11	none	202. 202.748	283. 286.313	85. 67.578	.019	5
12	none	202. 191.726	283. 281.355	85. 67.578	.019	5
13	none	202. 212.034	283. 281.321	85. 67.578	.019	5
14		202.748 191.726	286.313 281.355	67.578 67.578	.0095	5
15		191.726 212.034	281.355 281.321	67.578 67.578	.0095	5
16		212.034 202.748	281.321 286.313	67.578 67.578	.0095	5
17		221.1 221.1	307. 307.	0 75.525	.2911	19
18		221.1 221.1	307. 307.	75.525 79.5	.4852	1
19		221.1 226.904	307. 309.638	79.5 62.102	.0095	5
20		221.1 209.389	307. 306.904	79.5 62.102	.0095	5
21		221.1 227.59	307. 304.503	79.5 62.102	.0095	5
22		226.904 209.389	309.638 306.904	62.102 62.102	.0095	5
23		209.389 227.59	306.904 304.503	62.102 62.102	.0095	5
24		227.59 226.904	304.503 309.638	62.102 62.102	.0095	5
25	none	90.	13. 13.	0 83.	.2911	20
26	none	90.	13.	83.	.0095	5

Page 10 of 31

	91.568	20.339	65.578			
27 n	one 90.	13.	83.	.00)95	5
28 n	79.628 one 90.	9.299 13.	65.578 83.	.00)95	5
29 n	99.936 one 91.568	9.238 20.339	65.578 65.578	0.0)95	5
	79.628	9.299	65.578	.00	55	5
30 n	one 79.628 99.936	9.299 9.238	65.578 65.578	.00)95	5
31 n	one 99.936 91.568	9.238 20.339	65.578 65.578	.00	95	5
Number	of wires current nod	= 31 es = 212				
		minimum		max	ximum	
Individ segment	ual wires	wire value 18 3.975		wire 9	value 4.25	
radius	rengen	3 9.5E-		10	.6793	
ELECTRICAL DESCRIPTION Frequencies (KHz) frequency no. of segment length (wavelengths) no. lowest step steps minimum maximum 1 560. 0 1 .0110417 .0118056						
Sources			,			
source : 1	node sector 107 1	magnitude 1.	phase 0		type voltage	
Lumped	loads					
-	resistan			ctance	-	nce passive
	ode (ohms) 1 0	(ohms) -10,000.	(mH) 0		(uF) O	circuit 0
	54 0	-10,000.	0		0	0
3	160 0	-10,000.	0		0	0
IMPEDAN	CE alization = 50					
freq	resist rea		phase .	VSWR	S11	S12
(KHz)	(ohms) (oh = 1; node 107		(deg)		dB	dB
560.	62.556 164		69.2	10.631	-1.639	-5.0259

् इ

e

Frequency Range: ±0 kHz

Frequency Step: 0 kHz

WCAP - WRDT Tower 3 Calibration

WCAP OUTPUT AT FREQUENCY: 0.560 MHz

NODE VOLTAGES

Node:	1	214.6159 z	⊾ 69.2637°V	
Node:	2	214.2639 z	€ 69.5138° V	
Node:	3	192.8435 z	€ 67.1166° V	

	WCAP PART		BRANCH	VOLTAGE	BRANCH (CURRENT
R	1→2	1.00000000	1.00 4	0.000° V	1.00 \$	0.000° A
L	2→3	6.55000000	23.05 4	90.000° V	1.00 4	0.000° A
С	3+0	0.00005000	192.84 4	67.117° V	0.03 4	157.117° A
С	3→0	0.00010000	192.84 ∡	67.117° V	0.07 4	157.117° A
R	3→0	62.60000000	192.84 🗚	67.117° V	1.09 ∡	-2.072° A
	WCAP PART		FROM IM	IPEDANCE	TO IMPE	DANCE
R	1→2	1.00000000	75.99 + j	200.713	74.99 + j	200.713
L	2→3	6.55000000	74.99 + j	200.713	74.99 + j	177.666
С	3→0	0.00005000	0.00 - j	5684.105	0.00 + j	0.000
С	3→0	0.00010000	0.00 - j	2842.053	0.00 + j	0.000
R	3→0	62.60000000	62.60 + j	164.700	0.00 + j	0.000
WCA	AP INPUT DAT					
	0.5600	0.0000000	0			

I	1.00000000	0	1	0.0000000
R	1.00000000	1	2	0.0000000
L	6.55000000	2	3	0.0000000
С	0.00005000	3	0	
С	0.00010000	3	0	
R	62.6000000	3	0	164.70000000

WRDT Calibration Model Tower 4 driven, all others floated

4

GEOMETRY Wire coordinates in degrees; other dimensions in meters Environment: perfect ground

wire 1	caps none		Angle O	Z O	radius .2911	segs 19
Ŧ	none	0		75.81	• 2 7 1 1	10
2	none		0	75.81 79.8	.4852	1
3	none	0 11.761	0 89.001	79.8 62.402	.0095	5
4	none			79.8 62.402	.0095	5
5	none		0 329.	79.8 62.402	.0095	5
6	none	11.761 11.761	89.001 208.999	62.402 62.402	.0095	5
7	none	11.761 11.761	208.999 329.	62.402 62.402	.0095	5
8	none	11.761 11.761	329. 89.001	62.402 62.402	.0095	5
9	none	202. 202.	283. 283.	0 80.75	.2911	19
10	none	202. 202.	283. 283.	80.75 85.	.6793	1
11	none	202. 202.748	283. 286.313	85. 67.578	.019	5
12	none	202. 191.726	283. 281.355	85. 67.578	.019	5
13	none		283. 281.321	85. 67.578	.019	5
14	none	202.748 191.726	286.313 281.355	67.578 67.578	.0095	5
15	none	191.726 212.034	281.355 281.321	67.578 67.578	.0095	5
16	none	212.034 202.748	281.321 286.313	67.578 67.578	.0095	5
17	none	221.1 221.1	307. 307.	0 75.525	.2911	19
18	none	221.1 221.1	307. 307.	75.525 79.5	.4852	1
19	none	221.1 226.904	307. 309.638	79.5 62.102	.0095	5
20	none	221.1 209.389	307. 306.904	79.5 62.102	.0095	5
21	none	221.1 227.59	307. 304.503	79.5 62.102	.0095	5
22	none	226.904 209.389	309.638 306.904	62.102 62.102	.0095	5
23	none	209.389 227.59	306.904 304.503	62.102 62.102	.0095	5
24	none	227.59 226.904	304.503 309.638	62.102 62.102	.0095	5
25	none	90. 90.	13. 13.	0 83.	.2911	20
26	none	90.	13.	83.	.0095	5

