And

Federal Communications Commission Washington, D. C. 20554

Approved by OMB 3060-0627 Expires 01/31/98

FOR FCC USE ONLY	
---------------------------	--

FCC 302-AM
APPLICATION FOR AM
BROADCAST STATION LICENSE

(Please read instructions before filling out form.

FOR COMMISSION USE ONLY
FILE NO. BMML-20110511AHO

	(511)	וטים אווו	MAN THE
SECTION I - APPLICANT FEE INFORMATION			
PAYOR NAME (Last, First, Middle Initial)			
Eagle Communications. Inc.			
MAILING ADDRESS (Line 1) (Maximum 35 characters) 2703 Hall Street			
MAILING ADDRESS (Line 2) (Maximum 35 characters)			
Suite # 15			
CITY Hays	STATE OR COUNTRY (if for Kansas	eign address)	ZIP CODE 67601 - 1987
TELEPHONE NUMBER (include area code) 785 625-4000	CALL LETTERS KFEQ	OTHER FCC IDEI	NTIFIER (If applicable) 34419
2. A. Is a fee submitted with this application?			Yes No
B. If No, indicate reason for fee exemption (see 47 C.F.R. Section			
Governmental Entity Noncommercial educ	rational licensee Of	ner (Please explain):
Transcrimination and	actional noonloos		·
C. If Yes, provide the following information:			
Enter in Column (A) the correct Fee Type Code for the service you refee Filing Guide." Column (B) lists the Fee Multiple applicable for this	are applying for. Fee Type Co	des may be found	in the "Mass Media Services
ree rilling Guide. Column (b) lists the ree Multiple applicable for the	is application. Litter lee amou	it due in Column (C	<i>y.</i>
(A) (B)	(C)		
	FEE DUE FOR FEE	E]	
FEE TYPE FEE MULTIPLE	TYPE CODE IN COLUMN (A)		FOR FCC USE ONLY
M M R 0 0 0 1	\$ 615.00		
To be used only when you are requesting concurrent actions which re	sult in a requirement to list more	e than one Fee Typ	e Code.
(A) (B)	(C)	[
	\$ 705.00		FOR FCC USE ONLY
M O R 0 0 1	¥ 705.00		
	TOTAL AMOUNT		
ADD ALL AMOUNTS SHOWN IN COLUMN C, AND ENTER THE TOTAL HERE.	REMITTED WITH TH APPLICATION	IS	FOR FCC USE ONLY
THIS AMOUNT SHOULD EQUAL YOUR ENCLOSED	\$ 1320.00		
REMITTANCE.			entre de la companya de la contractiva

SECTION II - APPLICAN	IT INFORMATION					
NAME OF APPLICANT Eagle Communications, Inc.			assund skrigtikkind sistema semila de historia hudiskusti sistema en gara e de gereka e de gara e de semila de	augus 15 p. n. unico responsibilità de l'appropriété de la propriété de la propriété de l'appropriété de l'app		
MAILING ADDRESS 2703 Hall Street, Suite # 15	5					
CITY Hays			STATE Kansas	3	ZIP CODE 67601 - 1987	
2. This application is for	Commercial AM Direct	tional	Noncomm	ercial on-Directional		
Call letters	Community of License	Construct	tion Permit File No.	Modification of Construction Permit File No(s).	Expiration Date of Last Construction Permit	
KFEQ	St. Joseph, Missouri	Not Ap	plicable	Not Applicable	Not Applicable	
3. Is the station of accordance with 47 C.I If No, explain in an Exh		to auto	matic program	test authority in	Yes V No Exhibit No. PTA not required	,
construction permit bed		ations s	et forth in the	above described	Yes ✓ No Exhibit No. Not Applicable	Ł
If No, state exceptions	in an Exhibit.				ног Аррисаов	
the grant of the unde	nges already reported, ha rlying construction permi ed in the construction per	t which	would result in	any statement or	Yes V No	,
If Yes, explain in an E	xhibit.				Not Applicable	
	filed its Ownership Report			ership	✓ Yes No	>
certification in accorda	nce with 47 C.F.R. Sectio	n / 3.30 i	5(b) ?		Does not apply	У
If No, explain in an Ex	hibit.				Exhibit No. N/A	
or administrative body criminal proceeding, b felony; mass media	nding been made or an ad with respect to the applic rought under the provision related antitrust or unfa unit; or discrimination?	ant or pa	arties to the apply law relating to	lication in a civil or the following: any	Yes 🕢 No	0
involved, including an (by dates and file nu information has beer required by 47 U.S.C. of that previous subm the call letters of the	attach as an Exhibit a fidentification of the court mbers), and the disposition earlier disclosed in consection 1.65(c), the applialission by reference to the station regarding which the of filing; and (ii) the disposition is station.	or adminition of the connection of the connection of the contraction o	nistrative body a e litigation. W n with another ed only provide: mber in the case cation or Sectio	nd the proceeding There the requisite application or as (i) an identification of an application, n 1.65 information	Exhibit No.	

the expanded band (1605-1705 kHz) or a permit or license either in the existing band or expanded band that is held in combination (pursuant to the 5 year holding period allowed) with the AM facility proposed to be modified herein?	
If Yes, provide particulars as an Exhibit.	Exhibit No.
The APPLICANT hereby waives any claim to the use of any particular frequency or of the electragainst the regulatory power of the United States because use of the same, whether by lice requests and authorization in accordance with this application. (See Section 304 of the Communamended). The APPLICANT acknowledges that all the statements made in this application and attached material representations and that all the exhibits are a material part hereof and are incorporated in	ense or otherwise, and sications Act of 1934, as exhibits are considered
CERTIFICATION	
 By checking Yes, the applicant certifies, that, in the case of an individual applicant, he or she is not subject to a denial of federal benefits that includes FCC benefits pursuant to Section 5301 of the Anti-Drug Abuse Act of 1988, 21 U.S.C. Section 862, or, in the case of a non-individual applicant (e.g., corporation, partnership or other unincorporated association), no party to the application is subject to a denial of federal benefits that includes FCC benefits pursuant to that section. For the definition of a "party" for these purposes, see 47 C.F.R. Section 1.2002(b). I certify that the statements in this application are true, complete, and correct to the best of memory and the statements in this application are true, complete, and correct to the best of memory and the statements in this application are true, complete, and correct to the best of memory and the statements in this application are true, complete, and correct to the best of memory and the statements in this application are true, complete, and correct to the best of memory and the statements in this application are true, complete, and correct to the best of memory and the statements in this application are true, complete, and correct to the best of memory and the statements in this application are true, complete, and correct to the statements in the statements in this application are true, complete, and correct to the statements in the statements in this application. 	Yes No
and are made in good faith.	,
Gary D. Shorman	
President Date 785 6	9 Number 925-4000

8. Does the applicant, or any party to the application, have a petition on file to migrate to

WILLFUL FALSE STATEMENTS ON THIS FORM ARE PUNISHABLE BY FINE AND/OR IMPRISONMENT (U.S. CODE, TITLE 18, SECTION 1001), AND/OR REVOCATION OF ANY STATION LICENSE OR CONSTRUCTION

FCC NOTICE TO INDIVIDUALS REQUIRED BY THE PRIVACY ACT AND THE PAPERWORK REDUCTION ACT

The solicitation of personal information requested in this application is authorized by the Communications Act of 1934, as amended. The Commission will use the information provided in this form to determine whether grant of the application is in the public interest. In reaching that determination, or for law enforcement purposes, it may become necessary to refer personal information contained in this form to another government agency. In addition, all information provided in this form will be available for public inspection. If information requested on the form is not provided, the application may be returned without action having been taken upon it or its processing may be delayed while a request is made to provide the missing information. Your response is required to obtain the requested authorization.

Public reporting burden for this collection of information is estimated to average 639 hours and 53 minutes per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the burden, can be sent to the Federal Communications Commission, Records Management Branch, Paperwork Reduction Project (3060-0627), Washington, D. C. 20554. Do NOT send completed forms to this address.

THE FOREGOING NOTICE IS REQUIRED BY THE PRIVACY ACT OF 1974, P.L. 93-579, DECEMBER 31, 1974, 5 U.S.C. 552a(e)(3), AND THE PAPERWORK REDUCTION ACT OF 1980, P.L. 96-511, DECEMBER 11, 1980, 44 U.S.C. 3507.

Yes 🗸 No

SECTION III - LICE Name of Applicant	ENSE APPLIC	CATION ENGIN	IEERING DATA	* Service of State of the secretary and contract of the secretary		na na mandro escripcio de la factiva de la referencia de la composició de la reciclo de la referencia de la composició de la referencia de la composició de la referencia de la composició de la	oppgyspelangelekkiljö halvallekkilä Arkani entirrajo juurjologija en enemplemantis
Eagle Comm	nunications	s, Inc.					
PURPOSE OF AUT		Teach of the Control	(check one)	ngga pengananan ang menangga galap ng menangga penganan ang penganan penganan penganan			ayan ay isaay gaamagaan agaan agaan agaan ah
	tion License			surement of Power	,		
Facilities authorize	zed in constru	rtion permit		Prophysical annual a			
		struction Permit	Frequency	Hours of Operati	on	Power in	kilowatts
KEEO (i	f applicable) lot Applicable		(kHz) 680	Unlimited		Nìght 5	Day 5
2. Station location				-			
State				City or Town			
Missouri				St. Joseph	l		
3. Transmitter local	tion						
The second secon	County			City or Town		Street address (or other identific	ation)
Missouri	Andrew			St. Joseph		20761 N. Belt H	
Main studio loca	tion			A Long Annual An			and and the second seco
State County City or Town Street address (or other identification)							ection)
	Buchanan			St. Joseph		4101 Country Lar	
Micocail		specify only if a	uthorized direction	nal antenna)			
	mote control point location (specify only if authorized directional antenna) County City or Town						· · · · · ·
	Buchanar	1		St. Joseph		(or other identific	
Does the sampliAttach as an Exh						Ext	Not Applicable nibit No. leding Exhibit
8. Operating const RF common point of modulation for night 10.1 Amperes	or antenna cur nt system	rent (in amperes		modulation for o	day system s (Round	current (in amper	9 Amperes)
Measured antenna or common point resistance (in ohms) at operating frequency Night Day S3.0 Day -31.1 Measured antenna or common point reactance (in ohms) at operating frequency Night Day -31.1							
Antenna indication	annali ili serbi	Antenna	a monitor g(s) in degrees		Antenna monitor sample current ratio(s)		base currents
Towers	5	Night	Day	Night	Day	Night	Day
1 - East AS	SRN 1006053	-0.6	-161.6	0.476	0.700	Not Required	Not Required
2 - East Central AS	and the same of th	N/A	0.0	N/A	1.000	N/A	Not Required
3 - West Central AS	SRN 1006055	0.0	-121.7	1,000	0.501	Not Required Not Required	Not Required N/A
4 - West AS	SRN 1006056	-0.3	N/A	0.607	N/A	Not Reduied	INA
Manufacturer and	type of antenn	a monitor:	otomac Instrume	ents AM-1901-4			

SECTION III - Page 2

9. Description of antenna system ((f directional antenna is used, the information requested below should be given for each element of the array. Use separate sheets if necessary.)

Type Radiator	Overall height in meters of radiator above base insulator, or above base, if grounded.	Overall height above ground obstruction lig	(without	Overall height in meters above ground (include obstruction lighting)	If antenna is either top loaded or sectionalized, describe fully in an Exhibit.
Uniform Cross-Section	100.6 m (all towers)	101.4 m (a	all towers)	102.4 m (all towers)	Exhibit No.
Excitation	Series	Shunt			
Geographic coordinates tower location.	to nearest second. For direc	tional antenna	give coordinate	es of center of array. For s	ingle vertical radiator give
North Latitude 39	9° 49'	43 "	West Longitu	de 94 ° 4	8 ' 20 "
antenna mounted on tow	ove, attach as an Exhibit furt ver and associated isolation c	ircuits.			Exhibit No. Engineering Exhibit
Also, if necessary for a dimensions of ground sy	a complete description, attac rstem.	ch as an Exhi	bit a sketch o	of the details and	Exhibit No. Engineering Exhibit
10. In what respect, if a permit?	ny, does the apparatus const	ructed differ fro	om that describ	ped in the application for co	enstruction permit or in the
	e change in antenna or comm				
Replacemen	nt of RF phasing and co	upling equip	ment, replac	ement of open wire tra	ansmission lines
with convent	ional coax lines, replacen	nent of towers	s and base in	sulators, replacement of	of lighting system
I certify that I represent information and that it is	t the applicant in the capacit true to the best of my knowle	y indicated bel edge and belief	ow and that I	have examined the forego	ing statement of technical
Name (Please Print or T	Type)		Signature (che	ck appropriate box below)	
Garrison C. Cav	ell		ح		
Address (include ZIP Co	ode)		Date	-k.,	
Cavell, Mertz &	Associates, Inc.		May 09,	2011	
7732 Donegan D	Drive		127 21 2 2 2 2 2 2	. (Include Area Code)	
Manassas, VA 2	20109		703 392	2-9090	
Technical Director			Register	ed Professional Engineer	
Chief Operator		Face and the second sec	✓ Technica	al Consultant	
Other (specify)					

FCC 302-AM (Page 5) August 1995

Engineering Exhibit

APPLICATION FOR STATION LICENSE METHOD OF MOMENTS PROOF OF PERFORMANCE

prepared for

Eagle Communications, Inc.
Station KFEQ St. Joseph, Missouri
680 kHz DA-2 U 5 kW

May 9, 2011

Station KFEQ St. Joseph, Missouri Page 1 of 80

Contents
Introduction4
Antenna System Description4
CDBS Information Correction Request
Daytime Mode - Present CDBS Values5
Daytime Mode - Requested Corrected Values5
Nighttime Mode - Present CDBS Values6
Nighttime Mode – Requested Corrected Values6
Array Geometry Summary 6
Ground System Description
Antenna Monitor and Sample System
MoM Modeling Process9
Tower Impedance Measurements to Verify Method of Moments Model9
Tower Base Environment Calculations
Representative Open Circuit Tower Base Environment Schematic for all KFEQ Towers. 13
Summary of Completed Open Circuit Analysis of KFEQ Tower Base Environment 13
Representative Open Circuit Tower Base Environment Schematic for all KESJ Towers 14
Summary of Completed Open Circuit Analysis of KESJ Tower Base Environment 14
Circuit Analysis Used for Each Tower to Verify Method of Moments Model15
WCAP Tower Base Open Circuit "Self" Analysis - KFEQ Tower 1 (East)
WCAP Tower Base Open Circuit "Self" Analysis - KFEQ Tower 1 (East) (Continued)16
WCAP Tower Base Open Circuit "Self" Analysis - KFEQ Tower 2 (East-Central)17
WCAP Tower Base Open Circuit "Self" Analysis - KFEQ Tower 2 (East-Central) (Continued) 18
WCAP Tower Base Open Circuit "Self" Analysis - KFEQ Tower 3 (West-Central)19
WCAP Tower Base Open Circuit "Self" Analysis - KFEQ Tower 3 (West-Central) (Continued) 20
WCAP Tower Base Open Circuit "Self" Analysis - KFEQ Tower 4 (West)21
WCAP Tower Base Open Circuit "Self" Analysis - KFEQ Tower 4 (West) (Continued)
WCAP Tower Base Open Circuit "Self" Analysis - KFEQ Tower 5 (KESJ T1 (NW))23
WCAP Tower Base Open Circuit "Self" Analysis - KFEQ Tower 6 (KESJ T2 (SE))24
WCAP Tower Base Open Circuit "Self" Analysis - KFEQ Tower 7 (KESJ T3 (SW))25
WCAP Tower Base Open Circuit "Self" Analysis - KFEO Tower 8 (KESJ T4 (NE))

Station KFEQ St. Joseph, Missouri Page 2 of 80

Details of MoM "Open Circuit" Modeling - for Towers Driven Individually	27
MoM Model Details for Towers Driven Individually – KFEQ Tower 1 - OC Self - (1 of 3)	29
MoM Model Details for Towers Driven Individually – KFEQ Tower 1 - OC Self - (2 of 3)	
MoM Model Details for Towers Driven Individually – KFEQ Tower 1 - OC Self - (3 of 3)	31
MoM Model Details for Towers Driven Individually - Tower 2 - OC Self - (1 of 3)	32
MoM Model Details for Towers Driven Individually - Tower 2 - OC Self - (2 of 3)	33
MoM Model Details for Towers Driven Individually - Tower 2 - OC Self - (3 of 3)	34
MoM Model Details for Towers Driven Individually - Tower 3 - OC Self - (1 of 3)	35
MoM Model Details for Towers Driven Individually - Tower 3 - OC Self - (2 of 3)	36
MoM Model Details for Towers Driven Individually - Tower 3 - OC Self - (3 of 3)	37
MoM Model Details for Towers Driven Individually - Tower 4 - OC Self - (1 of 3)	38
MoM Model Details for Towers Driven Individually - Tower 4 - OC Self - (2 of 3)	39
MoM Model Details for Towers Driven Individually - Tower 4 - OC Self - (3 of 3)	40
MoM Model Details for Towers Driven Individually - Tower 5 - OC Self - (1 of 3)	41
MoM Model Details for Towers Driven Individually - Tower 5 - OC Self - (2 of 3)	42
MoM Model Details for Towers Driven Individually - Tower 5 - OC Self - (3 of 3)	43
MoM Model Details for Towers Driven Individually - Tower 6 - OC Self - (1 of 3)	44
MoM Model Details for Towers Driven Individually - Tower 6 - OC Self - (2 of 3)	45
MoM Model Details for Towers Driven Individually - Tower 6 - OC Self - (3 of 3)	46
MoM Model Details for Towers Driven Individually - Tower 7 - OC Self - (1 of 3)	47
MoM Model Details for Towers Driven Individually - Tower 7 - OC Self - (2 of 3)	48
MoM Model Details for Towers Driven Individually - Tower 7 - OC Self - (3 of 3)	49
MoM Model Details for Towers Driven Individually - Tower 8 - OC Self - (1 of 3)	49
MoM Model Details for Towers Driven Individually - Tower 8 - OC Self - (2 of 3)	51
MoM Model Details for Towers Driven Individually - Tower 8 - OC Self - (3 of 3)	52
Derivation of Directional Antenna Operating Parameters	52
MoM Model Details - Daytime Directional Antenna Array Synthesis (1 of 7)	54
MoM Model Details - Daytime Directional Antenna Array Synthesis (2 of 7)	55
MoM Model Details - Daytime Directional Antenna Array Synthesis (3 of 7)	56
MoM Model Details - Daytime Directional Antenna Array Synthesis (4 of 7)	
MoM Model Details - Daytime Directional Antenna Array Synthesis (5 of 7)	58
MoM Model Details - Daytime Directional Antenna Array Synthesis (6 of 7)	59
MoM Model Details - Daytime Directional Antenna Array Synthesis (7 of 7)	60

Station KFEQ St. Joseph, Missouri Page 3 of 80

MoM Model Details – Nighttime Directional Antenna Array Synthesis (1 of 7)	61
MoM Model Details - Nighttime Directional Antenna Array Synthesis (2 of 7)	
MoM Model Details - Nighttime Directional Antenna Array Synthesis (3 of 7)	
MoM Model Details - Nighttime Directional Antenna Array Synthesis (4 of 7)	
MoM Model Details - Nighttime Directional Antenna Array Synthesis (5 of 7)	
MoM Model Details - Nighttime Directional Antenna Array Synthesis (6 of 7)	
MoM Model Details - Nighttime Directional Antenna Array Synthesis (7 of 7)	
Derivation of Directional Antenna System "Antenna Monitor" Parameters	
Daytime and Nighttime Directional Antenna System "Antenna Monitor" Parameter	
Daytime Directional Antenna Monitor Operating Parameters	69
Nighttime Directional Antenna Monitor Operating Parameters	69
Survey Certification	70
Sampling System Measurements	70
Reference Point Field Strength Measurements	72
Daytime Pattern Reference Point Field Measurements	73
Reference Point Field Strength Measurements – 206° Day (Monitored Minima)	73
Reference Point Field Strength Measurements – 273° Day (Maxima)	73
Reference Point Field Strength Measurements - 330° Day (Monitored Minima)	74
Nighttime Pattern Reference Point Field Measurements	74
Reference Point Field Strength Measurements – 3° Night (Maxima)	74
Reference Point Field Strength Measurements – 73.5° Night (Monitored Minima)	74
Reference Point Field Strength Measurements - 103° Night (Monitored Minima)	74
Reference Point Field Strength Measurements – 245° Night (Monitored Minima)	74
Reference Point Field Strength Measurements – 302° Night (Monitored Minima)	75
Direct Measurement of Power	75
RF Exposure Evaluation	76
Satisfaction of CP Conditions of Collocated KESJ	
	80

APPLICATION FOR STATION LICENSE METHOD OF MOMENTS - PROOF OF PERFORMANCE

Station KFEQ St. Joseph, Missouri Page 4 of 80

Introduction

This Engineering Statement has been prepared on behalf of *Eagle Communications, Inc.* ("*Eagle*"), licensee of radio station KFEQ, St. Joseph, Missouri, (Facility ID 34419). It supports *Eagle's* **Application for License** following completion of the complete renovation of the station's antenna system. (This renovation included replacement of the station's RF phasing and coupling systems, transmission lines, sample lines, sampling transformers, towers, base insulators, tower lighting equipment, and antenna monitor.) Additionally, this proof follows completion of construction (on the same property) of a new ND-Day, DA-N antenna system for co-owned KESJ 1550 kHz, St. Joseph, Missouri. ¹

Rather than engage in a conventional "partial" proof of performance, *Eagle* instead elected to conduct a "Method of Moments" ("MoM") Proof-of-Performance on the reconstructed KFEQ directional array. Accordingly, the information provided in this Statement demonstrates that the directional antenna parameters for both KFEQ patterns have been determined in accordance with the requirements of Section 73.151(c) of the FCC's Rules.² As required by the Commission's Rules, the KFEQ antenna system has been adjusted to produce antenna monitor parameters that are within +/- 5 percent in ratio and +/- 3 degrees in phase of the MoM modeled values. Thus, as demonstrated here, the newly reconstructed antenna system is in compliance with pertinent Commission Rules and Policies.

Antenna System Description

The re-constructed directional antenna facility consists of four uniform cross-section, guyed, base-insulated, series fed towers, placed in the same locations as the original towers. The new KESJ 4-tower antenna array is nested between two of the four elements of the KFEQ antenna system. This arrangement is fully documented in the KESJ application for CP and license, and is also described elsewhere in this document.

 $^{^1}$ KESJ (Facility ID Number 8767) is presently operating under PTA following completion of construction of a new antenna system per its Construction Permit (BP-20100317AAN). An application for license has been filed with the Commission along with the required proof-of-performance (BMML-20110322ABY).

 $^{^2}$ The KFEQ day directional antenna array is eligible for licensing under the Commission's MoM Rules in that the antenna system consists of series fed, base insulated towers, using a conventional, buried-wire, ground system.

APPLICATION FOR STATION LICENSE METHOD OF MOMENTS - PROOF OF PERFORMANCE

Station KFEQ St. Joseph, Missouri Page 5 of 80

Conventional tower lighting is installed on the KFEQ towers per the requirements of the FCC and FAA. FCC Antenna Structure Registration Numbers ("ASRN") have long been established for the KFEQ tower system, as shown below. No FAA notification or ASRN's are required for KESJ, as documented in that station's various filings before the Commission.

CDBS Information Correction Request

In reviewing the information in advance of proofing the array, it was discovered that the data as presented in the Commissions CDBS system differs from what is contained in KFEQ's 1994 license (BZ-19941031AA – copy included as Attachment I) and the application for license that preceded that instrument. Also, the association of the tower numbering, as referenced against the ASRNs and the physical locations, is not consistent.

Accordingly, it is herein respectfully requested that the CDBS records be updated as follows, that all towers be referenced against the eastern-most (lowest ASRN) tower consistent with station use, and that the theoretical field parameters be normalized against the highest power tower. The proposed revisions are shown below along with existing CDBS information for both the day and night modes of operation.

Daytime Mode - Present CDBS Values

FCC ASRN	"CDBS" Tower Number	Field Ratio	CDBS Phase	CDBS Spacing	CDBS Orientation	Reference Switch
1006053	1	0.500	19.5°	0°	0° T	
1006054	2	0.934	142.9°	95°	93° T	
1006055	3	0.630	-19.5°	95°	93° T	Ref Twr 2

Daytime Mode – Requested Corrected Values

FCC ASRN	Actual Tower Location	Tower Number	1994 Lic. Theo. Field Ratio	Normalized Theoretical Field Ratio*	Theo.	Theoretical	Corrected		Revised Reference Switch
1006053	East	1	1.26	0.675	-19.5°	-162.4°	0.0°	0.0° T	
1006054	East-Central	2	1.868	1.000	142.9°	0.0°	95°	273° T	
1006055	West-Central	3	1.0	0.535	19.5°	-123.4°	190°	273° T	
1006056	West	4	Not Used	Not Used	Not Used	1			N/A

^{*-} Referenced to highest field tower (Tower 2 – East Central)

^{**-}Referenced to Eastern-most tower (Tower 1). Note: West tower not used in Day Mode.

