DrinkerBiddle&R

20110415+

Alisa R. Lahey 202-230-5168

alisa.lahey@dbi.com

Law Offices

1500 K Street, N.W. Washington, DC 20005-1209

202-842-8800 phone 202-842-8465 fax www.drinkerbiddle.com

> CALIFORNIA DELAWARE ILLINOIS NEW IERSEY NEW YORK PENNSYIVANIA WASHINGTON DC WISCONSIN

July 25, 2011

Via Hand Delivery

FILED/ACCEPTED

Ms. Marlene H. Dortch Secretary

Washington, D.C. 20554

JUL 25 2011

Federal Communications Commission Federal Communications Commission The Portals, Room TW-A325 Office of the Secretary 445 12th Street, SW

> Re: CCR-Great Falls IV, LLC KMON(AM), Great Falls, MT, Facility No. 62330 Amendment to BMML-20110415ABP

Dear Ms. Dortch:

On behalf of CCR-Great Falls IV, LLC, the licensee of AM broadcast station KMON, Great Falls, Montana, this is to amend the above-referenced, pending application in response to correspondence with the FCC staff.

Please contact Howard Liberman of this firm at 202-842-8876 or me with any questions.

Sincerely,

Alisa R. Lahey

cc: Ann Gallagher, Audio Division, Media Bureau (via e-mail)

Established 1849

Federal Communications Commission Washington, D. C. 20554

Approved by OMB 3060-0627 Expires 01/31/98

FOR FCC USE ONLY	
USE	_

FCC 302-AM APPLICATION FOR AM BROADCAST STATION LICENSE

(Please read instructions before filling out form.

FOR COMMISSION USE ONLY	
FILE NO.	

SECTION I - APPLICANT FEE INFORMATION				
1. PAYOR NAME (Last, First, Middle Initial)		FILED/ACCEPTED		
CCR-Great Falls IV, LLC		The second secon		
MAILING ADDRESS (Line 1) (Maximum 35 characters)		JUL 25 2011		
501 South Cherry Street, Suite 480 MAILING ADDRESS (Line 2) (Maximum 35 characters)		Federal Communications Commission		
WAILING ADDITION (LINE 2) (WAXIIIIIIII 33 GIAIACEIS)		Office of the Secretary		
CITY Denver	STATE OR COUNTRY (if for	reign address) ZIP CODE 80246		
TELEPHONE NUMBER (include area code) (303)468-6500	CALL LETTERS KMON	OTHER FCC IDENTIFIER (If applicable) 62330		
2. A. Is a fee submitted with this application?		Yes ✓ No		
B. If No, indicate reason for fee exemption (see 47 C.F.R. Section				
Governmental Entity Noncommercial educational licensee				
C. If Yes, provide the following information:				
Enter in Column (A) the correct Fee Type Code for the service you are applying for. Fee Type Codes may be found in the "Mass Media Services				
Fee Filing Guide." Column (B) lists the Fee Multiple applicable for this application. Enter fee amount due in Column (C).				
(A) (B)	(C) FEE DUE FOR FEE			
FEE TYPE FEE MULTIPLE	TYPE CODE IN COLUMN (A)	FOR FCC USE ONLY		
0 0 1	\$ AMENDMENT			
To be used only when you are requesting concurrent actions which res	sult in a requirement to list mor	e than one Fee Type Code		
(A) (B)	(C)	e trait one rise Type Code.		
	\$	FOR FCC USE ONLY		
	_ TOTAL AMOUNT			
ADD ALL AMOUNTS SHOWN IN COLUMN C, AND ENTER THE TOTAL HERE.	REMITTED WITH THE APPLICATION	FOR FCC USE ONLY		
THIS AMOUNT SHOULD EQUAL YOUR ENCLOSED REMITTANCE.	\$			
NEIVITTANCE.	L			

SECTION II - APPLICAN	T INFORMATION					
NAME OF APPLICANT CCR-Great Falls IV, LLC	TINFORMATION					
MAILING ADDRESS 501 South Cherry Street, S	uite 480					
CITY Denver			STATE CO		ZIP CODE 80246	
2. This application is for:	Commercial AM Direct	[tional	☐ Noncomm	nercial on-Directional		
Call letters	Community of License	Construct	ion Permit File No.	Modification of Construction	Expiration Date of Las	st
KMON	Great Falls, MT	N/A		Permit File No(s). N/A	Construction Permit N/A	
3. Is the station in accordance with 47 C.F. If No, explain in an Exhi		to autor	matic program	test authority in	Exhibit No.	No
4. Have all the term construction permit bee	s, conditions, and obligant fully met?	ations se	et forth in the	above described	Yes N	No
If No, state exceptions in an Exhibit.						
the grant of the under	ges already reported, has lying construction permit d in the construction permithibit.	which v	vould result in a	any statement or	Exhibit No.	No
-	led its Ownership Report (ce with 47 C.F.R. Section	•	,	ership	✓ Does not app Exhibit No.	No oly
or administrative body v criminal proceeding, bro	ling been made or an adv with respect to the applica bught under the provisions elated antitrust or unfair unit; or discrimination?	nt or par s of any	rties to the application to the state of the	cation in a civil or ne following: any		No
involved, including an id (by dates and file num information has been required by 47 U.S.C. S of that previous submis the call letters of the st	attach as an Exhibit a fuldentification of the court of bers), and the disposition earlier disclosed in confection 1.65(c), the application by reference to the fattion regarding which the of filing; and (ii) the disposit	r admining of the nection ant need file numle application	strative body an litigation. Whe with another a lonly provide: (in the case ation or Section	nd the proceeding nere the requisite application or as in a polication of an application, and application, and application.	Exhibit No.	

8. Does the applicant, or any party to the application, have a the expanded band (1605-1705 kHz) or a permit or license expanded band that is held in combination (pursuant to the 5 with the AM facility proposed to be modified herein? If Yes, provide particulars as an Exhibit.	either in the existing band	or			
ii 100, provide particulare de dir Exhibit.		EXHIBIT NO.			
The APPLICANT hereby waives any claim to the use of any against the regulatory power of the United States because requests and authorization in accordance with this application amended).	use of the same, wheth	er by license or otherwise, and			
The APPLICANT acknowledges that all the statements mad material representations and that all the exhibits are a material	le in this application and all part hereof and are incorp	attached exhibits are considered corated herein as set out in full in			
CERTIFICATION					
1. By checking Yes, the applicant certifies, that, in the case of she is not subject to a denial of federal benefits that incluto Section 5301 of the Anti-Drug Abuse Act of 1988, 21 U.S. case of a non-individual applicant (e.g., corporation, partners association), no party to the application is subject to a definctudes FCC benefits pursuant to that section. For the definition purposes, see 47 C.F.R. Section 1.2002(b).	ides FCC benefits pursuant S.C. Section 862, or, in the ship or other unincorporated nial of federal benefits that	at e d at			
2. I certify that the statements in this application are true, cor and are made in good faith.	mplete, and correct to the b	pest of my knowledge and belief,			
Name Joseph D. Schwartz	Signature				
Joseph Schwartz	(bate 7/22/2011	Telephone Number (303)468-6500			
WILLFUL FALSE STATEMENTS ON THIS FORM ARI (U.S. CODE, TITLE 18, SECTION 1001), AND/OR CONSTRI	REVOCATION OF ANY S				

FCC NOTICE TO INDIVIDUALS REQUIRED BY THE PRIVACY ACT AND THE PAPERWORK REDUCTION ACT

The solicitation of personal information requested in this application is authorized by the Communications Act of 1934, as amended. The Commission will use the information provided in this form to determine whether grant of the application is in the public interest. In reaching that determination, or for law enforcement purposes, it may become necessary to refer personal information contained in this form to another government agency. In addition, all information provided in this form will be available for public inspection. If information requested on the form is not provided, the application may be returned without action having been taken upon it or its processing may be delayed while a request is made to provide the missing information. Your response is required to obtain the requested authorization.

Public reporting burden for this collection of information is estimated to average 639 hours and 53 minutes per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the burden, can be sent to the Federal Communications Commission, Records Management Branch, Paperwork Reduction Project (3060-0627), Washington, D. C. 20554. Do NOT send completed forms to this address.

THE FOREGOING NOTICE IS REQUIRED BY THE PRIVACY ACT OF 1974, P.L. 93-579, DECEMBER 31, 1974, 5 U.S.C. 552a(e)(3), AND THE PAPERWORK REDUCTION ACT OF 1980, P.L. 96-511, DECEMBER 11, 1980, 44 U.S.C. 3507.

		LICATION ENGI	NEERING DATA	<u> </u>			
Name of Applicar							
CCR - Gre	at Falls IV	, LLC					
PURPOSE OF A	UTHORIZATIO	ON APPLIED FOR	: (check one)				
✓ 5	Station License	1	Direct Mea	asurement of Po	wer		
1. Facilities auth	orized in const	ruction permit	. ,,				
Call Sign	1	onstruction Permit	Frequency	Hours of Ope	ration	Power in	kilowatts
KMON	(if applicable))	(kHz) 560	Unlimited		Night 5.0	Day 5.0
2. Station location	n					I	
State				City or Town			
Montana				Great Fa	ılls		
3. Transmitter lo	cation						
State	County			City or Town		Street address	
MT	Cascade	ž		Great Fal	le	(or other identific	•
				Oreat i ai		6 miles south of	Great Falls
4. Main studio lo						Cttdd	
State	County			City or Town		Street address (or other identific	ation)
MT	MT Cascade Great Falls Great Falls Contain Street North						
5. Remote control point location (specify only if authorized directional antenna)							
State	County			City or Town		Street address (or other identific	ation)
MT Cascade			Great Falls 20 Third Street North				
6. Has type-approved stereo generating equipment been installed? 7. Does the sampling system meet the requirements of 47 C.F.R. Section 73.68? 7. No No Not Applicable Attach as an Exhibit a detailed description of the sampling system as installed. Exhibit No. See Engineering							
8. Operating con			***************************************				
RF common point modulation for nig 10.0		urrent (in amperes)	without	RF common p modulation for 11.0		current (in ampere	s) without
operating frequent Night		point resistance (in	ohms) at	operating freq Night		n point reactance (Day	in ohms) at
54		41.5		J0		+J70	3
Antenna indicatio	ns for direction						
Towe	rs	Antenna Phase reading			onitor sample t ratio(s)	Antenna b	pase currents
		Night	Day	Night	Day	Night	Day
1 (N)		-127.1	***	0.479			
2 (C)		0		1.000			
3 (S)		+125.4		0.569	****		
							_
Manufacturer and	I type of anten	na monitor:			<u> </u>		
		Pot	omac Instrumer	nts AM-19 (204))		

SECTION III - Page 2

9. Description of antenna system ((f directional antenna is used, the information requested below should be given for each element of the array. Use separate sheets if necessary.)

Type Radiator Uniform cross - section	Overall height in meters of radiator above base insulator, or above base, if grounded. 134.1	Overall heigh above ground obstruction lig	l (without	Overall height in meters above ground (include obstruction lighting)	If antenna is either top loaded or sectionalized, describe fully in an Exhibit.			
Official cross - Section	134.1	100.0		100.0	N/A			
Excitation	Series	Shunt						
Geographic coordinates tower location.	Geographic coordinates to nearest second. For directional antenna give coordinates of center of array. For single vertical radiator give tower location.							
North Latitude 47	° 25 ' 2	9 "	West Longitu	^{de} 111 ° 17	' 20 "			
-	ove, attach as an Exhibit furth rer and associated isolation ci		dimensions in	cluding any other	Exhibit No. N/A			
	Also, if necessary for a complete description, attach as an Exhibit a sketch of the details and dimensions of ground system.							
10. In what respect, if a permit? N/A	ny, does the apparatus const	ructed differ fro	om that describ	ed in the application for co	onstruction permit or in the			
11. Give reasons for the	change in antenna or comm	on point resista	ance.					
N/A								
	the applicant in the capacity true to the best of my knowle			nave examined the forego	ing statement of technical			
Name (Please Print or T	ype)	/	Signature (che	ck appropriate box below)				
Clarence M. Bev	erage	Λ	/ ()	,				
Address (include ZIP Co	de)	\ [Date					
Communications	Technologies, Inc.		-07 /14/20	11				
P. O. Box 1130			Telephone No.	(Include Area Code)				
Marlton, NJ 0805	3		856-985	-0077				
Technical Director			Registere	d Professional Engineer				
Chief Operator			Technical	Consultant				
Other (specify) Bi	roadcast Engineering Consul	tant						

FCC 302-AM (Page 5) August 1995

ENGINEERING STATEMENT IN SUPPORT OF 302-AM APPLICATION FOR LICENSE EMPLOYING MOMENT METHOD MODELING KMON 560 kHz 5 kW DA-N U GREAT FALLS, MONTANA

APRIL 2011 (REVISED JULY 14, 2011)

ENGINEERING STATEMENT IN SUPPORT OF 302-AM APPLICATON FOR LICENSE EMPLOYING MOMENT METHOD MODELING KMON 560 kHz 5 kW DA-N U GREAT FALLS, MONTANA

APRIL 2011 (REVISED JULY 14, 2011)

TABLE OF CONTENTS

ENGINEERING STATEMENT

FORMS:

FCC FORM 302-AM, SECTION III

EXHIBITS:

- I. MoM detail for towers driven individually.
- II. Derivation of nighttime operating parameters.