Page 13 of 31

91.568 27 none 90.	20.339 13.	65.578 83.	.0095	5
79.628	9.299	65.578		0
28 none 90. 99.936	13. 9.238	83. 65.578	.0095	5
29 none 91.568 79.628	20.339 9.299	65.578 65.578	.0095	5
30 none 79.628 99.936	9.299 9.299 9.238	65.578 65.578	.0095	5
31 none 99.936 91.568	9.238 9.238 20.339	65.578 65.578	.0095	5
Number of wires current nod	= 31 es = 212			
	minimum		maximum	
Individual wires	wire value	Ŵ	vire value	
segment length	18 3.975		9 4.25	
radius	3 9.5E-0)3	10 .6793	
ELECTRICAL DESCRIPTIC Frequencies (KHz) frequency no. lowest ste 1 560. 0	no. d	-	ength (wavele maximum .011805	n
Sources				
source node sector	magnitude	phase	type	
1 160 1	1.	0	voltage	
Lumped loads		e inductar	a constito	naa naadiwa
resistan load node (ohms)	ce reactance (ohms)	(mH)	(uF)	nce passive circuit
1 1 0	-10,000.	0	0	0
2 54 0	-10,000.	ő	Õ	Ő
3 107 0	-10,000.	0	0	0
IMPEDANCE normalization = 50				
freq resist rea (KHz) (ohms) (oh	ums) (ohms)	phase VSWI (deg)	R S11 dB	S12 dB
source = 1; node 160 560. 75.279 194		68.8 12.1	-1.4369	-5.5024

ų. 1.

Center Frequency:	0.	56	MHZ
-------------------	----	----	-----

¢

Frequency Range: ±0 kHz

Frequency Step: 0 kHz

WCAP - WRDT Tower 4 Calibration

WCAP OUTPUT AT FREQUENCY: 0.560 MHz

NODE VOLTAGES

Node:	1	219.3733 4	68.1322° V
Node:	2	219.0028 4	68.3750° V
Node:	3	215.7358 4	68.0306° V

	WCAP PART			BRANCH	VOLTAGE	BRANCH CURRENT	
R	1→2	1.0000	0000	1.00 4	0.000° V	1.00 4	0.000° A
L	2→3	1.0000	0000	3.52 ¥	90.000° V	1.00 4	0.000° A
С	3→0	0.0000	5000	215.74 🗚	68.031° V	0.04 🗚	158.031° A
R	3→0	75.3000	0000	215.74 4	68.031° V	1.04 4	-0.786° A
WCAP PART			FROM I	MPEDANCE	TO IMPE	0.000° A 0.000° A 158.031° A -0.786° A PEDANCE j 203.588 j 200.070 j 0.000	
R	1→2	1.0000	0000	81.71 +	j 203.588	80.71 + j	203.588
L	2-+3	1.0000	00000	80.71 +	j 203.588	80.71 + j	200.070
С	3→0	0.0000	5000	0.00 - 3	j 5684.105	0.00 + j	0.000
R	3→0	75.3000	0000	75.30 +	j 194.300	0.00 + j	0.000
WCA	P INPUT I	DATA:					
	0.5600	0.0	0000000) 0			
I	1.0	00000000	0 1	0.0000	0000		
R	1.0	00000000	12	0.0000	0000		
\mathbf{L}	1.0	00000000	23	0.0000	0000		
С	0.0	0005000	3 0				
R	75.3	30000000	3 0	194.3000	0000		

Derivation of Operating Parameters for Daytime Directional Antenna

Once calibrated against the measured individual open-circuited base impedances, the moment method model was utilized for day directional antenna calculations. Two sets of calculations were run as described below. These calculations were made to determine the complex voltage source values to be applied at ground level for each driven tower of the array to produce the current moment sums for the towers which, when normalized to the reference tower, equate to the theoretical field parameters of the authorized directional pattern, normalized to a tower 2 reference. These voltage sources were then applied in the model and the tower currents were calculated.

Twenty (20) total segments were used for each tower. The WRDT towers are base sampled, which is permitted for towers of 120 electrical degrees or less. As such, the first (ground) segment of each tower was used to determine the model operating parameters of the array.

A circuit model was constructed to determine the effect of the series feed inductance and the shunt base region capacitance on the ATU output current. The circuit model for each tower is the same circuit model used for model verification above, substituting the directional mode model-predicted operating impedance for each tower. Again, this model was used with WCAP Professional version 1.1.02. The results are tabulated in the table below along with the base operating parameters for the day array.

					WCAP		
				WCAP	Phase		Antenna
		Current	Current	Current	Offset for	Antenna	Monitor
		Magnitude	Phase	Offset for	Unity Ó _{BASE}	Monitor	Phase
Twr.	Node	(amperes)	(degrees)	Unity I _{BASE}	(degrees)	Ratio	(degrees)
1	1	2.1630	+0.2	0.975	+0.016	1.026	-1.5
2	54	2.2760	+1.2	0.903	+0.516	1.000	0.0
3	107	2.5144	+270.4	0.913	+2.721	1.117	-88.6
4	160	2.0630	+271.2	0.968	+0.964	0.972	-89.6

WRDT Daytime Directional Model

0.

GEOMETRY Wire coordinates in degrees; other dimensions in meters Environment: perfect ground

wire	-	Distance	Angle	Z		segs
1	none		0	0	.2911	19
2	none	0	0	75.81 75.81	.4852	1
2	none	0	0	79.8	.40JZ	<u>1</u>
3	none		0	79.8	.0095	5
9	110110	11.761	89.001	62.402	.0000	0
4	none		0	79.8	.0095	5
-		11.761	208.999	62.402		-
5	none		0	79.8	.0095	5
		11.761	329.	62.402		
6	none	11.761	89.001	62.402	.0095	5
		11.761	208.999	62.402		
7	none	11.761	208.999	62.402	.0095	5
		11.761	329.	62.402		
8	none	11.761	329.	62.402	.0095	5
~		11.761	89.001	62.402	0.011	1.0
9	none		283.	0	.2911	19
10	none	202.	283. 283.	80.75 80.75	.6793	1
TO	none	202.	283.	85.	.0795	Ŧ
11	none		283.	85.	.019	5
	none	202.748	286.313	67.578	.015	5
12	none		283.	85.	.019	5
	110110	191.726	281.355	67.578	•••••	0
13	none		283.	85.	.019	5
		212.034	281.321	67.578		
14	none	202.748	286.313	67.578	.0095	5
		191.726	281.355	67.578		
15	none	191.726	281.355	67.578	.0095	5
_		212.034	281.321	67.578		_
16	none	212.034	281.321	67.578	.0095	5
		202.748	286.313	67.578	0.01.1	1.0
17	none	221.1 221.1	307. 307.	0	.2911	19
18	nono	221.1	307.	75.525 75.525	.4852	1
ΤŬ	none	221.1	307.	79.5	.4052	T
19	none	221.1	307.	79.5	.0095	5
10		226.904	309.638	62.102		0
20	none	221.1	307.	79.5	.0095	5
		209.389	306.904	62.102		
21	none	221.1	307.	79.5	.0095	5
		227.59	304.503	62.102		
22	none	226.904	309.638	62.102	.0095	5
		209.389	306.904	62.102		
23	none	209.389	306.904	62.102	.0095	5
<u>.</u>		227.59	304.503	62.102		-
24	none	227.59	304.503	62.102	.0095	5
25		226.904	309.638	62.102	2011	20
25	none	90. 90.	13.	0 83.	.2911	20
26	none		13. 13.	83.	.0095	5
20	none	90. 91.568	20.339	65.578	.0000	5
27	none		13.	83.	.0095	5
<u> </u>				17 601		Ŷ