APPLICATION FOR STATION LICENSE METHOD OF MOMENTS - PROOF OF PERFORMANCE

Station KFEQ St. Joseph, Missouri Page $\bf 6$ of $\bf 80$

Nighttime Mode - Present CDBS Values

						D. C
FCC	"CDBS" Tower	Field	CDBS	CDBS	CDBS	Reference
ASRN	Number	Ratio	Phase	Spacing	Orientation	Switch
1006053	1	1.0	0°	0°	0° T	
	2	1.8	U°.	190°	93° T	
1006054	2	0.81	0.	190°	93° T	Ref Twr 2
1006056	3	0.01	U	130		

Nighttime Mode - Requested Corrected Values

FCC	Actual Tower	Tower	1994 Lic. Theo.	Normalized Theoretical	1994 Lic. Theo.	Theoretical	Corrected	Corrected	Revised Reference
ASRN	Location	Number	Field Ratio	Field Ratio*	Phase	Phase*	Spacing**	Orientation**	Switch
1006053	East	1	0.81	0.450	0°	0°	0.0°	0.0° T	000000000000000000000000000000000000000
1006054	East-Central	2	Not Used	Not Used	Not Used				N/A
SULVANION DISPUSINGS THE	West-Central	3	1.80	1.000	0°	0°	190°	273° T	
1006056	West	4	1.0	0.556	0°	0	380°	273° T	

^{*-} Referenced to highest field tower (Tower 3 - West Central)

Array Geometry Summary

The baseline physical (unadjusted) antenna array geometry for the modeled KFEQ antenna array is summarized in the following table and includes both the KFEQ and KESJ antenna structures. Tower distances and bearings are specified with respect to the KFEQ geometric reference tower (Tower #1 - the Eastern-most tower in the KFEQ array). The land surveyor involved with the KESJ certification provided necessary information for the locations of the various towers on the site, providing a basis for the tabulation below, and the array model.

FCC ASRN	KFEQ Tower	Distance* From Reference Tower (KFEQ Tower 1 - East)	Orientation From Reference Tower (KFEQ Tower 1 - East)	Tower Physical Height*	Tower Physical Radius
1006053	1 (East)	0.0°	0.0° T	82.13°	0.231 m
1006054	2 (E-C)	95°	273° T	82.13°	0.231 m
1006055	3 (W-C)	190°	273° T	82.13°	0.231 m
1006056	4 (West)	380°	273° T	82.13°	0.231 m
	5 (KESJ T1)	309.65°	273.4° T	39.47°	0.198 m
Not Required			268.7° T	39.47°	0.198 m
Not Required	6 (KESJ T2)	261.72°		39.47°	0.198 m
Not Required	7 (KESJ T3)	303.27°	265.3° T		
Nor Required	8 (KESJ T4)	273.41°	277.4° T	39.47°	0.198 m

^{*-} Distances and heights are expressed in electrical degrees at the KFEQ frequency of 680 kHz

^{**-}Referenced to Eastern-most tower (Tower 1). Note: East-Central tower not used in Night Mode.

APPLICATION FOR STATION LICENSE METHOD OF MOMENTS - PROOF OF PERFORMANCE

Station KFEQ St. Joseph, Missouri Page 7 of 80

As described previously, the KESJ array is constructed between the two western towers of the existing four tower KFEQ antenna system (between the towers having FCC ASRNs of 1006055 and 1006056). None of the KESJ towers are active at the KFEQ frequency due to their length at the KFEQ frequency and the involved base components. Nevertheless, these towers are considered in the KFEQ MiniNEC analysis, as shown elsewhere in this document.

Within the KFEQ antenna system, using ASRNs for clarity, towers 1006053, 1006054 and 1006055 (1-E, 2-EC and 3-WC) are employed for the day mode, while KFEQ tower 1006056 (4-W) is detuned. Towers 1006053, 1006055 and 1006056 (1-E, 3-WC, 4-W) are employed for the KFEQ night mode, while KFEQ tower 1006054 (2-EC) is detuned. These detuned towers are considered for each pattern mode for the KFEQ MiniNEC analysis.

Ground System Description

KFEQ uses a buried copper ground system consisting of 7.3 meter by 7.3 meter copper screens at the tower bases and buried soft drawn copper radial wires and copper straps. The usual radial pattern is followed, with 120 equally spaced conductors arrayed around each tower out to a distance of 91.4 meters, except where bonded to intersecting transverse copper straps.

As part of the simultaneous KESJ construction on the same site, a new ground system was installed for the 4 KESJ towers, between KFEQ towers 1006055 and 1005056. This system was tied into the existing KFEQ ground system via transverse and direct copper straps. This improved the ground plane between the two widely spaced end towers of the KFEQ array.

It should be noted that, during the KFEQ renovation project, an inspection of the ground system environment was undertaken in the immediate vicinity of the KFEQ tower bases. This inspection, and initial impedance measurements, suggested that repairs were in order in the area close to the towers. Accordingly, the original ground system was uncovered at each tower base, repairs were made where possible, and supplemental copper screening, copper radial wires, and

APPLICATION FOR STATION LICENSE METHOD OF MOMENTS - PROOF OF PERFORMANCE

Station KFEQ St. Joseph, Missouri Page **8** of **80**

copper strap were buried as necessary to properly restore the ground system. Subsequent impedance measurements confirmed the efficacy of the repair effort.

Antenna Monitor and Sample System

A new *Potomac Instruments Inc.* Model AM-1901-4 Antenna Monitor, having Serial Number 839, was purchased for this renovation project. The calibration date for this monitor is October 18, 2010. The calibration was verified at the time of the proof of performance.

New *Delta Electronics, Inc.* "TCT-3" toroidal current transformers ("TCTs") were purchased (as part of the new RF phasing and coupling system) to provide sample currents to the antenna monitor. The operating characteristics of these TCTs were verified per the requirements of the FCC's Rules prior to antenna array adjustment. (See following separate section of this Statement on Sample System TCT Calibration.)

New phase stabilized, "connectorized", equal length, half-inch *Andrew Corporation* Model 42394-14VA coaxial sample cables were installed at the site under equal environmental conditions, all being buried except where they extend equally to terminating locations. The electrical length and characteristic impedance of these lines were verified prior to array adjustment per the Commission's MoM proof requirements. (A separate section of this Statement documents the sample line lengths and their characteristic impedances.)

This sampling system conforms to the provisions of Section 73.68(a) of the Commission's Rules that were in effect prior to January 1, 1986. Accordingly, if pertinent, approval of this sampling system is being requested pursuant to the FCC's Public Notice of December 9, 1985. Further, as will be demonstrated herein, the installed antenna monitor sampling system also complies with the requirements of the newly adopted MoM Proof Rules under Section 73.151(c).

APPLICATION FOR STATION LICENSE METHOD OF MOMENTS - PROOF OF PERFORMANCE

Station KFEQ St. Joseph, Missouri Page $\bf 9$ of $\bf 80$

MoM Modeling Process

The procedure for conducting a MoM proof involves making impedance measurements at each of the towers to serve as benchmarks for calibrating the array model, characterizing the base environment and taking note of any likely sources of stray base reactances. An initial model of the characteristics of each tower as an individual ("self" modeling) is then done. Model tower characteristics (height and width) can then be adjusted to "converge" the modeled resistance of the tower to the measured values. Reactance data are then converged by using conventional circuit analysis methods to account for the stray feed reactances encountered at each tower base.

Using the calibrated antenna model, theoretical field parameters can then be introduced into the software to synthesize the desired pattern. Required base currents and driving point impedance conditions are derived along with a set of antenna monitor parameters for the modeled array. These parameters are then used as "targets" to achieve the authorized pattern as the RF phasing and coupling system is adjusted. The following text describes the specific approach taken in the modeling and adjustment of this particular directional antenna system.

Tower Impedance Measurements to Verify Method of Moments Model

In order to calibrate the MoM model, impedance measurements were taken at each of the tower bases. As discussed in the previous section, by relating the individual as-measured antenna conditions to the model ("converging the model"), confidence is achieved for the derivation of system (antenna monitor) parameters. Since there are four "unused" towers involved (the towers of the co-located KESJ array), measurements also were taken at the bases of these structures at the KFEQ frequency and incorporated into the development of the KFEQ model. Measurements were also taken of "as-adjusted" filter/trap/detuning circuits and incorporated into the base circuit analysis where appropriate.

In particular, impedance measurements were conducted using a precision, calibrated measurement system consisting of a *Hewlett-Packard* model 8753C network analyzer in conjunction with a *Tunwall Radio* directional coupler system and an *Electronic Navigation*

APPLICATION FOR STATION LICENSE METHOD OF MOMENTS - PROOF OF PERFORMANCE

Station KFEQ St. Joseph, Missouri Page 10 of 80

Industries (ENI) Model 310 L RF amplifier. Analyzer calibration was field verified prior to each measurement using the procedures specified in the manufacturer's instruction manual and using precision calibration standards.

After calibration of the system, antenna base impedance measurements were made at each tower at the location of the final output jacks³ ("J-plugs") within the respective Antenna Tuning Units ("ATUs"). As each tower was being measured, all the other tower bases were "open circuited" at the same J-plug impedance measurement locations.

This J-Plug reference point at each ATU is located immediately adjacent to the sampling transformer of the antenna monitor system at the output of the ATU system enclosure. At each ATU enclosure, it was confirmed that the tower RF current passes directly from that point, through heavy conductors, through the tuning unit enclosure bowl insulator, and on to the tower attachment point above the base insulators, without any intervening components or devices, unless otherwise noted and accounted for in the following text.

With respect to the KFEQ towers, filtering and detuning circuits are located after the sampling transformers, as is a static drain choke for each tower. Therefore their presence was considered in addition to the other existing base reactances (such as the "Austin Ring" lighting transformers and the base insulators) at the KFEQ operating frequency of 680 kHz. The KFEQ West Tower (Tower 4) is unused while the station is in the day mode, therefore a 680 kHz detuning reactance is switched into this tower's circuitry while the station is in the daytime mode. This reactance was adjusted to the predicted value necessary to detune this tower (which is reported as a lumped load in the pertinent portion of the analysis. Similarly, the East-Central tower (Tower 2) is unused in the nighttime mode of operation, therefore it was handled and reported in a similar manner. Additional 680 kHz pass – 1550 kHz reject circuits are located in the KFEQ antenna tuning units, but since there are located before the TCT reference point, their existence is not pertinent to the analysis.

 $^{^{3}}$ This point is referred to in this report as the tower "reference point" as it is the location where the TCT's samples are taken.

APPLICATION FOR STATION LICENSE METHOD OF MOMENTS - PROOF OF PERFORMANCE

Station KFEQ St. Joseph, Missouri Page 11 of 80

Regarding the KESJ towers, there are no components in shunt with the KESJ ATU outputs following the sampling transformers other than static drain chokes. The presence of the static drain chokes was taken into account using the manufacturer's stated inductive reactances at 680 kilohertz during the calibration of the MoM model to the measured base impedances. The presence of the tower base insulator's reactances was also taken into account for reactance consequences at the 680 kHz operating frequency. Consideration was also made of the potential influence of the KESJ towers on the KFEQ antenna system. None is expected to occur because the KESJ towers are physically 0.11 wavelength at 680 kHz and therefore are not sufficiently tall enough to flow meaningful current at that frequency. Further, the KESJ tuning units have 680 kHz stop traps installed (prior to the TCT reference point - hence they are not cognizable in the analysis) which further prevents current flow to ground from the tower, effectively isolating the KESJ towers. As such, these towers are electrically transparent to KFEQ without further special treatment. The KESJ towers were nevertheless included in the KFEQ analysis. The high reactance base area lumped loads created by the static drain chokes and base insulators were incorporated in the model construction, as shown in the following. Measured impedances at the array reference points at 680 KHz materially agree with the modeled expectations.

Tower Base Environment Calculations

Tower base environment circuit calculations were performed both manually and by using the "WCAP" network analysis program software provided by *Westberg Consulting*. (The WCAP software performs nodal analysis calculations, similar to "SPICE" and other circuit analysis software.) These calculations were used throughout the proof process to relate the MoM modeled impedances to the ATU output measurement (reference) points.

As shown on the following pages, the Open Circuit Reactance (" X_{OC} ") found at each tower was calculated for the assumed base conditions for all towers. This value was then used in the MoM model as a "load" at ground level for the open circuited ("OC") MoM individual model "self" (individual tower) case. Using these assumed lumped loads, base environment, and MoM analysis, initial values were derived and the model converged.

APPLICATION FOR STATION LICENSE METHOD OF MOMENTS - PROOF OF PERFORMANCE

Station KFEQ St. Joseph, Missouri Page **12** of **80**

A schematic of the assumed circuit, along with a summary of results and a tabulation of WCAP calculated values, is provided in the following pages. Both the KFEQ and the KESJ cases are individually discussed since the base circuits are different for each station. Values for the various shunt stray reactances for base insulators, static drain chokes, and lighting system components (if present) are based upon manufacturer supplied information, and are included below the following representative schematics, along with their combined "lumped load" assumptions.

In each of the WCAP tabulations and the representative schematic shown for KFEQ, "Node 2" represents the ATU output "reference point" (TCT location). "Node 5" represents the tower feed-point. "Node 0" represents ground potential. In the Open Circuit "Tower Self" analysis tabulations for each tower, the calculated ATU output impedances appear under the "TO IMPEDANCE" columns, following the "phantom" 1 ohm resistors (R_{3-2}) . This phantom resistor is included in series with the drive current sources (I_{0-3}) to provide defined calculation points in the software. The tower feed-point impedances from the MoM model are represented by "complex loads" from "Node 5" to ground (R_{5-0}) .

In each of the WCAP tabulations and the representative schematic shown for KESJ, "Node 2" represents the ATU output "reference point" (TCT location). "Node 3" represents the tower feed-point. "Node 0" represents ground potential. In the Open Circuit "Tower Self" analysis tabulations for each tower, the calculated ATU output impedances appear under the "TO IMPEDANCE" columns, following the "phantom" 1 ohm resistors (R_{1-2}). As with the KFEQ analysis, this phantom resistor is included in series with the drive current sources (I_{0-1}) to provide defined calculation points in the software. The tower feed-point impedances from the MoM model are represented by "complex loads" from "Node 3" to ground (R_{3-0}).

As shown, the modeled and measured base impedances at the ATU output jacks (with the other towers open circuited at their ATU output jacks) agree with each other within \pm ohms and \pm percent for resistance and reactance, as required under the Commission's MoM Rules.

APPLICATION FOR STATION LICENSE METHOD OF MOMENTS - PROOF OF PERFORMANCE

Station KFEQ St. Joseph, Missouri Page 13 of 80

Representative Open Circuit Tower Base Environment Schematic for all KFEQ Towers

Summary of Completed Open Circuit Analysis of KFEQ Tower Base Environment

Tower Number and Location	Tower Feed Inductance	Tower Feed Reactance X _L	Complex Load <u>Impedance</u> MiniNEC Z _{Modeled}	Reference Point* Z _{ATU} Modeled	Reference Point* Z _{ATU} Measured
KFEQ 1 (East)	6.772 μΗ	28.9 Ω	35.598 +j0.55324 Ω	35.48 +j29.298 Ω	35.6 +j29.3 Ω
KFEQ 2 (East-Central)	1.804 μΗ	7.70 Ω	38.055 +j18.251 Ω	38.18 +j25.813 Ω	38.2 +j25.8 Ω
KFEQ 3 (West-Central)	1.838 μΗ	7.90 Ω	40.391 +j20.308 Ω	40.54 +j28.001 Ω	41.3 +j28.0 Ω
KFEQ 4 (West)	6.040 µH	25.8 Ω	36.223 +j1.3596 Ω	36.13 +j26.978 Ω	37.1 +j26.9 Ω

Notes:

* - At KFEQ ATU Output Jack J-Plug (TCT Location); Designated as ATU "Reference Point"

Static Drain Choke Reactance at 680 kHz: $+15,500 \Omega$ Inductance: 3627.8 μ H

Base Insulator Reactance at 680 kHz: - $14,628 \Omega$ Capacitance: $\sim 16 \text{ pF}$

Austin Ring Lighting Transformer Reactance at 680 kHz: - 10,176 Ω Capacitance: ~ 23 pF

Lumped Load Assumption at 680 kHz: - 9792.9 Ω (Base Insulator, Austin Ring Transformer and Static Drain Choke)

Reject/Detune circuit measured values are included in the following KFEQ Tower WCAP Summaries

APPLICATION FOR STATION LICENSE METHOD OF MOMENTS - PROOF OF PERFORMANCE

Station KFEQ St. Joseph, Missouri Page **14** of **80**

Representative Open Circuit Tower Base Environment Schematic for all KESJ Towers

Summary of Completed Open Circuit Analysis of KESJ Tower Base Environment

Tower Number And Location	Tower Feed Inductance	Tower Feed Reactance	Complex Load <u>Impedance</u> MiniNEC Z _{Modeled}	Reference Point* Z _{ATU} Modeled	Reference Point* Z _{ATU} Measured
KFEQ 5 (KESJ T-1 - NW)	7.196 µH	30.7 Ω	5.6756 –j284.61 Ω	6.04 –j261.110 Ω	5.30 –j261.1 Ω
KFEQ 6 (KESJ T-2 - SE)	7.274 μΗ	31.1 Ω	5.6666 –j284.58 Ω	6.03 –j260.706 Ω	5.10 –j260.7 Ω
KFEQ 7 (KESJ T-3 - SW)	6.924 μΗ	29.6 Ω	5.6382 –j284.52 Ω	6.00 –j262.313 Ω	5.39 –j262.3 Ω
KFEQ 8 (KESJ T-4 - NW)	7.223 µH	30.9 Ω	5.5575 -j286.32 Ω	5.92 –j262.802 Ω	4.21 –j262.8 Ω

Notes:

* - At KESJ ATU Output Jack J-Plug (TCT Location); Designated as ATU "Reference Point"

Static Drain Choke Reactance at 680 kHz: $+4,605.8\,\Omega$ Inductance: $1,087.1\,\mu\text{H}$

Base Insulator Reactance at 680 kHz: - 11,702.6 Ω Capacitance: ~ 20 pF

Lumped Load Assumption at 680 kHz: + 7,594.9 Ω (Base Insulator and Static Drain Choke)

Station KFEQ St. Joseph, Missouri Page 15 of 80

Circuit Analysis Used for Each Tower to Verify Method of Moments Model

WCAP Tower Base Open Circuit "Self" Analysis - KFEQ Tower 1 (East)

KFEQ	T1 (E) (Open Circuit - Self	WCAP OUTPUT AT FREQUENCY	(; 0.680 MHz
NOD:	E VOL	TAGES		
Node	e: 1	0.0849 ⋨	39.5455° V	
Node	e: 2	46.0155 ム	39.5455° V	
Node	e: 3	46.7909 	38.7658° V	
Nod	e: 4	0.0363 ∡	-140.4545° V	
Nod	e: 5	35.5405 ∡	0.6593° V	
W	CAP P	ART	CURRENT IN	CURRENT OUT
•	WCAP	рарт	BRANCH VOLTAGE	BRANCH CURRENT
	<u>wcar</u> 5→0	35.58900000	35.54 4 0.659° V	1.00 ≰ -0.231° A
R C	5 → 0	0.00001600	35.54 ≰ 0.659° V	0.00 ∡ 90.659° A
С	5 → 0	0.00001300	35.54 ≰ 0.659° V	0.00 ≰ 90.659° A
	3 -7 0 2→5	6.77200000	28.89 4 90.108° V	1.00 ≰ 0.108° A
L L	2 -> 0	3627.80000000	46.02 ≰ 39.545° V	0.00 ≰ -50.455° A
C	2→1	0.00208000	45.93 4 39.545° V	0.41 ∡ 129.545° A
L	$2 \rightarrow 1$	26.37000000	45.93 ≰ 39.545° V	0.41
C	1→4	0.00100000	0.12 ≰ 39.545° V	0.01 ≰ 129.545° A
L	4→0	16.40000000	0.04	0.01 ≰ 129.545° A
R	3→2	1.00000000	1.00 ≰ -0.000° V	1.00 ≰ -0.000° A
	:0 A D T	ADT	FROM IMPEDANCE	TO IMPEDANCE
	CAP I		35.59 + j 0.553	0.00 + j 0.000
R	5 → 0	35.58900000 0.00001600	0.00 - j 14628.212	0.00 + j 0.000
C	5 → 0	0.00001800	0.00 - j 10176.147	0.00 + j 0.000
C	5 → 0	6.77200000	35.59 + j 29.276	35.59 + j 0.34
L	2 → 5	3627.8000000	0.00 + j 15500.015	0.00 + j 0.00
L	2→0	0.00208000	0.00 - j 112.733	0.00 - j 0.20
C	2→1	26.37000000	-0.01 + j 112.876	0.00 + j 0.20
L	2 → 1	0.00100000	0.00 - j 163.981	-0.01 + j 70.07
C	1 -> 4	16.40000000	0.00 + j 70.070	0.00 + j 0.00
L R	4→0 3→2	1.00000000	36.48 + j 29.298	35.48 + j 29.29
'`	- / -	-		Measured: 35.6 + j 29.
				(Difference: 0.120 0.00)

Station KFEQ St. Joseph, Missouri Page **16** of **80**

WCAP Tower Base Open Circuit "Self" Analysis – KFEQ Tower 1 (East) (Continued)

KFEQ T1 (E) Open Circuit - Self WCAP OUTPUT AT FREQUENCY: 0.680 MHz						
WCAP P	ART V	SWR				
WCAP I	NPUT DATA:					
	0.6800	0.00010000	1			
R	35.58900000	5	0	0.55324000		
C	0.00001600	5	0			
C	0.00002300	5	0			
L	6.77200000	2	5	0.00000000		
L	3627.80000000	2	0	0.0000000		
C	0.00208000	2	1			
L	26.37000000	2	1	0.0000000		
С	0.00100000	1	4			
L	16.40000000	4	0	0.00000000		
R	1.00000000	3	2	0.00000000		
1	1.00000000	0	3	0.00000000		

Station KFEQ St. Joseph, Missouri Page 17 of 80

WCAP Tower Base Open Circuit "Self" Analysis - KFEQ Tower 2 (East-Central)

ZEEO 7	C2 (EC) Open Circuit – Sel	f WCAP OUTPUT AT FREQUEN	CY: 0.680 MHz
KFEQ	LZ (EC) Open Circuit - Sei	Work Golf of M. 21.22	
NODE	VOL	<u>.TAGES</u>		
Node:		0.0850 ∡	34.0618° V	
Node:	: 2	46.0881 ∡	34.0618° V	
Node:	: 3	46.9198 ∡	33.3778° V	
Node:	: 4	0.0363 ∡	-145.9382° V	
Node	: 5	42.2750 <u>4</u>	25.3744° V	
WC	AP P	ART	CURRENT IN	CURRENT OUT
W	CAP	PART	BRANCH VOLTAGE	BRANCH CURRENT
	<u>0711</u> 5→0	38.05500000	42.28	1.00 ≰ -0.248° A
	5 > 0	0.00001600	42.28 4 25.374° V	0.00 ≰ 115.374° A
	5 → 0	0.00002300	42.28 4 25.374° V	0.00 ≰ 115.374° A
	2→5	1.80400000	7.70 ≰ 90.117° V	1.00 ≰ 0.117° A
	2→0	3627.80000000	46.09 ≰ 34.062° V	0.00 ≰ -55.938° A
	2→1	0.00208000	46.00 ≰ 34.062° V	0.41 4 124.062° A
	2→1	26.37000000	46.00 த 34.062° V	0.41 ≰ -55.938° A
	1→4	0.00100000	0.12 ≰ 34.062° V	0.01 ₄ 124.062° A
l	4→0	16.40000000	0.04 ≰145.938° V	0.01 ₄ 124.062° A
R	3→2	1.00000000	1.00 \$ 0.000° V	1.00 ≰ 0.000° A
l wo	CAPF	PART	FROM IMPEDANCE	TO IMPEDANCE
	5 -> 0	38.05500000	38.05 + j 18.251	0.00 + j 0.000
1	5→0	0.00001600	0.00 - j 14628.212	0.00 + j 0.000
Ī	5→0	0.00002300	0.00 - j 10176.147	0.00 + j 0.000
i -	2→5	1.80400000	38.29 + j 25.771	38.29 + j 18.063
_	2→0	3627.80000000	0.01 + j 15500.015	0.00 + j 0.000
_	2 -> 1	0.00208000	0.01 - j 112.733	0.00 - j 0.208
1	2→1	26.37000000	-0.01 + j 112.876	0.00 + j 0.208
_	1→4	0.00100000	0.00 - j 163.981	-0.01 + j 70.070
1	4→0	16.40000000	-0.01 + j 70.070	0.00 + j 0.000
ŀ	3→2	1.00000000	39.18 + j 25.813	38.18 + j 25.813
				Measured: 38.2 + j 25.8
				(Difference: 0.02 0.013)