FIGURES:

- 1. Circuit Model for Tower #1 Base other towers floating.
- 2. Circuit Model for Tower #2 Base other towers floating.
- 3. Circuit Model for Tower #3 Base other towers floating.
- 4. Circuit Model for Tower #1 Base DA-N.
- 5. Circuit Model for Tower #2 Base DA-N
- 6. Circuit Model for Tower #3 Base DA-N. (Figures 1-6 Revised 07142011)

APPENDIX: 1.

Reference Field Strength Measurements (Revised 07142011)

ENGINEERING STATEMENT IN
SUPPORT OF 302-AM
APPLICATON FOR LICENSE
EMPLOYING MOMENT METHOD MODELING
KMON 560 kHz
5 kW DA-N U
GREAT FALLS, MONTANA
APRIL 2011 (REVISED JULY 14, 2011)

SUMMARY

The following engineering statement has been prepared on behalf of CCR – Great Falls IV, LLC, licensee of standard broadcast station KMON, FCC ID 62330, 560 kHz, Great Falls, Montana. KMON is currently licensed under BZ-20041029AJR which authorizes 560 kHz daytime non directional operation at a power of 5 kW and 5 kW nighttime directional operation. This application requests licensing of the KMON antenna system using computer modeling and sample system verification as provided for in the Second Report and Order in MM Docket No. 93-177 released September 26, 2008. The rules specify that the night directional antenna parameters be set to the operating parameters determined by the moment method without deviation. That operation has been completed and Form 302-AM is submitted herein specifying the as adjusted operating parameters.

It is noted that the application material specified in the above paragraph was filed with the FCC on April 15, 2011 and assigned file number BMML-20110415ABP. By letter dated June 24, 2011 the Audio Division requested that the applicant correct certain deficiencies. This filing is complete with the material originally filed as well as the following changes in response to the FCC letter:

- 1. Appendix 1 has been supplemented with reference field strength measurement data on the 28.5 degree, major lobe, radial.
- 2. The current used in the circuit analysis was increased from 1.0 ampere to 10.0 amperes to for greater resolution. Base circuit tabulations are complete and reflect the higher applied current.
- 3. The sample lines have been swept in 1 kHz steps for better resolution to allow the characteristic impedance to be calculated 1/8 wave above and below the open circuit resonant frequency closest to carrier rather than at the second resonant frequency originally employed.
- 4. The frequency used to measure sample line impedance with toroid sampling devices connected has been specified.

METHOD OF MOMENTS MODEL – SELF IMPEDANCE ANALYSIS

In an effort to model the antenna system as accurately as possible, detailed mechanical data was obtained from the licensee and is summarized below:

Each tower is 440' (134.1 meters) in height, steel, uniform cross section, 24" face mounted on a square concrete base pier with 4" strap in an X configuration. Each tower has lightning dissipation panels at the top.

Base Insulators are brown ceramic 14" in height; specified capacitance of 30 pf.

Three wire tower lightning chokes are employed at each tower.

None of the towers support an antenna or transmission line.

Tower #1 (N) is 32" from feed through bowl with a 2 turn lightning dissipation choke 8" in diameter. Tower #2 (C) is 51" from the feed through bowl with a 1 turn 11" diameter lightning dissipation choke. Tower #3 (S) is 45" from the feed through bowl with a 2 turn 8" diameter choke.

The choice of calculating engine and software implementation chosen for this filing is the ACS Model Version 1.015 employing MININEC3. The circuit analysis software employed is WCAP Professional Version 1.1.02.

The wire models for the three towers are constructed as specified below:

Tower #1 North

0.2911 meters

Percentage of actual radius = 100%

Z = 138.3 meters

Percentage of actual height = 103.1%

Number of segments = 20

Tower #2 Center

0.2911 meters

Percentage of actual radius = 100%

Z = 138.3 meters

Percentage of actual height = 103.1%

Number of segments = 20

Tower #3 South

0.2474 meters

Percentage of actual radius = 85.0%

Z = 136.8 meters

Percentage of actual height = 102.0%

Number of segments = 20

The above variations comply with the 73.151 requirement that the radii of the wire model cylinder be within 80 and 150 percent of the radius of a circle with a circumference equal to the sum of the faces, that the height be between 75 and 125 percent of the physical length and that no segment be less than 10 electrical degrees.

The tower measured base self impedances, with all other towers floating, as measured at the J plug, are listed below. Tower impedance was obtained using a Delta OIB-3, serial number 1369 fed by the transmitter. The modeled self impedance measurements, with all other towers floating, may be found in Exhibit I, page 3 for Tower #1, page 7 for Tower #2 and page 11 for Tower #3. A circuit model has been constructed for each tower to account for shunt and series reactance across the tower base. All calculations have been made employing WCAP Professional version 1.1.02 as seen in Figures 1-3 for self impedance and Figures 4-6 for nighttime directional operation. The measured and calculated self impedance values are well within the tolerance specified in 73.151(c)(2)(ii) as seen below:

Tower #1

Measured self impedance at ATU: 43.0 +J 70 Modeled self impedance at base: 45.469 +J 39.541

Shunt capacitance: 30 pf

Series inductance: +J 30.57, 8.72 uh
Shunt reactance: +J 19,000, 5400 uh
Modeled self impedance at ATU: 45.51 +J 70.0

Tower #2

Measured self impedance at ATU: 40.0 +J 73 Modeled self impedance at base: 43.449 +J 38.939

Shunt capacitance: 30 pf

Series inductance: +J 34.14, 9.74 uh
Shunt reactance: +J 19,000, 5400 uh
Modeled self impedance at ATU: 43.47 +J 73.0

Tower #3

Measured self impedance at ATU: 40.0 +J 72 Modeled self impedance at base: 43.585 +J 33.84

Shunt capacitance: 30 pf

Series inductance: +J 35.06, 10.0 uh
Shunt reactance: +J 19,000, 5400 uh
Modeled self impedance at ATU: 43.58 +J 68.8

The calculated tolerances are:

Tower #1 43 +/- 3.72 resistance, 70 +/- 4.8 reactance Tower #2 40 +/-3.6 resistance, 73 +/- 4.92 reactance Tower #3 40 +/- 3.6 resistance, 72 +/- 4.88 reactance

METHOD OF MOMENTS MODEL - BASE OPERATING PARAMETERS

The modeled tower array was employed, as constructed for the derivation of self impedance, for the determination of nighttime operating parameters. The FCC theoretical values were converted to base excitation values. The base excitation values for the nighttime array may be found in Exhibit II, page 3 and the base operating parameters on page 4.

The calculated base operating parameters and the phase monitor parameters as adjusted and reflected on Form 302-AM, attached, are as follows:

NIGHTTIME:

	Figures 4 – 6 Circuit Model	Correction to Modeled Values to
<u>Tower</u>	Ratio and Phase	Derive Antenna Monitor Values
#1	1.004 -0.106°	1.004 -0.011
#2	1.000 -0.095°	1.000 0.00
#3	0.998 -0.030°	0.998 + 0.065
Tower	MoM Modeled Current & Phase	Antenna Monitor Current & Phase
#1	0.477 -127.1	0.479 -127.1
#2	1.000 0.00	1.000 0.00
#3	0.570 125.3	0.569 + 125.4

The adjusted patterns have phase monitor values which are equal to the modeled phase and ratio corrected for circuit model amplitude and phase. The nighttime directional patterns have been adjusted to the values above and as shown on the attached form 302-AM.

DIRECT MEASUREMENT OF POWER

Common point impedance was measured with a Delta OIB-3, serial number 1369, placed at the Delta TCA-10/20 EXR common point ammeter. Common point current was measured with a Delta TCA 10/20 EXR permanently installed in the phasing cabinet with the toroidal sample immediately adjacent to the impedance bridge. Common point resistance was set to 54 +J0 and the transmitter power adjusted to yield the correct current for a power level of 5,400 watts as found on FCC Form 302-AM attached.

Tower #2 impedance, was taken at the J plug at the Delta TCA-20EX RF ammeter in the non directional mode with the other towers detuned. The Delta OIB-3 specified above was employed.

POST CONSTRUCTION CERTIFICATION OF ARRAY GEOMETRY

The array has been modeled using the best available data.

	<u>ASR</u>	Height Above Base Insulator	Height Overall AGL
Tower #1	1007214	134.1 meters	135.6
Tower #2	1007215	134.1 meters	135.6
Tower #3	1007216	134.1 meters	135.6

As an existing licensed facility a surveyor's certification is not included as provided for in Public Notice FCC DA 09-2430 dated October 29, 2009.

SAMPLING SYSTEM

The antenna system is licensed with an approved sampling system and no changes to the sampling system were required for this filing.

Delta toroid sampling devices, type TCT-3, are mounted on open panels in weather proof buildings at the base of each tower. Sample lines are equal length Andrew LDF2-50. The antenna monitor is a Potomac Instruments AM-19 (204).

Measurements on the sampling system components are tabulated below. Toroidal sample devices were tested for accuracy by removing the units from the tuning units at the base of each of the three towers and placing the devices in series on the same conductor in the transmitter building. The sample devices were then measured when connected to the phase monitor with coax jumpers having exact equal electrical length:

	<u>Ratio</u>	<u>Phase</u>
Toroid #1	100.0	0.0
Toroid #2	100.0	0.0
Toroid #3	101.0	0.0

The sampling device accuracy was verified as being well within the manufacturer tolerance of \pm 0 in magnitude and \pm 0 degrees in phase

Phase monitor accuracy was confirmed by feeding two tower inputs at a time through a splitter and equal length jumpers to confirm equal magnitude and phase on each tower. There were no observable errors.

Impedance and electrical length for each of the three sample lines were measured with an Array Solutions model AIM4170C vector network analyzer ("VNA"). The VNA was connected to the sample lines at the transmitter building with the sample lines unterminated on the turning unit end. The measured electrical length data is found below:

Sample line open-circuited odd quarter wave below 560 kHz (0.25 wavelength) 1(N) = 306 kHz 803.6' = 164.7 deg. 2(C) = 306.5 kHz 800.9' = 164.2 deg. 3(S) = 305.5 kHz 803.6' = 164.7 deg. 1(N) = 928 kHz 794.9' = 162.9 deg. 2(C) = 932 kHz 791.5' = 162.2 deg. 3(S) = 926 kHz 796.6' = 163.2 deg.

It may be seen that the sample lines are, for all practical purposes, equal in length to better than plus and minus 0.3 degrees at the lower frequency and 0.5 degrees at the higher frequency. The sample system meets the rule requirement that the sample lines be equal to within one degree.

The impedance of the sample lines was determined by measuring the open circuit impedance 45 degrees above and below the resonant length of the sample lines. The measured data is presented below. The impedance is determined using the formula:

$$Z_0 = ((R_1^2 + X_1^2)^{1/2} \times (R_2^2 + X_2^2)^{1/2})^{1/2}$$

	7/8 lambda +45° From <u>925 kHz</u>	Measured Impedance	5/8 lambda -45° From 925 kHz	Measured Impedance	Calculated Impedance by formula
Tower #1(N)	459 460 5	6.71 +J50.52	153	1.19 –J51.76	51.37
Tower #2(C) Tower #3(S)	460.5 459	6.74 +J49.57 6.67 +J50.39	153.5 153	1.21 –J51.51 1.20 –J51.6	50.77 51.22

The characteristic impedance of the transmission lines is within 1 ohm. The allowable tolerance is 2 ohms.

Sampling system impedance was measured with each of the three sampling lines terminated in its respective toroid sampling device. Impedance was measured by connecting each sample line directly to the VNA. The measured impedance data is found below as measured at 560 kHz.

Measured impedance of sampling line and associated toroid

Tower #1(N) 48.5 +J1.0 Tower #2(C) 48.5 +J0.5 Tower #3(S) 49.0 +J1.3

REFERENCE FIELD STRENGTH MEASUREMENTS

Reference field strength measurements were taken by Kenneth Eklund, Director of Engineering for Cherry Creek Radio. The measurement data appears in <u>Appendix 1</u>. The field meter was checked against other meters of known calibration prior to the commencement of measurements.