Page 17 of 31

28	none 9	9.628	1:	.299 3. .238	65.578 83. 65.578	.0	095	5
29	none 9		2	0.339	65.578 65.578	.0	095	5
30	none 7	9.628	9	.299	65.578	.0	095	5
31	none 9	9.936 9.936 9.568	9	.238 .238 0.339	65.578 65.578 65.578	.0	095	5
Numbe	r of wi cu	res Irrent		= 31 = 212				
	idual w nt leng s		m: wir 18 3		5	ma wire 9 10	ximum value 4.25 .6793	
ELECTRICAL DESCRIPTION Frequencies (KHz) frequency no. of segment length (wavelengths) no. lowest step steps minimum maximum 1 560. 0 1 .0110417 .0118056								
Sourc sourc 1 2 3 4	es e node 1 54 107 160	sec 1 1 1	30 42 46	gnitude 9.451 0.667 8.637 2.424	phase 89.5 86.5 334.3 334.3		type voltage voltage voltage voltage	
freq (KHz)	rmaliza res (oh	sist mms)		imped (ohms)	phase (deg)	VSWR	S11 dB	S12 dB
560.		5319	143.06	143.07	89.4	299.87	-5.8E-02	-18.778
sourc 560.		node 404	54, sec 184.18	tor 1 184.83	85.2	47.579	36517	-10.934
sourc 560.		node 091	107, se 167.33	ctor 1 186.38	63.9	8.9606	-1.9468	-4.4217
sourc 560.		node 581	160, se 182.63	ctor 1 204.76	63.1	9.492	-1.837	-4.623

ت د ف

CURRENT peak	C 2		
Frequency	=	560	KHz
Input power	=	500.	watts
Efficiency	=	100.	olo

coordinates in degrees

imaginary current mag phase real (amps) (amps) (amps) Y Ζ (deg) no. Х 2.16295 2.16294 6.03E-03 GND 0 0 0 .2 2.28749 4.99E-03 0 3.99 2.2875 2 0 .1 3 2.36292 0 7.98 2.36293 4.23E-03 0 .1 11.97 2.41905 4 0 0 2.41906 .1 3.53E-03 15.96 5 0 2.45985 .1 2.45985 2.84E-03 0 19.95 2.48709 2.48709 6 0 0 0.0 2.16E-03 7 0 0 23.94 2.50173 0.0 2.50173 1.49E-03 8 0 0 27.93 2.50448 0.0 2.50448 8.39E-04 9 0 0 31.92 2.49599 0.0 2.49599 2.E-04 10 0 35.91 2.47694 360. 2.47694 -4.15E-04 0 11 0 0 39.9 2.44819 360. 2.44819 -9.96E-04 0 43.89 2.41091 360. 2.41091 -1.53E-03 12 0 360. 0 47.88 2.36684 2.36684 -2.01E-03 13 0 0 51.87 2.31877 359.9 2.31877 -2.42E-03 14 0 0 55.86 2.27136 359.9 2.27136 -2.74E-03 15 0 2.23161 16 0 59.85 359.9 2.23161 -2.96E-03 0 63.84 359.9 2.20003 -3.06E-03 17 0 0 2.20003 67.83 2.15787 359.9 2.15787 -3.03E-03 18 0 0 359.9 2.09916 -2.88E-03 0 71.82 2.09916 19 0 359.9 2.03085 -2.61E-03 0 75.81 2.03085 END 0 75.81 2.03085 359.9 2.03085 -2.61E-03 2J1 0 0 79.8 1.93844 359.9 1.93844 -2.09E-03 END 0 0 2J2 0 0 79.8 .652249 359.7 .65224 -3.58E-03 -2.35184 76.3204 359.7 -3.31E-03 22 .0410104 .605852 .605843 72.8408 359.7 .543713 -3.03E-03 23 .0820209 -4.70369 .543721 -7.05553 69.3612 -2.78E-03 .475822 359.7 .475813 24 .123031 -2.6E-03 -9.40737 65.8816 .405579 359.6 .40557 25 .164042 -11.7592 62.402 359.6 .338351 -2.47E-03 END .33836 .205052 2.38E-03 2J2 0 79.8 .654764 .2 .65476 Ο 76.3204 2.81E-03 27 -2.05731.14033 .608443 .3 .608437 -4.1146 3.52E-03 28 2.28067 72.8408 .546502 .546491 .4 69.3612 .478895 4.42E-03 -6.1719 .478874 29 3.421 .5 .409039 5.48E-03 -8.2292 4.56133 65.8816 .409002 30 .8 END -10.2865 5.70166 62.402 .342278 1.1 .342214 6.61E-03 359.9 -8.86E-04 2J2 0 79.8 .631438 .631438 76.3204 359.9 .584918 1.21147 .584918 -8.35E-04 32 2.01623 2.42295 72.8408 .522472 359.9 -1.1E-03 33 4.03246 .52247 .454042 34 6.04869 3.63442 69.3612 .454046 359.8 -1.73E-03 35 8.06492 4.84589 65.8816 .383051 359.6 .383041 -2.69E-03 -3.9E-03 END 10.0812 6.05736 62.402 .314867 359.3 .314843 2J3 .205052 -11.7592 62.402 .163252 358.1 .163163 -5.37E-03 37 -1.89326 -8.26704 62.402 .0989868 357. .0988544 -5.12E-03 .0318958 351.7 -4.77486 62.402 .0315613 -4.61E-03 38 -3.99157 -1.28269 62.402 .0353648 186.3 -.0351526 -3.87E-03 39 -6.08988 -2.93E-03 62.402 .102306 181.6 -.102264 40 -8.18819 2.20949 62.402 END -10.2865 5.70167 .16624 180.6 -.166229 -1.87E-03 -10.2865 5.70166 62.402 .176049 1.5 .175985 4.73E-03 2J4 43 -6.21297 5.7728 62.402 .112018 2.9 .111877 5.62E-03 .0443921 6.12E-03 5.84394 .0448115 7.8 62.402 44 -2.13944 -.0229207 6.14E-03 5.91508 62.402 .0237278 165. 1.93409 45 .0912032 176.4 -.0910281 5.65E-03 5.98622 62.402 46 6.00762 62.402 10.0812 6.05736 .156385 178.3 -.156315 4.67E-03 END