Station KFEQ St. Joseph, Missouri Page 18 of 80

WCAP Tower Base Open Circuit "Self" Analysis – KFEQ Tower 2 (East-Central) (Continued)

FEQ T2 ((EC) Open Circuit -	Self WCAP O	UTPUT A	AT FREQUENCY: 0.680 MHz	
VCAP P	ART V	SWR			
NCAP I	NPUT DATA:				
	0.6800	0.00010000	1		
R	38.05500000	5	0	18.25100000	
С	0.00001600	5	0		
С	0.00002300	5	0		
L	1.80400000	2	5	0.00000000	
L	3627.80000000	2	0	0.00000000	
С	0.00208000	2	1	0.00000000	
L	26.37000000	2	1	0.00000000	
С	0.00100000	1	4 0	0.00000000	
L	16.40000000	4	2	0.00000000	
R	1.00000000	3 0	3	0.00000000	
l	1.00000000	U	J	0.000000	

Station KFEQ St. Joseph, Missouri Page 19 of 80

WCAP Tower Base Open Circuit "Self" Analysis - KFEQ Tower 3 (West-Central)

KFEQ	T3 (W	C) Open Circuit	- Self WCAP	OUTI	PUT AT F	REQU	JENCY: 0.680 MH:	Z		
NOD	E VO	LTAGES								
Nod			∡ 34.6314°	V						
Nod	le: 2	49.2728	∡ 34.6314°	V						
Nod	le: 3	50.0988	4 33.9814°	V						
Nod	de: 4	0.0388	4 -145.3686°	V						
Nod	de: 5	45.2938	ع 26.4296°	' V						
W	CAP P	PART	CURR	ENT	IN		CUR	RENT	OUT	.
7	WCAP	PART	BRAN	CH V	/OLTAC	<u>E</u>	BRA	NCH	CUR	RENT
R	5→0	40.3910000	0 45.29 z	<u>,</u>	26.430°	V	1.00	4	-0.26	3° A
C	5→0	0.0000160	0 45.29 z	4	26.430°	V	0.00	4. 1	16.43	0° A
C	5→0	0.0000230	0 45.29 z	4	26.430°	V	0.00	4 1	16.43	
L	2→5	1.8380000	0 7.84 2	4	90.124°	V	1.00	4	0.12	4° A
L	2→0	3627.8000000	0 49.27	4	34.631°	V	0.00	4 -	55.36	9° A
С	2→1	0.0020800	0 49.18	4	34.631°	V	0.44		.24.63	
L	2→1	26.3700000	0 49.18	4	34.631°	V	0.44	•	-55.36	
С	1→4	0.0010000	0 0.13	4	34.631°	V	0.01	4 1	.24.63	1° A
L	4→0	16.4000000	0 0.04	4 -	·145.369°	V	0.01	4 1	24.63	1° A
R	3→2	1.0000000	0 1.00	4	-0.000°	V	1.00	4	-0.00	0° A
W	/CAP I	PART	FROM	IME	PEDANC	<u>E</u>	<u>T(</u>	O IMP	EDA	<u>NCE</u>
R	5→0	40.3910000	40.39	+	j 20	.308	0	+ 00.	j	0.000
С	5→0	0.0000160	0.00	-	j 14628	.212	0	.00 +	j	0.000
С	5→0	0.0000230	-0.01	-	j 10176	.147	0	.00 +	j	0.000
L	2→5	1.8380000	40.66	+	j 27	.955	40	.66 +	j	20.102
L	2→0	3627.8000000	0.01	+	j 15500	.015	0	.00 +	j	0.000
С	2→1	0.0020800	0.01	-	j 112	.733	0	.00 -	,	0.208
L	2→1	26.3700000	-0.01	+	j 112	.876	0	.00 +	,	0.208
C	1→4	0.0010000	0.00	-	j 163	.981	0	.01 +	,	70.070
L	4→0	16.4000000	0.00	+	j 70	.070	0	+ 00.	,	0.000
R	3→2	1.0000000	0 41.54	+	j 28	3.001	40	.54 +	· j	28.001
							Measured:	41.3	+	-
							(Difference:	0.76		0.001)

Station KFEQ St. Joseph, Missouri Page 20 of 80

WCAP Tower Base Open Circuit "Self" Analysis – KFEQ Tower 3 (West-Central) (Continued)

KFEQ T3	KFEQ T3 (WC) Open Circuit - Self WCAP OUTPUT AT FREQUENCY: 0.680 MHz						
WCAP :	PART V	SWR					
WCAP	INPUT DATA:						
	0.6800	0.00010000	1				
R	40.39100000	5	0	20.30800000			
С	0.00001600	5	0				
С	0.00002300	5	0				
L	1.83800000	2	5	0.0000000			
L	3627.80000000	2	0	0.0000000			
С	0.00208000	2	1				
L	26.37000000	2	1	0.0000000			
С	0.00100000	1	4				
L	16.40000000	4	0	0.0000000			
R	1.00000000	3	2	0.0000000			
1	1.00000000	0	3	0.0000000			

Station KFEQ St. Joseph, Missouri Page 21 of 80

WCAP Tower Base Open Circuit "Self" Analysis – KFEQ Tower 4 (West)

KFEQ	T4 (W)	Open Circuit - Self	WCAP OUTPUT AT FREQUENC	Y: 0.680 MHz
NOD	E VOL	<u>.TAGES</u>		
Nod		0.0832 ∡	36.7457° V	
Nod		45.0945 	36.7457° V	
Nod	e: 3	45.8997 ∡	35.9989° V	
Nod	e: 4	0.0355 ≰	-143.2543° V	
Nod	le: 5	36.2040 ∡	1.9141° V	
XX7.	CAP P	ΛРТ	CURRENT IN	CURRENT OUT
VV	CAI I	AILI		
1	WCAP	PART	BRANCH VOLTAGE	BRANCH CURRENT
R	5→0	36.22300000	36.20 ≰ 1.914° V	1.00 40.235° A
С	5→0	0.00001600	36.20 ∡ 1.914° V	0.00 ≰ 91.914° A
С	5→0	0.00002300	36.20 ≰ 1.914° V	0.00 ≰ 91.914° A
L	2→5	6.04000000	25.77 ∡ 90.110° V	1.00 4 0.110° A
L	2→0	3627.80000000	45.09 ∡ 36.746° V	0.00 ≰ -53.254° A
С	2→1	0.00208000	45.01 ∡ 36.746° V	0.40 ≰ 126.746° A
L	2→1	26.37000000	45.01 ₄ 36.746° V	0.40 ≰ -53.254° A
С	1→4	0.00100000	0.12 ≰ 36.746° V	0.01 ≰ 126.746° A
L	4→0	16.40000000	0.04 ≰ -143.254° V	0.01 ∡ 126.746° A
R	3→2	1.00000000	1.00	1.00 ≰ 0.000° A
			EDOM IMPEDANCE	TO IMPEDANCE
<u>W</u>	/CAP I		FROM IMPEDANCE 36.22 + i 1.360	0.00 + j 0.000
R	5→0	36.22300000	30.22	0.00 + j 0.000
C	5→0	0.00001600		0.00 + j 0.000
C	5 → 0	0.00002300	0.00 - j 10176.14/ 36.24 + j 26.947	36.24 + j 1.141
L	2→5	6.04000000	0.00 + j 15500.015	0.00 + j 0.000
L	2→0	3627.80000000	0.00 + j 15300.015	0.00 - j 0.208
C	2→1	0.00208000	,	0.00 + j 0.208
L	2→1	26.37000000	0.00 + j 112.876 0.00 - j 163.981	-0.01 + j 70.070
C	1→4	0.00100000	-0.01 + j 70.070	0.00 + j 0.000
L	4→0	16.40000000	37.13 + j 26.978	36.13 + j 26.978
R	3→2	1.00000000	37.13 i j 20.370	
				Measured: 37.1 + j 26.9
				(Difference: 0.970 0.078)

Station KFEQ St. Joseph, Missouri Page 22 of 80

WCAP Tower Base Open Circuit "Self" Analysis – KFEQ Tower 4 (West) (Continued)

WCAP PART VSWR 0.6800 0.00010000 1	KFEQ T4	(W) Open Circuit - S	Self WCAP OU	JTPUT A	T FREQUENCY: 0.680 MHz	
0.6800 0.00010000 1 R 36.22300000 5 0 1.35960000 C 0.00001600 5 0 0 0 C 0.00002300 5 0 </th <th>WCAP I</th> <th>PART V</th> <th>SWR</th> <th></th> <th></th> <th></th>	WCAP I	PART V	SWR			
0.6800 0.00010000 1 R 36.22300000 5 0 1.35960000 C 0.00001600 5 0 0 0 C 0.00002300 5 0 </th <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>						
0.6800 0.00010000 1 R 36.22300000 5 0 1.35960000 C 0.00001600 5 0 0 0 C 0.00002300 5 0 </th <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>						
R 36.22300000 5 0 1.35960000 C 0.00001600 5 0 C 0.00002300 5 0 L 6.04000000 2 5 0.000000000 L 3627.80000000 2 0 0.000000000 C 0.00208000 2 1 L 26.37000000 2 1 0.00000000 C 0.00100000 1 4 L 16.40000000 4 0 0.00000000 R 1.000000000 3 2 0.000000000	WCAP 1	INPUT DATA:				
C 0.00001600 5 0 C 0.00002300 5 0 L 6.04000000 2 5 0.000000000 L 3627.80000000 2 0 0.00000000 C 0.00208000 2 1 L 26.37000000 2 1 0.00000000 C 0.00100000 1 4 L 16.40000000 4 0 0.00000000 R 1.000000000 3 2 0.00000000		0.6800	0.00010000	1		
C 0.00001600 5 0 C 0.00002300 5 0 L 6.04000000 2 5 0.00000000 C 0.00208000 2 1 L 26.37000000 2 1 0.00000000 C 0.00100000 1 4 L 16.40000000 4 0 0.00000000 R 1.000000000 3 2 0.00000000	R	36.22300000	5	0	1.35960000	
C 0.00002300 5 0 L 6.04000000 2 5 0.00000000 L 3627.80000000 2 0 0.00000000 C 0.00208000 2 1 L 26.37000000 2 1 0.00000000 C 0.00100000 1 4 L 16.40000000 4 0 0.00000000 R 1.000000000 3 2 0.00000000			5	0		
L 6.04000000 2 5 0.00000000 L 3627.80000000 2 0 0.00000000 C 0.00208000 2 1 L 26.37000000 2 1 0.00000000 C 0.00100000 1 4 L 16.40000000 4 0 0.00000000 R 1.000000000 3 2 0.00000000		0.00002300	5	0		
C 0.00208000 2 1 L 26.37000000 2 1 0.00000000 C 0.00100000 1 4 L 16.40000000 4 0 0.00000000 R 1.000000000 3 2 0.00000000	L	6.04000000	2	5	0.0000000	
L 26.37000000 2 1 0.00000000 C 0.00100000 1 4 L 16.40000000 4 0 0.00000000 R 1.00000000 3 2 0.00000000		3627.80000000	2	0	0.0000000	
C 0.00100000 1 4 L 16.40000000 4 0 0.00000000 R 1.00000000 3 2 0.00000000	С	0.00208000	2	1		
L 16.40000000 4 0 0.00000000 R 1.00000000 3 2 0.00000000	L	26.37000000	2	1	0.0000000	
R 1.00000000 3 2 0.00000000	С	0.00100000	1	4		
1,000000	L	16.40000000	4	0		
1 1 00000000 0 3 0.00000000	R	1.00000000	3	2		
1.0000000	1	1.00000000	0	3	0.0000000	

APPLICATION FOR STATION LICENSE METHOD OF MOMENTS - PROOF OF PERFORMANCE

Station KFEQ St. Joseph, Missouri Page **23** of **80**

WCAP Tower Base Open Circuit "Self" Analysis – KFEQ Tower 5 (KESJ T1 (NW))

IOI	DE VO	<u>LTAGES</u>			. ,									
Nod			•	4556°										
Nod		261.1801	•	6749°										
Nod	le: 3	293.6615	∡ -88.	8136°	V									
,	WCAP	PART		CUF	RE	NT I	[N		CURRENT OUT					
	WCAP	PART		BRAN	ICH	vo	LTAC	E	<u>BR</u>	ANC	H		REN	T
R	3 → 0	5.6756	0000	293.66	4 .		3.814°		1.03	4			.044°	A
C	3→0	0.0000		293.66	女	-88	3.814°	V	0.03	女			.186°	P
L	2→3	7.1960		32.49	4	90	0.071°	V	1.06	4			.071°	F
L	2→0	1078.1000		261.18	4	-88	3.675°	V	0.06	4			.675°	F
R	1→2	1.0000	00000	1.00	4	(°000.c	V	1.00	4		0	.000°	1
	vo a D. I	n A TOUT		FROM	1 TN/	DEI	DANC	E	r	го і	MP	EDA	ANCI	E
	VCAP I			5.68			284.		-	.00	+	j	0.0	
R	3→0	5.675			_	-	11702			.00	+	j	0.0	000
C	3→0	0.000				,	247			.41		•	277.8	
L	2→3	7.196 1078.100		0.00			4606			0.00		j	0.0)00
L R	2→0 1 →2	1.000		7.04		j		.110			-	j	261.1	10
ĸ	172	1.000	00000	,,,,,		•								
									Measured:			j	261.	
									(Difference:	0.74	1		0.03	1)
V	VCAP I	PART	VSW	/R										
****	- A T- T'N	יא בו ידיו ומי	ΓΛ.											
VVC	JAP III	PUT DAT	<u>IA</u> .											
		0.6800	0.00010000	0 1										
R	5.	67560000	3	0	-284	.610	00000							
С	0.	00002000	3	0										
L	7.	19600000	2	3			00000							
L	1078	.10000000	2	0			00000							
R	1	.00000000	1	2			00000							
		.000000000	0	1	Ω	.000	00000							

Station KFEQ St. Joseph, Missouri Page 24 of 80

WCAP Tower Base Open Circuit "Self" Analysis – KFEQ Tower 6 (KESJ T2 (SE))

KFEQ Tower 6 - Open Circuit - Self WCAP OUTPUT AT FREQUENCY: 0.680 MHz													
NOT	E VOI	LTAGES											
Nod		260.8010	<u>ئے</u> -88.4	556°	V								
Nod	-	260.7760	∡ -88.€	752°	V								
Nod	le: 3	293.6067	<u>ئ</u> -88.8	155°	٧								
,	WCAP	PART		CURRENT IN					CURRENT OUT				
,	WCAP	PART		BRA	NCH	VOI	LTAC	ξE	BRANCH CURRENT				
R .	3→0	5.6662		93.61			.815°	V	1.03	4		0.044°	Α
C	3→0	0.0000		93.61	4	-88	.815°	V	0.03	4		1.185°	Α
L	2→3	7.2740		32.84	4	90.	.071°	٧	1.06	女		0.071°	Α
L	2→0	1078.1000	00000	260.78	4	-88	.675°	V	0.06	女	-17	'8.675°	Α
R	1→2	1.0000	00000	1.00	4	0	.000°	V	1.00	4		0.000°	Α
**	JCAD I	DADT	,	FROI	л тм	PED	ANC	E.	5	го і	MPEI	DANC:	E
	VCAP I	5.666	•	5.67		i		22 .580	-	.00	+ j	0.0	1
R	3→0 3→0	0.000		0.00		•	11702		0	.00	+ j	0.0	000
C	3 → 0 2→3		00000	5.40		j		.748		.40	- j	277.8	327
L	2 -7 3 2 -7 0	1078.100		0.00		j	4606		C	.00	+ j	0.0	000
l R	1→2		00000	7.03		j		.706	ε	.03	- j	260.7	706
"	± / =												_
									Measured:			•	
				_					(Difference:	0.93	5	0.00	6)
W	WCAP PART VSWR												
WC	WCAP INPUT DATA:												
VVC	JAI III	I OI DILI	<u></u> .										
		0.6800	0.00010000	1									
R	5.	66620000	3	0	-284	.5800	0000						
С	0.	00002000	3	0									
L	7.	27400000	2	3	0	.0000	0000						
L	1078.	10000000	2	0		.0000							
R	1.	00000000	1	2		.0000							
	1.	00000000	0	1	0	.0000	0000						

Engineering Statement APPLICATION FOR STATION LICENSE

METHOD OF MOMENTS - PROOF OF PERFORMANCE

Station KFEQ St. Joseph, Missouri Page 25 of 80

WCAP Tower Base Open Circuit "Self" Analysis – KFEQ Tower 7 (KESJ T3 (SW))

WCAP PART BRANCH VOLTAGE BRANCH VOLTAGE R 3→0 5.63820000 293.64 ≰ -88.821° V 1.03 2 C 3→0 0.00002000 293.64 ≰ -88.821° V 0.03 2 L 2→3 6.92400000 31.27 ≰ 90.071° V 1.06 2	RENT OUT CH CURRENT 0.044° A 1.179° A 0.071° A 1.78.689° A 0.000° A								
Node: 1 262.4060	CH CURRENT 0.044° A 1.179° A 0.071° A -178.689° A								
Node: 2 262.3812	CH CURRENT 0.044° A 1.179° A 0.071° A -178.689° A								
WCAP PART CURRENT IN CUR WCAP PART BRANCH VOLTAGE BRANCH VOLTAGE R $3 \rightarrow 0$ 5.63820000 $293.64 & -88.821^{\circ}$ V 1.03 20 C $3 \rightarrow 0$ 0.00002000 $293.64 & -88.821^{\circ}$ V 0.03 20 C	CH CURRENT 0.044° A 1.179° A 0.071° A -178.689° A								
WCAP PART BRANCH VOLTAGE BRANCH VOLTAGE R 3→0 5.63820000 293.64 ≰ -88.821° V 1.03 2 C 3→0 0.00002000 293.64 ≰ -88.821° V 0.03 2 L 2→3 6.92400000 31.27 ≰ 90.071° V 1.06 2	CH CURRENT 0.044° A 1.179° A 0.071° A -178.689° A								
WCAP PART BRANCH VOLTAGE BRANCH VOLTAGE R 3→0 5.63820000 293.64 ≰ -88.821° V 1.03 2 C 3→0 0.00002000 293.64 ≰ -88.821° V 0.03 2 L 2→3 6.92400000 31.27 ≰ 90.071° V 1.06 2	CH CURRENT 0.044° A 1.179° A 0.071° A -178.689° A								
R $3\rightarrow 0$ 5.63820000 293.64 $\not 4$ -88.821° V 1.03 2 C $3\rightarrow 0$ 0.00002000 293.64 $\not 4$ -88.821° V 0.03 2 L $2\rightarrow 3$ 6.92400000 31.27 $\not 4$ 90.071° V 1.06 2	0.044° A 1.179° A 0.071° A 1.178.689° A								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.179° A 0.071° A -178.689° A								
L 2→3 6.92400000 31.27 ≰ 90.071° V 1.06	0.071° A 4 -178.689° A								
	-178.689° A								
2-70 1078.10000000 202.30 4 30.000	ር 0.000° A l								
R 1→2 1.00000000 1.00 4 0.000° V 1.00 4	,								
WCAP PART FROM IMPEDANCE TO	<u>IMPEDANCE</u>								
R 3→0 5.63820000 5.64 - j 284.520 0.00	+ j 0.000								
C 3→0 0.00002000 0.00 - j 11702.569 0.00	+ j 0.000								
L 2→3 6.92400000 5.37 - j 248.186 5.37	- j 277.769								
L 2→0 1078.10000000 0.00 + j 4606.253 0.00	+ j 0.000								
R $1 \rightarrow 2$ 1.00000000 7.00 - j 262.313 6.00	- j 262.313								
Measured: 5.39 - j 262.3									
(Difference: 0.6	· -								
WCAP PART VSWR	_								
WOAFFANI									
WCAP INPUT DATA:									
0.6800 0.00010000 1									
R 5.63820000 3 0 -284.52000000									
C 0.00002000 3 0									
L 6.92400000 2 3 0.00000000									
L 1078.10000000 2 0 0.00000000									
R 1.00000000 1 2 0.00000000									
1 1.00000000 0 1 0.00000000									

Station KFEQ St. Joseph, Missouri Page 26 of 80

WCAP Tower Base Open Circuit "Self" Analysis – KFEQ Tower 8 (KESJ T4 (NE))

C 3→0 0.00002000 295.48									
Node: 1 262.8928									
Node: 2 262.8684 $\rlap{$\scriptstyle 4$}$ -88.7103° $\rlap{$\scriptstyle V$}$ Node: 3 295.4833 $\rlap{$\scriptstyle 4$}$ -88.8450° $\rlap{$\scriptstyle V$}$ WCAP PART CURRENT IN CURRENT $\rlap{$\scriptstyle WCAP\ PART}$ BRANCH VOLTAGE BRANCH CURRENT $\rlap{$\scriptstyle C3$}$ 0 0.00002000 295.48 $\rlap{$\scriptstyle 4$}$ -88.845° $\rlap{$\scriptstyle V$}$ 0.03 $\rlap{$\scriptstyle 4$}$ 1.06 $\rlap{$\scriptstyle 4$}$ 1.06 $\rlap{$\scriptstyle 4$}$ 1.06 $\rlap{$\scriptstyle 4$}$ 1.06 $\rlap{$\scriptstyle 4$}$ 1.00 1.06 $\rlap{$\scriptstyle 4$}$ 1.00 262.87 $\rlap{$\scriptstyle 4$}$ -88.710° $\rlap{$\scriptstyle V$}$ 0.06 $\rlap{$\scriptstyle 4$}$ -17 R 1 $\rlap{$\scriptstyle 4$}$ 2 1.00000000 1.00 $\rlap{$\scriptstyle 4$}$ 0.000° $\rlap{$\scriptstyle V$}$ 1.00 $\rlap{$\scriptstyle 4$}$ 2 1.00 $\rlap{$\scriptstyle 4$}$ 2 1.00002000 1.00 $\rlap{$\scriptstyle 4$}$ 1.70 2.569 1.286.320 0.00 + j 1.70 2.569 1.293 7.22300000 5.30 - j 248.624 5.30 - j 1.290 1078.10000000 0.00 + j 4606.253 0.00 + j 1.290 1078.10000000 0.00 + j 4606.253 0.00 + j 1.290 1078.10000000 0.00 + j 4606.253 0.00 + j 1.290 1.00000000 0.00 + j 4606.253 0.00 + j 1.290 1.00000000 0.00 + j 262.802 5.92 - j 1.00000000 0.00 + j 262.802 5.92 - j 1.00000000 0.00 + j 262.802 5.92 - j 1.000000000 0.00 + j 262.802 5.92 - j 1.000000000 0.00 + j 262.802 5.92 - j 262.802									
Node: 3 295.4833 \$\(\) -88.8450° \$\(\) \\ WCAP PART CURRENT IN CURRENT \[\frac{\text{WCAP PART}}{\text{R}} \] \[\frac{\text{BRANCH VOLTAGE}}{\text{2.3}} \] \[\text{BRANCH CURRENT IN} \] \[\frac{\text{BRANCH CU}}{\text{R}} \] \[\text{C 3\$\top 0} \] \[\text{0.00002000} \] \[\text{295.48} \] \$\(\text{4.88.845}^{\circ} \) \\ \text{L 2\$\top 3 7.22300000} \] \[\text{32.62} \] \$\(\text{4.90.070}^{\circ} \) \\ \text{L 2\$\top 0 1078.10000000} \] \[\text{262.87} \] \$\(\text{4.88.710}^{\circ} \) \\ \text{R 1\$\top 2 1.00000000} \] \[\text{1.00} \] \[\text{4.00000000} \] \[\text{FROM IMPEDANCE} \] \[\text{CAP PART} \] \[\text{R 3} \top 0 5.55750000 \] \[\text{5.56} \circ j 286.320 \] \[\text{C 3} \top 0 0.00002000 \] \[\text{C 3} \top 0 0.00002000 \] \[\text{5.30} \circ j 11702.569 \] \[\text{L 2} \top 3 7.22300000 \] \[\text{5.30} \circ j 248.624 \] \[\text{L 2} \top 0 1078.10000000 \] \[\text{C 0.00} \circ j 4606.253 \] \[\text{C 0.00} \circ j \] \[\text{F 1} \top 2 1.000000000 \] \[\text{6.92} \circ j 262.802 \] \[\text{5.92} \circ j \]									
WCAP PART CURRENT IN CURRENT WCAP PART BRANCH VOLTAGE BRANCH CU R $3 \rightarrow 0$ 5.55750000 295.48 \$\preceq\$ -88.845° V 1.03 \$\preceq\$ C $3 \rightarrow 0$ 0.00002000 295.48 \$\preceq\$ -88.845° V 0.03 \$\preceq\$ L $2 \rightarrow 3$ 7.22300000 32.62 \$\preceq\$ 90.070° V 1.06 \$\preceq\$ L $2 \rightarrow 0$ 1078.10000000 262.87 \$\preceq\$ -88.710° V 0.06 \$\preceq\$ -17 R $1 \rightarrow 2$ 1.00000000 1.00 \$\preceq\$ 0.000° V 1.00 \$\preceq\$ WCAP PART FROM IMPEDANCE TO IMPEI R $3 \rightarrow 0$ 5.55750000 5.56 - j 286.320 0.00 + j C $3 \rightarrow 0$ 0.00002000 0.00 - j 11702.569 0.00 + j L $2 \rightarrow 3$ 7.22300000 5.30 - j 248.624 5.30 - j L $2 \rightarrow 0$ 1078.10000000 0.00 + j 4606.253 0.00 + j R $1 \rightarrow 2$ 1.00000000 6.92 - j 262.802 5.92 - j	1								
WCAP PART BRANCH VOLTAGE BRANCH CU R $3 \rightarrow 0$ 5.55750000 295.48									
R $3 \rightarrow 0$ 5.55750000 295.48 4 -88.845° V 1.03 4 C $3 \rightarrow 0$ 0.00002000 295.48 4 -88.845° V 0.03 4 L $2 \rightarrow 3$ 7.22300000 32.62 4 90.070° V 1.06 4 L $2 \rightarrow 0$ 1078.10000000 262.87 4 -88.710° V 0.06 4 -17 R $1 \rightarrow 2$ 1.00000000 1.00 4 0.000° V 1.00 4 WCAP PART FROM IMPEDANCE TO IMPEI R $3 \rightarrow 0$ 0.00002000 0.00 -1 0.00 <	OUT								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.043° A								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.155° A								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.070° A								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	'8.710° A								
R $3 \rightarrow 0$ 5.55750000 5.56 - j 286.320 0.00 + j C $3 \rightarrow 0$ 0.00002000 0.00 - j 11702.569 0.00 + j L $2 \rightarrow 3$ 7.22300000 5.30 - j 248.624 5.30 - j L $2 \rightarrow 0$ 1078.10000000 0.00 + j 4606.253 0.00 + j R $1 \rightarrow 2$ 1.00000000 6.92 - j 262.802 5.92 - j	0.000° A								
R $3 \rightarrow 0$ 5.55750000 5.56 - j 286.320 0.00 + j C $3 \rightarrow 0$ 0.0002000 0.00 - j 11702.569 0.00 + j L $2 \rightarrow 3$ 7.22300000 5.30 - j 248.624 5.30 - j L $2 \rightarrow 0$ 1078.10000000 0.00 + j 4606.253 0.00 + j R $1 \rightarrow 2$ 1.000000000 6.92 - j 262.802 5.92 - j	<u>DANCE</u>								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.000								
L $2 \rightarrow 0$ 1078.10000000 0.00 + j 4606.253 0.00 + j R $1 \rightarrow 2$ 1.00000000 6.92 - j 262.802 5.92 - j	0.000								
R $1\rightarrow 2$ 1.000000000 6.92 - j 262.802 5.92 - j	279.485								
K 1-72 1.00000000 0.52 j 252.652	0.000								
Mossured: 4.21 -	262.802								
Wiedsuleu. 4.21	j 262.8								
(Difference: 1.71	0.002)								
WCAP PART VSWR									
WCAP INPUT DATA:									
0.6800 0.00010000 1									
R 5.55750000 3 0 -286.32000000									
C 0.00002000 3 0									
L 7.22300000 2 3 0.00000000									
L 1078.10000000 2 0 0.00000000									
R 1.00000000 1 2 0.00000000									
1 1.00000000 0 1 0.00000000									