CONCLUSION

All adjustments, measurements and field work were undertaken under the direction of the affiant.

The foregoing was prepared on behalf of **CCR** - **Great Falls IV**, **LLC** by Clarence M. Beverage of *Communications Technologies, Inc.*, Marlton, New Jersey, whose qualifications are a matter of record with the Federal Communications Commission. The statements herein are true and correct of his own knowledge, except such statements made on information and belief, and as to these statements he believes them to be true and correct.

/s/ Clarence M. Beverage for Communications Technologies, Inc. Marlton, New Jersey

July 14, 2011

KMON TOWER #1 FED TOWERS 2 & 3 FLOATING

ACSModel

(MININEC 3.1 Core)

KMON TOWER #1

Frequency = 0.560 MHz W	Wavelength =	535.35714	Meters
-------------------------	--------------	-----------	--------

No. of Wires: 3

Wire No. 1 X 0	Coordinates Y 0	Z 0	Radius	End Connection -1	No. of Segments
0	0	138.3006	0.2911	0	20
Wire No. 2 X -117.6203	Coordinates Y -63.86259	Z 0	Radius	End Connection -2	No. of Segments
-117.6203	-63.86259	138.3006	0.2911	0	20
Wire No. 3 X -235.2405	Coordinates Y -127.7252	Z 0	Radius	End Connection -3	No. of Segments
-235.2405	-127.7252	136.8135	0.2474	0	20

**** ANTENNA GEOMETRY ****

Wire No.	1 Coordinates	3		Conn	ection	Pulse
X	Y	Z	Radius	End1	End2	No.
0	0	0	0.2911	-1	1	1
0	0	6.91503	0.2911	1	1	2
0	0	13.83006	0.2911	1	1	3
0	0	20.74509	0.2911	1	1	4
0	0	27.66012	0.2911	1	1	5
0	0	34.57515	0.2911	1	1	6
0	0	41.49018	0.2911	1	1	7
0	0	48.40521	0.2911	1	1	8
0	0	55.32024	0.2911	1	1	9
0	0	62.23527	0.2911	1	1	10
0	0	69.1503	0.2911	1	1	11
0	0	76.06533	0.2911	1	1	12
0	0	82.98036	0.2911	1	1	13
0	0	89.89539	0.2911	1	1	14
0	0	96.81042	0.2911	1	1	15
0	0	103.7254	0.2911	1	1	16
0	0	110.6405	0.2911	1	1	17
0	0	117.5555	0.2911	1	1	18
0	0	124.4705	0.2911	1	1	19
0	0	131.3856	0.2911	1	0	20

EXHIBIT I

KMON TOWER #1 FED TOWERS 2 & 3 FLOATING

Wire No. 2	Coordinates			0		D1
			B . 31		nection	
X	Υ	Z	Radius		L End2	No.
-117.6203	-63.86259	0	0.2911	-2	2	21
-117.6203	-63.86259	6.91503	0.2911	2	2	22
-117.6203	-63.86259	13.83006	0.2911	2	2	23
-117.6203	-63.86259	20.74509	0.2911	2	2	24
-117.6203	-63.86259	27.66012	0.2911	2	2	25
-117.6203	-63.86259	34.57515	0.2911	2	2	26
-117.6203	-63.86259	41.49018	0.2911	2	2	27
-117.6203	-63.86259	48.40521	0.2911	2	2	28
-117.6203	-63.86259	55.32024	0.2911	2	2	29
-117.6203	-63.86259	62.23527	0.2911	2	2	30
-117.6203	-63.86259	69.1503	0.2911	2	2	31
-117.6203	-63.86259	76.06533	0.2911	2	2	32
-117.6203	-63.86259	82.98036	0.2911	2	2	33
-117.6203	-63.86259	89.89539	0.2911	2	2	34
-117.6203	-63.86259	96.81042	0.2911	2	2	35
-117.6203	-63.86259	103.7254	0.2911	2	2	36
-117.6203	-63.86259	110.6405	0.2911	2	2	37
-117.6203	-63.86259	117.5555	0.2911	2	2	38
-117.6203	-63.86259	124.4705	0.2911	2	2	39
-117.6203	-63.86259	131.3856	0.2911	2	0	40
Wire No. 3	Coordinates			Cont	nection	Pulse
X	Y	Z	Radius		L End2	No.
-235.2405	-127,7252	0	0.2474	-3	3	41
-235.2405	-127.7252	6.840674	0.2474	3	3	42
-235.2405						
	-127.7252	13.68135	0.2474	3	3	43
-235.2405	-127.7252	20.52202	0.2474	3	3	44
-235.2405	-127.7252	27.3627	0.2474	3	3	45
-235.2405	-127.7252	34.20337	0.2474	3	3	46
-235.2405	-127.7252	41.04405	0.2474	3	3	47
-235.2405	-127.7252	47.88472	0.2474	3	3	48
-235.2405	-127.7252	54.7254	0.2474	3	3	49
-235.2405	-127.7252	61.56607	0.2474	3	3	50
-235.2405	-127.7252	68.40675	0.2474	3	3	51
-235.2405	-127.7252	75.24742	0.2474	3	3	52
-235.2405	-127.7252	82.0881	0.2474	3	3	53
-235.2405	-127.7252	88.92877	0.2474	3	3	54
-235.2405	-127.7252	95.76945	0.2474	3	3	55
-235.2405	-127.7252	102.6101	0.2474	3	3	56
-235.2405	-127,7252	109.4508	0.2474	3	3	57
-235.2405	-127.7252	116.2915	0.2474	3	3	58
-235.2405	-127.7252	123.1321	0.2474	3	3	59
-235.2405	-127.7252	129.9728	0.2474	3	0	60
G						
Sources: 3	* 1.	1 51 '				
	Oltage Magnitue)	
	Oltage Magnitue					
Pulse No., V	Voltage Magnitud	de, Phase (Deg	rees): 41, 0.	0, 0.0		
Number of Lo	pads: 2					
Pulse No., F	Ongistanco Poa	atango. 21	0 ,-10000			
	resistance, rea	ctance: ZI,	0 ,-10000			
Pulse No., F	Resistance, Read	•	0 ,-10000			

age 7

KMON TOWER #1 FED TOWERS 2 & 3 FLOATING

*******	30	URCE DATA	*****	*****
Pulse 1	Voltage = (1	00.0, 0.0j) .2523, -1.089 ⁻	÷ \	
	•	(45.469, 39.5	• •	
	Power = 62.6		3,	
Pulse 21	Voltage = (0	.O. 0.0i)		
		0.005, -0.000	6j)	
	Impedance =			
	Power = 0.00	0000 Watts		
Pulse 41	Voltage = (0	.0, 0.0j)		
	•	0.0009, 0.003	4j)	
	Impedance = Power = 0.00			
Total Power	= 62.614 Watts			
******	***** CU	RRENT DATA	******	*****
Wire No. 1	:			
Pulse	Real	Imaginary	-	Phase
No.	(Amps)	(Amps)	(Amps)	(Degr

Wire No.	1:			
Pulse	Real	Imaginary	Magnitude	Phase
No.	(Amps)	(Amps)	(Amps)	(Degrees)
1	1.2523	-1.089	1.6596	-41.0111
2	1.2487	-1.1305	1.6844	-42.1567
3	1.2378	-1.1504	1.6899	-42.9049
4	1.2198	-1.1587	1.6824	-43.5277
5	1.1947	-1.1566	1.6628	-44.0706
6	1.1627	-1.1448	1.6317	-44.5555
7	1.1239	-1.1237	1.5893	-44.9954
8	1.0786	-1.0937	1.5361	-45.399
9	1.027	-1.0551	1.4724	-45.7725
10	0.9694	-1.0081	1.3986	-46.1208
11	0.9061	-0.9531	1.315	-46.4475
12	0.8373	-0.8903	1.2222	-46.7557
13	0.7635	-0.8202	1.1206	-47.048
14	0.685	-0.743	1.0106	-47.3264
15	0.6021	-0.6592	0.8928	-47.5927
16	0.515	-0.569	0.7674	-47.8487
17	0.424	-0.4725	0.6349	-48.0956
18	0.3291	-0.3699	0.4951	-48.3351
19	0.2299	-0.2605	0.3475	-48.5686
20	0.1248	-0.1425	0.1894	-48.7996
E	0.0	0.0	0.0	0.0

KMON TOWER #1 FED TOWERS 2 & 3 FLOATING

777				
Wire No. 2: Pulse	Real	Imaginary	Magnitude	Phase
No.	(Amps)	(Amps)	(Amps)	(Degrees)
21	-0.005	-0.0006	0.0051	-172.7899
22	-0.0274	-0.0035	0.0276	-172.7548
23	-0.0421	-0.0054	0.0424	-172.6991
24	-0.0539	-0.007	0.0543	-172.6327
25	-0.0635	-0.0083	0.0641	-172.5579
26	-0.0713	-0.0094	0.0719	-172.4757
27	-0.0773	-0.0103	0.078	-172.3868
28	-0.0816	-0.011	0.0823	-172.2918
29	-0.0843	-0.0116	0.085	-172.1911
30	-0.0853	-0.0119	0.0862	-172.0852
31	-0.0849	-0.012	0.0857	-171.9747
32	-0.0829	-0.0119	0.0838	-171.86
33	-0.0795	-0.0115	0.0803	-171.7417
34	-0.0746	-0.011	0.0754	-171.6206
35	-0.0684	-0.0102	0.0691	-171.4973
36	-0.0608	-0.0092	0.0615	-171.3727
37	-0.0518	-0.008	0.0525	-171.2475
38	-0.0416	-0.0065	0.0421	-171.1227
39	-0.03	-0.0048	0.0304	-170.999
40	-0.0168	-0.0027	0.017	-170.8762
E	0.0	0.0	0.0	0.0
_				
Wire No. 3:				
Pulse	Real	Imaginary	Magnitude	Phase
No.	(Amps)	(Amps)	(Amps)	(Degrees)
41	-0.0009	0.0034	0.0035	104.6125
42	-0.0046	0.0177	0.0182	104.581
43	-0.007	0.0272	0.0281	104.5314
44	-0.009	0.0349	0.036	104.4725
45	-0.0106	0.0413	0.0426	104.4064
46	-0.0119	0.0464	0.0479	104.3341
47	-0.0128	0.0505	0.0521	104.2563
48	-0.0135	0.0535	0.0551	104.1732
49	-0.0139	0.0554	0.0571	104.0853
50 51	-0.014	0.0563	0.058	103.9928
52	-0.0139 -0.0135	0.0561 0.055	0.0578	103.8957
53	-0.0133	0.0529	0.0566 0.0544	103.7942 103.6884
54	-0.0129	0.0329	0.0544	
55	-0.012	0.0458	0.0313	103.5781
56	-0.0097	0.0408	0.0471	103.4633 103.3438
57	-0.0082	0.035	0.0359	103.3438
58	-0.0065	0.033	0.0339	103.2194
59	-0.0047	0.0201	0.0209	102.9541
60	-0.0026	0.0114	0.0117	102.8107
E	0.0	0.0	0.0	0.0
_	0.0		0.0	0.0
*******	BASE OPERA	TING PARAMETER	RS *******	***
	Twr.	Ratio Phase		
	1	1.000 0.0		
	2	0.003 -131.8		
	3	0.002 145.6		

Page 4

KMON TOWER #2 FED TOWERS 1 & 3 FLOATING

ACSModel
(MININEC 3.1 Core)
03-26-2011 15:44:54

KMON TOWER #2

Frequency = 0.560 MHz Wavelength = 535.35714 Meters							
No. of Wires	: 3						
Wire No. 1	Coordinates Y	Z	Radius	End Connection	No. of Segments		
0	0 0	0 138.3006	0.2911	-1 0	20		
Wire No. 2 X -117.6203	Coordinates Y -63.86259	Z 0	Radius	End Connection -2	No. of Segments		
-117.6203	-63.86259	138.3006	0.2911	0	20		
Wire No. 3 X -235.2405	Coordinates Y -127.7252	Z O	Radius	End Connection -3	No. of Segments		
-235.2405	-127.7252	136.8135	0.2474	0	20		
	**** ANTE	NNA GEOMETRY	***				
Wire No. 1	Coordinates			Connection	Pulse		
X	Y	Z	Radius	Endl End2	No.		
0	0	0	0.2911	-1 1	1		
0	0	6.91503	0.2911	1 1	2		
0	0	13.83006	0.2911	1 1	3		
0	0 0	20.74509 27.66012	0.2911 0.2911	1 1	4		
0	0	34.57515	0.2911	$egin{array}{cccc} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 $	5 6		
0	0	41.49018	0.2911	1 1	7		
0	0	48.40521	0.2911	1 1	8		
0	0	55.32024	0.2911	1 1	9		
Ö	0	62.23527	0.2911	1 1	10		
0	0	69.1503	0.2911	1 1	11		
0	0	76.06533	0.2911	1 1	12		
0	0	82.98036	0.2911	1 1	13		
0	0	89.89539	0.2911	1 1	14		
0	0	96.81042	0.2911	1 1	15		
0	0	103.7254	0.2911	1 1	16		
0	0	110.6405	0.2911	1 1	17		
0	0	117.5555	0.2911	1 1	18		
0	0	124.4705	0.2911	1 1	19		
0	0	131.3856	0.2911	1 0	20		