Page 19 of 31

2J5 49 50 51 52 END	10.0812 8.10593 6.13071 4.15549 2.18027 .205052	6.05736 2.49405 -1.06927 -4.63258 -8.1959 -11.7592	62.402 62.402 62.402 62.402 62.402 62.402	.15853 .0931565 .0248855 .042842 .110687 .175212	.3 359.7 356.5 183.1 181.4 181.	.158528 .0931555 .0248403 0427809 110652 175188	7.72E-04 -4.45E-04 -1.5E-03 -2.29E-03 -2.77E-03 -2.91E-03
GND 55 56 57 58 59 60 61 62 63 64 65	45.4401 45.4401 45.4401 45.4401 45.4401 45.4401 45.4401 45.4401 45.4401 45.4401 45.4401 45.4401 45.4401 45.4401	196.823 196.823 196.823 196.823 196.823 196.823 196.823 196.823 196.823 196.823 196.823 196.823	0 4.25 8.5 12.75 17. 21.25 25.5 29.75 34. 38.25 42.5 46.75	2.27602 2.45269 2.5629 2.64762 2.71236 2.75946 2.79019 2.80539 2.80582 2.79223 2.76553 2.72697	1.2 .9 .7 .5 .4 .2 .1 0.0 359.9 359.9 359.8 359.7	2.27548 2.45239 2.56272 2.64751 2.7123 2.75943 2.79018 2.80539 2.80582 2.79222 2.76551 2.72694	.0492461 .0379853 .0302198 .0234175 .0172509 .0115947 6.4E-03 1.64E-03 -2.67E-03 -6.54E-03 -9.95E-03 0128712
66 67 68 69 70 71	45.4401 45.4401 45.4401 45.4401 45.4401 45.4401 45.4401	196.823 196.823 196.823 196.823 196.823 196.823	51. 55.25 59.5 63.75 68. 72.25	2.67837 2.62258 2.56451 2.51248 2.47309 2.4271	359.7 359.6 359.6 359.6 359.5 359.5	2.67832 2.62252 2.56444 2.5124 2.47301 2.42702	0152996 0172154 0186102 0194901 0198647 0196798
72 END 2J9 END 2J10 75 76	45.4401 45.4401 45.4401 45.4401 45.4401 45.4401 47.7419 50.0436	196.823 196.823 196.823 196.823 196.823 196.823 196.375 195.928	76.5 80.75 80.75 85. 85. 81.5156 78.0312	2.36015 2.28175 2.28175 2.15168 .703856 .654326 .584204	359.5 359.6 359.6 359.6 359.3 359.3 359.3	2.36007 2.28168 2.28168 2.15162 .703807 .654282 .58416	0189149 0176817 0176817 0150724 -8.31E-03 -7.59E-03 -7.16E-03
77 78 END 2J10 80 81 82	52.3453 54.647 56.9488 45.4401 43.9018 42.3635 40.8252	195.481 195.033 194.586 196.823 195.053 193.283 191.513	74.5468 71.0624 67.578 85. 81.5156 78.0312 74.5468	.506772 .426239 .348618 .717776 .668378 .598678 .521878	359.2 358.9 358.4 359.9 360. .1 .3	.506719 .426162 .348488 .717775 .668378 .598678 .521872	-7.3E-03 -8.09E-03 -9.53E-03 -1.22E-03 -1.82E-04 1.08E-03 2.3E-03
83 END 2J10 85 86 87 88	39.2868 37.7485 45.4401 44.6768 43.9135 43.1502 42.3869	189.743 187.973 196.823 199.04 201.257 203.474 205.691	71.0624 67.578 85. 81.5156 78.0312 74.5468 71.0624	.442185 .365592 .730064 .680748 .611234 .534752 .455523	.4 .7 359.6 359.6 359.7 359.9 .1	.442171 .365566 .730043 .680734 .611228 .53475 .455522	3.42E-03 4.35E-03 -5.54E-03 -4.39E-03 -2.83E-03 -1.16E-03 5.13E-04
END 2J11 90 91 92 93 END	41.6235 56.9488 53.1087 49.2687 45.4286 41.5885 37.7485	207.908 194.586 193.263 191.941 190.618 189.296 187.973	67.578 67.578 67.578 67.578 67.578 67.578 67.578 67.578	.379519 .176937 .105299 .0307843 .0449446 .119233 .190015	.3 358.5 356.8 347.1	.379513 .176879 .105132 .0300102	2.07E-03 -4.52E-03 -5.92E-03 -6.86E-03 -7.29E-03 -7.24E-03 -6.76E-03
2J12 96 97 98 99 END 2J13	37.7485 38.5235 39.2985 40.0735 40.8485 41.6235 41.6235	187.973 191.96 195.947 199.934 203.921 207.908 207.908	67.578 67.578 67.578 67.578 67.578 67.578 67.578 67.578	.175688 .105039 .0310396 .0422858 .116031 .186229 .19339	359.2 359.2 359.1	.175671 .105028 .0310358 0422798 116013 186199 .193314	-2.41E-03 -1.54E-03 -4.82E-04

5. e.

Page 20 of 31

102 103 104 105 END	44.6886 47.7536 50.8187 53.8837 56.9488	205.244 202.579 199.915 197.25 194.586	67.578 67.578 67.578 67.578 67.578	.123173 .0493565 .0260547 .100152 .171682		.123003 .0488543 0251017 0999532 171609	
GND 108 109 110 111 112 113 114 115 116 117 118 119	133.061 133.061 133.061 133.061 133.061 133.061 133.061 133.061 133.061 133.061 133.061 133.061 133.061	176.578 176.578 176.578 176.578 176.578 176.578 176.578 176.578 176.578 176.578 176.578 176.578 176.578 176.578 176.578	0 3.975 7.95 11.925 15.9 19.875 23.85 27.825 31.8 35.775 39.75 43.725 47.7	2.51443 2.68525 2.79132 2.87264 2.93439 2.97877 3.007 3.01993 3.01829 3.00292 2.97481 2.93541 2.88681	270.4 268.6 267.5 266.7 266. 265.4 264.8 264.4 264. 263.6 263.3 263.1 262.8	.0175625 0660169 121088 167204 206916 241282 27082 29583 316514 333035 345558 354281 359479	-2.78869 -2.86777 -2.92708 -2.96898 -2.99478 -3.0054 -3.00165 -2.98439 -2.95467 -2.91395 -2.86434
120 121 122 123 124 125 END	133.061 133.061 133.061 133.061 133.061 133.061 133.061	176.578 176.578 176.578 176.578 176.578 176.578 176.578	51.675 55.65 59.625 63.6 67.575 71.55 75.525	2.83242 2.77792 2.73176 2.69422 2.6426 2.57023 2.48568	262.7 262.5 262.4 262.4 262.4 262.4 262.5	361578 361276 359602 356694 35012 339314 325564	-2.80924 -2.75432 -2.70799 -2.6705 -2.6193 -2.54773 -2.46426
2J17 END 2J18 128 129 130 131	133.061 133.061 135.399 137.737 140.075 142.412	176.578 176.578 176.21 175.842 175.473 175.105	75.525 79.5 79.5 76.0204 72.5408 69.0612 65.5816	2.48568 2.3707 .77577 .717553 .639974 .555575 .468616	262.5 262.6 262.2 262.4 262.5 262.5 262.4	325564 305445 105259 0955126 0837795 0723113 0618289	634467 550849 464519
END 2J18 133 134 135 136 END	144.75 133.061 131.596 130.13 128.664 127.199 125.733	174.737 176.578 174.75 172.922 171.093 169.265 167.436	62.102 79.5 76.0204 72.5408 69.0612 65.5816 62.102	.385717 .793493 .735845 .659115 .575771 .490071 .408597	262.1 262.1 262.3 262.4 262.6 262.7 262.6	0531972 109097 0991325 0867472 0742446 062417 0522739	785958 729137 653382 570965 486079 405239
2J18 138 139 140 141 END 2J19	133.061 132.233 131.404 130.576 129.747 128.918 144.75	176.578 178.774 180.97 183.165 185.361 187.556 174.737	79.5 76.0204 72.5408 69.0612 65.5816 62.102 62.102	.801584 .743823 .666882 .583199 .497064 .415096 .193137	265.7 263.5	0682113 0551065 0424371 0312336 0219754	739403 663385 58059 495249 413919 191883
143 144 145 146 END 2J20 149 150 151	140.947 137.143 133.34 129.537 125.733 125.733 126.37 127.007 127.644	173.277 171.817 170.357 168.897 167.436 167.436 171.46 175.484 179.508	62.102 62.102 62.102 62.102 62.102 62.102 62.102 62.102 62.102 62.102	.114208 .0317499 .0502185 .132152 .21012 .198731 .121027 .0399434 .0430157	87.5 85.2 84.6 260.6 258.9 250.5	0144808 -6.28E-03 2.2E-03 .0110266 .0197161 0325577 0233758 0133222 -3.01E-03	031123 .0501703 .131691 .209193 196046 118748 0376562
151 152 END 2J21 155	127.044 128.281 128.918 128.918 132.085	179.308 183.532 187.556 187.556 184.992	62.102 62.102 62.102 62.102 62.102	.124401 .202562 .212561 .13429	86.5 85.	7.51E-03 .0175825 0136511	.124174 .201797 212122