APPLICATION FOR STATION LICENSE METHOD OF MOMENTS - PROOF OF PERFORMANCE

Station KFEQ St. Joseph, Missouri Page **27** of **80**

Details of MoM "Open Circuit" Modeling - for Towers Driven Individually

In the underlying MoM modeling used in the preceding work, each tower is first considered individually. "Open Circuit" ("OC" or "Self") analysis calculations are made based upon the physical characteristics of the array. The modeled data is then "converged" with the "as-measured" data for each tower by applying corrections for velocity of propagation through the towers and assumed stray base reactances. For the analysis of this antenna array, "Expert MiniNEC Broadcast Professional" software (Version 14.5 –published by *EM Scientific Inc.*) was employed to develop the initial individual tower cases. Copies of program outputs are provided in the following pages to demonstrate the methods used and results achieved.

All of the antenna system radiators are identical, uniform cross-section, guyed *ERI* (Electronic Research Incorporated) towers. The KFEQ towers have larger face widths than the KESJ towers due to their size. However, given the relatively slender diameters of the involved towers (21 and 18 inch faces), the accepted practice of using a single "wire" approach to represent each tower was employed herein, as opposed to a lattice or wire-frame model. The top and bottom wire end points of each of the tower wires were specified in electrical degrees in the Cartesian coordinate system. No end caps were employed. A perfect ground environment was also assumed. The geometry data used in this analysis were taken from the corrected (licensed) theoretical directional antenna specifications for KFEQ and from the surveyed information for the collocated KESJ array, distances being translated into electrical degrees at 680 kHz.

The KFEQ towers are "physically" 82.13 electrical degrees high at 680 kHz. For the purposes of this analysis, they were modeled using 10 segments. As such, the segment length is 8.2 degrees, which satisfies the Commission's requirement under §73.151(c)(1)(iii) that no less than one segment be used for 10 electrical degrees of the tower's physical height. The physical heights of the KESJ towers is 39.47 degrees at 680 kHz. Given the shorter height, these towers were modeled using 5 segments, thus each segment length is 7.9 degrees, thus also satisfying the Commission's Method-of-Moments modeling criteria.

Station KFEQ St. Joseph, Missouri Page **28** of **80**

After the initial setup of antenna array information in the model, the individual towers were studied iteratively with all other towers open circuited⁴, while tower wire characteristics were adjusted (in height and radius) until the modeled resistance approximately matched the measured resistance. Final adjustments to converge the model reactances with the measured reactances were made through the introduction of the WCAP circuit model, shown in the preceding pages, which allowed an approximation of the series stray reactances found in the tower base environment.

Each tower's adjusted modeled height relative to its physical height falls within the required range of 75 to 125 percent. Each modeled tower radius fell within the required range of 80 percent to 150 percent of the radius of a circle having a circumference equal to the sum of the widths of the tower sides. A summary of this portion of the model input data is provided below:

Tower	Radiator Physical Height (at 680 kHz)	Modeled Height	Modeled % of Height	Radiator Physical Equivalent Radius (meters)	Modeled Radius	Modeled % of Radius
1- East	82.13°	86.8°	105.7%	0.231	0.231 m	100.0%
	82.13°	89.9°	109.5%	0.231	0.205 m	88.7%
2 - East Central	82.13°	90.2°	109.8%	0.231	0.250 m	108.2%
3 – West Central	82.13°	87.0°	105.9%	0.231	0.205 m	88.7%
4 – West		43.5°	110.2%	0.198	0.198 m	100.0%
5 (KESJ #1 - NW)	39.47°	43.5°	110.2%	0.198	0.198 m	100.0%
6 (KESJ #2 - SE)	39.47°			0.198	0.198 m	100.0%
7 (KESJ #3 - SW)	39.47°	43.5°	110.2%			
8 (KESJ #4 - NE)	39.47°	43.3°	109.7%	0.198	0.198 m	following

The preceding WCAP tabulations detailed the base circuit analysis; the following tabulations show the details of the MoM OC models for the individually driven towers.

⁴ The MoM model incorporated assumed loads at ground level for the "other" open circuited towers in the array using the stray shunt reactance data that were calculated using the base circuit models for the open circuited towers. The overall circuit model consists of series and parallel branches representing feedline inductances, shunt inductances (such as static drain chokes), and stray capacitances, such as base insulator capacitance to ground. For the initial lumped load assumptions, only shunt reactances were considered. Series feedline stray reactances are added in the final convergence step.

Station KFEQ St. Joseph, Missouri Page 29 of 80

MoM Model Details for Towers Driven Individually – KFEQ Tower 1 - OC Self - (1 of 3)

GEOME Envir	TRY: Vonment	Wire coo	rdinate ct grou	es in de und	grees; (other di	mensio	ns in 1	meters
wire	gang	Distanc	a 1	ngle	7.		rad	ius	segs
1	none		= =		$\frac{\mathbf{z}}{0}$.23		10
Т	110116	0	(86	8			
2	none	-		, 273.	0	. 0	.20	5	10
2	none	95. 95.		273.	89	g			
2				273.	0	• •	.25		10
3	none	190.		273.	90	2	. 23		
		190.		273. 273.	0	. 2	.20	5	10
4	none	380.			87		. 20	J	10
_		380.		273.		•	.19	0	5
5	none	309.65		273.4	0	_	. 1.7	0	5
		309.65		273.4	43	. 5	.19	0	5
6	none	261.72		268.7	0	_	.19	8	j.
		261.72		268.7	43	.5	7.0	0	5
7	none	303.27		265.3	0	_	.19	0	j
		303.27		265.3	43	. 5		0	_
8	none	273.41		277.4	0		.19	ŏ	5
		273.41		277.4	43	. 3			
rndir	ri du a T	wires		minimum re va	ılue			imum value	
			w 1.	-	66		3	9.02	
_	ent le	ngen	5		.98		3	.25	
radiu	15		J		. 7 0		-		
ELECT	TRICAL	DESCRIP	TION:		encies (
	frequ	ency		r	no. of	segment	length	ı (wave	lengths)
no.	lowes	t	step		steps	minimu	ım		imum
1	.68		0		1	.024055	6	.025	0556
							_		
Sour	ces:	source	node		: magni	tude	phase	3	type
		1	1	1	1.		0		voltage
_		a							
rumbe	ed loa		tance	react	cance	induct	ance	capaci	tance passiv
load	node			(ohm:		(mH)		(uF)	circui
1	1	0	• •	0	•	0		0	0
2	11	0		-9,7	92.9	0		0	0
3	21	0		-9,7: -9,7:		0		0	0
				-9,7: -9,7:		0		0	0
4	31				94.9	0		0	0
5	41	0			94.9 94.9	0		0	0
6	46	0				0		0	0
7	51	0			94.9	0		0	0
8	56	0		1,5	94.9	U		U	J
THORE	ANCE:	norma	lization	n = 50.	source	= 1; nod	le 1, s	ector 1	
IMPEL									
freq	re	sist :	react	imped	phase	VSWR		11	S12
			react	imped (ohms)			•	11 dB 5.468	s12 dB 12508

Station KFEQ St. Joseph, Missouri Page 30 of 80

$MoM\ Model\ Details\ for\ Towers\ Driven\ Individually-KFEQ\ Tower\ 1\ -\ OC\ Self\ -\ (2\ of\ 3)$

	ENT rms Fr	equency =		Input power	= .014	0458 watts	3
EIIIC	ciency = 1	.00. % c	coordinat	es in degree	S		
	du						
curre			_	mag	phase		imaginary
no.	X	Y	Z	(amps)	(deg)	_	(amps)
GND	0	0	0	.0198662		.0198638	-3.09E-04
2	0	0	8.68	.0196552		.0196399	-7.76E-04
3	0	0	17.36	.019002	356.8	.0189726	-1.06E-03
4	0	0	26.04	.017917		.0178746	-1.23E-03
5	0	0	34.72	.0164193		.0163666	-1.31E-03
6	0	0	43.4	.0145348		.0144758	-1.31E-03
7	0	0	52.08	.0122953		.0122349	-1.22E-03
8	0	0	60.76	9.73E-03		9.68E-03	-1.04E-03
9	0	0	69.44	6.88E-03	353.4	6.83E-03	-7.91E-04
10	0	0	78.12	3.73E-03	353.	3.7E-03	-4.56E-04
END	0	0	86.8	0	0	0	0
GND	4.97193	94.8698	0	4.99E-05	224.7	-3.55E-05	-3.51E-05
12	4.97193	94.8698	8.99	3.72E-04			-2.62E-04
13	4.97193	94.8698	17.98	5.7E-04	225.		-4.03E-04
14	4.97193	94.8698	26.97	6.98E-04	225.2		-4.95E-04
15	4.97193	94.8698	35.96	7.64E-04			-5.43E-04
16	4.97193	94.8698	44.95	7.71E-04			-5.51E-04
17	4.97193	94.8698	53.94	7.23E-04			-5.19E-04
18	4.97193	94.8698	62.93	6.22E-04			-4.48E-04
19	4.97193	94.8698	71.92	4.71E-04			-3.41E-04
20	4.97193	94.8698	80.91	2.7E-04	226.6		-1.97E-04
END	4.97193	94.8698	89.9	0	0	0	0
GND	9.94386	189.74	0	3.48E-05	137.4	-2.57E-05	2 36E-05
22	9.94386	189.74	9.02	2.74E-04		-2.01E-04	
23	9.94386	189.74	18.04	4.2E-04	137.2	-3.08E-04	
24	9.94386	189.74	27.06	5.15E-04		-3.77E-04	
25	9.94386	189.74	36.08	5.66E-04		-4.13E-04	
26	9.94386	189.74	45.1	5.74E-04		-4.17E-04	
27	9.94386	189.74	54.12	5.41E-04		-3.92E-04	
28	9.94386	189.74	63.14	4.69E-04		-3.38E-04	
29	9.94386	189.74	72.16	3.58E-04		-2.57E-04	
30	9.94386	189.74	81.18	2.07E-04		-1.48E-04	
END	9.94386	189.74	90.2	0	0	0	0
GND	19.8877	379.479	0	1.9E-05	316.1	1.37E-05	-1.32E-05
32	19.8877	379.479	8.7	1.39E-04		1.E-04	-9.69E-05
33	19.8877	379.479	17.4	2.14E-04		1.54E-04	-1.49E-04
34	19.8877	379.479	26.1	2.64E-04		1.89E-04	-1.49E-04
35	19.8877	379.479	34.8	2.91E-04		2.08E-04	-2.03E-04
36	19.8877	379.479	43.5	2.96E-04		2.11E-04	-2.08E-04
37	19.8877	379.479	52.2	2.8E-04	315.3	1.99E-04	-1.97E-04
38	19.8877	379.479	60.9	2.44E-04		1.73E-04	-1.72E-04
39	19.8877	379.479	69.6	1.87E-04		1.73E-04 1.32E-04	-1.72E-04 -1.32E-04
40	19.8877	379.479	78.3	1.09E-04		7.65E-05	-7.74E-05
END	19.8877	379.479	87.	0	0	0	0 0

Station KFEQ St. Joseph, Missouri Page **31** of **80**

 $MoM\ Model\ Details\ for\ Towers\ Driven\ Individually-KFEQ\ Tower\ 1-OC\ Self-(3\ of\ 3)$

curre	nt		_	mag	phase (deg)	real (amps)	imaginary (amps)
no.	X	Y	Z	(amps)	(deg)	(amps)	(CLIIPS)
GND	18.3642	309.105	0	1.17E-05	207.3	-1.04E-05	
42	18.3642	309.105	8.7	4.07E-05	27.3	J. O I I	1.86E-05
43	18.3642	309.105	17.4	6.27E-05	27.2	3.3.2	2.86E-05
44	18.3642	309.105	26.1	6.37E-05	27.1	5.67E-05	2.9E-05
44	18.3642	309.105	34.8	4.45E-05	27.	3.96E-05	2.02E-05
	18.3642	309.105	43.5	0	0	0	0
END	10.3042	303.100	23.1				
	5 02764	261.653	0	1.39E-05	254.6	-3.7E-06	-1.34E-05
GND	-5.93764	261.653	8.7	4.85E-05		1.3E-05	4.68E-05
47	-5.93764	261.653	17.4	7.47E-05		2.01E-05	7.2E-05
48	-5.93764 -5.93764	261.653	26.1	7.59E-05		2.07E-05	7.3E-05
49	-5.93764 -5.93764	261.653	34.8	5.29E-05		1.46E-05	5.08E-05
50	-5.93764	261.653	43.5	0	0	0	0
END	-5.93/04	201.033	13.10				
CI TO	-24.8495	302.25	0	1.19E-05	214.1	-9.85E-06	-6.68E-06
GND	-24.8495	302.25	8.7	4.14E-05	34.	3.43E-05	2.32E-05
52	-24.8495	302.25	17.4	6.39E-05		5.3E-05	3.57E-05
53	-24.8495	302.25	26.1	6.5E-05	33.8	5.4E-05	3.62E-05
54	-24.8495	302.25	34.8	4.53E-05	33.7	3.77E-05	2.51E-05
55	-24.8495	302.25	43.5	0	0	0	0
END	-24.0493	302.23	13.13				
CINID	35.214	271.133	0	1.32E-05	243.5	-5.9E-06	-1.18E-05
GND 57	35.214	271.133	8.66	4.58E-05		2.05E-05	4.1E-05
5 / 58	35.214	271.133	17.32	7.06E-05		3.17E-05	6.31E-05
58 59	35.214	271.133	25.98	7.18E-05		3.25E-05	6.4E-05
60	35.214	271.133	34.64	5.01E-05		2.28E-05	4.46E-05
END	35.214	271.133	43.3	0	0	0	0
END	33.214	211.17					

Station KFEQ St. Joseph, Missouri Page 32 of 80

MoM Model Details for Towers Driven Individually - Tower 2 - OC Self - (1 of 3)

						dimensio		
		perfect			-,			
wire	caps D	istance	Ang	<u>le</u>	<u>z</u>	******	ius	segs
1	none 0		0		0	.23	1	10
	0		0		86.8			
2	none 9	5.	273		0	. 20	5	10
	9	5.	273		89.9			
3	none 1	90.	273		0	.25		10
-	1	90.	273		90.2			
4	none 3	80.	273		0	.20	5	10
-		80.	273		87.			
5	none 3		273	. 4	0	.19	8	5
5		09.65	273	. 4	43.5			
6	none 2		268		0	.19	8	5
O		61.72	268		43.5			
7	none 3		265		0	.19	8	5
,		03.27	265		43.5			
8	none 2		277		0	.19	8	5
0		73.41	277		43.3			
Numbe	er of wi	res	=	8	curr	ent nodes	s = 60	
2, 02,125	 						cimum	
		_		imum		wire		
	ridual w		wire	value			9.02	
	ent leng	th	8	8.66		3		
radiu	ıs		5	.198		3	.25	
ELECT			ION: Fi	requencie	s (MHz)		-1- /	-longthal
	frequen	-		no.		ment leng		
no.	lowest	S	tep	step		Inimum		cimum
1	.68	0		1	. 02	240556	.025	50556
Sour	ces: s	source n	ode :		agnitude		se	type
		1	11	1 1	•	0		voltage
Lump	ed loads							
		resist	ance	reactanc				tance passive
<u>load</u>	<u>node</u>	(ohms)		(ohms)	(m)	-	(uF)	circuit
1	1	0		-9,792.9			0	0
2	11	0		0	0		0	0
3	21	0		-9,792.9			0	0
4	31	0		-9,792.9	0		0	0
5	41	0		7,594.9	0		0	0
6	46	0		7,594.9			0	0
7	51	0		7,594.9			0	0
8	56	0		7,594.9			0	0
IMPE	DANCE:	normal	.ization	= 50.	source	= 1; no	ode 11,	sector 1
freq	. ~~	sist r	eact	imped	phase	VSWR	S11	S12
_			(ohms)	(ohms)	(deg)		đВ	đВ
(MHz								

Station KFEQ St. Joseph, Missouri Page 33 of 80

MoM Model Details for Towers Driven Individually - Tower 2 - OC Self - (2 of 3)

CURREN Effici		equency =	= .68 MHz ordinates	Input pow	er = .0	106818 wat	ts
curren				mag	phase	real i	maginary (amps)
no.	X	Y	Z	(amps)	(deg)	(amps)	(amps)
		_	0	4.2E-05	200.	-3.95E-05	-1.44E-05
GND	0	0	0 8.68	3.15E-04		-2.96E-04	-1.08E-04
2	0	0		4.81E-04	200.2	-4.51E-04	-1.66E-04
3	0	0	17.36	5.88E-04	200.4	-5.51E-04	-2.05E-04
4	0	0	26.04	6.43E-04	200.5	-6.02E-04	-2.26E-04
5	0	0	34.72 43.4	6.49E-04		-6.07E-04	-2.3E-04
6	0	0		6.09E-04		-5.69E-04	-2.18E-04
7	0	0	52.08 60.76	5.25E-04		-4.9E-04	-1.9E-04
8	0	0	69.44	3.99E-04		-3.71E-04	-1.46E-04
9	0	0	78.12	2.3E-04	201.7	-2.14E-04	-8.51E-05
10	0	0		0	0	0	0
END	0	0	86.8	U	· ·		
		04 0600	0	.0167539	334.4	.0151064	-7.25E-03
GND	4.97193	94.8698	8.99	.0167699	332.9	.0149334	-7.63E-03
12	4.97193	94.8698	17.98	.0163339		.0144181	-7.68E-03
13	4.97193	94.8698	26.97	.0154883		.0135712	-7.46E-03
14	4.97193	94.8698	35.96	.0142547		.0124097	-7.01E-03
15	4.97193	94.8698	44.95	.0126595	329.9	.0109569	-6.34E-03
16	4.97193	94.8698	53.94	.0107329		9.24E-03	-5.46E-03
17	4.97193	94.8698		8.51E-03		7.29E-03	-4.39E-03
18	4.97193	94.8698	62.93	6.01E-03	3 2 2 8 5	5.13E-03	-3.14E-03
19	4.97193	94.8698	71.92	3.25E-03		2.76E-03	-1.72E-03
20	4.97193	94.8698	80.91	0	0	0	0
END	4.97193	94.8698	89.9	U	V	· ·	
		100 74	0	4.52E-0	5 199.2	-4.27E-05	-1.49E-05
GND	9.94386	189.74	9.02	3.54E-0	4 199.3	-3.34E-04	1 -1.17E-04
22	9.94386	189.74	18.04	5.42E-0		-5.11E-04	1 -1.8E-04
23	9.94386	189.74	27.06	6.62E-0	4 199.5	-6.24E-04	1 -2.22E-04
24	9.94386	189.74	36.08	7.25E-0	4 199.7	-6.82E-04	4 -2.44E-0
25	9.94386	189.74	45.1	7.32E-0	4 199.9	-6.88E-0	4 -2.49E-0
26	9.94386	189.74	54.12	6.86E-0	4 200.1		4 -2.36E-0
27	9.94386	189.74	63.14	5.91E-0			4 -2.05E-0
28	9.94386	189.74	72.16	4.48E-0	4 200.6	-4.2E-04	-1.57E-0
29	9.94386	189.74	81.18	2 58E-N	4 200.8	-2.41E-0	4 -9.16E-0
30	9.94386	189.74	90.2	0	0	0	0
END	9.94386	189.74	90.2	V	•		
	10 0000	379.479	0	2.07E-0	5 24.9	1.88E-05	8.73E-06
GND	19.8877		8.7	1.52E-0	4 24.8	1.38E-04	6.38E-05
32	19.8877	379.479 379.479	17.4	2.33E-C	4 24.7	2.12E-04	05
33	19.8877	_	26.1	2.87E-0	4 24.6	2.61E-04	1.19E-04
34	19.8877	379.479 379.479	34.8	3.16E-0		2.87E-04	1.31E-04
35	19.8877	379.479	43.5	3.21E-0		2.93E-04	
36	19.8877	379.479	52.2	3.04E-0		2.77E-04	
37	19.8877		60.9	2.64E-0	04 23.8	2.41E-04	
38	19.8877	379.479	69.6		04 23.5	1.85E-04	8.06E-05
39	19.8877	379.479	78.3	1.17E-0	04 23.3	1.08E-04	
40	19.8877 19.8877	379.479 379.479	70.3 87.	0	0	0	0

Station KFEQ St. Joseph, Missouri Page **34** of **80**

MoM Model Details for Towers Driven Individually - Tower 2 - OC Self - (3 of 3)

curre	ıt			_	phase		maginary
no.	X	Y	Z	(amps)	(deg)	(amps)	(amps)
GND	18.3642	309.105	0	1.35E-05	274.7	1.1E-06	-1.35E-05
42	18.3642	309.105	8.7	4.71E-05	94.6	-3.78E-06	
43	18.3642	309.105	17.4	7.25E-05	94.5	-5.7E-06	7.22E-05
44	18.3642	309.105	26.1	7.36E-05	94.4	-5.65E-06	
45	18.3642	309.105	34.8	5.13E-05	94.3	-3.82E-06	
END	18.3642	309.105	43.5	0	0	0	0
GND	-5.93764	261.653	0	1.69E-05	319.5	1.29E-05	-1.1E-05
47	-5.93764	261.653	8.7	5.87E-05	139.5	-4.46E-05	
48	-5.93764	261.653	17.4	9.03E-05	139.3	-6.85E-05	5.88E-05
49	-5.93764	261.653	26.1	9.16E-05	139.2	-6.93E-05	5.98E-05
50	-5.93764	261.653	34.8	6.36E-05	139.	-4.8E-05	4.18E-05
END	-5.93764	261.653	43.5	0	0	0	0
END	3.55,01	202.000					
GND	-24.8495	302.25	0	1.38E-05	280.1	2.42E-06	-1.36E-05
52	-24.8495	302.25	8.7	4.81E-05	100.	-8.35E-06	
53	-24.8495	302.25	17.4	7.4E-05	99.9	-1.27E-05	
54	-24.8495	302.25	26.1	7.51E-05	99.8	-1.27E-05	
55	-24.8495	302.25	34.8	5.23E-05	99.6	-8.74E-06	5.16E-05
END	-24.8495	302.25	43.5	0	0	0	0
D110							
GND	35.214	271.133	0	1.58E-05	309.	9.97E-06	-1.23E-05
57	35.214	271.133	8.66	5.48E-05	128.9	-3.44E-05	
58	35.214	271.133	17.32	8.44E-05	128.8	-5.29E-05	
59	35.214	271.133	25.98	8.56E-05		-5.35E-05	
60	35.214	271.133	34.64	5.95E-05	128.5	-3.7E-05	4.66E-05
END	35.214	271.133	43.3	0	0	0	0