COMMUNICATIONS TECHNOLOGIES, INC. - BROADCAST ENGINEERING CONSULTANTS

EXHIBIT I

KMON TOWER #2 FED TOWERS 1 & 3 FLOATING

Wire No. 2	Coordinates			Conr	ection	Pulse
X	Y	Z	Radius	End1	. End2	No.
-117.6203	-63.86259	0	0.2911	-2	2	21
-117.6203	-63.86259	6.91503	0.2911	2	2	22
-117.6203	-63.86259	13.83006	0.2911	2	2	23
-117.6203	-63.86259	20.74509	0.2911	2	2	24
-117.6203	-63.86259	27.66012	0.2911	2	2	25
-117.6203	-63.86259	34.57515	0.2911	2	2	26
-117.6203	-63.86259	41.49018	0.2911	2	2	27
-117.6203	-63.86259	48.40521	0.2911	2	2	28
-117.6203	-63.86259	55.32024	0.2911	2	2	29
-117.6203	-63.86259	62.23527	0.2911	2	2	30
-117.6203	-63.86259	69.1503	0.2911	2	2	31
-117.6203	-63.86259	76.06533	0.2911	2	2	32
-117.6203	-63.86259	82.98036	0.2911	2	2	33
-117.6203	-63.86259	89.89539	0.2911	2	2	34
-117.6203	-63.86259	96.81042	0.2911	2	2	35
-117.6203	-63.86259	103.7254	0.2911	2	2	36
-117.6203	-63.86259	110.6405	0.2911	2	2	37
-117.6203	-63.86259	117.5555	0.2911	2	2	38
-117.6203	-63.86259	124.4705	0.2911	2	2	39
-117.6203	-63.86259	131.3856	0.2911	2	0	40
Wire No. 3	Coordinates			Conr	ection	Pulse
X	Y	Z	Radius	End1	End2	No.
-235.2405	-127.7252	0	0.2474	-3	3	41
-235.2405	-127.7252	6.840674	0.2474	3	3	42
-235.2405	-127.7252	13.68135	0.2474	3	3	43
-235.2405	-127.7252	20.52202	0.2474	3	3	44
-235.2405	-127.7252	27.3627	0.2474	3	3	45
-235.2405	-127.7252	34.20337	0.2474	3	3	46
-235.2405	-127.7252	41.04405	0.2474	3	3	47
-235.2405	-127.7252	47.88472	0.2474	3	3	48
-235.2405	-127.7252	54.7254	0.2474	3	3	49
-235.2405	-127.7252	61.56607	0.2474	3	3	50
-235.2405	-127.7252	68.40675	0.2474	3	3	51
-235.2405	-127.7252	75.24742	0.2474	3	3	52
-235.2405	-127.7252	82.0881	0.2474	3	3	53
-235.2405	-127.7252	88.92877	0.2474	3	3	54
-235.2405	-127.7252	95.76945	0.2474	3	3	55
-235.2405	-127.7252	102.6101	0.2474	3	3	56
-235.2405	-127.7252	109.4508	0.2474	3	3	57
-235.2405	-127.7252	116.2915	0.2474	3	3	58
-235.2405	-127.7252	123.1321	0.2474	3	3	59
-235.2405	-127.7252	129.9728	0.2474	3	0	60
Sources: 3						
Pulse No., V	Joltage Magnitud	e, Phase (Dec	grees): 1, 0.0	, 0.0		
	/oltage Magnitud				0	
	/oltage Magnitud					
· ·			,,,	,		
Number of Lo	pads: 2					
	Resistance, Reac	tance: 1 (,-10000			
•	Resistance, Reac		0 ,-10000			
ruise No., I	vesiscance, Reac	cance: 41,	0 ,-10000			

KMON TOWER #2 FED TOWERS 1 & 3 FLOATING

******	*****	SOURCE DATA	******	*****
Pulse 1	Current = Impedance	= (0.0, 0.0j) = (-0.0052, -0.00 e = (0.0, 0.0j) 0.000000 Watts	06j)	
Pulse 2	Current = Impedance	= (100.0, 0.0j) = (1.2764, -1.143 e = (43.449, 38.9 63.82 Watts		
Pulse 4	Current : Impedance	= (0.0, 0.0j) = (-0.0051, -0.00 e = (0.0, 0.0j) 0.000000 Watts	(06j)	
Total Po	wer = 63.820 Wa	atts		
*****	*****	CURRENT DATA	*****	*****
Wire No.	1:			
Pulse	Real	Imaginary	Magnitude	Phase
No.	(Amps)	(Amps)	(Amps)	(Degrees)
1	-0.0052	-0.0006	0.0052	-173.6567
2	-0.0284	-0.0032	0.0285	-173.6216
3	-0.0435	-0.0049	0.0438	-173.5659
4	-0.0557	-0.0064	0.0561	-173.4995
5	-0.0657	-0.0076	0.0662	-173.4245
6	-0.0738	-0.0086	0.0743	-173.3419
7	-0.08	-0.0095	0.0805	-173.2524
8	-0.0844	-0.0101	0.085	-173.1564
9	-0.0872	-0.0106	0.0878	-173.0544
10	-0.0883	-0.0109	0.089	-172.9467
11	-0.0879	-0.011	0.0886	-172.8338
12	-0.0858	-0.011	0.0865	-172.7162
13	-0.0823	-0.0107	0.083	-172.5945
14	-0.0772	-0.0102	0.0779	-172.4693
15	-0.0708	-0.0095	0.0714	-172.3413
16	-0.0629	-0.0086	0.0635	-172.2114
17	-0.0537	-0.0075	0.0542	-172.0804
18	-0.0431	-0.0061	0.0435	-171.9491
19	-0.0311	-0.0045	0.0314	-171.8183
20	-0.0174	-0.0025	0.0176	-171.6878
E	0.0	0.0	0.0	0.0

EXHIBIT I

KMON TOWER #2 FED TOWERS 1 & 3 FLOATING

Wire No. 2 : Pulse		Tmaginaur	Magnituda	Dhasa
No.	Real (Amps)	Imaginary (Amps)	Magnitude (Amps)	Phase
21	1.2764	-1.1439	1.714	(Degrees) -41.8662
22	1.2727	-1.1459	1.7391	-42.9612
23	1.2616	-1.2047	1.7444	
24	1.2433			-43.6768
25		-1.2121	1.7364	-44.2725
	1.2177	-1.2089	1.7159	-44.7919
26	1.1851	-1.1957	1.6835	-45.256
27	1.1456	-1.173	1.6396	-45.6771
28	1.0994	-1.141	1.5845	-46.0636
29 30	1.0468 0.9881	-1.1001	1.5186	-46.4213
		-1.0506	1.4423	-46.755
31	0.9236	-0.9928	1.356	-47.0681
32	0.8535	-0.927	1.2601	-47.3636
33 34	0.7783	-0.8537	1.1552	-47.6438
	0.6983	-0.7731	1.0417	-47.9109
35	0.6137	-0.6856	0.9202	-48.1665
36	0.525	-0.5916	0.7909	-48.4123
37	0.4322	-0.4911	0.6542	-48.6495
38	0.3355	-0.3843	0.5102	-48.8796
39	0.2344	-0.2706	0.358	-49.1041
40	0.1272	-0.148	0.1951	-49.3263
E	0.0	0.0	0.0	0.0
Wire No. 3:				
Pulse	Real	Imaginary	Magnitude	Phase
No.	(Amps)	(Amps)	(Amps)	(Degrees)
41	-0.0051	-0.0006	0.0051	-173.2916
42	-0.0263	-0.0031	0.0265	-173.256
43	-0.0404	-0.0048	0.0407	-173.1998
44	-0.0518	-0.0062	0.0522	-173.1329
45	-0.0611	-0.0074	0.0616	-173.0573
46	-0.0687	-0.0085	0.0692	-172.9742
47	-0.0745	-0.0093	0.0751	-172.8841
48	-0.0787	-0.01	0.0793	-172.7876
49	-0.0813	-0.0104	0.0819	-172.6849
50	-0.0823	-0.0107	0.083	-172.5764
51	-0.0819	-0.0108	0.0826	-172.4628
52	-0.08	-0.0108	0.0808	-172.3443
53	-0.0767	-0.0105	0.0774	-172.2215
54	-0.072	-0.01	0.0727	-172.0951
55	-0.066	-0.0093	0.0666	-171.9658
56	-0.0586	-0.0084	0.0593	-171.8342
57	-0.05	-0.0073	0.0506	-171.7013
58	-0.0401	-0.0059	0.0406	-171.5678
59	-0.0289	-0.0044	0.0292	-171.4344
60	-0.0161	-0.0025	0.0163	-171.3012
E	0.0	0.0	0.0	0.0
******	BASE OPERA	ATING PARAMETER	RS ******	****
	E	D-+1		
	Twr.	Ratio Phase		
	1	0.003 -131.8		
	2 3	1.000 0.0 0.003 -131.4		
	3	0.003 -131.4		

 S_{age}

KMON TOWER #3 FED TOWERS 1 & 2 FLOATING

ACSModel (MININEC 3.1 Core)

03-26-2011 15:41:18

KMON TOWER #3

Frequency = 0.560 MHz Wavelength = 535.35714 Meters

No. of Wires: 3

Wire No. 1 X 0 0	Coordinates Y 0 0	Z 0 138.3006	Radius	End Connection -1 0	No. of Segments
Wire No. 2 X -117.6203 -117.6203	Coordinates Y -63.86259 -63.86259	Z 0 138.3006	Radius 0.2911	End Connection -2 0	No. of Segments
Wire No. 3 X -235.2405 -235.2405	Coordinates Y -127.7252 -127.7252	Z 0 136.8135	Radius	End Connection -3 0	No. of Segments 20

**** ANTENNA GEOMETRY ****

Wire No.	1 Coordinates			Conn	action	Pulse
X	Y	7.	Radius		End2	No.
0	0	0	0.2911	-1	1	1
0	0	6.91503	0.2911	1	1	2
0	0	13.83006	0.2911	1	1	3
0	0	20.74509	0.2911	1	1	4
0	0	27.66012	0.2911	1	1	5
0	0	34.57515	0.2911	1	1	6
0	0	41.49018	0.2911	1	1	7
0	0	48.40521	0.2911	1	1	8
0	0	55.32024	0.2911	1	1	9
0	0	62.23527	0.2911	1	1	10
0	0	69.1503	0.2911	1	1	11
0	0	76.06533	0.2911	1	1	12
0	0	82.98036	0.2911	1	1	13
0	0	89.89539	0.2911	1	1	14
0	0	96.81042	0.2911	1	1	15
0	0	103.7254	0.2911	1	1	16
0	0	110.6405	0.2911	1	1	17
0	0	117.5555	0.2911	1	1	18
0	0	124.4705	0.2911	1	1	19
0	0	131.3856	0.2911	1	0	20