6

Page 21 of 31

156 157 158 END	135.251 138.417 141.584 144.75	182.428 179.864 177.301 174.737	62.102 62.102 62.102 62.102	.0527015 .0327671 .113938 .192694		5.8E-03 .0149407 .0235626 .0312217	0523812 .0291626 .111475 .190148
GND 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175	87.6933 87.6933 87.6933 87.6933 87.6933 87.6933 87.6933 87.6933 87.6933 87.6933 87.6933 87.6933 87.6933 87.6933 87.6933 87.6933 87.6933 87.6933	-20.2456 -20.2456 -20.2456 -20.2456 -20.2456 -20.2456 -20.2456 -20.2456 -20.2456 -20.2456 -20.2456 -20.2456 -20.2456 -20.2456 -20.2456 -20.2456 -20.2456	0 4.15 8.3 12.45 16.6 20.75 24.9 29.05 33.2 37.35 41.5 45.65 49.8 53.95 58.1 62.25	2.06302 2.22078 2.3202 2.39739 2.457 2.50099 2.53042 2.54599 2.54832 2.54832 2.53808 2.5161 2.48352 2.44203 2.39438 2.34521 2.30215	271.2 269.1 267.9 266.9 266.1 265.5 264.9 264.4 263.9 263.5 263.2 262.9 262.7 262.5 262.3 262.2	.0431209 0342238 0855696 12869 165924 198233 226083 249741 269384 285156 297202 305693 310865 313083 312946 311421	
176 177	87.6933 87.6933	-20.2456	66.4 70.55	2.26933	262.2	309094 303839	-2.24818 -2.20679
178 179	87.6933 87.6933	-20.2456 -20.2456	74.7 78.85	2.16656 2.09265	262.2 262.2	294599 282345	-2.14644 -2.07351
END 2J25 181 182 183 184 END 2J25 186 187 188 189 END 2J25	87.6933 87.6933 87.3264 86.9596 86.5927 86.2258 85.859 87.6933 85.871 84.0486 82.2263 80.4039 78.5816 87.6933	-20.2456 -20.2456 -22.5618 -24.878 -27.1942 -29.5104 -31.8266 -20.2456 -18.7698 -17.2941 -15.8183 -14.3426 -12.8668 -20.2456	83. 83. 79.5156 76.0312 72.5468 69.0624 65.578 83. 79.5156 76.0312 72.5468 69.0624 65.578 83.	2.01457 .675136 .623071 .557475 .486368 .413064 .34313 .678853 .626912 .561704 .491202 .418697 .349698 .660745	262.3 263.3 263.6 263.9 264.3 264.8 265.2 262.3 262.5 262.7 263. 263.3 263.6 261.5	268451 0790602 069905 0590998 048159 0376926 0285485 09153 0822848 0712284 0598664 0488098 0389425 0978611	619138 554333 483977 41134 34194 672655 621489 55717 48754 415842 347523 653458
191 192 193 194	89.8826 92.0719 94.2612 96.4505	-19.4051 -18.5647 -17.7242 -16.8838	79.5156 76.0312 72.5468 69.0624	.608691 .543215 .472302 .399237	261.6 261.6 261.6 261.3	0889938 0789146 0691115 0601674	537453 467218
END 2J26 196 197 198 199 END	98.6398 85.859 84.4035 82.948 81.4925 80.0371 78.5816	-16.0433 -31.8266 -28.0347 -24.2427 -20.4507 -16.6588 -12.8668	65.578 65.578 65.578 65.578 65.578 65.578 65.578 65.578	.329556 .167109 .100576 .0310165 .0381156 .107287 .173055	78.8 81.1 81.5	7.39E-03 .0166787 .0255691	166023 100002 0309669 .0373928 .105982 .171155
2J27 202 203 204 205 END 2J28 208 209 210	78.5816 82.5932 86.6049 90.6165 94.6282 98.6398 98.6398 96.0837 93.5275 90.9713	-12.8668 -13.5021 -14.1374 -14.7727 -15.408 -16.0433 -16.0433 -19.2 -22.3566 -25.5133	65.578 65.578 65.578 65.578 65.578 65.578 65.578 65.578 65.578 65.578 65.578	.176874 .111321 .0427958 .0280858 .0965457 .162733 .166828 .100549 .0320125 .0407636	66.2 78.8 81.1 260.4 257.8 244.		111215 0426494 .0256897 .0947231 .160779 164513 0982795 0287827