Station KFEQ St. Joseph, Missouri Page **35** of **80**

MoM Model Details for Towers Driven Individually - Tower 3 - OC Self - (1 of 3)

Envir	TRY Wir	e coord	linates ect grou	in de nd	grees;	other di	mensions	in mete	rs
	T	ni atange	Δn	gle	<u>z</u>		radi	us ,	segs
vire		Distance	0	910	-	<u>.</u>)	.231	····	10
1	none ()	0		8	36.8			
_	none 9	-	_	3.	C)	.205		10
2		95. 95.		3.		39.9			
_	-			3.)	.25		10
3	none :	190.		3.	9	90.2			
4	none :			3.	()	.205		10
4		380. 380.		3.	{	37.			
_		309.65		3.4	()	.198		5
5		309.65		3.4		43.5			
_				8.7		0	.198	i	5
6		261.72 261.72		8.7		43.5			
_				55.3		0	.198	}	5
7		303.27 303.27		55.3		43.5			
		273.41		77.4		0	.198	}	5
8		273.41		77.4		43.3			
		2/3,41	4						
Numb	er of w	ires	Ē	= 8		curre	nt nodes	= 60	
			m	inimu	m			imum	
T = 4 4 .	vidual	wires	wir	e ·	value		wire	value	
	ent ler		8		8.66		3	9.02	
radi		ig cii	5		.198		3	.25	
	TRICAL freque lowest	ency	STION: step	Frequ	encies no. of steps	: segmen		(wavele maximum	
no. 1	freque lowest	ency t	step 0		no. of steps 1	minimu .02405	im 556	maximum .025055	
no. 1	freque lowest	ency	step 0		no. of steps	minimu .02405 gnitude	ım	maximum .025055	6
no. 1 Sour	freque lowest	source 1 ds:	step 0 node 21	sect 1	no. of steps 1	minimu .02405 gnitude	ım 556 phas 0	maximum .025055 e capacita	type voltage
no. 1 Sour	frequent 10west .68	source 1 ds: resi	step 0 node 21 stance	sect 1	no. of steps 1 cor mag	minimu .02405 gnitude	m 556 phas 0 uctance	maximum .025055 e capacita (uF)	type voltage unce passive circuit
no. 1 Sour	frequent lowest .68 ces:	source 1 ds: resi (ohm	step 0 node 21 stance	sect 1 rea (ol	no. of steps 1 cor mag 1.	minimu .02405 gnitude indu	m 556 phas 0 uctance	maximum .025055 e capacita (uF) 0	type voltage nce passive circuit
no. 1 Sour Lump 10ac 1	frequence 10west .68 cces: oed load 10de 1	source 1 ds: resi (ohm 0	step 0 node 21 stance	sect 1 rea (oh -9	no. of steps 1 cor mag 1. actance mms) 792.9	minimu .02405 gnitude indu (mH)	m 556 phas 0 uctance	maximum .025055 e capacita (uF)	type voltage nce passive circuit 0 0
no. 1 Sour Lump 1 2	frequence 1.68 ces: ced load 1 node 1	source 1 ds: resi (ohm 0 0	step 0 node 21 stance	sect 1 rea (oh -9	no. of steps 1 cor mag 1. actance	minimu .02405 gnitude indu (mH)	m 556 phas 0 uctance)	maximum .025055 e capacita (uF) 0	type voltage nce passive circuit 0 0 0
no. 1 Sour Lump 10ac 1 2 3	frequences to the second secon	source 1 ds: resi (ohm 0 0 0	step 0 node 21 stance	sect 1 rea (ol -9 -9	no. of steps 1 cor mag 1. actance nms) 792.9	minimu .02405 gnitude indu (mH) 0	m 556 phas 0 uctance)	maximum .025055 e capacita (uF) 0 0	type voltage nce passive circuit 0 0 0
no. 1 Sour Lump 10ac 1 2 3 4	frequences: .68 cces: ced load 1 11 21 31	source 1 ds: resi (ohm 0 0 0 0	step 0 node 21 stance	sect 1 rea (ol -9 -9 0	no. of steps 1	minimu .02405 gnitude indu (mH) 0	m 556 phas 0 uctance)	maximum .025055 e capacita (uF) 0 0 0	type voltage nce passive circuit 0 0 0 0
no. 1 Sour Lump 10ac 1 2 3 4 5	frequences: .68 ces: ced load 1 11 21 31 41	source 1 ds: resi (ohm 0 0 0 0 0	step 0 node 21 stance	rea (ol -9 -9 0 -9	no. of steps 1	minimu .02405 gnitude indu (mH) 0 0	m 556 phas 0 uctance)	maximum .025055 e capacita (uF) 0 0 0	type voltage nce passive circuit 0 0 0 0 0
no. 1 Sour Lump 10a6 1 2 3 4 5 6	frequences: .68 ces: ced load 1 11 21 31 41 46	source 1 ds: resi (ohm 0 0 0 0 0 0	step 0 node 21 stance	rea (ol -9 -9 0 -9 7	no. of steps 1	minimu .02405 gnitude indu (mH) 0 0 0	m 556 phas 0 uctance)	maximum .025055 e capacita (uF) 0 0 0 0	type voltage nce passive circuit 0 0 0 0
no. 1 Sour Lump 10ac 1 2 3 4 5 6 7	frequences: .68 ces: ced load 1 11 21 31 41 46 51	source 1 ds: resi (ohm 0 0 0 0 0 0 0 0	step 0 node 21 stance	rea (ol -9 -9 0 -9 7	no. of steps 1 cor mag 1. actance nms) 792.9 792.9 792.9 792.9 794.9 794.9 794.9	minimu .02405 gnitude indu (mH) 0 0 0 0	m 556 phas 0 uctance)	maximum .025055 e capacita (uF) 0 0 0 0 0	type voltage nce passive circuit 0 0 0 0 0 0
no. 1 Sour Lump 1 2 3 4 5 6 7 8	freque lowest .68 ces: ed load 1 11 21 31 41 46 51 56	source 1 ds: resi (ohm 0 0 0 0 0 0 0	step 0 node 21 stance s)	rea (ol -9 -9 0 -9 7	no. of steps 1 cor mag 1. cor mag 1. actance nms) 792.9 792.9 792.9 792.9 794.9 794.9 794.9 794.9	minimu .02405 gnitude indu (mH) 0 0 0 0 0	m 556 phas 0 uctance)	maximum .025055 e capacita (uF) 0 0 0 0 0 0	type voltage nce passive circuit 0 0 0 0 0 0 0 0
no. 1 Sour Lump 1 2 3 4 5 6 7 8	frequences: .68 ces: ced load 1 11 21 31 41 46 51 56 EDANCE:	source 1 ds: resi (ohm 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	step 0 node 21 stance s)	sect 1 rea (ol) -9 -9 0 -9 7 7 7 ion =	no. of steps 1 cor mag 1. actance nms) 792.9 792.9 792.9 792.9 794.9 794.9 794.9 794.9 794.9	minimu .02405 gnitude indu (mH) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	phas 0 uctance)	maximum .025055 e capacita(uF) 0 0 0 0 0 21, sec	type voltage nce passive circuit 0 0 0 0 0 0 0 0
no. 1 Sour Lump 1 2 3 4 5 6 7 8	frequences: .68 ces: ced load 1 11 21 31 41 46 51 56 EDANCE:	source 1 ds: resi (ohm 0 0 0 0 0 0 0	step 0 node 21 stance s)	sect 1 rea (ol -9 0 -9 7 7 7 7 ion = im	no. of steps 1 cor mag 1. actance nms) 792.9 792.9 792.9 792.9 794.9 794.9 794.9 794.9 794.9 794.9	minimu .02405 gnitude indu (mH) 0 0 0 0 0	m 556 phas 0 uctance)	maximum .025055 e capacita (uF) 0 0 0 0 0 0	type voltage nce passive circuit 0 0 0 0 0 0 tor 1

Station KFEQ St. Joseph, Missouri Page 36 of 80

MoM Model Details for Towers Driven Individually - Tower 3 - OC Self - (2 of 3)

CURREN Effici	T rms Freq	quency =	.68 MHz l inates in	Input pow degrees	rer = .0	0988117 wa	atts
					phase	real	imaginary
curren	X	Y	Z	(amps)	(deg)	(amps)	(amps)
			0	2.74E-05	111.6	-1.01E-05	2.55E-05
GND	0	0	8.68	2.06E-04		-7.56E-05	1.91E-04
2	0	0	17.36	3.15E-04	111.4	-1.15E-04	2.93E-04
3	0	0		3.86E-04	111 3	-1.4E-04	3.6E-04
4	0	0	26.04	4.24E-04	111 1	-1.53E-04	3.96E-04
5	0	0	34.72	4.24E 01 4.31E-04	110 9	-1.54E-04	4.02E-04
6	0	0	43.4	4.06E-04		-1.44E-04	3.8E-04
7	0	0	52.08	3.52E-04		-1.23E-04	3.3E-04
8	0	0	60.76	2.69E-04	110.3	-9.3E-05	
9	0	0	69.44	1.56E-04	110.2	-5.33E-05	1.47E-04
10	0	0	78.12		0	0	0
END	0	0	86.8	0	U		
GND	4.97193	94.8698	0	4.22E-05	198.1	-4.01E-05	5 -1.31E-05
12	4.97193	94.8698	8.99	3.15E-04		-2.99E-04	1 -9.84E-05
13	4.97193	94.8698	17.98	4.82E-04	198.3	-4.58E-04	4 -1.52E-04
14	4.97193	94.8698	26.97	5.91E-04		-5.6E-04	-1.87E-04
15	4.97193	94.8698	35.96	6.47E-04		-6.13E-0	4 -2.07E-04
16	4.97193	94.8698	44.95	6.53E-04		-6.18E-0	4 -2.11E-04
	4.97193	94.8698	53.94	6.12E-04	199.1	-5.79E-0	4 -2.E-04
17	4.97193	94.8698	62.93	5.27E-04	199.3	-4.98E-0	4 -1.74E-04
18	4.97193	94.8698	71.92	3.99E-04	199.5	-3.77E-0	4 -1.33E-04
19	4.97193	94.8698	80.91	2.3E-04	199.7	-2.16E-0	4 -7.75E-05
20 END	4.97193	94.8698	89.9	0	0	0	0
пир	***			0.7.7.4.0.6		.0139741	-7.03E-03
GND	9.94386	189.74	0	.0156409	3 3 3 3 . 3		
22	9.94386	189.74	9.02	.0156909	9 331.7	.0133382	
23	9.94386	189.74	18.04	.015305	7 330.0	.0135557	
24	9.94386	189.74	27.06	.014531	8 329.0	.0123337	
25	9.94386	189.74	36.08	.013390			
26	9.94386	189.74	45.1	.011905			
27	9.94386	189.74	54.12	.010106			
28	9.94386	189.74	63.14	8.02E-0	3 341.3		
29	9.94386	189.74	72.16	5.68E-0			
30	9.94386	189.74	81.18	3.08E-0		2.57E-03	0
END	9.94386	189.74	90.2	0	0	U	Ü
G1:77	19.8877	379.479	0	2.62E-0	5 114.	-1.07E-	05 2.4E-05
GND		379.479	8.7	1.92E-0	4 113.9	-7.77E-	05 1.75E-04
32	19.8877	379.479	17.4		4 113.8	-1.19E-	04 2.69E-04
33	19.8877	379.479	26.1		4 113.7	-1.45E-	04 3.31E-04
34	19.8877	379.479	34.8		4 113.5	-1.58E-	04 3.64E-04
35	19.8877	379.479	43.5)4 113.3	-1.59E-	04 3.7E-04
36	19.8877	379.479	52.2	3.8E-04		L -1.49E-	04 3.49E-04
37	19.8877	379.479	60.9	3.29E-0)4 112.9	9 -1.28E-	04 3.03E-04
38	19.8877	379.479	69.6	2.51E-0	04 112.	7 -9.67E-	05 2.32E-04
39	19.8877	379.479	78.3	1.45E-0	04 112.4	4 -5.54E-	05 1.34E-04
40 END	19.8877 19.8877	379.479	87.	0	0	0	0

Station KFEQ St. Joseph, Missouri Page 37 of 80

MoM Model Details for Towers Driven Individually - Tower 3 - OC Self - (3 of 3)

curren	ıt			_	phase	real	imaginary
no.	x	Y	Z	(amps)	(deg)	(amps)	(amps)
GND	18.3642	309.105	0	1.9E-05	359.	1.9E-05	-3.27E-07
42	18.3642	309.105	8.7	6.59E-05	179.	-6.59E-05	
43	18.3642	309.105	17.4	1.01E-04	179.1	-1.01E-04	
44	18.3642	309.105	26.1	1.02E-04		-1.02E-04	
45	18.3642	309.105	34.8	7.11E-05	179.2	-7.11E-05	
END	18.3642	309.105	43.5	0	0	0	0
GND	-5.93764	261.653	0	2.49E-05		2.02E-05	1.46E-05
47	-5.93764	261.653	8.7	8.64E-05		-6.97E-05	
48	-5.93764	261.653	17.4	1.33E-04		-1.07E-04	
49	-5.93764	261.653	26.1	1.34E-04		-1.07E-04	
50	-5.93764	261.653	34.8	9.28E-05	217.2	-7.39E-05	
END	-5.93764	261.653	43.5	0	0	0	0
GND	-24.8495	302.25	0	1.92E-05	1.2	1.92E-05	
52	-24.8495	302.25	8.7	6.67E-05		-6.67E-05	
53	-24.8495	302.25	17.4	1.03E-04	181.2		-2.21E-06
54	-24.8495	302.25	26.1	1.04E-04		-1.04E-04	
55	-24.8495	302.25	34.8	7.2E-05	181.3	-7.2E-05	-1.66E-06
END	-24.8495	302.25	43.5	0	0	0	0
GND	35.214	271.133	0	2.31E-05	27.5	2.05E-05	1.07E-05
57	35.214	271.133	8.66	7.97E-05		-7.06E-05	
58	35.214	271.133	17.32	1.22E-04			-5.72E-05
59	35.214	271.133	25.98	1.24E-04			-5.83E-05
60	35.214	271.133	34.64	8.57E-05	208.4	-7.54E-05	-4.08E-05
	35.214	271.133	43.3	0	0	0	0

Station KFEQ St. Joseph, Missouri Page 38 of 80

MoM Model Details for Towers Driven Individually - Tower 4 - OC Self - (1 of 3)

EOME	TRY: Wire	coordir	nates i	n degrees	; other d	imensions	in mete	rs
nvir	conment: E	erfect 9	ground					
			3 7	_	7	radiu	ıs S	egs
<u>vire</u>	caps Dis	stance	Angl	<u>e</u>	<u>z</u> 0	.231		10
1	none 0		0		86.8			
	0		273.		0	.205		10
2	none 95				89.9			
	95		273.		0	.25		10
3	none 19		273.		90.2			
		0.	273.		0	.205		10
4	none 38		273.		87.			
		0.	273.		0	.198		5
5	none 30		273		43.5			
		9.65	273		0	.198		5
6	none 26		268		43.5			
		1.72	268		0	.198		5
7	none 30		265		43.5			
		3.27	265		0	.198		5
8	none 27		277		43.3			
	27	73.41	277	. 4	43.3			
				0	aurrent	nodes =	= 60	
Numb	er of wir	ces	***	8	Currenc	110402		
				•		maxi	mum	
				imum		wire		
	vidual w			value		3	9.02	
	ment lengt	th	8	8.66		3	.25	
radi	lus		5	.198				
			T	an andies	(MHz)			
ELEC			ON: FI	requencies	f seamer	nt length	(waveler	ngths)
	frequen			steps		ım	maximum	
no	. lowest		ep	steps 1	.02405		.025055	5
1	.68	0		7	. 02.10			
		e.		ector mag	mitude	phase		type
Sou		urce nod		_	girreade	0		voltage
	1	31	1	1.				
Lum	ped loads	: resista	ma0	reactance	a ind	uctance	capacita	nce passive
_			TICE	(ohms)	(mH		(uF)	circuit
loa		(ohms)		-9,792.9	-		0	0
1	1	0		-9,792.9 -9,792.9	0		0	0
2	11	0		-9,729.9			0	0
3	21	0			0		0	0
	31	0		7 594 9	_		0	0
4	41	0		7,594.9	_		0	0
4 5		0		7,594.9			0	0
i	46	0		7,594.9 7,594.9			0	0
5	46 51			7.594.5	. 0		-	
5 6		0		. , =				
5 6 7 8	51 56	0			cource -	= 1: nod	e 31, sec	ctor 1
5 6 7 8	51 56 PEDANCE:	0 norma		on = 50.	source =		e 31, sed S11	ctor 1 S12
5 6 7 8	51 56 PEDANCE: eq re	0 norma sist r	eact	on = 50.	phase	= 1; nod VSWR	S11	
5 6 7 8 IMI fre	51 56 PEDANCE: eq re	norma sist r hms) (on = 50.				S12

Station KFEQ St. Joseph, Missouri Page 39 of 80

MoM Model Details for Towers Driven Individually - Tower 4 - OC Self - (2 of 3)

CURREN	rr rms Fre	equency :	= .68 MHz		wer = .	0137839 wa	tts
Effici	ency = 100	0. % coo:	rdinates	in degrees			
					phase	real i	maginary
currer		Y	Z		(deg)		(amps)
no.	X	r	2	(
and.	0	0	0	1.87E-05	314.8	1.32E-05	-1.33E-05
GND	0	0	8.68	1.41E-04		9.9E-05	-9.99E-05
2		0	17.36	2.16E-04		1.52E-04	-1.54E-04
3	0	0	26.04	2.65E-04		1.86E-04	-1.89E-04
4	0	0	34.72	2.92E-04		2.04E-04	-2.09E-04
5		0	43.4	2.98E-04		2.08E-04	-2.13E-04
6	0	0	52.08	2.82E-04		1.96E-04	-2.03E-04
7	0	0	60.76	2.45E-04		1.7E-04	-1.77E-04
8	0		69.44	1.88E-04		1.3E-04	-1.36E-04
9	0	0	78.12	1.1E-04	313.4	7.53E-05	-7.97E-05
10	0	0	86.8	0	0	0	0
END	0	0	00.0	J	J		
		04 0600	0	2.42E-05	48.4	1.61E-05	1.81E-05
GND	4.97193	94.8698	0	1.81E-04		1.2E-04	1.35E-04
12	4.97193	94.8698	8.99	2.78E-04		1.86E-04	2.07E-04
13	4.97193	94.8698	17.98	3.43E-04		2.3E-04	2.55E-04
14	4.97193	94.8698	26.97	3.43E-04 3.78E-04		2.54E-04	2.8E-04
15	4.97193	94.8698	35.96	3.78E-04 3.84E-04		2.59E-04	2.84E-04
16	4.97193	94.8698	44.95	3.63E-04	47.0	2.46E-04	2.67E-04
17	4.97193	94.8698	53.94	3.63E-04 3.15E-04	47.3	2.15E-04	2.31E-04
18	4.97193	94.8698	62.93	2.41E-04		1.65E-04	1.76E-04
19	4.97193	94.8698	71.92		46.5	9.64E-05	1.02E-04
20	4.97193	94.8698	80.91	1.4E-04	0	0	0
END	4.97193	94.8698	89.9	0	U	U	Ŭ
			_	2 2 7 0 5	138.5	-2 47E-05	2.19E-05
GND	9.94386	189.74	0	3.3E-05 2.57E-04		-2.47E 03	1.71E-04
22	9.94386	189.74	9.02				2.63E-04
23	9.94386	189.74	18.04	3.95E-04		2 615-04	3.23E-04
24	9.94386	189.74	27.06	4.84E-04		2 055-04	3.56E-04
25	9.94386	189.74	36.08	5.32E-04		-4.E-04	
26	9.94386	189.74	45.1	5.4E-04	137.8		3.43E-04
27	9.94386	189.74	54.12	5.09E-04			2.99E-04
28	9.94386	189.74	63.14	4.41E-04			2.39E-04 1 2.29E-04
29	9.94386	189.74	72.16	3.36E-04		-2.46B-04	1.34E-04
30	9.94386	189.74	81.18	1.95E-04			0
END	9.94386	189.74	90.2	0	0	0	J
				0.7.0	255 2	.0194933	-7.32E-04
GND	19.8877	379.479		.019507	357.9		-1.18E-03
32	19.8877	379.479	8.7	.0193093		.019273	-1.44E-03
33	19.8877	379.479	17.4	.018672	355.6	.0186164	-1.59E-03
34	19.8877	379.479	26.1	.017607		.017536	-1.64E-03
35	19.8877	379.479	34.8	.016135			
36	19.8877	379.479	43.5	.014281			-1.59E-03
37	19.8877	379.479	52.2	.012077			-1.45E-03
38	19.8877	379.479	60.9	9.56E-0			-1.23E-03
39	19.8877	379.479	69.6	6.75E-0			
40	19.8877	379.479	78.3	3.65E-0			
END	19.8877	379.479	87.	0	0	0	0

Station KFEQ St. Joseph, Missouri Page 40 of 80

MoM Model Details for Towers Driven Individually - Tower 4 - OC Self - (3 of 3)

42 1 43 1 44 1 45 1 5 5 6 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6	18.3642 18.3642 18.3642 18.3642 18.3642 18.3642 18.3642 15.93764 15.93764 15.93764	309.105 309.105 309.105 309.105 309.105 309.105 261.653 261.653	0 8.7 17.4 26.1 34.8 43.5	(amps) 3.03E-05 1.05E-04 1.61E-04 1.63E-04 1.13E-04 0 2.26E-05 7.84E-05	242.1 242.4 242.9 243.5 0	(amps) 1.43E-05 -4.92E-05 -7.46E-05 -7.42E-05 0 2.08E-05	-1.43E-04 -1.45E-04
42 1 43 1 44 1 45 3 END 3 GND - 47 - 48 - 49 - 50 -	18.3642 18.3642 18.3642 18.3642 18.3642 -5.93764 -5.93764 -5.93764 -5.93764	309.105 309.105 309.105 309.105 309.105 261.653 261.653 261.653	8.7 17.4 26.1 34.8 43.5	1.05E-04 1.61E-04 1.63E-04 1.13E-04 0	242.1 242.4 242.9 243.5 0	-4.92E-05 -7.46E-05 -7.42E-05 -5.04E-05 0	-9.29E-05 -1.43E-04 -1.45E-04 -1.01E-04
43 1 44 1 45 1 END 3 GND - 47 - 48 - 49 - 50 -	18.3642 18.3642 18.3642 18.3642 -5.93764 -5.93764 -5.93764 -5.93764	309.105 309.105 309.105 309.105 261.653 261.653 261.653	17.4 26.1 34.8 43.5	1.61E-04 1.63E-04 1.13E-04 0	242.4 242.9 243.5 0	-7.46E-05 -7.42E-05 -5.04E-05 0	-1.43E-04 -1.45E-04 -1.01E-04
44 1 45 1 END 3 GND - 47 - 48 - 49 - 50 -	18.3642 18.3642 18.3642 -5.93764 -5.93764 -5.93764 -5.93764	309.105 309.105 309.105 261.653 261.653 261.653	26.1 34.8 43.5 0 8.7	1.63E-04 1.13E-04 0	242.9 243.5 0	-7.42E-05 -5.04E-05 0	-1.45E-04 -1.01E-04
45 1 END 3 GND - 47 - 48 - 49 - 50 -	18.3642 18.3642 -5.93764 -5.93764 -5.93764 -5.93764	309.105 309.105 261.653 261.653 261.653	34.8 43.5 0 8.7	1.13E-04 0 2.26E-05	243.5 0 22.8	-5.04E-05 0 2.08E-05	-1.01E-04
GND - 47 - 48 - 49 - 50 -	-5.93764 -5.93764 -5.93764 -5.93764	309.105 261.653 261.653 261.653	43.5 0 8.7	0 2.26E-05	0 22.8	0 2.08E-05	0
GND - 47 - 48 - 49 -	-5.93764 -5.93764 -5.93764 -5.93764	261.653 261.653 261.653	0 8.7	2.26E-05	22.8	2.08E-05	
47 48 49 50	-5.93764 -5.93764 -5.93764	261.653 261.653	8.7				8.76E-06
48 - 49 - 50 -	-5.93764 -5.93764	261.653		7.84E-05	202 0		
49 - 50 -	-5.93764		17 4		202.0	-7.22E-05	
50 -		261 652	11.4	1.2E-04	202.9	-1.11E-04	
	- 000.64	261.653	26.1	1.22E-04		-1.12E-04	
	-5.93764	261.653	34.8	8.45E-05		-7.78E-05	
	-5.93764	261.653	43.5	0	0	0	0
GND -	-24.8495	302.25	0	2.72E-05		1.8E-05	2.04E-05
52 -	-24.8495	302.25	8.7	9.42E-05		-6.21E-05	
53 -	-24.8495	302.25	17.4	1.45E-04		-9.5E-05	-1.09E-04
54	-24.8495	302.25	26.1	1.46E-04		-9.55E-05	
55	-24.8495	302.25	34.8	1.01E-04	229.5	-6.57E-05	
END -	-24.8495	302.25	43.5	0	0	0	0
GND :	35.214	271.133	0	2.39E-05		2.02E-05	1.28E-05
57	35.214	271.133	8.66	8.25E-05		-6.96E-05	
58	35.214	271.133	17.32	1.27E-04		-1.07E-04	
59	35.214	271.133	25.98	1.28E-04		-1.08E-04	
60	35.214	271.133	34.64	8.89E-05		-7.47E-05	
END	35.214	271.133	43.3	0	0	0	0