Wire No. 2	Coordinates			Conn	ection	Pulse
X	Y	Z	Radius		End2	No.
-117.6203	-63.86259	0	0.2911	-2	2	21
-117.6203	-63.86259	6.91503	0.2911	2	2	22
-117.6203	-63.86259	13.83006	0.2911	2	2	23
-117.6203	-63.86259	20.74509	0.2911	2	2	24
-117.6203	-63.86259	27.66012	0.2911	2	2	25
-117.6203	-63.86259	34.57515	0.2911	2	2	26
-117.6203	-63.86259	41.49018	0.2911	2	2	27
-117.6203	-63.86259	48.40521	0.2911	2	2	28
-117.6203	-63.86259	55.32024	0.2911	2	2	29
-117.6203	-63.86259	62.23527	0.2911	2	2	30
-117.6203	-63.86259	69.1503	0.2911	2	2	31
-117.6203	-63.86259	76.06533	0.2911	2	2	32
-117.6203	-63.86259	82.98036	0.2911	2	2	33
-117.6203	-63.86259	89.89539	0.2911	2	2	34
-117.6203	-63.86259	96.81042	0.2911	2	2	35
-117.6203	-63.86259	103.7254	0.2911	2	2	36
-117.6203	-63.86259			2	2	
		110.6405	0.2911			37
-117.6203	-63.86259	117.5555	0.2911	2	2	38
-117.6203	-63.86259	124.4705	0.2911	2	2	39
-117.6203	-63.86259	131.3856	0.2911	2	0	40
Wire No. 3	Coordinates				ection	
X	Y	Z	Radius		End2	No.
-235.2405	-127.7252	0	0.2474	-3	3	41
-235.2405	-127.7252	6.840674	0.2474	3	3	42
-235.2405	-127.7252	13.68135	0.2474	3	3	43
-235.2405	-127.7252	20.52202	0.2474	3	3	44
-235.2405	-127.7252	27.3627	0.2474	3	3	45
-235.2405	-127.7252	34.20337	0.2474	3	3	46
-235.2405	-127.7252	41.04405	0.2474	3	3	47
-235.2405	-127.7252	47.88472	0.2474	3	3	48
-235.2405	-127.7252	54.7254	0.2474	3	3	49
-235.2405	-127.7252	61.56607	0.2474	3	3	50
-235.2405	-127.7252	68.40675	0.2474	3	3	51
-235.2405	-127.7252					
		75.24742	0.2474	3	3	52
-235.2405	-127.7252	82.0881	0.2474	3	3	53
-235.2405	-127.7252	88.92877	0.2474	3	3	54
-235.2405	-127.7252	95.76945	0.2474	3	3	55
-235.2405	-127.7252	102.6101	0.2474	3	3	56
-235.2405	-127.7252	109.4508	0.2474	3	3	57
-235.2405	-127.7252	116.2915	0.2474	3	3	58
-235.2405	-127.7252	123.1321	0.2474	3	3	59
-235.2405	-127.7252	129.9728	0.2474	3	0	60
Sources: 3						
	oltage Magnituo					
	oltage Magnituo					
Pulse No., V	oltage Magnituo	le, Phase (Deg	rees): 41, 100	0.0, 0.	0	
Number of Lo			10000			
	Resistance, Read		,-10000			
ruise No., F	Resistance, Read	ctance: 21,	0 ,-10000			

KMON TOWER #3 FED TOWERS 1 & 2 FLOATING

**************************************	Voltage = Current = Impedance =	SOURCE DATA (0.0, 0.0j) (-0.0012, 0.003' = (0.0, 0.0j) 000000 Watts	**************************************	****
Pulse 21	Current = Impedance =	(0.0, 0.0j) (-0.0053, -0.00) = (0.0, 0.0j) 000000 Watts	1j)	
Pulse 41	Current =	(100.0, 0.0j) (1.4315, -1.1114 = (43.585, 33.84 .57 Watts	<i>_</i> ,	
Total Power =	71.573 Watt	ts		
*****	******	CURRENT DATA	******	*****
Wire No. 1:				
Pulse	Real	Imaginary	Magnitude	Phase
No.	(Amps)	(Amps)	(Amps)	(Degrees)
1	-0.0012	0.0037	0.0038	107.7869
2	-0.0064	0.02	0.021	107.7551
3	-0.0098	0.0307	0.0322	107.705
4	-0.0125	0.0394	0.0414	107.6454
5	-0.0148	0.0466	0.0488	107.5785
6	-0.0165	0.0524	0.0549	107.5052
7	-0.0179	0.0569	0.0596	107.4263
8	-0.0188	0.0602	0.0631	107.3421
9	-0.0194	0.0624	0.0653	107.2529
10	-0.0196	0.0634	0.0663	107.159
11	-0.0194	0.0632	0.0661	107.0606
12	-0.0189	0.062	0.0648	106.9576
13	-0.018	0.0596	0.0623	106.8502
14		0 055	0.0506	106 7303
14	-0.0169	0.0561	0.0586	106.7383

0.0516

0.046

0.0394

0.0317

0.023

0.0129

0.0

0.0538

0.048

0.0411

0.0331

0.0239

0.0134

0.0

106.6218

106.5005

106.3742

106.2424

106.1045

105.9584

0.0

-0.0154

-0.0136

-0.0116

-0.0092

-0.0066

-0.0037

0.0

15

16

17

18

19

20

E

KMON TOWER #3 FED TOWERS 1 & 2 FLOATING

F72 37-	2 .			
Wire No. Pulse	2 : Real	Imaginary	Magnitude	Phase
No.	(agma)	(Amps)	(Amps)	(Degrees)
21	-0.0053	-0.001	0.0054	-169.2505
22	-0.029	-0.0055	0.0295	-169.2122
23	-0.0444	-0.0085	0.0452	-169.1517
24	-0.0569	-0.011	0.058	-169.0797
25	-0.0671	-0.013	0.0683	-168.9985
26	-0.0753	-0.013	0.0767	-168.9095
27	-0.0733	-0.0148	0.0832	-168.8134
28	-0.0861	-0.0172	0.0878	-168.7108
29	-0.0889	-0.0172	0.0907	-168.6024
30	-0.0869	-0.0179	0.0919	-168.4886
31	-0.0895	-0.0183	0.0914	-168.3701
32	-0.0893	-0.0184	0.0893	-168.2474
33	-0.0838	-0.0176	0.0856	-168.1213
34	-0.0838	-0.0178	0.0804	-167.9925
35	-0.078	-0.0157	0.0737	-167.8617
36	-0.072	-0.0135		
	-0.0546		0.0655	-167.7298
37 38		-0.012 -0.0097	0.0559	-167.5977
30 39	-0.0438		0.0449	-167.4664
39 40	-0.0316 -0.0177	-0.0071 -0.004	0.0324 0.0181	-167.3365 -167.208
40 E	0.0177	0.0	0.0181	
E	0.0	0.0	0.0	0.0
Wire No.	3 :			
Pulse	Real	Imaginary	Magnitude	Phase
No.	(Amps)	(Amps)	(Amps)	(Degrees)
41	1.4315	-1.1114	1.8123	-37.8258
42	1.4273	-1.1501	1.833	-38.8603
43	1.415	-1.1685	1.8351	-39.5506
44	1.3944	-1.1754	1.8237	-40.1287
45	1.3658	-1.1721	1.7997	-40.6349
46	1.3293	-1.1591	1.7637	-41.0886
47	1.285	-1.1369	1.7158	-41.5013
48	1.2333	-1.1058	1.6565	-41.881
49	1.1744	-1.0661	1.5861	-42.233
50	1.1086	-1.0181	1.5051	-42.5619
51	1.0363	-0.962	1.4139	-42.871
52	0.9577	-0.8982	1.313	-43.1629
53	0.8733	-0.827	1.2028	-43.4401
54	0.7835	-0.7489	1.0838	-43.7044
55	0.6886	-0.664	0.9566	-43.9576
56	0.589	-0.5728	0.8216	-44.201
57	0.4848	-0.4753	0.6789	-44.4361
58	0.3761	-0.3717	0.5288	-44.6642
59	0.2624	-0.2614	0.3704	-44.8867
60	0.1419	-0.1425	0.2011	-45.1066
E	0.0	0.0	0.0	0.0
		0.0	0.0	0.0

******** BASE OPERATING PARAMETERS *********

Twr.	Ratio	Phase
1	0.002	145.6
2	0.003	-131.4
3	1 000	0.0

KMON NIGHT DA ARRAY

**********	*******
ACSMoo	del
(MININEC 3	.1 Core)
03-26-2011	16:28:31
***********	*******

KMON NIGHT DA ARRAY

Frequency = 0.560 MHz Wavelength = 535.35714 Meters

No. of Wires: 3

Wire No. 1 X 0 0	Coordinates Y 0 0	Z 0 138.3006	Radius 0.2911	End Connection -1 0	No. of Segments 20
Wire No. 2 X -117.6203 -117.6203	Coordinates Y -63.86259 -63.86259	Z 0 138.3006	Radius 0.2911	End Connection -2 0	No. of Segments
Wire No. 3 X -235.2405 -235.2405	Coordinates Y -127.7252 -127.7252	z 0 136.8135	Radius	End Connection -3 0	No. of Segments

**** ANTENNA GEOMETRY ****

Wire No.	1 Coordinates			Conn	ection	Pulse
X	Y	Z	Radius		End2	No.
0	0	0	0.2911	-1	1	1
0	0	6.91503	0.2911	1	1	2
0	0	13.83006	0.2911	1	1	3
0	0	20.74509	0.2911	1	1	4
0	0	27.66012	0.2911	1	1	5
0	0	34.57515	0.2911	1	1	6
0	0	41.49018	0.2911	1	1	7
0	0	48.40521	0.2911	1	1	8
0	0	55.32024	0.2911	1	1	9
0	0	62.23527	0.2911	1	1	10
0	0	69.1503	0.2911	1	1	11
0	0	76.06533	0.2911	1	1	12
0	0	82.98036	0.2911	1	1	13
0	0	89.89539	0.2911	1	1	14
0	0	96.81042	0.2911	1	1	15
0	0	103.7254	0.2911	1	1	16
0	0	110.6405	0.2911	1	1	17
0	0	117.5555	0.2911	1	1	18
0	0	124.4705	0.2911	1	1	19
0	0	131.3856	0.2911	1	0	20