Page 22 of 31

211	88.4152	-28.67	65.578	.109738	89.2	1.6E-03	.109726
END	85.859	-31.8266	65.578	.176175	86.9	9.53E-03	.175917

CURRENT MOMENTS(amp-degrees) peak

Frequency = 560 KHz Input power = 500. watts

ar -

_	-		vertical cui	rrent moment
wire	magnitude	phase (deg)	magnitude	phase (deg)
1	270.644	360.	270.644	360.
2	5.75091	359.9	5.75091	359.9
3	15.7789	359.7	13.0723	179.7
4	15.8732	.5	13.1504	180.5
5	15.1003	359.8	12.5101	179.8
6	.132578	247.	0	0
7	.359305	28.4	0	0
8	.269637	190.4	0	0
9	321.557	360.	321.557	360.
10	6.7995	359.6	6.7995	359.6
11	16.8493	359.2	13.9789	179.2
12	17.3184	.2	14.3676	180.2
13	17.7193	359.8	14.7005	179.8
14	.289145	223.5	0	0
15	.166212	177.6	0	0
16	.398207	29.	0	0
17	325.499	264.2	325.499	264.2
18	7.00689	262.6	7.00689	262.6
19	18.5388	262.4	15.3293	82.4
20	19.1013	262.4	15.8435	82.4
21	19.3427	264.3	16.0364	84.3
22	.284226	100.6	0	0
23	.254093	161.1	0	0
24	.45595	310.8	0	0
25	291.913	264.2	291.913	264.2
26	16.1706	264.	13.4152	84.
27	16.3186	262.8	13.5383	82.8
28	15.7308	261.5	13.0504	81.5
29	.127402	45.2	0	0
30	.325126	310.	0	0
31	.34352	149.8	0	0

Medium wave array vertical current moment (amps-degrees) peak (Calculation assumes tower wires are grouped together. The first wire of each group must contain the source.)

tower	magnitude	phase	(deg)
1	237.663	0.0	
2	285.31	0.0	
3	285.311	264.4	
4	251.929	264.4	

9 . .

R

L

С

R

R

L

С

R

Т R

 \mathbf{L}

C

R

Frequency Range: ±0 kHz

Frequency Step: 0 kHz

1.53190000 143.06000000

ت ب لا

Frequency Range: ±0 kHz

Frequency Step: 0 kHz

WCAP - WRDT Tower 2 DA-D

WCAP OUTPUT AT FREQUENCY: 0.560 MHz

NODE VOLTAGES

Node:	1	492.5397	4	86.9538°	V
Node:	2	492.3733	4	87.1921°	V
Node:	3	420.6904	4	86.4192°	V

	WCAP PART		BRANC	H VOLTAGE		BRANCH	CURRENT	
R	1→2	1.00000000	2.05 4	1.716°	V	2.05 4	1.716°	A
L	2→3	9.95000000	71.95 4	91.716°	V	2.06 4	1.716°	А
С	3→0	0.00005000	420.69 4	86.419°	v	0.07 4	176.419°	А
С	3→0	0.00010000	420.69 4	86.419°	V	0.15 ∡	176.419°	А
R	3→0	15.40400000	420.69 4	86.419°	V	2.28 4	1.200°	А
	WCAP PART		FROM	IMPEDANCE		TO IMPE	DANCE	

	MOUT TUNT		11/01/11/11	DDANCD	TO THE DOW	
R	1→2	1.00000000	19.90 + j	238.851	18.90 + j	238.851
L	2→3	9.95000000	18.90 + j	238.851	18.90 + j	203.841
С	3→0	0.00005000	0.00 - j	5684.105	0.00 + j	0.000
С	3-+0	0.00010000	0.00 - j	2842.053	0.00 + j	0.000
R	3→0	15.40400000	15.40 + j	184.180	0.00 + j	0.000

WCAP	INPUT	DATA:					
	0.560	00	0.	00000	000	0	
I	2	.05500	0000	0	1	1.	71600000
R	1.	.00000	0000	1	2	Ο.	00000000
L	9.	.95000	0000	2	3	Ο.	00000000
С	0.	.00005	5000	3	0		
С	0	.00010	0000	3	0		
R	15.	.40400	0000	3	0	184.	18000000

۲ ۲ ۲

Frequency Range: ±0 kHz

Frequency Step: 0 kHz

WCAP - WRDT Tower 3 DA-D

WCAP OUTPUT AT FREQUENCY: 0.560 MHz

NODE VOLTAGES

Node:	1	516.6001 🗚	-23.1234° V
Node:	2	515.5894 🗚	-22.8947° V
Node:	3	468.6331 4	-25.7321° V

	WCAP PART		BRANCH	VOLTAGE	BRANC	H CURRENT
R	1→2	1.00000000	2.29 4	-86.879° v	V 2.29 4	-86.879° A
L	2→3	6.55000000	52.89 4	3.121° v	v 2.29 4	-86.879° A
С	3-+0	0.00005000	468.63 4	-25.732° v	v 0.08 ≰	64.268° A
С	3→0	0.00010000	468.63 4	-25.732° v	v 0.16 ≰	64.268° A
R	3→0	82.09100000	468.63 ≭	-25.732° v	V 2.51 ∡	-89.600° A
	WCAP PART		FROM I	MPEDANCE	TO IM	IPEDANCE

	WOLLE ARALLE		11(011 1111	DDINGD	10 111 001	
R	1→2	1.00000000	99.54 + j	201.903	98.54 + j	201.903
L	2→3	6.55000000	98.54 + j	201.903	98.54 + j	178.856
С	3→0	0.00005000	0.00 - j	5684.105	0.00 + j	0.000
С	3→0	0.00010000	0.00 - j	2842.053	0.00 + j	0.000
R	3→0	82.09100000	82.09 + j	167.330	0.00 + j	0.000

)
)
)
)

ا ب جي ان ج

Frequency Range: ±0 kHz

Frequency Step: 0 kHz

WCAP - WRDT Tower 4 DA-D

WCAP OUTPUT AT FREQUENCY: 0.560 MHz

NODE VOLTAGES

Node:1 $429.5601 \neq -25.4798^{\circ} \vee$ Node:2 $428.6371 \neq -25.2433^{\circ} \vee$ Node:3 $422.4116 \neq -25.6820^{\circ} \vee$

	WCAP PART		BRANCH	VOLTAGE	BRANCH	CURRENT
R	1→2	1.00000000	2.00 4	-87.836° V	2.00 4	-87.836° A
L	2→3	1.00000000	7.03 4	2.164° V	2.00 4	-87.836° A
С	3→0	0.00005000	422.41 🗚	-25.682° V	0.07 4	64.318° A
R	3→0	92.58100000	422.41 🗚	-25.682° V	2.06 4	-88.800° A
	WCAP PART		FROM IN	IPEDANCE	TO IMPE	DANCE
R	1-2	1.00000000	99.80 + j	190.549	98.80 + j	190.549
\mathbf{L}	2→3	1.00000000	98.80 + j	190.549	98.80 + j	187.030
С	3→0	0.00005000	0.00 - j	5684.105	0.00 + j	0.000
R	3→0	92.58100000	92.58 + j	182.630	0.00 + j	0.000
WCZ						
	0.5600	0.0000000	0			

I	1.99700000	0	1	-87.83600000
R	1.00000000	1	2	0.0000000
L	1.00000000	2	3	0.0000000
С	0.00005000	3	0	
R	92.58100000	3	0	182.63000000

Summary of Post Construction Certified Array Geometry

With respect to Question 9, Section III, Page 2 of the attached Form 302-AM, the tower information is as follows:

Tower		Height above	Height above ground	Overall height
No.		base insulator	w/o obst. lighting	above ground
	ASRN	(meters)	(meters)	(meters)
1	1000331	124.9	126.2	127.0
2	1000332	124.9	126.2	127.0
3	1000333	124.9	126.2	127.0
4	1000334	124.9	126.2	127.0

All towers are uniform cross-section, steel, guyed vertical radiators.