Station KFEQ St. Joseph, Missouri Page **41** of **80**

MoM Model Details for Towers Driven Individually - Tower 5 - OC Self - (1 of 3)

EOME Envir	TRY: Wir	e coordir perfect o	nates in ground	degrees;	other d	imensions	in mete	rs
	caps Di	stance	Angle	Z		radiu		egs
<u>ire</u>	none 0		0	<u>z</u>		.231		10
_	0		0	8	6.8			
2	none 95		273.	C)	.205		10
4	95		273.	8	19.9			
3	none 19		273.	C)	.25		10
2		0.	273.	9	0.2			
4	none 38		273.	()	.205		10
-		30.	273.	8	37.			_
5	none 30		273.4	()	.198		5
5		9.65	273.4	4	13.5			_
6	none 26		268.7	()	.198		5
0		51.72	268.7	4	43.5			
7	none 30		265.3		0	.198		5
•		3.27	265.3		43.5	_		_
8	none 2'	73.41	277.4		0	.198		5
-	2	73.41	277.4		43.3			
Numb	er of wi	res	= 8		current	nodes	= 60	
			minim	um		maxi		
That	vidual w	ires	wire	value		wire	value	
	ent leng		8	8.66		3	9.02	
radi	118		5	.198		3	.25	
	TRICAL D frequen lowest .68	ESCRIPTIO cy sto		quencies no. of steps 1	segmen		(wavelen maximum .0250556	
SOUT	ces: sc	ource nod	e sect	or magr	nitude	phase		type
Dour	1			1.		0		voltage
Lump	ed loads	: resista		eactance				ice passive circuit
load	i node	(ohms)		ohms)	(mH)		(uF)	0
1	1	0		9,792.9	0		0	0
2	11	0		9,792.9	0		0	0
3	21	0		9,729.9	0		0	0
4	31	0		9,729.9	0		0	0
5	41	0		0	0		0	0
6	46	0		7,594.9	0		0	0
7	51	0		7,594.9	0		0	0
8	56	0		7,594.9	0		U	v
	EDANCE.	normalia	ation =	50. sou	rce = 1	; node 41	, sector	
			act i	.mped	phase	VSWR	S11	S12
	~ ~~							
fre (MH	-				(deg)		dB -5.9E-02	dB

Station KFEQ St. Joseph, Missouri Page 42 of 80

MoM Model Details for Towers Driven Individually - Tower 5 - OC Self - (2 of 3)

CURREN Effici	T rms Frequency = 100	quency =	.68 MHz	Input powe in degrees	r = 3.5	02E-05 wat	ts
curren	it X	Y	Z		phase (deg)		imaginary (amps)
			0	1.09E-06	116 8	-4.92E-07	9.73E-07
GND	0	0	0	8.2E-06	116.8	-3.69E-06	7.32E-06
2	0	0	8.68	1.26E-05		-5.64E-06	1.12E-05
3	0	0	17.36	1.55E-05	116 6	-6.89E-06	1 38E-05
4	0	0	26.04			-7.54E-06	
5	0	0	34.72	1.7E-05	116.3	-7.62E-06	1.55E-05
6	0	0	43.4	1.73E-05	116.1	-7.82E-06	1 475-05
7	0	0	52.08	1.64E-05	115.9	-7.15E-06	1.4/6-05
8	0	0	60.76	1.42E-05		-6.16E-06	1.20E-05
9	0	0	69.44	1.09E-05	115.3	-4.67E-06	7.80E-U6
10	0	0	78.12	6.36E-06		-2.69E-06	
END	0	0	86.8	0	0	0	0
עוצור	Ü	•					n och 07
GND	4.97193	94.8698	0	1.5E-06	208.9	-1.31E-06	-7.25E-07
12	4.97193	94.8698	8.99	1.12E-05	208.8	-9.84E-06	-5.4E-06
	4.97193	94.8698	17.98	1.73E-05	208.6	-1.51E-05	-8.26E-06
13	4.97193	94.8698	26.97	2.12E-05	208.4	-1.87E-05	-1.01E-05
14	4.97193	94.8698	35.96	2.33E-05	208.2	-2.06E-05	-1.1E-05
15		94.8698	44.95	2.37E-05		-2.09E-05	-1.11E-05
16	4.97193	94.8698	53.94	2.23E-05		-1.98E-05	-1.04E-05
17	4.97193		62.93	1.93E-05	207.4	-1.72E-05	-8.89E-06
18	4.97193	94.8698	71.92	1.47E-05	207.	-1.31E-05	-6.7E-06
19	4.97193	94.8698		8.53E-06	207.	-7.62E-06	-3.83E-06
20	4.97193	94.8698	80.91		0	0	0
END	4.97193	94.8698	89.9	0	O	Ŭ	
		100 54	0	2.27E-06	5 294.3	9.34E-07	-2.07E-06
GND	9.94386	189.74	9.02	1.77E-05	5 294.3	7.28E-06	-1.61E-05
22	9.94386	189.74		2.69E-05		1.11E-05	-2.45E-05
23	9.94386	189.74	18.04	3.28E-05	5 204 6	1.36E-05	-2.99E-05
24	9.94386	189.74	27.06	3.28E-0	5 204 7	1.5E-05	-3.25E-05
25	9.94386	189.74	36.08			1.51E-05	-3.27E-05
26	9.94386	189.74	45.1	3.6E-05		1.42E-05	-3.05E-05
27	9.94386	189.74	54.12	3.37E-0		1.42E-05	-2.62E-05
28	9.94386	189.74	63.14	2.89E-0			-1.98E-05
29	9.94386	189.74	72.16	2.19E-0			-1.14E-05
30	9.94386	189.74	81.18	1.26E-0			0
END	9.94386	189.74	90.2	0	0	0	U
				2 02 00	332.6	2.58E-06	-1.34E-06
GND	19.8877			2.9E-06 2.09E-0			
32	19.8877	379.479	8.7				
33	19.8877	379.479	17.4	3.17E-0			
34	19.8877	379.479	26.1		5 337.2		
35	19.8877	379.479	34.8		5 339.2		
36	19.8877	379.479	43.5		5 341.3		
37	19.8877	379.479	52.2)5 343.2		
38	19.8877	379.479	60.9	3.34E-0)5 345.	3.22E-05	
39	19.8877	379.479	69.6		5 346.6		
40	19.8877		78.3	1.45E-0)5 348.	1.42E-05	
END	19.8877	379.479	87.	0	0	0	0

APPLICATION FOR STATION LICENSE METHOD OF MOMENTS - PROOF OF PERFORMANCE

Station KFEQ St. Joseph, Missouri Page **43** of **80**

MoM Model Details for Towers Driven Individually - Tower 5 - OC Self - (3 of 3)

GND 42 43 44	18.3642 18.3642 18.3642	Y 309.105	Z	mag (amps)	phase (deg)		
GND 42 43 44	18.3642 18.3642	309.105			(deg)	(amps)	(amps)
42 43 44	18.3642	309.105		00	00.0	4.95E-05	2.48E-03
43 44			0	2.48E-03		4.76E-05	1.98E-03
44	18 3642	309.105	8.7	1.98E-03		4.19E-05	1.53E-03
		309.105	17.4	1.53E-03			1.06E-03
	18.3642	309.105	26.1	1.06E-03		3.25E-05 1.91E-05	5.68E-04
45	18.3642	309.105	34.8	5.68E-04			0
END	18.3642	309.105	43.5	0	0	0	U
GND	-5.93764	261.653	0	2.05E-06		-1.53E-06	
47	-5.93764	261.653	8.7	6.85E-06		5.34E-06	-4.29E-06
48	-5.93764	261.653	17.4	1.E-05	325.1	8.24E-06	-5.74E-06
49	-5.93764	261.653	26.1	9.66E-06		8.38E-06	-4.81E-06
50	-5.93764	261.653	34.8	6.4E-06	336.2	5.85E-06	-2.58E-06
END	-5.93764	261.653	43.5	0	0	0	0
GND	-24.8495	302.25	0	2.46E-06	132.2	-1.65E-06	
52	-24.8495	302.25	8.7	7.96E-06		5.76E-06	-5.49E-06
53	-24.8495	302.25	17.4	1.13E-05	322.2	8.89E-06	-6.89E-06
54	-24.8495	302.25	26.1	1.04E-05		9.06E-06	-5.17E-06
54 55	-24.8495	302.25	34.8	6.73E-06		6.33E-06	-2.27E-0
END	-24.8495	302.25	43.5	0	0	0	0
END	-24.0400	302.20					1 000 00
GND	35.214	271.133	0	2.57E-06		-1.64E-06	
57	35.214	271.133	8.66	8.21E-06		5.71E-06	-5.9E-06
58	35.214	271.133	17.32	1.15E-05		8.83E-06	-7.3E-06
59	35.214	271.133	25.98	1.05E-05		9.E-06	-5.34E-0
60	35.214	271.133	34.64	6.68E-06		6.3E-06	-2.21E-0
END	35.214	271.133	43.3	0	0	0	0

Station KFEQ St. Joseph, Missouri Page 44 of 80

MoM Model Details for Towers Driven Individually - Tower 6 - OC Self - (1 of 3)

EOME	TRY: Wire	e coordi	nates in	degrees;	other dim	Tower 6 - OC S	meters
	caps Di	ctance	Angle	Z		radius	segs
rire		stance	0	<u>Z</u> 0		.231	10
1	none 0		0		. 8		
	0		273.	0		.205	10
2	none 95		273.		.9		
	95		273.	0		.25	10
3	none 19		273.	-).2		
		0.	273.	0	,	.205	10
4	none 38		273.	-	7.		
		0.	273.4 273.4	_	•	.198	5
5	none 30			-	3.5		
		9.65	273.4	•		.198	5
6	none 26	1.72	268.7		3.5		
		1.72	268.7	_		.198	5
7	none 30		265.3		3.5		
		3.27	265.3	_		.198	5
8	none 27		277.4	-	3.3		
	21	73.41	277.4	-1	J.J		
Numb	er of wi	res	= 8		curre	ent nodes =	60
			minin	מווות		maximum	
			wire	value		wire valu	ıe
Indi	vidual w	ires	8	8.66		3 9.02	2
segn	ent leng	tn	5	.198		3 .25	
radi	.us		5	. 250			
	frequen . lowest	.cy st	on: Freque	uencies (M no. of steps 1	segment		velengths) imum 50556
1	.68	0		1	.021000		
Sou	rces: so	ource nod 46		tor magn	itude	phase 0	type voltage
Lum	ped loads	S:			induc	tance capa	citance passive
		resista		eactance ohms)	(mH)	(uF)	
<u>loa</u>		(ohms)		9,792.9	0	0	0
1	1	0		9,792.9	0	0	0
2	11	0		9,792.9	0	0	0
3	21	0			0	0	0
4	31	0	-	9,729.9	0	0	0
5	41	0		7,594.9	0	0	0
	46	0		0	0	0	0
6	51	0		7,594.9	0	0	0
		0		7,594.9	U	3	
6	56	•					
6 7 8				E0 2011	- 1·	node 46, se	SCIOL 1
6 7 8	PEDANCE:	normali	zation =			node 46, se	S12
6 7 8	PEDANCE:	normali sist r	eact	imped I	phase		s12 dB
6 7 8 IMI fre	PEDANCE: eq re	normali sist r	eact	imped I (ohms)	ohase (deg)	VSWR S11 dB	S12

Station KFEQ St. Joseph, Missouri Page **45** of **80**

MoM Model Details for Towers Driven Individually - Tower 6 - OC Self - (2 of 3)