KMON NIGHT DA ARRAY

Wire No. 2	Coordinates			Conn	ection	Dulco
X	Y Y	Z	Radius		End2	No.
-117.6203	-63.86259	0	0.2911	-2	2	21
-117.6203	-63.86259	6.91503	0.2911	2	2	22
-117.6203	-63.86259	13.83006	0.2911	2	2	23
-117.6203	-63.86259	20.74509	0.2911	2	2	23
-117.6203	-63.86259	27.66012	0.2911	2	2	
				_		25
-117.6203	-63.86259	34.57515	0.2911	2	2	26
-117.6203	-63.86259	41.49018	0.2911	2		27
-117.6203	-63.86259	48.40521	0.2911	2	2	28
-117.6203	-63.86259	55.32024	0.2911	2	2	29
-117.6203	-63.86259	62.23527	0.2911	2	2	30
-117.6203	-63.86259	69.1503	0.2911	2	2	31
-117.6203	-63.86259	76.06533	0.2911	2	2	32
-117.6203	-63.86259	82.98036	0.2911	2	2	33
-117.6203	-63.86259	89.89539	0.2911	2	2	34
-117.6203	-63.86259	96.81042	0.2911	2	2	35
-117.6203	-63.86259	103.7254	0.2911	2	2	36
-117.6203	-63.86259	110.6405	0.2911	2	2	37
-117.6203	-63.86259	117.5555	0.2911	2	2	38
-117.6203	-63.86259	124.4705	0.2911	2	2	39
-117.6203	-63.86259	131.3856	0.2911	2	0	40
Wire No. 3	Coordinates			Conn	ection	Pulse
Wire No. 3	Coordinates	Z	Radius		ection End2	
		Z 0	Radius 0.2474			Pulse No. 41
X	Y			End1 -3	End2	No.
x -235.2405	Y -127.7252	0	0.2474	End1	End2 3	No. 41
x -235.2405 -235.2405	Y -127.7252 -127.7252	0 6.840674	0.2474 0.2474	End1 -3 3	End2 3 3	No. 41 42
X -235.2405 -235.2405 -235.2405	Y -127.7252 -127.7252 -127.7252	0 6.840674 13.68135	0.2474 0.2474 0.2474	End1 -3 3	End2 3 3 3	No. 41 42 43
X -235.2405 -235.2405 -235.2405 -235.2405	Y -127.7252 -127.7252 -127.7252 -127.7252	0 6.840674 13.68135 20.52202	0.2474 0.2474 0.2474 0.2474	End1 -3 3 3 3	End2 3 3 3 3	No. 41 42 43 44
X -235.2405 -235.2405 -235.2405 -235.2405 -235.2405	Y -127.7252 -127.7252 -127.7252 -127.7252 -127.7252	0 6.840674 13.68135 20.52202 27.3627	0.2474 0.2474 0.2474 0.2474 0.2474	End1 -3 3 3 3 3	End2 3 3 3 3 3	No. 41 42 43 44
X -235.2405 -235.2405 -235.2405 -235.2405 -235.2405 -235.2405	Y -127.7252 -127.7252 -127.7252 -127.7252 -127.7252 -127.7252	0 6.840674 13.68135 20.52202 27.3627 34.20337	0.2474 0.2474 0.2474 0.2474 0.2474 0.2474	End1 -3 3 3 3 3 3	End2 3 3 3 3 3 3	No. 41 42 43 44 45
X -235.2405 -235.2405 -235.2405 -235.2405 -235.2405 -235.2405 -235.2405	Y -127.7252 -127.7252 -127.7252 -127.7252 -127.7252 -127.7252 -127.7252 -127.7252	0 6.840674 13.68135 20.52202 27.3627 34.20337 41.04405	0.2474 0.2474 0.2474 0.2474 0.2474 0.2474 0.2474	End1 -3 3 3 3 3 3 3	End2 3 3 3 3 3 3 3 3	No. 41 42 43 44 45 46 47
X -235.2405 -235.2405 -235.2405 -235.2405 -235.2405 -235.2405 -235.2405 -235.2405 -235.2405	Y -127.7252 -127.7252 -127.7252 -127.7252 -127.7252 -127.7252 -127.7252 -127.7252 -127.7252	0 6.840674 13.68135 20.52202 27.3627 34.20337 41.04405 47.88472	0.2474 0.2474 0.2474 0.2474 0.2474 0.2474 0.2474 0.2474	End1 -3 3 3 3 3 3 3	End2 3 3 3 3 3 3 3 3 3 3	No. 41 42 43 44 45 46 47 48
X -235.2405 -235.2405 -235.2405 -235.2405 -235.2405 -235.2405 -235.2405 -235.2405 -235.2405 -235.2405	Y -127.7252 -127.7252 -127.7252 -127.7252 -127.7252 -127.7252 -127.7252 -127.7252 -127.7252 -127.7252	0 6.840674 13.68135 20.52202 27.3627 34.20337 41.04405 47.88472 54.7254	0.2474 0.2474 0.2474 0.2474 0.2474 0.2474 0.2474 0.2474 0.2474	End1 -3 3 3 3 3 3 3 3 3	End2 3 3 3 3 3 3 3 3 3 3 3 3	No. 41 42 43 44 45 46 47 48
X -235.2405 -235.2405 -235.2405 -235.2405 -235.2405 -235.2405 -235.2405 -235.2405 -235.2405 -235.2405 -235.2405	Y -127.7252 -127.7252 -127.7252 -127.7252 -127.7252 -127.7252 -127.7252 -127.7252 -127.7252 -127.7252 -127.7252 -127.7252	0 6.840674 13.68135 20.52202 27.3627 34.20337 41.04405 47.88472 54.7254 61.56607	0.2474 0.2474 0.2474 0.2474 0.2474 0.2474 0.2474 0.2474 0.2474 0.2474	End1 -3 3 3 3 3 3 3 3 3	End2 3 3 3 3 3 3 3 3 3 3 3 3 3 3	No. 41 42 43 44 45 46 47 48 49
X -235.2405 -235.2405 -235.2405 -235.2405 -235.2405 -235.2405 -235.2405 -235.2405 -235.2405 -235.2405 -235.2405	Y -127.7252 -127.7252 -127.7252 -127.7252 -127.7252 -127.7252 -127.7252 -127.7252 -127.7252 -127.7252 -127.7252 -127.7252 -127.7252 -127.7252	0 6.840674 13.68135 20.52202 27.3627 34.20337 41.04405 47.88472 54.7254 61.56607 68.40675	0.2474 0.2474 0.2474 0.2474 0.2474 0.2474 0.2474 0.2474 0.2474 0.2474 0.2474	End1 -3 3 3 3 3 3 3 3 3 3	End2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	No. 41 42 43 44 45 46 47 48 49 50
X -235.2405 -235.2405 -235.2405 -235.2405 -235.2405 -235.2405 -235.2405 -235.2405 -235.2405 -235.2405 -235.2405 -235.2405	Y -127.7252 -127.7252 -127.7252 -127.7252 -127.7252 -127.7252 -127.7252 -127.7252 -127.7252 -127.7252 -127.7252 -127.7252 -127.7252 -127.7252 -127.7252 -127.7252	0 6.840674 13.68135 20.52202 27.3627 34.20337 41.04405 47.88472 54.7254 61.56607 68.40675 75.24742	0.2474 0.2474 0.2474 0.2474 0.2474 0.2474 0.2474 0.2474 0.2474 0.2474 0.2474	End1 -3 3 3 3 3 3 3 3 3 3	End2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	No. 41 42 43 44 45 46 47 48 49 50 51
X -235.2405 -235.2405 -235.2405 -235.2405 -235.2405 -235.2405 -235.2405 -235.2405 -235.2405 -235.2405 -235.2405 -235.2405 -235.2405	Y -127.7252 -127.7252 -127.7252 -127.7252 -127.7252 -127.7252 -127.7252 -127.7252 -127.7252 -127.7252 -127.7252 -127.7252 -127.7252 -127.7252 -127.7252 -127.7252 -127.7252	0 6.840674 13.68135 20.52202 27.3627 34.20337 41.04405 47.88472 54.7254 61.56607 68.40675 75.24742 82.0881	0.2474 0.2474 0.2474 0.2474 0.2474 0.2474 0.2474 0.2474 0.2474 0.2474 0.2474 0.2474	End1 -3 3 3 3 3 3 3 3 3 3 3 3	End2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	No. 41 42 43 44 45 46 47 48 49 50 51 52 53
X -235.2405 -235.2405 -235.2405 -235.2405 -235.2405 -235.2405 -235.2405 -235.2405 -235.2405 -235.2405 -235.2405 -235.2405 -235.2405 -235.2405 -235.2405	Y -127.7252 -127.7252 -127.7252 -127.7252 -127.7252 -127.7252 -127.7252 -127.7252 -127.7252 -127.7252 -127.7252 -127.7252 -127.7252 -127.7252 -127.7252 -127.7252 -127.7252 -127.7252	0 6.840674 13.68135 20.52202 27.3627 34.20337 41.04405 47.88472 54.7254 61.56607 68.40675 75.24742 82.0881 88.92877	0.2474 0.2474 0.2474 0.2474 0.2474 0.2474 0.2474 0.2474 0.2474 0.2474 0.2474 0.2474 0.2474	End1 -3 3 3 3 3 3 3 3 3 3 3 3 3	End2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	No. 41 42 43 445 46 47 48 49 50 51 52 53 54
X -235.2405 -235.2405 -235.2405 -235.2405 -235.2405 -235.2405 -235.2405 -235.2405 -235.2405 -235.2405 -235.2405 -235.2405 -235.2405 -235.2405 -235.2405 -235.2405 -235.2405	Y -127.7252	0 6.840674 13.68135 20.52202 27.3627 34.20337 41.04405 47.88472 54.7254 61.56607 68.40675 75.24742 82.0881 88.92877 95.76945	0.2474 0.2474 0.2474 0.2474 0.2474 0.2474 0.2474 0.2474 0.2474 0.2474 0.2474 0.2474 0.2474	End1 -3 3 3 3 3 3 3 3 3 3 3 3 3	End2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	No. 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
X -235.2405	Y -127.7252	0 6.840674 13.68135 20.52202 27.3627 34.20337 41.04405 47.88472 54.7254 61.56607 68.40675 75.24742 82.0881 88.92877 95.76945 102.6101	0.2474 0.2474 0.2474 0.2474 0.2474 0.2474 0.2474 0.2474 0.2474 0.2474 0.2474 0.2474 0.2474	End1 -3 3 3 3 3 3 3 3 3 3 3 3 3 3	End2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	No. 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
X -235.2405	Y -127.7252	0 6.840674 13.68135 20.52202 27.3627 34.20337 41.04405 47.88472 54.7254 61.56607 68.40675 75.24742 82.0881 88.92877 95.76945 102.6101 109.4508	0.2474 0.2474 0.2474 0.2474 0.2474 0.2474 0.2474 0.2474 0.2474 0.2474 0.2474 0.2474 0.2474 0.2474 0.2474	End1 -3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	End2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	No. 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57

Sources: 3

Pulse No., Voltage Magnitude, Phase (Degrees): 1, 937.4, -50.1 Pulse No., Voltage Magnitude, Phase (Degrees): 21, 945.6, 62.4 Pulse No., Voltage Magnitude, Phase (Degrees): 41, 169.8, -172.3

Number of Loads: 0

KMON NIGHT DA ARRAY

	******	Voltage = (6) Current = (-	00.9812, -719.3 4.1367, -6.0643 (34.818, 122.8	2j)	****
Pulse	21	Current = (1	38.0614, 837.9 5.3629, 0.7631 (31.147, 52.99 .67 Watts	j)	
Pulse	41	Current = (-	168.3232, -22. 5.4126, 6.9022 (9.806, 16.697 23 Watts	j)	
Total	Power =	5000.000 Wat	ts		
*****	*****	***** CUI	RRENT DATA	******	****
Wire N	o. 1 :				
Pulse		Real	Imaginary	Magnitude	Phase
No.		(Amps)	(Amps)	(Amps)	(Degrees)
1		-4.1367	-6.0642	7.3408	-124.2998
2		-4.4456	-6.3148	7.7227	-125.1452
3		-4.6205	-6.4387	7.925	-125.6639
4		-4.7319	-6.4947	8.0356	-126.0763
5		-4.7896	-6.4913	8.067	-126.4217
6		-4.7979	-6.4324	8.0247	-126.7193
7		-4.7592	-6.3202	7.9118	-126.9803
8		-4.6753	-6.1568	7.7308	-127.2122
9		-4.5477	-5.9437	7.4839	-127.4204
10		-4.3777	-5.6828	7.1735	-127.6088
11		-4.1669	-5.3758	6.8016	-127.7806
12		-3.9168	-5.0245	6.3708	-127.9381
13		-3.629	-4.631	5.8836	-128.0835
14		-3.3051	-4.1973	5.3424	-128.2184
15		-2.9467	-3.7252	4.7497	-128.3443
16		-2.555	-3.2164	4.1077	-128.4625
17 18		-2.1312	-2.6721	3.4179	-128.574
		-1.6751	-2.0923	2.6802	-128.6801
19 20		-1.1844 -0.6504	-1.474 -0.8066	1.8909 1.0361	-128.7819
20 E		0.0	0.0	0.0	-128.8812 0.0
		0.0	0.0	0.0	0.0