6

Because WRDT is an existing licensed facility, in accordance with the Public Notice, <u>Media Bureau</u> <u>Clarifies Procedures for AM Directional Antenna Performance Verification Using Moment Method</u> <u>Modeling</u> (FCC DA 09-2340) dated October 29, 2009, it is exempt from the requirement to submit a surveyor's certification.

Sampling System

The sampling system consists of Delta Electronics TCT-3 current transformers installed at the output of each antenna tuning unit, immediately adjacent to the final ATU J-plug. Samples from the current transformers are fed to the antenna monitor via equal lengths of 3/8-inch foam-dielectric coaxial transmission lines. The antenna monitor is a Potomac Instruments Type 1901, which was calibrated according to the manufacturer's instructions.

Impedance measurements were made of the antenna sampling system using an Agilent 8735A network analyzer. The measurements were made looking into the antenna monitor ends of the sample lines with the tower ends of the sample lines open-circuited.

The table below shows the frequencies above the carrier frequency where resonance, defined as zero reactance corresponding with low resistance, was found. No resonant frequency was found below the carrier frequency within the network analyzer's operating range. As the length of distortionless transmission line is 180 electrical degrees at the difference frequency between adjacent frequencies of resonance, and frequencies of resonance occur at odd multiples of 90 degrees electrical length, the sample line length at the resonant frequency immediately above carrier frequency, which is the closest one to the carrier frequency, was found to be 270 electrical degrees. The electrical length at carrier frequency appearing in the table below was calculated by ratioing the frequencies.

	Sample Line	Sample Line
	Open-Circuited	Calculated
	Resonance	Electrical Length
	Above 560 kHz	At 560 kHz
Twr.	(kHz)	(deg.)
1	720.48	209.86
2	722.76	209.20
<u></u>	122.10	209.20
3	723.60	208.96
4	722.52	209.27

The length difference between the longest and shortest sample lines amounts to 0.90 degrees at the carrier frequency. As such, the sample lines meet the requirement in the Rules that they be equal in length within one electrical degree.

To determine the characteristic impedance values of the sample lines, open-circuited measurements were made with frequencies offset to produce \pm 45 degrees of electrical length from resonance.

The characteristic impedance was calculated using the following formula, where $R_1 + j X_1$ and $R_2 + j X_2$ are the measured impedances at the +45 and -45 degree offset frequencies, respectively:

$$Z_0 = ((R_1^2 + X_1^2)^{1/2} \times (R_2^2 + X_2^2)^{1/2})^{1/2}$$

	+ 45 Deg.	+45 Deg.	- 45 Deg.	-45 Deg.	Calculated
	Offset	Measured	Offset	Measured	Characteristic
	Frequency	Impedance	Frequency	Impedance	Impedance
Twr.	(kHz)	(ohms)	(kHz)	(ohms)	(ohms)
1	840.56	14.2 +j46.6	600.40	9.8 –j48.3	49.0
2	843.22	14.5 +j47.1	602.30	9.8 j48.0	49.1
3	844.20	14.3 +j47.2	603.00	9.6 –j48.3	49.3
4	842.94	14.4 +j46.5	602.10	9.7 –j47.5	48.6

The sample line measured characteristic impedances meet the requirement that they be equal within 2 ohms.

The calibration of the Delta TCT-3 current transformers was verified by removing them all from the ATUs and installing them on a test jig so that each was located very close to the adjacent transformer (spacing of less than two inches). Short transmission lines of equal length were connected between the outputs of all four current transformers and the inputs of the antenna monitor. As noted above, the Potomac 1901 antenna monitor was calibrated using the internal calibration function. A single source of RF current on the carrier frequency was fed through a conductor passing through all of the current transformers, and the differential phases and ratios were noted on the antenna monitor as follows:

	Serial		Phase
Twr.	No.	Ratio	(deg.)
1	004	0.994	+0.9
2	003	1.000	0.0
3	005	0.995	-0.2
 4	002	0.996	-0.5

The requirement that the sample current transformers are accurate to within the manufacturer's specification ($\pm 2\%$ ratio and ± 2 degrees phase) has thus been demonstrated.

The impedance of each of the sample lines was measured with the sample current transformers attached. These impedances are tabulated below:

	R	Х	
Twr.	(ohms)	(ohms)	
1	53.7	+0.6	
2	53.4	+0.3	
3	53.5	+0.6	
4	53.5	+0.3	

Direct Measurement of Power

Common point impedance measurements were made using a Delta CPB-1 common point bridge install ed in the common point bus of the phasing and coupling system. The resistance value was adjust ed to 50 ohms and the reactance value was adjusted to zero.

۲ د ۲ Appendix A

с., з

Reference Field Strength Measurements

Reference field strength measurements were made on July 27, 2011 using Potomac Instruments FIM-41 serial No. 2143, calibrated August 14, 2002, at three locations along each of the major lobe and null radials of each pattern. This meter was checked on 560 kHz against FIM-41 serial number 1898, calibrated October 27, 2009, and was found to be in agreement. The calibration certificate for FIM-41 S/N 1898 is included herewith. The measured field strengths and descriptions and NAD-83 GPS coordinates for the reference measurement points are shown in the following tables.

	Radial 13.0°										
Point	Dist.					Field					
No.	km	Latitude	Longitude	Date	Time	mV/m	Description				
1	3.90	41-55-32.6	83-25-00.4	07/27/11	1432	110.0	1 st Baptist Church lot				
2							NE corner Lorain &				
	4.63	41-55-54.3	83-24-53.8	07/27/11	1439	84.0	John Rolfe				
3	5.43	41-56-19.3	83-24-46.3	07/27/11	1444	83.0	1621 Northridge Drive				

Radial 13.0°

Radial 76.5°

Point	Dist.					Field	
No.	km	Latitude	Longitude	Date	Time	mV/m	Description
1	4.15	41-53-58.9	83-22-43.9	07/27/11	1017	2.6	623 Norwood Drive
2	5.00	41-54-05.2	83-22-09.2	07/27/11	1028	1.8	Water Treatment Plant
3							E. Elm Ave. 50' west of
	5.68	41-54-10.6	83-21-38.6	07/27/11	1038	2.0	utility pole S10WE844

Radial 97.5° Point Dist. Field No. km Latitude Longitude Date Time mV/m Description 41-53-21.1 83-24-30.3 07/27/11 0952 371 Holly Glen St. 1 1.6 36.0 2 1.9 41-53-19.6 83-24-17.1 07/27/11 0958 23.9 15207 Hull Road 3 N. side of Laplaisance 2.65 41-53-17.0 83-23-44.9 07/27/11 1005 20.0 Rd.