Efficiency = 100. % coordinates in degrees current no. x y Z mag (amps) phase (deg) real (amps) imaginary (amps) GND 0 0 0 1.3E-06 164.1 -1.25E-06 3.56E-07 2 0 0 8.68 9.79E-06 164. -9.41E-06 2.69E-06 3 0 0 17.36 1.5E-05 163.9 -1.44E-05 4.16E-06 4 0 0 26.04 1.84E-05 163.7 -1.94E-05 5.17E-06 5 0 0 34.72 2.03E-05 163.5 -1.94E-05 5.75E-06 6 0 0 43.4 2.06E-05 163.3 -1.97E-05 5.92E-06 7 0 0 52.08 1.95E-05 163.1 -1.86E-05 5.67E-06 8 0 0 69.44 1.29E-05 162.8 -1.62E-05 5.67E-06 9 0 0 69.44 1.29E-05 162.5 <th colspan="8">MoM Model Details for Towers Driven Individually - Tower 0 - OC 3en - (2 of 3)</th>	MoM Model Details for Towers Driven Individually - Tower 0 - OC 3en - (2 of 3)								
current x y z mag (amps) phase (deg) real (amps) imaginary (amps) GND 0 0 0 1.3E-06 164.1 -1.25E-06 3.56E-07 2 0 0 0 17.36 1.5E-05 164.1 -9.41E-06 2.69B-06 3 0 0 26.04 1.84E-05 163.9 -1.44E-05 5.17E-06 4 0 0 26.04 1.84E-05 163.7 -1.77E-05 5.75E-06 5 0 0 34.72 2.03E-05 163.5 -1.94E-05 5.75E-06 6 0 0 43.4 2.06E-05 163.5 -1.94E-05 5.75E-06 7 0 0 52.08 1.95E-05 163.1 -1.86E-05 5.7EE-06 8 0 0 69.74 1.29E-05 162.5 -1.24E-05 3.89E-06 9 0 0 69.44 1.29E-05 162.5 -1.24E-05 3.89E-06	COMMENT								
GND 0 0 0 0 1.3E-06 164.1 -1.25E-06 3.56E-07 2 0 0 8.68 9.79E-06 1649.41E-06 2.69E-06 3 0 0 17.36 1.5E-05 163.9 -1.44E-05 4.16E-06 4 0 0 26.04 1.84E-05 163.7 -1.77E-05 5.17E-06 5 0 0 34.72 2.03E-05 163.5 -1.94E-05 5.75E-06 6 0 0 43.4 2.06E-05 163.3 -1.97E-05 5.92E-06 6 0 0 0 52.08 1.95E-05 163.3 -1.97E-05 5.92E-06 7 0 0 52.08 1.95E-05 163.3 -1.97E-05 5.92E-06 8 0 0 60.76 1.69E-05 163.3 -1.97E-05 5.E-06 9 0 0 69.44 1.29E-05 162.8 -1.62E-05 5.E-06 10 0 0 78.12 7.54E-06 162.2 -7.18E-06 2.3E-06 10 0 0 86.8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	7								
GND 0 0 0 8.68 9.79E-06 164.1 -1.25E-06 3.56E-07 2 0 0 8.68 9.79E-06 1649.41E-06 2.69E-06 3 0 0 17.36 1.5E-05 163.9 -1.44E-05 4.16E-06 4 0 0 26.04 1.84E-05 163.7 -1.77E-05 5.17E-06 5 0 0 34.72 2.03E-05 163.5 -1.94E-05 5.75E-06 6 0 0 43.4 2.06E-05 163.3 -1.97E-05 5.92E-06 7 0 0 52.08 1.95E-05 163.1 -1.86E-05 5.67E-06 8 0 0 60.76 1.69E-05 162.8 -1.62E-05 5.E-06 9 0 0 69.44 1.29E-05 162.5 -1.24E-05 5.E-06 10 0 0 78.12 7.54E-06 162.2 -7.18E-06 2.3E-06 END 0 0 86.8 0 0 0 0 GND 4.97193 94.8698 8.99 1.4E-05 253.7 -3.93E-06 -1.34E-0 13 4.97193 94.8698 8.99 1.4E-05 253.7 -3.93E-06 -1.34E-0 14 4.97193 94.8698 26.97 2.64E-05 253.4 -7.53E-06 -2.77E-0 16 4.97193 94.8698 35.96 2.89E-05 253.2 -8.34E-06 -2.77E-0 16 4.97193 94.8698 44.95 2.93E-05 2538.54E-06 -2.77E-0 17 4.97193 94.8698 62.93 2.38E-05 2538.54E-06 -2.77E-0 18 4.97193 94.8698 62.93 2.38E-05 252.6 -7.11E-06 -2.27E-0 20 4.97193 94.8698 89.9 0 0 0 GND 9.94386 189.74 0 2.98E-06 331.2 2.61E-06 -1.72E-06 22 9.94386 189.74 0 2.98E-05 335.4 3.84E-05 -1.75E-06 22 9.94386 189.74 9.02 2.38E-05 333.7 3.13E-05 -1.55E-06 22 9.94386 189.74 18.04 3.49E-05 337.2 4.22E-05 -1.76E-06 22 9.94386 189.74 27.06 4.23E-05 335.4 3.84E-05 -1.76E-06 22 9.94386 189.74 36.08 4.58E-05 337.2 4.22E-05 -1.78E-06 22 9.94386 189.74 45.1 4.28E-05 337.7 4.04E-05 -1.76E-06 22 9.94386 189.74 54.12 4.28E-05 337.7 4.04E-05 -1.76E-06 22 9.94386 189.74 54.12 4.28E-05 337.7 4.04E-05 -1.76E-06 22 9.94386 189.74 55.1 4.28E-05 337.2 4.22E-05 -1.78E-06 22 9.94386 189.74 55.1 4.28E-05 337.2 4.22E-05 -1.78E-06 22 9.94386 189.74 55.1 4.28E-05 337.2 4.22E-05 -1.76E-06 25 9.94386 189.74 55.1 4.28E-05 337.7 4.22E-05 -1.76E-06 26 9.94386 189.74 55.1 4.28E-05 337.7 4.22E-05 -1.76E-06 27 9.94386 189.74 54.12 4.28E-05 340.7 4.04E-05 -1.42E-05 27 9.94386 189.74 54.12 4.28E-05 340.7 4.0									
GND 0 8.68 9.79E-06 164. -9.41E-06 2.69E-06 3 0 0 17.36 1.5E-05 163.9 -1.44E-05 4.16E-06 4 0 0 26.04 1.84E-05 163.7 -1.77E-05 5.17E-06 5 0 0 34.72 2.03E-05 163.5 -1.94E-05 5.75E-06 6 0 0 43.4 2.06E-05 163.5 -1.97E-05 5.92E-06 7 0 0 52.08 1.95E-05 163.1 -1.86E-05 5.67E-06 8 0 0 60.76 1.69E-05 162.8 -1.62E-05 5.2E-06 9 0 0 69.44 1.29E-05 162.5 -1.24E-05 3.89E-06 10 0 78.12 7.54E-06 162.2 -7.18E-06 2.3E-06 END 0 1 8.7E-06 253.7 -3.93E-06 -1.34E-0 12 4.97193 94.8698 17.98<									
2 0 0 8.68 9.79E-06 1649.41E-06 2.69E-06 3 0 0 17.36 1.5E-05 163.9 -1.44E-05 4.16E-06 4 0 0 266.04 1.84E-05 163.9 -1.77E-05 5.17E-06 5 0 0 34.72 2.03E-05 163.5 -1.94E-05 5.75E-06 6 0 0 0 43.4 2.06E-05 163.3 -1.97E-05 5.92E-06 7 0 0 0 52.08 1.95E-05 163.1 -1.86E-05 5.67E-06 8 0 0 0 60.76 1.69E-05 163.1 -1.86E-05 5.67E-06 9 0 0 69.44 1.29E-05 162.5 -1.24E-05 3.89E-06 10 0 0 78.12 7.54E-06 162.2 -7.18E-06 2.3E-06 END 0 0 86.8 0 0 0 GND 4.97193 94.8698 8.99 1.4E-05 253.8 -5.24E-07 -1.8E-06 12 4.97193 94.8698 8.99 1.4E-05 253.7 -3.93E-06 -1.34E-0 13 4.97193 94.8698 17.98 2.15E-05 253.5 -6.08E-06 -2.06E-0 15 4.97193 94.8698 26.97 2.64E-05 253.4 -7.53E-06 -2.53E-0 15 4.97193 94.8698 35.96 2.89E-05 253.2 -8.34E-06 -2.77E-0 16 4.97193 94.8698 44.95 2.93E-05 2538.54E-06 -2.8E-05 17 4.97193 94.8698 62.93 2.38E-05 252.6 -7.11E-06 -2.27E-0 18 4.97193 94.8698 80.91 1.04E-05 252.3 -5.48E-06 -1.72E-0 20 4.97193 94.8698 80.91 1.04E-05 2523.21E-06 -9.9E-06 END 9.94386 189.74 9.02 2.3E-05 333.7 3.13E-05 -1.55E-0 20 9.94386 189.74 18.04 3.49E-05 333.7 3.13E-05 -1.55E-0 21 9.94386 189.74 47.06 4.23E-05 335.4 3.84E-05 -1.76E-0 22 9.94386 189.74 47.06 4.23E-05 333.7 4.28E-05 -1.75E-0 25 9.94386 189.74 47.06 4.23E-05 333.7 4.28E-05 -1.55E-0 26 9.94386 189.74 47.06 4.23E-05 333.7 4.28E-05 -1.75E-0 27 9.94386 189.74 47.06 4.23E-05 333.7 4.28E-05 -1.76E-0 28 9.94386 189.74 47.06 4.23E-05 333.7 4.28E-05 -1.76E-0 29 9.94386 189.74 47.06 4.23E-05 333.9 4.28E-05 -1.76E-0 20 9.94386 189.74 47.06 4.23E-05 333.9 4.28E-05 -1.76E-0 27 9.94386 189.74 47.06 4.23E-05 333.9 4.28E-05 -1.76E-0 28 9.94386 189.74 47.06 4.23E-05 333.9 4.28E-05 -1.76E-0 29 9.94386 189.74 47.06 4.23E-05 333.9 4.28E-05 -1.76E-0 20 9.94386 189.74 47.06 4.23E-05 340.7 4.28E-05 -1.76E-0 20 9.94386 189.74 47.06 4.23E-05 340.7 4.28E-05 -1									
17.36									
4 0 0 0 26.04 1.84E-05 163.7 -1.77E-05 5.17E-06 5 0 0 34.72 2.03E-05 163.5 -1.94E-05 5.75E-06 6 0 0 43.4 2.06E-05 163.3 -1.97E-05 5.92E-06 7 0 0 52.08 1.95E-05 163.1 -1.86E-05 5.67E-06 8 0 0 60.76 1.69E-05 162.8 -1.62E-05 5.E-06 9 0 0 69.44 1.29E-05 162.8 -1.62E-05 5.E-06 10 0 0 78.12 7.54E-06 162.2 -7.18E-06 2.3E-06 10 0 0 78.12 7.54E-06 162.2 -7.18E-06 2.3E-06 10 0 0 86.8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0									
5 0 0 34.72 2.03E-05 163.5 -1.94E-05 5.75E-06 6 0 0 43.4 2.06E-05 163.3 -1.97E-05 5.92E-06 7 0 0 52.08 1.95E-05 163.3 -1.86E-05 5.67E-06 8 0 0 60.76 1.69E-05 162.8 -1.62E-05 5.E-06 9 0 0 69.44 1.29E-05 162.5 -1.24E-05 3.89E-06 10 0 0 78.12 7.54E-06 162.2 -7.18E-06 2.3E-06 2.00 0 0 86.8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0									
6 0 0 43.4 2.06E-05 163.3 -1.97E-05 5.92E-06 7 0 0 52.08 1.95E-05 163.1 -1.86E-05 5.67E-06 8 0 0 60.76 1.69E-05 162.8 -1.62E-05 5.E-06 9 0 0 69.44 1.29E-05 162.5 -1.24E-05 3.89E-06 10 0 0 78.12 7.54E-06 162.2 -7.18E-06 2.3E-06 END 0 0 86.8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0									
7 0 0 60.52.08 1.95E-05 163.1 -1.86E-05 5.67E-06 8 0 0 60.76 1.69E-05 162.8 -1.62E-05 5.E-06 9 0 0 69.44 1.29E-05 162.5 -1.24E-05 3.89E-06 10 0 0 78.12 7.54E-06 162.2 -7.18E-06 2.3E-06 END 0 0 86.8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0									
8 0 0 60.76 1.69E-05 162.8 -1.62E-05 5.E-06 9 0 0 69.44 1.29E-05 162.5 -1.24E-05 3.89E-06 10 0 0 78.12 7.54E-06 162.2 -7.18E-06 2.3E-06 END 0 0 86.8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0									
9 0 0 69.44 1.29E-05 162.5 -1.24E-05 3.89E-06 10 0 78.12 7.54E-06 162.2 -7.18E-06 2.3E-06									
TO DEND O TRILE TO THE									
BND 0 0 86.8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0									
GND 4.97193 94.8698 0 1.87E-06 253.8 -5.24E-07 -1.8E-06 12 4.97193 94.8698 8.99 1.4E-05 253.7 -3.93E-06 -1.34E-0 13 4.97193 94.8698 17.98 2.15E-05 253.5 -6.08E-06 -2.06E-0 14 4.97193 94.8698 26.97 2.64E-05 253.4 -7.53E-06 -2.53E-0 15 4.97193 94.8698 35.96 2.89E-05 253.2 -8.34E-06 -2.77E-0 16 4.97193 94.8698 44.95 2.93E-05 2538.54E-06 -2.8E-05 17 4.97193 94.8698 53.94 2.75E-05 252.8 -8.13E-06 -2.63E-0 18 4.97193 94.8698 62.93 2.38E-05 252.6 -7.11E-06 -2.27E-0 19 4.97193 94.8698 71.92 1.81E-05 252.3 -5.48E-06 -1.72E-0 19 4.97193 94.8698 80.91 1.04E-05 2523.21E-06 -9.9E-06 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0									
12 4.97193 94.8698 8.99 1.4E-05 253.7 -3.93E-06 -1.34E-0 13 4.97193 94.8698 17.98 2.15E-05 253.5 -6.08E-06 -2.06E-0 14 4.97193 94.8698 26.97 2.64E-05 253.4 -7.53E-06 -2.53E-0 15 4.97193 94.8698 35.96 2.89E-05 253.2 -8.34E-06 -2.77E-0 16 4.97193 94.8698 44.95 2.93E-05 253. -8.54E-06 -2.8E-05 17 4.97193 94.8698 53.94 2.75E-05 252.8 -8.13E-06 -2.63E-05 18 4.97193 94.8698 53.94 2.75E-05 252.8 -8.13E-06 -2.27E-06 19 4.97193 94.8698 71.92 1.81E-05 252.3 -5.48E-06 -1.72E-06 20 4.97193 94.8698 80.91 1.04E-05 252.3 -5.48E-06 -1.72E-06 20 4.97193 94.8698 80.91 1.04E-05 252. -3.21E-06 -9.9E-06 END 4.97193 94.8698 89.9 0 0 0 GND 9.94386 189.74 0 2.98E-06 331.2 <t< td=""><td></td></t<>									
12 4.97193 94.8698 17.98 2.15E-05 253.5 -6.08E-06 -2.06E-0 14 4.97193 94.8698 26.97 2.64E-05 253.4 -7.53E-06 -2.53E-0 15 4.97193 94.8698 35.96 2.89E-05 253.2 -8.34E-06 -2.77E-0 16 4.97193 94.8698 44.95 2.93E-05 2538.54E-06 -2.8E-05 17 4.97193 94.8698 53.94 2.75E-05 252.8 -8.13E-06 -2.63E-0 18 4.97193 94.8698 62.93 2.38E-05 252.6 -7.11E-06 -2.27E-0 19 4.97193 94.8698 71.92 1.81E-05 252.3 -5.48E-06 -1.72E-0 20 4.97193 94.8698 80.91 1.04E-05 2523.21E-06 -9.9E-06 END 4.97193 94.8698 89.9 0 0 0 GND 9.94386 189.74 0 2.98E-06 331.2 2.61E-06 -1.43E-0 22 9.94386 189.74 9.02 2.3E-05 332.2 2.04E-05 -1.07E-0 23 9.94386 189.74 18.04 3.49E-05 333.7 3.13E-05 -1.55E-0 24 9.94386 189.74 27.06 4.23E-05 335.4 3.84E-05 -1.76E-0 25 9.94386 189.74 36.08 4.58E-05 337.2 4.22E-05 -1.78E-0 26 9.94386 189.74 45.1 4.59E-05 339. 4.28E-05 -1.65E-0 27 9.94386 189.74 54.12 4.28E-05 340.7 4.04E-05 -1.42E-0									
13									
14 4.97193 94.8698 35.96 2.89E-05 253.2 -8.34E-06 -2.77E-06 16 4.97193 94.8698 44.95 2.93E-05 2538.54E-06 -2.8E-05 17 4.97193 94.8698 53.94 2.75E-05 252.8 -8.13E-06 -2.63E-06 18 4.97193 94.8698 62.93 2.38E-05 252.6 -7.11E-06 -2.27E-06 19 4.97193 94.8698 71.92 1.81E-05 252.3 -5.48E-06 -1.72E-06 20 4.97193 94.8698 80.91 1.04E-05 2523.21E-06 -9.9E-06 END 4.97193 94.8698 89.9 0 0 0 GND 9.94386 189.74 0 2.98E-06 331.2 2.61E-06 -1.43E-06 22 9.94386 189.74 9.02 2.3E-05 332.2 2.04E-05 -1.07E-06 23 9.94386 189.74 18.04 3.49E-05 333.7 3.13E-05 -1.55E-06 24 9.94386 189.74 27.06 4.23E-05 335.4 3.84E-05 -1.76E-06 25 9.94386 189.74 36.08 4.58E-05 337.2 4.22E-05 -1.78E-06 26 9.94386 189.74 45.1 4.59E-05 339. 4.28E-05 -1.65E-06 27 9.94386 189.74 54.12 4.28E-05 340.7 4.04E-05 -1.42E-06 28 9.94386 189.74 54.12 4.28E-05 340.7 4.04E-05 -1.42E-06 29 9.94386 189.74 54.12 4.28E-05 340.7 4.04E-05 -1.42E-06 21 9.94386 189.74 54.12 4.28E-05 340.7 4.04E-05 -1.42E-06 21 9.94386 189.74 54.12 4.28E-05 340.7 4.04E-05 -1.42E-06 22 9.94386 189.74 54.12 4.28E-05 340.7 4.04E-05 -1.42E-06 23 9.94386 189.74 54.12 4.28E-05 340.7 4.04E-05 -1.42E-06 24 9.94386 189.74 54.12 4.28E-05 340.7 4.04E-05 -1.42E-06 25 9.94386 189.74 54.12 4.28E-05 340.7 4.04E-05 -1.42E-06									
15									
16 4.97193 94.8698 53.94 2.75E-05 252.8 -8.13E-06 -2.63E-0 18 4.97193 94.8698 62.93 2.38E-05 252.6 -7.11E-06 -2.27E-0 19 4.97193 94.8698 71.92 1.81E-05 252.3 -5.48E-06 -1.72E-0 20 4.97193 94.8698 80.91 1.04E-05 2523.21E-06 -9.9E-06 20 4.97193 94.8698 89.9 0 0 0 GND 9.94386 189.74 0 2.98E-06 331.2 2.61E-06 -1.43E-0 22 9.94386 189.74 9.02 2.3E-05 332.2 2.04E-05 -1.07E-0 23 9.94386 189.74 18.04 3.49E-05 333.7 3.13E-05 -1.55E-0 24 9.94386 189.74 27.06 4.23E-05 335.4 3.84E-05 -1.76E-0 25 9.94386 189.74 36.08 4.58E-05 337.2 4.22E-05 -1.78E-0 26 9.94386 189.74 45.1 4.59E-05 339. 4.28E-05 -1.65E-0 27 9.94386 189.74 54.12 4.28E-05 340.7 4.04E-05 -1.42E-0 27 9.94386 189.74 54.12 4.28E-05 340.7 4.04E-05 -1.42E-0									
17 4.97193 94.8698 62.93 2.38E-05 252.6 -7.11E-06 -2.27E-06 19 4.97193 94.8698 71.92 1.81E-05 252.3 -5.48E-06 -1.72E-06 20 4.97193 94.8698 80.91 1.04E-05 2523.21E-06 -9.9E-06 21 9.94386 189.74 0 2.98E-06 331.2 2.61E-06 -1.43E-06 22 9.94386 189.74 9.02 2.3E-05 332.2 2.04E-05 -1.07E-06 23 9.94386 189.74 18.04 3.49E-05 333.7 3.13E-05 -1.55E-06 24 9.94386 189.74 27.06 4.23E-05 335.4 3.84E-05 -1.76E-06 25 9.94386 189.74 36.08 4.58E-05 337.2 4.22E-05 -1.78E-06 26 9.94386 189.74 45.1 4.59E-05 339. 4.28E-05 -1.65E-06 27 9.94386 189.74 54.12 4.28E-05 340.7 4.04E-05 -1.42E-06 28 9.94386 189.74 54.12 4.28E-05 340.7 4.04E-05 -1.42E-06 29 9.94386 189.74 54.12 4.28E-05 340.7 4.04E-05 -1.42E-06									
18									
20 4.97193 94.8698 80.91 1.04E-05 2523.21E-06 -9.9E-06 2 2 2 2 61E-06 -9.9E-06 3 3 2 2 2 61E-06 -9.9E-06 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2									
END 4.97193 94.8698 89.9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0									
GND 9.94386 189.74 0 2.98E-06 331.2 2.61E-06 -1.43E-0 22 9.94386 189.74 9.02 2.3E-05 332.2 2.04E-05 -1.07E-0 23 9.94386 189.74 18.04 3.49E-05 333.7 3.13E-05 -1.55E-0 24 9.94386 189.74 27.06 4.23E-05 335.4 3.84E-05 -1.76E-0 25 9.94386 189.74 36.08 4.58E-05 337.2 4.22E-05 -1.78E-0 26 9.94386 189.74 45.1 4.59E-05 339. 4.28E-05 -1.65E-0 27 9.94386 189.74 54.12 4.28E-05 340.7 4.04E-05 -1.42E-0									
GND 9.94386 189.74 9.02 2.3E-05 332.2 2.04E-05 -1.07E-0 23 9.94386 189.74 18.04 3.49E-05 333.7 3.13E-05 -1.55E-0 24 9.94386 189.74 27.06 4.23E-05 335.4 3.84E-05 -1.76E-0 25 9.94386 189.74 36.08 4.58E-05 337.2 4.22E-05 -1.78E-0 26 9.94386 189.74 45.1 4.59E-05 339. 4.28E-05 -1.65E-0 27 9.94386 189.74 54.12 4.28E-05 340.7 4.04E-05 -1.42E-0									
22 9.94386 189.74 9.02 2.3E-05 332.2 2.04E-05 -1.07E-05 23 9.94386 189.74 18.04 3.49E-05 333.7 3.13E-05 -1.55E-05 24 9.94386 189.74 27.06 4.23E-05 335.4 3.84E-05 -1.76E-05 25 9.94386 189.74 36.08 4.58E-05 337.2 4.22E-05 -1.78E-05 26 9.94386 189.74 45.1 4.59E-05 339. 4.28E-05 -1.65E-05 27 9.94386 189.74 54.12 4.28E-05 340.7 4.04E-05 -1.42E-05 28 9.94386 189.74 54.12 4.28E-05 340.7 4.04E-05 -1.42E-05 29 9.94386 189.74 54.12 4.28E-05 340.7 4.04E-05 -1.42E-05 20 9.94386 189.74 54.12 4.28E-05 340.7 4.04E-05 20 9.94386 189.74 54	16								
23 9.94386 189.74 18.04 3.49E-05 333.7 3.13E-05 -1.55E-0 24 9.94386 189.74 27.06 4.23E-05 335.4 3.84E-05 -1.76E-0 25 9.94386 189.74 36.08 4.58E-05 337.2 4.22E-05 -1.78E-0 26 9.94386 189.74 45.1 4.59E-05 339. 4.28E-05 -1.65E-0 27 9.94386 189.74 54.12 4.28E-05 340.7 4.04E-05 -1.42E-0)5								
24 9.94386 189.74 27.06 4.23E-05 335.4 3.84E-05 -1.76E-0 25 9.94386 189.74 36.08 4.58E-05 337.2 4.22E-05 -1.78E-0 26 9.94386 189.74 45.1 4.59E-05 339. 4.28E-05 -1.65E-0 27 9.94386 189.74 54.12 4.28E-05 340.7 4.04E-05 -1.42E-0									
25 9.94386 189.74 36.08 4.58E-05 337.2 4.22E-05 -1.78E-0 26 9.94386 189.74 45.1 4.59E-05 339. 4.28E-05 -1.65E-0 27 9.94386 189.74 54.12 4.28E-05 340.7 4.04E-05 -1.42E-0)5								
26 9.94386 189.74 45.1 4.59E-05 339. 4.28E-05 -1.65E-0 27 9.94386 189.74 54.12 4.28E-05 340.7 4.04E-05 -1.42E-0)5								
27 9.94386 189.74 54.12 4.28E-05 340.7 4.04E-05 -1.42E-0)5								
2/ 9.94300 109.74 31.12)5								
28 9.94386 189.74 63.14 3.67E-05 342.2 3.5E-05 -1.12E-0)5								
28 9.94386 189.74 63.14 3.67E-05 342.2 3.3E 05 11.2E 05 29 9.94386 189.74 72.16 2.78E-05 343.6 2.66E-05 -7.83E-0)6								
30 9.94386 189.74 81.18 1.6E-05 344.8 1.54E-05 -4.19E-0)6								
END 9.94386 189.74 90.2 0 0 0									
	0.0								
GND 19.8877 379.479 0 2.16E-06 293.6 8.64E-07 -1.98E-									
32 19.8877 379.479 8.7 1.57E-05 293.6 6.28E-06 -1.44E-									
33 19.8877 379.479 17.4 2.39E-05 293.7 9.61E-06 -2.19E-									
34 19.8877 379.479 26.1 2.91E-05 293.8 1.18E-05 -2.67E-									
35 19.8877 379.479 34.8 3.18E-05 293.9 1.29E-05 -2.91E-									
36 19.8877 379.479 43.5 3.2E-05 294. 1.3E-05 -2.92E-									
37 19.8877 379.479 32.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.									
38 19.8877 379.479 60.9 2.57E-05 294.3 1.06E-05 -2.35E-									
39 19.88// 3/9.4/9 69.0 1.000 05.004 4 6.25 06 -1 025-									
40 19.8877 379.479 70.3	. .								
END 19.8877 379.479 87. 0 0 0 0									

Station KFEQ St. Joseph, Missouri Page 46 of 80

MoM Model Details for Towers Driven Individually - Tower 6 - OC Self - (3 of 3)

	it			-	phase	real	imaginary
no.	Х	Y	Z	(amps)	(deg)	(amps)	(amps)
GND	18.3642	309.105	0	2.05E-06		-1.53E-06	
42	18.3642	309.105	8.7	6.85E-06	321.2	5.34E-06	-4.29E-06
43	18.3642	309.105	17.4	1.E-05	325.1	8.24E-06	-5.74E-06
44	18.3642	309.105	26.1	9.66E-06	330.2	8.38E-06	-4.81E-06
45	18.3642	309.105	34.8	6.4E-06	336.2	5.85E-06	-2.58E-06
END	18.3642	309.105	43.5	0	0	0	0
GND	-5.93764	261.653	0	2.48E-03	88.9	4.95E-05	2.48E-03
47	-5.93764	261.653	8.7	1.98E-03	88.6	4.76E-05	1.98E-03
4.8	-5.93764	261.653	17.4	1.53E-03	88.4	4.19E-05	1.53E-03
49	-5.93764	261.653	26.1	1.06E-03	88.3	3.24E-05	1.06E-03
50	-5.93764	261.653	34.8	5.68E-04	88.1	1.9E-05	5.68E-04
END	-5.93764	261.653	43.5	0	0	0	0
GND	-24.8495	302.25	0	2.38E-06	133.1	-1.63E-06	
52	-24.8495	302.25	8.7	7.74E-06	317.2	5.68E-06	-5.26E-0
53	-24.8495	302.25	17.4	1.1E-05	322.9	8.77E-06	-6.64E-0
54	-24.8495	302.25	26.1	1.03E-05	330.6	8.93E-06	-5.03E-0
55	-24.8495	302.25	34.8	6.64E-06	340.2	6.24E-06	-2.25E-0
END	-24.8495	302.25	43.5	0	0	0	0
GND	35.214	271.133	0	2.54E-06	130.6	-1.65E-06	
57	35.214	271.133	8.66	8.13E-06		5.74E-06	-5.76E-0
58	35.214	271.133	17.32	1.14E-05		8.86E-06	-7.16E-0
59	35.214	271.133	25.98	1.05E-05	329.6	9.04E-06	-5.29E-0
60	35.214	271.133	34.64	6.71E-06	340.5	6.32E-06	-2.24E-0
	35.214	271.133	43.3	0	0	0	0

Station KFEQ St. Joseph, Missouri Page 47 of 80

MoM Model Details for Towers Driven Individually - Tower 7 - OC Self – (1 of 3)

GEOME Envir	TRY: W	lire coor :: perfec	dinates i t ground	n degrees	; other d	.ımensions	3 III Wece	. 5
wire		Distance		.e	<u>z</u>	radi		egs
1	none		0	_	0	.231		10
1	110110	0	0		86.8			
2	none	-	273.	•	0	.205		10
2	110110	95.	273	•	89.9			1.0
3	none	190.	273	•	0	.25		10
J	110110	190.	273	•	90.2			
4	none	380.	273		0	.205		10
*		380.	273	•	87.			_
5	none	309.65	273	. 4	0	.198		5
2	110110	309.65	273	. 4	43.5			-
6	none	261.72	268	.7	0	.198	}	5
5	1,0,10	261.72	268	.7	43.5			_
7	none	303.27	265	.3	0	.198	3	5
,	110110	303.27	265	.3	43.5			F
8	none	273.41	277	.4	0	.198	3	5
0	110110	273.41	277	.4	43.3			
				_		ent nodes	= 60	
Numb	er of	wires	=	8	Cull	ent node.		
			mir	imum		max:	imum	
			wire			wire	value	
		wires	8	8.66		3	9.02	
segm	ent le	engtn	o 5	.198		3	.25	
radi	.us		3					
ELEC	TRICAL	L DESCRIE	TION:	Frequencie				h \
				no. o	of segmen	nt length	(wavelen maximu	gens)
	freq	iency						
no.		iency st	step	steps	s mini	imum		
	lowe		step 0		s mini	imum 0556	.025055	
no. 1		st	0	steps 1	s mini .0240	0556	.025055	6
1	lowe		0 node s	steps 1 ector mag	s mini	0556 phase	.025055	6 type
1	. lowe:	st	0 node s	steps 1	s mini .0240	0556	.025055	6
1 Sour	. lowe: .68	source 1	0 node s	steps 1 ector mag	s mini .0240	0556 phase 0	.025055	6 type voltage
1 Sour	. lowe:	source 1 1 ads:	0 node s 51	steps 1 ector mag 1 1.	s mini .0240 gnitude	0556 phase 0	.025055	type voltage ce passive
1 Sour	. lowe: .68 rces: ped lo	source 1 1 ads: resi	o onode some solutions of the second	steps 1 ector mag	s mini .0240 gnitude	0556 phase 0 uctance	.025055	type voltage ce passive circuit
Sour	. lowes .68 rces: ped lo	source 1 1 ads: resi e (ohm	o onode some solutions of the second	steps 1 ector mag 1 1. reactanc (ohms)	mini .0240 gnitude e ind (mH	0556 phase 0 uctance	.025055 capacitar (uF) 0	type voltage ce passive circuit
Sour Lump	. lowes .68 rces: ped lo	source 1 1 ads: resi e (ohm 0	o onode some solutions of the stance	steps 1 ector mag 1 1. reactanc (ohms) -9,792.9	mini .0240 gnitude e ind (mH 0	0556 phase 0 uctance	.025055 capacitar (uF)	type voltage ce passive circuit 0 0
Sour Lump	. lower .68 rces: ped lo d nod 1 11	source 1 1 ads: resi e (ohm 0 0	o onode some solutions of the stance	steps 1 ector mag 1 1. reactanc (ohms) -9,792.9 -9,792.9	mini .0240 gnitude e ind (mH 0	0556 phase 0 uctance	.025055 capacitar (uF) 0 0	type voltage ce passive circuit 0 0 0
Sour Lump	. lowe: .68 rces: ped lo d nod 1 11 21	source 1 1 ads: resi e (ohm 0 0 0 0	o onode some solutions of the stance	steps 1 ector mag 1 1. reactanc (ohms) -9,792.9 -9,792.9 -9,729.9	mini .0240 gnitude e ind (mH 0 0 0	0556 phase 0 uctance	.025055 capacitar (uF) 0	type voltage ce passive circuit 0 0 0 0
Sour Lump Lump load 1 2 3 4	. lowe: .68 rces: ped lo 1 11 21 31	source 1 ads: resi e (ohm 0 0 0 0 0	o onode some solutions of the stance	steps 1 ector mag 1 1. reactanc (ohms) -9,792.9 -9,792.9 -9,729.9 -9,729.9	mini .0240 gnitude e ind (mH 0 0 0 0	0556 phase 0 uctance	.025055 capacitar (uF) 0 0	type voltage ce passive circuit 0 0 0 0 0
Lumy Load 1 2 3 4 5	. lowe: .68 cces: ped lo 1 11 21 31 41	source in 1 ads: resi e (ohm 0 0 0 0 0 0 0 0 0 0	o onode some solutions of the stance	steps 1 ector mag 1 1. reactanc (ohms) -9,792.9 -9,792.9 -9,729.9 -9,729.9 7,594.9	mini .0240 gnitude e ind (mH 0 0 0 0 0 0	0556 phase 0 uctance	.025055 capacitar (uF) 0 0 0	type voltage ce passive circuit 0 0 0 0 0 0
1 Sour Lumy 1 2 3 4 5 6	. lowe: .68 cces: ped lo d nod 1 11 21 31 41	source in 1 ads: resi (ohm) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	o onode some solutions of the stance	steps 1 ector mag 1 1. reactanc (ohms) -9,792.9 -9,792.9 -9,729.9 -9,729.9 7,594.9 7,594.9	mini .0240 gnitude e ind (mH 0 0 0 0 0 0	0556 phase 0 uctance	.025055 capacitar (uF) 0 0 0 0	type voltage ce passive circuit 0 0 0 0 0 0 0
1 Sour Lump 1 0 a 4 5 6 7	. lowe: .68 cces: ped lo d nod 1 11 21 31 41 46	source in 1 ads: resi (ohm 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	o onode some solutions of the stance	steps 1 ector mag 1 1. reactanc (ohms) -9,792.9 -9,792.9 -9,729.9 -9,729.9 7,594.9	mini .0240 gnitude e ind (mH 0 0 0 0 0 0 0 0 0 0 0	0556 phase 0 uctance	.025055 capacitar (uF) 0 0 0 0 0	type voltage ce passive circuit 0 0 0 0 0 0
1 Sour Lumy 1 2 3 4 5 6	. lowe: .68 cces: ped lo d nod 1 11 21 31 41	source 1 1 ads: resi (ohm 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	onode sistance	steps 1 ector mag 1 1. reactanc (ohms) -9,792.9 -9,792.9 -9,729.9 -9,729.9 7,594.9 7,594.9	mini .0240 gnitude e ind (mH 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	phase 0 uctance	.025055 capacitar (uF) 0 0 0 0 0 0 0	type voltage ce passive circuit 0 0 0 0 0 0 0
1 Sour Lump 1 0 a 2 3 4 5 6 7 8	. lowe: .68 cces: ped lo d nod 1 11 21 31 41 46	source in 1 ads: resi e (ohm 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	o onode some solutions of the stance	steps 1 ector mag 1 reactanc (ohms) -9,792.9 -9,729.9 -9,729.9 7,594.9 7,594.9 0 7,594.9	mini .0240 gnitude e ind (mH 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	phase 0 uctance 1; node	.025055 capacitar (uf) 0 0 0 0 0 0 0 51, secto	type voltage ce passive circuit 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 Sour Lump 1 0 a 1 2 3 4 5 6 7 8	. lowe: .68 cces: ped lo d nod 1 11 21 31 41 46 50 PEDANCE	source in 1 ads: resi e (ohm 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	onode sistance	steps 1 ector mag 1 reactanc (ohms) -9,792.9 -9,792.9 -9,729.9 -9,729.9 7,594.9 7,594.9 0 7,594.9 1 1 = 50. simped	e ind (mH 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	phase 0 uctance	.025055 capacitar (uf) 0 0 0 0 0 0 51, secto	type voltage ce passive circuit 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 Sour Lump 1 0 a 1 2 3 4 5 6 7 8 IMF free	. lowe: .68 cces: ped lo d nod 1 11 21 31 41 46 50 PEDANCE	source in a source	node some stance s)	steps 1 ector mag 1 reactanc (ohms) -9,792.9 -9,729.9 -9,729.9 7,594.9 7,594.9 0 7,594.9	mini .0240 gnitude e ind (mH 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	phase 0 uctance 1; node	.025055 capacitar (uf) 0 0 0 0 0 0 0 51, secto	type voltage ce passive circuit 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Station KFEQ St. Joseph, Missouri Page 48 of 80