KMON NIGHT DA ARRAY

Wire No. 2:				
Pulse	Real	Imaginary	Magnitude	Phase
No.	(Amps)	(Amps)	(Amps)	(Degrees)
21	15.3629	0.7631	15.3819	2.8436
22	15.6923	0.5654	15.7025	2.0634
23	15.8049	0.43	15.7025	1.5586
24	15.7833	0.3144	15.7864	1.1412
25	15.6397	0.2127	15.6412	0.7792
26	15.3804	0.1228	15.3809	0.4574
27	15.0096	0.1228	15.0097	0.1665
28	14.5312	-0.0252	14.5312	-0.0995
29	13.9487	-0.084	13.949	-0.345
30	13.2663	-0.1328	13.267	-0.5734
31	12.4882	-0.1328	12.4894	-0.7872
32	11.6187	-0.2005	11.6204	-0.9886
33	10.6625	-0.2195	10.6648	-1.1794
34	9.6242	-0.2193	9.6269	-1.361
35	8.5084	-0.2279	8.5115	-1.5346
36	7.319	-0.2279	7.3222	-1.7014
37	6.0587	-0.197	6.0619	-1.8625
38	4.7276	-0.197	4.7305	-2.0187
39	3.3195	-0.1258	3.3218	-2.1711
40	1.8103	-0.1238	1.8118	-2.3221
E	0.0	0.0734	0.0	0.0
13	0.0	0.0	0.0	0.0
Wire No. 3:				
D3				
Pulse	Real	Imaginary	Magnitude	Phase
No.	Real (Amps)	Imaginary (Amps)	Magnitude (Amps)	Phase (Degrees)
		~ .	2	
No.	(Amps)	(Amps)	(Amps)	(Degrees)
No. 41	(Amps) -5.4126	(Amps) 6.9022	(Amps) 8.7713	(Degrees) 128.1031
No. 41 42	(Amps) -5.4126 -5.4062	(Amps) 6.9022 6.9528	(Amps) 8.7713 8.8073	(Degrees) 128.1031 127.8674
No. 41 42 43	(Amps) -5.4126 -5.4062 -5.3651	(Amps) 6.9022 6.9528 6.9403	(Amps) 8.7713 8.8073 8.7722	(Degrees) 128.1031 127.8674 127.7052
No. 41 42 43 44	(Amps) -5.4126 -5.4062 -5.3651 -5.2914	(Amps) 6.9022 6.9528 6.9403 6.8797	(Amps) 8.7713 8.8073 8.7722 8.6792	(Degrees) 128.1031 127.8674 127.7052 127.5649
No. 41 42 43 44	(Amps) -5.4126 -5.4062 -5.3651 -5.2914 -5.1859	(Amps) 6.9022 6.9528 6.9403 6.8797 6.7735	(Amps) 8.7713 8.8073 8.7722 8.6792 8.5308	(Degrees) 128.1031 127.8674 127.7052 127.5649 127.4379
No. 41 42 43 44 45 46	(Amps) -5.4126 -5.4062 -5.3651 -5.2914 -5.1859 -5.0493	(Amps) 6.9022 6.9528 6.9403 6.8797 6.7735 6.6234	(Amps) 8.7713 8.8073 8.7722 8.6792 8.5308 8.3286	(Degrees) 128.1031 127.8674 127.7052 127.5649 127.4379 127.3197
No. 41 42 43 44 45 46 47	(Amps) -5.4126 -5.4062 -5.3651 -5.2914 -5.1859 -5.0493 -4.8826	(Amps) 6.9022 6.9528 6.9403 6.8797 6.7735 6.6234 6.4307	(Amps) 8.7713 8.8073 8.7722 8.6792 8.5308 8.3286 8.0743	(Degrees) 128.1031 127.8674 127.7052 127.5649 127.4379 127.3197 127.2081
No. 41 42 43 44 45 46 47 48	(Amps) -5.4126 -5.4062 -5.3651 -5.2914 -5.1859 -5.0493 -4.8826 -4.6867	(Amps) 6.9022 6.9528 6.9403 6.8797 6.7735 6.6234 6.4307 6.1967	(Amps) 8.7713 8.8073 8.7722 8.6792 8.5308 8.3286 8.0743 7.7695	(Degrees) 128.1031 127.8674 127.7052 127.5649 127.4379 127.3197 127.2081 127.1013
No. 41 42 43 44 45 46 47 48	(Amps) -5.4126 -5.4062 -5.3651 -5.2914 -5.1859 -5.0493 -4.8826 -4.6867 -4.4629	(Amps) 6.9022 6.9528 6.9403 6.8797 6.7735 6.6234 6.4307 6.1967 5.9229	(Amps) 8.7713 8.8073 8.7722 8.6792 8.5308 8.3286 8.0743 7.7695 7.416	(Degrees) 128.1031 127.8674 127.7052 127.5649 127.4379 127.3197 127.2081 127.1013 126.9981
No. 41 42 43 44 45 46 47 48 49 50	(Amps) -5.4126 -5.4062 -5.3651 -5.2914 -5.1859 -5.0493 -4.8826 -4.6867 -4.4629 -4.2123	(Amps) 6.9022 6.9528 6.9403 6.8797 6.7735 6.6234 6.4307 6.1967 5.9229 5.6108	(Amps) 8.7713 8.8073 8.7722 8.6792 8.5308 8.3286 8.0743 7.7695 7.416 7.016	(Degrees) 128.1031 127.8674 127.7052 127.5649 127.4379 127.3197 127.2081 127.1013 126.9981 126.8976
No. 41 42 43 44 45 46 47 48 49 50	(Amps) -5.4126 -5.4062 -5.3651 -5.2914 -5.1859 -5.0493 -4.8826 -4.6867 -4.4629 -4.2123 -3.9364	(Amps) 6.9022 6.9528 6.9403 6.8797 6.7735 6.6234 6.4307 6.1967 5.9229 5.6108 5.2621	(Amps) 8.7713 8.8073 8.7722 8.6792 8.5308 8.3286 8.0743 7.7695 7.416 7.016 6.5715	(Degrees) 128.1031 127.8674 127.7052 127.5649 127.4379 127.2081 127.1013 126.9981 126.8976 126.7992
No. 41 42 43 44 45 46 47 48 49 50 51	(Amps) -5.4126 -5.4062 -5.3651 -5.2914 -5.1859 -5.0493 -4.8826 -4.6867 -4.4629 -4.2123 -3.9364 -3.6368	(Amps) 6.9022 6.9528 6.9403 6.8797 6.7735 6.6234 6.4307 6.1967 5.9229 5.6108 5.2621 4.8787	(Amps) 8.7713 8.8073 8.7722 8.6792 8.5308 8.3286 8.0743 7.7695 7.416 7.016 6.5715 6.085	(Degrees) 128.1031 127.8674 127.7052 127.5649 127.4379 127.3197 127.2081 127.1013 126.9981 126.8976 126.7992 126.7022
No. 41 42 43 44 45 46 47 48 49 50 51 52 53	(Amps) -5.4126 -5.4062 -5.3651 -5.2914 -5.1859 -5.0493 -4.8826 -4.6867 -4.4629 -4.2123 -3.9364 -3.6368 -3.3149 -2.9723 -2.6106	(Amps) 6.9022 6.9528 6.9403 6.8797 6.7735 6.6234 6.4307 6.1967 5.9229 5.6108 5.2621 4.8787 4.4624	(Amps) 8.7713 8.8073 8.7722 8.6792 8.5308 8.3286 8.0743 7.7695 7.416 7.016 6.5715 6.085 5.5589	(Degrees) 128.1031 127.8674 127.7052 127.5649 127.4379 127.3197 127.2081 127.1013 126.9981 126.8976 126.7992 126.6063
No. 41 42 43 44 45 46 47 48 49 50 51 52 53 54	(Amps) -5.4126 -5.4062 -5.3651 -5.2914 -5.1859 -5.0493 -4.8826 -4.6867 -4.4629 -4.2123 -3.9364 -3.6368 -3.3149 -2.9723	(Amps) 6.9022 6.9528 6.9403 6.8797 6.7735 6.6234 6.4307 6.1967 5.9229 5.6108 5.2621 4.8787 4.4624 4.0152	(Amps) 8.7713 8.8073 8.7722 8.6792 8.5308 8.3286 8.0743 7.7695 7.416 7.016 6.5715 6.085 5.5589 4.9956	(Degrees) 128.1031 127.8674 127.7052 127.5649 127.4379 127.3197 127.2081 127.1013 126.9981 126.8976 126.7992 126.7022 126.6063 126.5111
No. 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55	(Amps) -5.4126 -5.4062 -5.3651 -5.2914 -5.1859 -5.0493 -4.8826 -4.6867 -4.4629 -4.2123 -3.9364 -3.6368 -3.3149 -2.9723 -2.6106 -2.2312 -1.835	(Amps) 6.9022 6.9528 6.9403 6.8797 6.7735 6.6234 6.4307 6.1967 5.9229 5.6108 5.2621 4.8787 4.4624 4.0152 3.5388 3.035 2.5047	(Amps) 8.7713 8.8073 8.7722 8.6792 8.5308 8.3286 8.0743 7.7695 7.416 7.016 6.5715 6.085 5.5589 4.9956 4.3976 3.7668 3.1049	(Degrees) 128.1031 127.8674 127.7052 127.5649 127.4379 127.2081 127.1013 126.9981 126.8976 126.7992 126.6063 126.5111 126.4162
No. 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58	(Amps) -5.4126 -5.4062 -5.3651 -5.2914 -5.1859 -5.0493 -4.8826 -4.6867 -4.4629 -4.2123 -3.9364 -3.6368 -3.3149 -2.9723 -2.6106 -2.2312 -1.835 -1.4222	(Amps) 6.9022 6.9528 6.9403 6.8797 6.7735 6.6234 6.4307 6.1967 5.9229 5.6108 5.2621 4.8787 4.4624 4.0152 3.5388 3.035 2.5047 1.9481	(Amps) 8.7713 8.8073 8.7722 8.6792 8.5308 8.3286 8.0743 7.7695 7.416 7.016 6.5715 6.085 5.5589 4.9956 4.3976 3.7668	(Degrees) 128.1031 127.8674 127.7052 127.5649 127.4379 127.2081 127.1013 126.9981 126.7992 126.7092 126.6063 126.5111 126.4162 126.3215
No. 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58	(Amps) -5.4126 -5.4062 -5.3651 -5.2914 -5.1859 -5.0493 -4.8826 -4.6867 -4.4629 -4.2123 -3.9364 -3.6368 -3.3149 -2.9723 -2.6106 -2.2312 -1.835 -1.4222 -0.9914	(Amps) 6.9022 6.9528 6.9403 6.8797 6.7735 6.6234 6.4307 6.1967 5.9229 5.6108 5.2621 4.8787 4.4624 4.0152 3.5388 3.035 2.5047 1.9481 1.3627	(Amps) 8.7713 8.8073 8.7722 8.6792 8.5308 8.3286 8.0743 7.7695 7.416 7.016 6.5715 6.085 5.5589 4.9956 4.3976 3.7668 3.1049	(Degrees) 128.1031 127.8674 127.7052 127.5649 127.4379 127.2081 127.1013 126.9981 126.7992 126.7022 126.6063 126.5111 126.4162 126.3215 126.2268
No. 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60	(Amps) -5.4126 -5.4062 -5.3651 -5.2914 -5.1859 -5.0493 -4.8826 -4.6867 -4.4629 -4.2123 -3.9364 -3.6368 -3.3149 -2.9723 -2.6106 -2.2312 -1.835 -1.4222 -0.9914 -0.5357	(Amps) 6.9022 6.9528 6.9403 6.8797 6.7735 6.6234 6.4307 6.1967 5.9229 5.6108 5.2621 4.8787 4.4624 4.0152 3.5388 3.035 2.5047 1.9481 1.3627 0.7389	(Amps) 8.7713 8.8073 8.7722 8.6792 8.5308 8.3286 8.0743 7.7695 7.416 7.016 6.5715 6.085 5.5589 4.9956 4.3976 3.7668 3.1049 2.412 1.6851 0.9127	(Degrees) 128.1031 127.8674 127.7052 127.5649 127.4379 127.3197 127.2081 127.1013 126.9981 126.7992 126.7022 126.6063 126.5111 126.4162 126.3215 126.2268 126.1318
No. 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58	(Amps) -5.4126 -5.4062 -5.3651 -5.2914 -5.1859 -5.0493 -4.8826 -4.6867 -4.4629 -4.2123 -3.9364 -3.6368 -3.3149 -2.9723 -2.6106 -2.2312 -1.835 -1.4222 -0.9914	(Amps) 6.9022 6.9528 6.9403 6.8797 6.7735 6.6234 6.4307 6.1967 5.9229 5.6108 5.2621 4.8787 4.4624 4.0152 3.5388 3.035 2.5047 1.9481 1.3627	(Amps) 8.7713 8.8073 8.7722 8.6792 8.5308 8.3286 8.0743 7.7695 7.416 7.016 6.5715 6.085 5.5589 4.9956 4.3976 3.7668 3.1049 2.412 1.6851	(Degrees) 128.1031 127.8674 127.7052 127.5649 127.4379 127.3197 127.2081 127.1013 126.9981 126.8976 126.7992 126.7022 126.6063 126.5111 126.4162 126.3215 126.2268 126.1318 126.0362
No. 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60	(Amps) -5.4126 -5.4062 -5.3651 -5.2914 -5.1859 -5.0493 -4.8826 -4.6867 -4.4629 -4.2123 -3.9364 -3.6368 -3.3149 -2.9723 -2.6106 -2.2312 -1.835 -1.4222 -0.9914 -0.5357	(Amps) 6.9022 6.9528 6.9403 6.8797 6.7735 6.6234 6.4307 6.1967 5.9229 5.6108 5.2621 4.8787 4.4624 4.0152 3.5388 3.035 2.5047 1.9481 1.3627 0.7389	(Amps) 8.7713 8.8073 8.7722 8.6792 8.5308 8.3286 8.0743 7.7695 7.416 7.016 6.5715 6.085 5.5589 4.9956 4.3976 3.7668 3.1049 2.412 1.6851 0.9127 0.0	(Degrees) 128.1031 127.8674 127.7052 127.5649 127.4379 127.2081 127.1013 126.9981 126.7992 126.7022 126.6063 126.5111 126.4162 126.3215 126.2268 126.1318 126.0362 125.9391 0.0

Twr. Ratio Phase
1 0.477 -127.1
2 1.000 0.0
3 0.570 125.3

FIGURE 1 TOWER #1 BASE CIRCUIT MODEL

WCAP - KMON TOWER #1 ND

WCAP - KMON-1

WCAP OUTPUT AT FREQUENCY: 0.560 MHz

NODE VOLTAGES

	WCAP	PART CURRENT IN			CUR	RENT	TUO T	
	WCAP	PART	BRANCH	VOLTAGE	BRA	NCH	CURRENT	
R	2→3	0.00100000	0.01 4	0.000° V	10.00	4	0.000°	Α
L	3→1	8.72000000	305.69 ≰	90.138° V	9.96	4	0.138°	Α
С	1→0	0.00003000	602.86 4	40.873° V	0.06		130.873°	Α
R	1→0	45.46900000	602.86 4	40.873° V	10.00	4	-0.138°	Α
L	3→0	5400.00000000	835.11 4	56.976° V	0.04	4	-33.024°	Α
	WCAP	PART	FROM IM	PEDANCE	TO	IMPE	EDANCE	
R	2→3	0.00100000	45.51 + j	70.019	45.51	+ j	70.01	19
L	3→1	8.72000000	45.85 + j	70.168	45.85	+ j	39.48	36
C	1→0	0.00003000	0.01 - j	9473.509	0.00	+ j	0.00	00
R	10	45.46900000	45.47 + j	39.541	0.00	+ j	0.00	00
L	3→0	5400.00000000	0.00 + j	19000.352	0.00	+ j	0.00	0(