Point	Dist.					Field				
No.	km	Latitude	Longitude	Date	Time	mV/m	Description			
1							Hull Rd. and Albain			
	2.52	41-52-34.9	83-24-18.8	07/27/11	1137	4.5	Rd.			
2							SB I-75 0.1 mi. south of			
	3.09	41-52-21.6	83-24-00.4	07/27/11	1209	3.5	Albain Rd.			
3							Laplaisande Rd. 20'			
	4.02	41-52-02.0	83-23-27.7	07/27/11	1129	2.5	SW of mail box 13773			

Radial 131.5°

	Radial 149.5°										
Point	Dist.					Field					
No.	km	Latitude	Longitude	Date	Time	mV/m	Description				
1	3.60	41-51-48.1	83-24-17.8	07/27/11	1521	7.6	I-75N service plaza				
2	3.81	41-51-41.6	83-24-14.8	07/27/11	1117	6.6	13308 Lighthouse Rd.				
3							Allen Hurst Rd. N. of				
	4.74	41-51-16.6	83-23-54.0	07/27/11	1110	6.0	Mortor Creek Rd.				

	Radiai 172.5										
Point	Dist.					Field					
No.	km	Latitude	Longitude	Date	Time	mV/m	Description				
1							Laplaisance Rd. 210 ft.				
	3.77	41-51-27.5	83-25-17.5	07/27/11	1102	4.7	SW of 12904				
2							5633 N. Otter Creek				
	4.91	41-50-51.9	83-25-11.6	07/27/11	1057	3.5	Rd.				
3							S. Otter Creek Rd. 300				
	5.42	41-50-34.5	83-25-08.5	07/27/11	1051	3.4	ft. NW of N 75 Sign				

Radial 172.5°

4 ₹. ₹. ₽

	Radial 193.0°										
Point	Dist.					Field					
No.	km	Latitude	Longitude	Date	Time	mV/m	Description				
1							Across from 4856				
	3.85	41-51-26.7	83-26-15.8	07/27/11	1218	6.0	Laplaisance Rd.				
2							Stein Rd. at RR				
	5.52	41-50-35.3	83-26-31.9	07/27/11	1233	4.1	Crossing Sign				
3							At Left Curve sign on				
	7.11	41-49-44.9	83-26-47.9	07/27/11	1240	3.4	Kelly Rd.				

Radial 213.5°

Point	Dist.					Field	
No.	km	Latitude	Longitude	Date	Time	mV/m	Description
1	3.79	41-51-45.7	83-27-10.1	07/27/11	1225	1.60	4118 S. Otter Creek Rd.
2	6.17	41-50-44.4	83-28-04.0	07/27/11	1254	0.62	12294 S. Dixie Hwy.
3							300 ft. SE of 2966
	7.49	41-50-05.9	83-28-38.7	07/27/11	1247	0.52	Wood Rd.

Radial 236.5°

				·····			
Point	Dist.					Field	
No.	km	Latitude	Longitude	Date	Time	mV/m	Description
1							3534 N. Otter Creek
	3.42	41-52-26.7	83-27-44.6	07/27/11	1330	6.0	Rd.
2	5.52	41-51-49.6	83-28-58.4	07/27/11	1311	3.6	13546 Dunlap Rd.
3							150 ft. W. of 2160 W.
	7.68	41-51-12.0	83-30-15.3	07/27/11	1304	2.2	Stein Rd.

Radial 254.5°

Point	Dist.					Field	
No.	km	Latitude	Longitude	Date	Time	mV/m	Description
1							2843 N. Otter Creek
	4.51	41-52-49.0	83-28-47.6	07/27/11	1327	2.0	Rd.
2	6.66	41-52-30.1	83-30-19.3	07/27/11	1321	1.5	1906 S. Otter Creek Rd.
3							Strausburg Rd. S. of S.
	7.34	41-52-24.7	83-30-46.1	7/27/11	1317	1.4	Otter Creek Rd.

Radial 288.5°

ة م لاي (1) م

Point	Dist.					Field	
No.	km	Latitude	Longitude	Date	Time	mV/m	Description
1	3.91	41-54-08.3	83-28-19.6	07/27/11	1340	18.0	15795 Virginia Court
2	6.74	41-54-36.7	83-30-16.9	07/27/11	1349	12.0	2112 Strausburg Rd.
3	8.71	41-54-57.3	83-31-38.2	07/27/11	1355	8.4	S. of 1984 Martell Rd.

Radial 309.5°

Point	Dist.		······			Field	
No.	km	Latitude	Longitude	Date	Time	mV/m	Description
1	3.46	41-54-38.3	83-27-34.3	07/27/11	1418	11.0	16000 Hodge Rd.
2	4.71	41-55-05.6	83-28-16.8	07/27/11	1410	9.2	1500 Raisenville Rd.
3	7.02	41-55-52.3	83-29-34.4	07/27/11	1404	4.8	1011 Strausburg Rd.

Appendix B

Field Intensity Meter Certificate of Calibration

POTOMAC INSTRUMENTS, INC. Frederick, Maryland

.....

CERTIFICATE OF CALIBRATION

Field Intensity Meter Type FIM-41 Serial Number 1898 This instrument was calibrated in an induction field of 220.0 millivolts per meter. At each measurement frequency the measured field was recorded and a correction factor K was computed; the indicated field must be multiplied by K to obtain the true field.

<u>kHz</u>	K	<u>kHz</u>	<u>K</u>	MHz	<u>K</u>	MHz	<u>K</u>
540	1.000	1100	1.000	1.6	1.000	3,5	1.000
600	1.000	1200	1.000	1.9	1.000	3.8	1.000
700	1.000	1300	1.000	2.2	1.000	4.1	1.000
800	1.000	1400	1.000	2.5	1.000	4.4	1.000
900	1.000	1500	1.000	2.8	1.000	4.7	1.000
1000	1.000	1600	1.000	3.2	1.000	5.0	1.000

The calibrating field is maintained equal to the National Institute of Standards and Technology (NIST) standard field within an accuracy of 1.0 percent. NIST states that the absolute accuracy of its field is "believed to be within 3.0 percent."

The error at points on the meter scale other than the calibration point is less than 3.0 percent. The attenuator ratios are correct within 2.0 percent. These accuracies apply for battery voltages that are indicated by the instrument's battery check circuit to be useable.

NEXT RECOMMENDED CALIBRATION DATE, 2011

Der Velle Calibrated by

Date: Oct. 27, 2009

STATE OF MARYLAND

Personally appeared before me on, October 29, 2009, Neil Telfer, who testified under oath that the above calibration was made either by himself or under his direction and that the statements in the above certificate are true to the best of his knowledge and belief.

Marcella R. Laliberte NOTARY PUBLIC Frederick County State of Maryland My Commission Expires December 17, 2012

Notary Public