WCAP PART VSWR

WCAP INPUT DATA:

	0.5600	0.001	0000	0 1		
I	10.000000	0 0	2		0.0000	0000
R	0.0010000	00 2	3		0.0000	0000
L	8.7200000	00 3	1		0.0000	0000
С	0.0000300	00 1	0			
R	45.4690000	00 1	0	:	39.5410	0000
L	5400.0000000	0 3	0		0.0000	0000

Center Frequency: 0.56 MHz

Frequency Range: ±0 kHz

FIGURE 2 TOWER #2 BASE CIRCUIT MODEL

WCAP - KMON TOWER #2 ND

WCAP - KMON-2

WCAP OUTPUT AT FREQUENCY: 0.560 MHz

NODE VOLTAGES

Node: 1 583.5962 4 41.7344° V Node: 2 849.5380 4 59.2214° V Node: 3 849.5329 4 59.2219° V

	WCAP	PART	CURRENT	IN	CURRENT	TUO T
	WCAP	PART	BRANCH '	VOLTAGE	BRANCH	CURRENT
R	23	0.00100000	0.01 4	0.000° V	10.00 ≰	0.000° A
L	3→1	9.74000000	341.39 ≰	90.132° V	9.96 ≰	0.132° A
С	1→0	0.00003000	583.60 ≰	41.734° V	0.06 4	131.734° A
R	1→0	43.44900000	583.60 4	41.734° V	10.00 4	-0.132° A
L	3→0	5400.00000000	849.53 4	59.222° V	0.04 4	-30.778° A
	WCAP	PART	FROM IM	PEDANCE	TO IMPE	EDANCE
R	2→3	0.00100000	43.47 + j	72.988	43.47 + j	72.988
L	31	9.74000000	43.81 + j	73.169	43.81 + j	38.898
С	1→0	0.00003000	0.00 - j	9473.509	0.00 + j	0.000
R	1→0	43.44900000	43.45 + j	38.939	0.00 + j	0.000
L	3→0	5400.00000000	0.00 + j	19000.352	0.00 + j	0.000

WCAP PART VSWR

WCAP INPUT DATA: 0.5600 I R

0.00100000 1 10.00000000 0 2 0.00000000 0.00100000 2 3 0.00000000 9.74000000 3 1 0.00000000 0.00003000 1 0 43.44900000 1 0 38.93900000 400.00000000 3 0 0.00000000 0.00000000 9.74000000 Ĺ С R 5400.00000000

Center Frequency: 0.56 MHz

Frequency Range: ±0 kHz

FIGURE 3 TOWER #3 BASE CIRCUIT MODEL

WCAP - KMON TOWER #3 ND

WCAP - KMON-3

WCAP OUTPUT AT FREQUENCY: 0.560 MHz

NODE VOLTAGES

Node: 1 551.7655 \$\delta\$ 37.6936° V Node: 2 814.3790 \$\delta\$ 57.6463° V Node: 3 814.3736 \$\delta\$ 57.6469° V

	WCAP	PART	CURRENT	IN	CUI	RREN'	r our	
	WCAP	PART	BRANCH	VOLTAGE	BRA	ANCH	CURRENT	
R	2→3	0.00100000	0.01 🗚	0.000° V	10.00	4	0.000°	Α
L	3→1	10.00000000	350.59 ≰	90.132° V	9.96	4	0.132°	Α
C	1→0	0.00003000	551.77 4	37.694° V	0.06	4	127.694°	A
R	1.→0	43.58500000	551.77 4	37.694° V	10.00	4	-0.133°	Α
L	3+0	5400.00000000	814.37 ∡	57.647° V	0.04	4	-32.353°	A
	WCAP	PART	FROM IM	PEDANCE	TO	IMP	EDANCE	
R	2→3	0.00100000	43.58 + j	68.796	43.58	+ j	68.79	96
L	3→1	10.00000000	43.90 + j	68.944	43.90	+ j	33.75	59
С	1→0	0.00003000	0.01 - j	9473.509	0.00	+ j	0.00	00
R	1→0	43.58500000	43.59 + j	33.840	0.00	+ j	0.00	00
L	3→0	5400.00000000	$0.00 + \dot{j}$	19000.352	0.00	+ j	0.00	0

WCAP PART VSWR

WCAP INPUT DATA:

	0.5600	0.	.0010	0000	1
I	10.000000	00	0	2	0.00000000
R	0.001000	00	2	3	0.00000000
L	10.000000	00	3	1	0.00000000
C	0.000030	00	1	0	
R	43.585000	00	1	0	33.84000000
L	5400.000000	00	3	0	0.00000000

Center Frequency: 0.56 MHz

Frequency Range: ±0 kHz

FIGURE 4 TOWER #1 BASE CIRCUIT MODEL - NIGHT DA PATTERN

WCAP - KMON TOWER #1 NIGHT DA

WCAP - KMON-1 DA

WCAP OUTPUT AT FREQUENCY: 0.560 MHz

NODE VOLTAGES

Node: 1 1283.2223 \$ 74.0703° V Node: 2 1577.9597 \$ 77.1241° V Node: 3 1577.9575 \$ 77.1245° V

	WCAP	PART	CURRENT	: IN	CUF	RREN!	T OUT	
	WCAP	PART	BRANCH	VOLTAGE	BRA	NCH	CURRENT	
R	2→3	0.00100000	0.01 ∡	0.000° V	10.00	4	0.000°	Α
L	3→1	8.72000000	304.34 ∡	90.107° V	9.92	4	0.107°	Α
С	1→0	0.00003000	1283.22 ≰	74.070° V	0.14	4	164.070°	Α
R	10	34.81800000	1283.22 4	74.070° V	10.05	4	-0.106°	Α
L	3→0	5400.00000000	1577.96 ∡	77.124° V	0.08		-12.876°	Α
	WCAP	PART	FROM IM	IPEDANCE	TO	IMPI	EDANCE	
R	2→3	0.00100000	35.16 + j	153.828	35.16	+ j	153.82	28
L	3→1	8.72000000	35.74 + j	155.017	35.74	+ j	124.33	35
C	1→0	0.00003000	0.00 - j	9473.509	0.00	+ j	0.00	00
R	10	34.81800000	34.82 + j	122.854	0.00	+ j	0.00	00
L	3→0	5400.00000000	0.00 + j	19000.352	0.00	+ j	0.00	0

WCAP PART VSWR

WCAP INPUT DATA:

0.5600 0.00100000 1

I 10.00000000 0 2 0.00000000

R 0.00100000 2 3 0.00000000

L 8.72000000 3 1 0.00000000

C 0.00003000 1 0

R 34.81800000 1 0 122.85400000

L 5400.00000000 3 0 0.00000000

Center Frequency: 0.56 MHz

Frequency Range: ±0 kHz

FIGURE 5 TOWER #2 BASE CIRCUIT MODEL - NIGHT DA PATTERN

WCAP - KMON TOWER #2 NIGHT DA

WCAP - KMON-2 DA

WCAP OUTPUT AT FREQUENCY: 0.560 MHz

NODE VOLTAGES

Node: 1 615.4668 \$ 59.4623° V
Node: 2 891.9993 \$ 69.5108° V
Node: 3 891.9958 \$ 69.5114° V

	WCAP	PART	CURRENT IN		CUF	RREN	r OUT	
	WCAP	PART	BRANCH VOLT	AGE	BRI	ANCH	CURRENT	
R	2→3	0.00100000	0.01 4 0.	000° V 10	00.0	4	0.000°	Α
L	3→1	8.72000000	305.47 ≰ 90.	095° V	9.96	4	0.095°	Α
С	1→0	0.00003000	615.47 ≰ 59.	462° V	0.06	4	149.462°	Α
R	1→0	31.14700000	615.47 4 59.	462° V 10	0.01	4	-0.095°	Α
L	3→0	5400.00000000	892.00 4 69.	511° V (0.05	4	-20.489°	A
	WCAP	PART	FROM IMPEDA	NCE	TO	IMPI	EDANCE	
R	2→3	0.00100000	31.22 + j	83.557 31	.22	+ j	83.55	7
L	3→1	8.72000000	31.50 + j	83.874 31	.50	+ j	53.19	2
С	1→0	0.00003000	0.00 - j 94	73.509	.00	+ j	0.00	0
R	1→0	31.14700000	31.15 + j	52.998	.00	+ j	0.00	0
L	3→0	5400.00000000	-0.00 + j 190	00.352	.00	+ j	0.00	0

WCAP PART VSWR

WCAP INPUT DATA:

	0.5600 0	.0010	0000	1
I	10.00000000	0	2	0.00000000
R	0.00100000	2	3	0.00000000
L	8.72000000	3	1	0.00000000
С	0.00003000	1	0	
R	31.14700000	1	0	52.99800000
L	5400.00000000	3	0	0.00000000

Center Frequency: 0.56 MHz

Frequency Range: ±0 kHz

FIGURE 6 TOWER #3 BASE CIRCUIT MODEL - NIGHT DA PATTERN

WCAP - KMON TOWER #3 NIGHT DA

WCAP - KMON-3 DA

WCAP OUTPUT AT FREQUENCY: 0.560 MHz

NODE VOLTAGES

Node: 1 193.4947. ★ 59.5449° V Node: 2 482.8882 ★ 78.2996° V Node: 3 482.8862 ★ 78.3007° V

	WCAP	PART	CURRENT	r in	CURRE	ENT OUT
	WCAP	PART	BRANCH	VOLTAGE	BRANC	CH CURRENT
R	2→3	0.00100000	0.01 4	0.000° V	10.00 4	0.000° A
L	3→1	8.72000000	306.06 ≰	90.030° V	9.98 🗚	0.030° A
C	1→0	0.0003000	193.49 ≰	59.545° V	0.02 🗚	149.545° A
R	1→0	9.80600000	193.49 ≰	59.545° V	9.99 ≰	-0.030° A
L	3→0	5400.00000000	482.89 4	78.301° V	0.03 ≰	-11.699° A
	WCAP	PART	FROM IN	1PEDANCE	TO IN	1PEDANCE
R	2→3	0.00100000	9.79 + j	47.285	9.79 +	
L	3→1	8.72000000	9.84 + j	47.398	9.84 +	j 16.716
С	10	0.00003000	-0.01 - j	9473.509	0.00 +	j 0.000
R	1→0	9.80600000	9.81 + j	16.697	0.00 +	j 0.000
L	3→0	5400.00000000	0.00 + j	19000.352	0.00 +	j 0.000

VSWR

WCAP INPUT DATA:

WCAP PART

	0.5600 0.	.00100	0000	1
I	10.00000000	0	2	0.00000000
R	0.00100000	2	3	0.00000000
L	8.72000000	3	1	0.00000000
С	0.00003000	1	0	
R	9.80600000	1	0	16.69700000
т.	5400 00000000	3	Λ	0 00000000

Center Frequency: 0.56 MHz

Frequency Range: ±0 kHz

APPENDIX 1

KMON AM 5.4 KW Night DA Reference Field Strength Measurements for M.O.M. LICENSING AMENDED JULY 14, 2011 PI FIM-41 SN 699

	4.87 mi 6.56 mi 1.75 mi 3.75 mi 4.31 mi	1:59p 3.3 mi 2:08p 4.87 mi 2:14p 6.56 mi 11:20a 1.75 mi 11:33a 3.75 mi 11:39a 4.31 mi 11:40a 2.02 mi
4.31 mi 14 47° 25′ 53.99″ 111° 22′ 52.27″ South side Flood Rd by curve sign 2.02 mi 450 47° 27′ 1.87″ 111° 16′ 8.11″ In front of metal house, power pole #115 3.1 mi 3.30 47° 27′ 54.52″ 111° 15′ 25.21″ At curve on Highland road at driveway.	4.31 mi 14 2.02 mi 450 3.1 mi 330	11:39a 4.31 mi 14 11:40a 2.02 mi 450 11:53a 3.1 mi 330
3.3 mi 4.87 mi 6.56 mi 1.75 mi 3.75 mi 4.31 mi 2.02 mi 3.1 mi	1 0 1 1 1 1 1 1 1	1:59p 2:08p 2:14p 11:20a 11:33a 11:39a 11:39a 11:53a
	2:08p 2:14p 2:14p 11:20a 11:33a 11:39a 11:40a 11:53a	