MoM Model Details for Towers Driven Individually - Tower 7 - OC Self - (2 of 3)

CURREN Effici	TT rms Free	quency =	.68 MHz	Input powe in degrees	$\mathbf{r} = 3.4$	81E-05 wat	ts
					phase		imaginary
urren	ıt X	Y	z		(deg)	(amps)	(amps)
				1.11E-06	123 6	-6.16E-07	9.26E-07
ND	0	0	0	8.36E-06		-4.62E-06	6.97E-06
2	0	0	8.68	1.28E-05	122.2	-7.06E-06	1.07E-05
3	0	0	17.36	1.58E-05	122.1	-8.64E-06	1.32E-05
4	0	0	26.04	1.74E-05	102 1	-9.47E-06	1.45E-05
5	0	0	34.72	1.77E-05		-9.58E-06	1.48E-05
6	0	0	43.4	1.77E-05	122.5	-9.01E-06	1.41E-05
7	0	0	52.08	1.6/E-05	122.0	-7.78E-06	1.23E-05
8	0	0	60.76	1.45E-05 1.11E-05	122.4	-5.91E-06	9.42E-06
9	0	0	69.44	1.11E-05 6.48E-06		-3.42E-06	5.5E-06
10	0	0	78.12			0	0
END	0	0	86.8	0	0	U	•
~~~	4.97193	94.8698	0	1.53E-06	214.3	-1.27E-06	-8.64E-07
GND		94.8698	8.99	1.15E-05	214.2	-9.48E-06	-6.44E-06
12	4.97193	94.8698	17.98	1.76E-05	214.	-1.46E-05	-9.86E-06
13	4.97193	94.8698	26.97	2.17E-05	213.8	-1.8E-05	-1.21E-05
14	4.97193	94.8698	35.96	2.38E-05		-1.98E-05	-1.32E-05
15	4.97193	94.8698	44.95	2.42E-05	213.4	-2.02E-05	-1.33E-05
16	4.97193	94.8698	53.94	2.28E-05	213.1	-1.91E-05	-1.24E-05
17	4.97193		62.93	1.97E-05	212.8	-1.66E-05	-1.07E-05
18	4.97193	94.8698	71.92	1.5E-05	212.5	-1.27E-05	-8.07E-06
19	4.97193	94.8698	80.91	8.7E-06	212.1	-7.36E-06	-4.62E-06
20	4.97193	94.8698 94.8698	89.9	0	0	0	0
END	4.97193	94.8696	09.9	Ŭ	-		
GND	9.94386	189.74	0	2.3E-06	296.5	1.02E-06	-2.06E-06
22	9.94386	189.74	9.02	1.79E-05	5 296.5	7.99E-06	-1.6E-05
23	9.94386	189.74	18.04	2.73E-05	5 296.7	1.22E-05	-2.44E-05
24	9.94386	189.74	27.06	3.32E-05	5 296.8	1.5E-05	-2.97E-05
25	9.94386	189.74	36.08	3.62E-05	5 297.	1.64E-05	-3.23E-05
26	9.94386	189.74	45.1	3.64E-0	5 297.1	1.66E-05	-3.24E-05
	9.94386	189.74	54.12	3.41E-0	5 297.3	1.56E-05	-3.03E-05
27	9.94386	189.74	63.14	2.92E-0	5 297.4	1.35E-05	-2.6E-05
28 29	9.94386	189.74	72.16	2.21E-0	5 297.5	1.02E-05	-1.96E-05
	9.94386	189.74	81.18	1.27E-0			-1.13E-05
30 END	9.94386	189.74	90.2	0	0	0	0
				0 65 06	319.3	1.97E-06	-1.69E-06
GND	19.8877	379.479	0	2.6E-06			-1.21E-05
32	19.8877	379.479	8.7		5 319.8		-1.82E-05
33	19.8877	379.479	17.4		5 320.5		-2.17E-05
34	19.8877	379.479	26.1	3.46E-0	5 321.2		
35	19.8877	379.479	34.8		5 322.1	3.01E-05	- 055 05
36	19.8877	379.479	43.5	3.77E-0	15 323.		
37	19.8877	379.479	52.2	3.51E-0	)5 323.9		
38	19.8877	379.479	60.9		)5 324.7		
39	19.8877	379.479	69.6		)5 325.5		
40	19.8877	379.479	78.3	1.3E-05			0
END	19.8877	379.479	87.	0	0	0	· ·

Station KFEQ St. Joseph, Missouri Page 49 of 80

# MoM Model Details for Towers Driven Individually - Tower 7 - OC Self - (3 of 3)

currer	nt		_	<u>-</u>	phase (deg)	real (amps)	imaginary (amps)
no.	x	Y	Z	(amps)	(deg)	(Campo)	
~~~	10 2642	309.105	0	2.46E-06	132.2	-1.65E-06	
GND	18.3642	309.105	8.7	7.96E-06		5.76E-06	-5.49E-06
42	18.3642	309.105	17.4	1.12E-05		8.89E-06	-6.89E-06
43	18.3642	309.105	26.1	1.04E-05		9.06E-06	-5.17E-06
44	18.3642		34.8	6.73E-06		6.33E-06	-2.27E-06
45	18.3642	309.105	43.5	0.752 00	0	0	0
END	18.3642	309.105	43.5	O			
CNTD	-5.93764	261.653	0	2.38E-06	133.1		1.74E-06
GND	-5.93764	261.653	8.7	7.74E-06		5.68E-06	-5.26E-06
47	-5.93764	261.653	17.4	1.1E-05	322.9	8.77E-06	-6.64E-06
48	-5.93764	261.653	26.1	1.02E-05	330.6	8.93E-06	-5.03E-06
49		261.653	34.8	6.64E-06		6.24E-06	-2.25E-06
50	-5.93764	261.653	43.5	0	0	0	0
END	-5.93764	201.000	43.3	ŭ			
CNID	-24.8495	302.25	0	2.48E-03	88.9	4.92E-05	2.48E-03
GND 52	-24.8495	302.25	8.7	1.98E-03	88.6	4.73E-05	1.98E-03
52 53	-24.8495	302.25	17.4	1.53E-03	88.4	4.17E-05	1.53E-03
	-24.8495	302.25	26.1	1.06E-03	88.3	3.23E-05	1.06E-03
54	-24.8495	302.25	34.8	5.69E-04	88.1	1.89E-05	5.68E-04
55	-24.8495	302.25	43.5	0	0	0	0
END	-24.0493	502.25	23.5				
GND	35.214	271.133	0	1.74E-06		-1.35E-06	
57	35.214	271.133	8.66	5.89E-06		4.67E-06	-3.59E-06
58	35.214	271.133	17.32	8.84E-06		7.19E-06	-5.14E-06
59	35.214	271.133	25.98	8.72E-06		7.31E-06	-4.76E-06
60	35.214	271.133	34.64	5.89E-06	329.8	5.09E-06	-2.96E-06
END	35.214	271.133	43.3	0	0	0	0
END	33.214	2,2.20					

Station KFEQ St. Joseph, Missouri Page **50** of **80**

MoM Model Details for Towers Driven Individually - Tower 8 - OC Self - (1 of 3)

Environment wire caps 1 none 2 none 3 none 4 none 5 none 6 none 7 none 8 none Number of w Individual segment len radius ELECTRICAL freque no.lowest 1 .68 Sources: s Lumped load load node 1 1 2 11 3 21 4 31 5 41 6 46 7 51 8 56				ly - Tower 8 - OC	
1 none 2 none 3 none 4 none 5 none 6 none 7 none 8 none Number of w Individual segment len radius ELECTRICAL freque no. lowest 1 .68 Sources: s Lumped load load node 1 1 1 2 11 3 21 4 31 5 41 6 46 7 51 8 56		_	rees; other	dimensions in	meters
1 none 2 none 3 none 4 none 5 none 6 none 7 none 8 none Number of w Individual segment len radius ELECTRICAL freque no. lowest 1 .68 Sources: s Lumped load load node 1 1 2 11 3 21 4 31 5 41 6 46 7 51 8 56	Distance	Angle	<u>Z</u>	radius	segs
2 none 3 none 4 none 5 none 6 none 7 none 8 none Number of w Individual segment len radius ELECTRICAL freque no.lowest 1 .68 Sources: s Lumped load load node 1 1 2 11 3 21 4 31 5 41 6 46 7 51 8 56		0	<u>=</u> 0	.231	10
2 none 3 none 4 none 5 none 6 none 7 none 8 none Number of w Individual segment len radius ELECTRICAL freque no.lowest 1 .68 Sources: s Lumped load load node 1 1 2 11 3 21 4 31 5 41 6 46 7 51 8 56	0	0	86.8	. 231	2.0
3 none 4 none 5 none 6 none 7 none 8 none Number of w Individual segment len radius ELECTRICAL freque no. lowest 1 .68 Sources: S Lumped load load node 1 1 2 11 3 21 4 31 5 41 6 46 7 51 8 56	=	273.	0	.205	10
3 none 4 none 5 none 6 none 7 none 8 none Number of w Individual segment len radius ELECTRICAL freque no.lowest 1 .68 Sources: S Lumped load load node 1 1 2 11 3 21 4 31 5 41 6 46 7 51 8 56	95.	273.	89.9	.203	Ξ0
4 none 5 none 6 none 7 none 8 none Number of w Individual segment len radius ELECTRICAL freque no.lowest 1 .68 Sources: S Lumped load load node 1 1 2 11 3 21 4 31 5 41 6 46 7 51 8 56		273.	0	. 25	10
4 none 5 none 6 none 7 none 8 none 8 none 8 none 8 none 1 dividual segment len radius ELECTRICAL freque no. lowest 1 .68 Sources: s Lumped load load node 1 1 2 11 3 21 4 31 5 41 6 46 7 51 8 56	190.	273.	90.2	.23	10
5 none 6 none 7 none 8 none 8 none Number of w Individual segment lendius ELECTRICAL freque no. lowest 1 .68 Sources: S Lumped load load node 1 1 2 11 3 21 4 31 5 41 6 46 7 51 8 56		273.	0	.205	10
5 none 6 none 7 none 8 none 8 none Number of w Individual segment len radius ELECTRICAL freque no. lowest 1 .68 Sources: s Lumped load load node 1 1 2 11 3 21 4 31 5 41 6 46 7 51 8 56	380.	273.	87.	.203	20
7 none 8 none 8 none 8 none 8 none 8 none Mumber of w Individual segment len radius ELECTRICAL freque no. lowest 1 .68 Sources: S Lumped load load node 1 1 2 11 3 21 4 31 5 41 6 46 7 51 8 56		273.4	0	.198	5
7 none 8 none 8 none 8 none 8 none 8 none Mumber of w Individual segment len radius ELECTRICAL freque no. lowest 1 .68 Sources: S Lumped load load node 1 1 1 1 3 21 4 31 5 41 6 46 7 51 8 56	309.65	273.4	43.5	.150	9
7 none 8 none 8 none Number of w Individual segment len radius ELECTRICAL freque no. lowest 1 .68 Sources: s Lumped load load node 1 1 2 11 3 21 4 31 5 41 6 46 7 51 8 56		268.7	0	.198	5
7 none 8 none 8 none Number of w Individual segment len radius ELECTRICAL freque no. lowest 1 .68 Sources: s Lumped load load node 1 1 2 11 3 21 4 31 5 41 6 46 7 51 8 56	261.72	268.7	43.5	. 150	9
Number of workindividual segment lenguadius ELECTRICAL freque no. lowest 1 .68 Sources: standard load load node 1 1 2 11 3 21 4 31 5 41 6 46 7 51 8 56	303.27	265.3	0	.198	5
Number of w Individual segment len radius ELECTRICAL freque no. lowest 1 .68 Sources: s Lumped load load node 1 1 2 11 3 21 4 31 5 41 6 46 7 51 8 56	303.27	265.3	43.5	. 1.70	5
Number of w Individual segment len radius ELECTRICAL freque no. lowest 1 .68 Sources: s Lumped load load node 1 1 2 11 3 21 4 31 5 41 6 46 7 51 8 56	273.41	277.4	0	.198	5
Individual segment len radius ELECTRICAL freque no. lowest 1 .68 Sources: S Lumped load load 1 1 2 11 3 21 4 31 5 41 6 46 7 51 8 56	273.41	277.4	43.3	. 130	J
segment len radius ELECTRICAL freque no. lowest 1 .68 Sources: S Lumped load load node 1 1 2 11 3 21 4 31 5 41 6 46 7 51 8 56	wires	= 8	curre	nt nodes = 60	0
segment len radius ELECTRICAL freque no. lowest 1 .68 Sources: S Lumped load load node 1 1 2 11 3 21 4 31 5 41 6 46 7 51 8 56		minimum		maximum	
segment len radius ELECTRICAL freque no. lowest 1 .68 Sources: S Lumped load load node 1 1 2 11 3 21 4 31 5 41 6 46 7 51 8 56	wires	wire val	.ue	wire value	е
radius ELECTRICAL freque no. lowest 1 .68 Sources: S Lumped load load node 1 1 2 11 3 21 4 31 5 41 6 46 7 51 8 56		8 8.6		3 9.02	
freque no. lowest 1 .68 Sources: S Lumped load load node 1 1 2 11 3 21 4 31 5 41 6 46 7 51 8 56	-5	5 .19	18	3 .25	
Lumped load load node 1	ency	no	eps minim		mum
load node 1 1 2 11 3 21 4 31 5 41 6 46 7 51 8 56	source node 1 56	sector 1	magnitude	phase 0	type voltage
load node 1 1 2 11 3 21 4 31 5 41 6 46 7 51 8 56					
1 1 2 11 3 21 4 31 5 41 6 46 7 51 8 56	as: resistan	ce reacta	ince ind	uctance capac:	itance passive
1 1 2 11 3 21 4 31 5 41 6 46 7 51 8 56	(ohms)	(ohms)	(mH	_	circuit
3 21 4 31 5 41 6 46 7 51 8 56	0	-9,792	.9 0	0	0
4 31 5 41 6 46 7 51 8 56	0	-9,792	2.9 0	0	0
5 41 6 46 7 51 8 56	0	-9,729		0	0
5 41 6 46 7 51 8 56	0	-9,729		0	0
6 46 7 51 8 56	0	7,594		0	0
7 51 8 56	0	7,594		0	0
8 56	0	7,594		0	0
TWDEDANCE.	0	o o	0	0	0
IMPEDANCE:	normaliz	ation = 50.	source = 1	; node 56, sec	tor 1
freq re	esist rea	ct imped	phase	VSWR S11	S12
	ohms) (oh	-	-	dB	dВ
		.32 286.38	_	304.13 -5.7E	-02 -18.839

Station KFEQ St. Joseph, Missouri Page **51** of **80**

MoM Model Details for Towers Driven Individually - Tower 8 - OC Self - (2 of 3)

MoM Model Details for Towers Driven Individually - Tower 8 - OC 3en - (2 or 3)							
CURRENT rms Frequency = .68 MHz Input power = 3.388E-05 watts Efficiency = 100. % coordinates in degrees							
Effici	lency = 10	0. % coo	rdinates	in degrees			
						maa1	imaginary
currer			_	-	phase (deg)	real (amps)	(amps)
no.	X	Y	Z	(amps)	(deg)	(amps)	(amps)
_	_	0	8.68	9.23E-06	153	-8.22E-06	4.2E-06
2	0	0	17.36	1.41E-05		-1.26E-05	
3	0		26.04	1.74E-05		-1.54E-05	
4	0	0	34.72	1.91E-05		-1.7E-05	
5	0	0	43.4	1.95E-05		-1.72E-05	
6	0	0	52.08	1.84E-05		-1.62E-05	
7 8	0	0	60.76	1.6E-05	151.7	-1.41E-05	
8 9	0	0	69.44	1.22E-05		-1.07E-05	
	0	0	78.12	7.12E-06		-6.24E-06	
10	0	0	86.8	0	0	0	0
END	U	•	20.0	-			
GND	4.97193	94.8698	0	1.75E-06	243.2		-1.56E-06
12	4.97193	94.8698	8.99	1.3E-05	243.1		-1.16E-05
13	4.97193	94.8698	17.98	2.E-05	243.		-1.78E-05
14	4.97193	94.8698	26.97	2.46E-05			-2.19E-05
15	4.97193	94.8698	35.96	2.7E-05	242.6	-1.24E-05	
16	4.97193	94.8698	44.95	2.73E-05	242.4	-1.27E-05	-2.42E-05
17	4.97193	94.8698	53.94	2.57E-05		-1.2E-05	
18	4.97193	94.8698	62.93	2.22E-05			-1.96E-05
19	4.97193	94.8698	71.92	1.69E-05			-1.49E-05
20	4.97193	94.8698	80.91	9.76E-06		-4.69E-06	-8.56E-06
END	4.97193	94.8698	89.9	0	0	0	0
EIVE	1.5,155						
GND	9.94386	189.74	0	2.74E-06		2.19E-06	-1.66E-06
22	9.94386	189.74	9.02	2.12E-05		1.71E-05	-1.27E-05
23	9.94386	189.74	18.04	3.22E-05		2.62E-05	-1.88E-05
24	9.94386	189.74	27.06	3.91E-05	325.2	3.21E-05	-2.23E-05
25	9.94386	189.74	36.08	4.24E-05		3.53E-05	-2.35E-05
26	9.94386	189.74	45.1	4.25E-05		3.58E-05	-2.29E-05
27	9.94386	189.74	54.12	3.95E-05		3.37E-05	-2.07E-05
28	9.94386	189.74	63.14	3.38E-05		2.92E-05	-1.72E-05
29	9.94386	189.74	72.16	2.55E-05		2.22E-05	-1.26E-05
30	9.94386	189.74	81.18	1.47E-05	331.2	1.29E-05	-7.06E-06
END	9.94386	189.74	90.2	0	0	0	0
							1 00 00
GND	19.8877	379.479	0	2.27E-06			-1.9E-06
32	19.8877	379.479	8.7	1.65E-05		9.05E-06	-1.37E-05
33	19.8877	379.479	17.4	2.5E-05	303.6	1.39E-05	-2.09E-05
34	19.8877	379.479	26.1	3.05E-05		1.7E-05	-2.53E-05
35	19.8877	379.479	34.8	3.32E-05		1.87E-05	-2.75E-05
36	19.8877	379.479	43.5	3.34E-05		1.89E-05	-2.75E-05
37	19.8877	379.479	52.2	3.12E-05			-2.56E-05
38	19.8877	379.479	60.9	2.68E-05		1.54E-05	-2.19E-05
39	19.8877	379.479	69.6	2.02E-0			-1.65E-05
40	19.8877	379.479	78.3	1.16E-0			-9.44E-06
END	19.8877	379.479	87.	0	0	0	0

APPLICATION FOR STATION LICENSE METHOD OF MOMENTS - PROOF OF PERFORMANCE

Station KFEQ St. Joseph, Missouri Page 52 of 80

MoM Model Details for Towers Driven Individually - Tower 8 - OC Self - (3 of 3)

curren	it X	У	Z		phase (deg)	real (amps)	imaginary (amps)
GND 42 43 44 45 END GND 47 48 49 50	18.3642 18.3642 18.3642 18.3642 18.3642 18.3642 -5.93764 -5.93764 -5.93764 -5.93764	309.105 309.105 309.105 309.105 309.105 309.105 261.653 261.653 261.653 261.653 261.653	0 8.7 17.4 26.1 34.8 43.5 0 8.7 17.4 26.1 34.8 43.5	2.56E-06 8.18E-06 1.14E-05 1.04E-05 6.64E-06 0 2.52E-06 8.1E-06 1.13E-05 1.04E-05 6.67E-06	314.2 320.6 329.7 341.2 0 130.7 315. 321.3 330.	-1.64E-06 5.7E-06 8.81E-06 8.99E-06 6.28E-06 0 -1.64E-06 5.73E-06 8.85E-06 9.02E-06 6.3E-06	-5.87E-06 -7.23E-06 -5.24E-06 -2.14E-06
GND 52 53 54 55 END	-24.8495 -24.8495 -24.8495 -24.8495 -24.8495 -24.8495	302.25 302.25 302.25 302.25 302.25 302.25	0 8.7 17.4 26.1 34.8 43.5	1.72E-06 5.87E-06 8.82E-06 8.7E-06 5.87E-06	322.5 324.5 327.	-1.34E-06 4.66E-06 7.18E-06 7.29E-06 5.08E-06	1.09E-06 -3.57E-06 -5.12E-06 -4.74E-06 -2.94E-06
GND 57 58 59 60 END	35.214 35.214 35.214 35.214 35.214 35.214	271.133 271.133 271.133 271.133 271.133 271.133	0 8.66 17.32 25.98 34.64 43.3	2.47E-0: 1.96E-0: 1.52E-0 1.05E-0 5.64E-0	3 88.7 3 88.5 3 88.3	4.79E-05 4.61E-05 4.06E-05 3.14E-05 1.84E-05	

Derivation of Directional Antenna Operating Parameters

With the antenna array characteristics now verified and the model converged for the individual towers, moment method calculations ("Medium Wave Array Synthesis") were made for each directional mode of operation using the daytime and nighttime licensed theoretical (normalized) antenna field ratio magnitudes and phases for the KFEQ directional patterns, in conjunction with the established (corrected) KFEQ array geometry, the geometry established for the KESJ towers (by survey) with respect to the KFEQ reference Tower #1 (East), and the converged tower heights and radii. For the unused detuned KFEQ towers (Tower 4 – West

APPLICATION FOR STATION LICENSE METHOD OF MOMENTS - PROOF OF PERFORMANCE

Station KFEQ St. Joseph, Missouri Page **53** of **80**

daytime and Tower 2 – East Central Nighttime), "drive" voltages were employed of 0.00001 magnitude at 0° phase. Similarly, a drive voltage of 0.00001 magnitude and 0° phase was assumed for the unused KESJ towers. This process yields the directional antenna complex voltage values and impedances for sources located at ground level for each tower of the array for each mode (daytime/nighttime) considered.

Notice is then taken of the impedance value shown at the base of the unused KFEQ tower in each mode, and the conjugate of these values is then employed for lumped loads for these towers. With respect to the KESJ towers, since they are electrically transparent at the KFEQ frequency, only the existing (static drain choke and base insulator) lumped loads across those tower bases (as discussed previously) are employed as "lumped loads" for the KESJ towers in the array synthesis. The model is then re-run for each mode of operation with the lumped loads applied as described, with the KFEQ towers being driven using the normalized licensed theoretical field and ratio values appropriate for each directional pattern. The results yield the directional antenna complex voltage values for sources located at ground level for each tower of the array that would produce current moment sums for the towers. These values, when normalized, will equate to the theoretical field parameters for the respective authorized directional antenna patterns. Tower base currents and driving point impedances are then calculated for the directional pattern. (The indicated voltages and currents that are not specified as "RMS" values are corresponding "peak" values.) The currents at the ATU J-plug "reference point" outputs (where the TCT derived antenna monitor samples are taken) were then calculated from the MoM tower currents using the WCAP circuit modeling software, along with the base environment assumptions that were derived from the single tower open-circuit measurements, and the MoM-calculated directional antenna operating impedances, and corresponding base voltages and currents.

The following pages provide details of the MoM array synthesis modeling performed for the directional antenna along with the resulting normalized antenna monitor parameters, derived from the WCAP analysis.

APPLICATION FOR STATION LICENSE METHOD OF MOMENTS - PROOF OF PERFORMANCE

Station KFEQ St. Joseph, Missouri Page **54** of **80**

MoM Model Details - <u>Daytime</u> Directional Antenna Array Synthesis (1 of 7)

DAYTIME MEDIUM WAVE ARRAY SYNTHESIS FROM FIELD RATIOS

Frequency = 0.68 MHz

	Field Ratio	Phase
<u>Tower</u>	<u> Magnitude</u>	(deg)
1	0.675	-162.4
2	1	0
3	0.535	-123.4
4	1.00E-05	0
5	1.00E-05	0
6	1.00E-05	0
7	1.00E-05	0
8	1.00E-05	0

VOLTAGES AND CURRENTS - rms

Source	Voltage	Current	Current	Phase
<u>Node</u>	<u> Magnitude</u>	Phase (deg)	<u>Magnitude</u>	(deg)
1	265.015	245.4	9.622270	199.3
11	344.117	67.2	13.748500	0.9
21	502.983	306.2	6.811860	239.0
31	236.098	152.5	0.367086	241.9
41	160.852	214.5	0.131708	304.5
46	189.596	252.0	0.155648	342.3
51	158.769	217.9	0.130151	308.0
56	180.811	243.0	0.147799	333.3

Sum of square of source currents = 656.45

Total power = 5,000. watts

Station KFEQ St. Joseph, Missouri Page 55 of 80

MoM Model Details – <u>Daytime</u> Directional Antenna Array Synthesis (2 of 7)

	T MATRIV	TOWER ADMITTANG	E MATRIX
TOWER ADMITTANO	imaginary (mhos)	admittance real (mhos)	imaginary (mhos)
admittance real (mhos)	-0.00741	Y (5, 1) 8.64E-05	7.67E-06
Y(1, 1) 0.021801	0.014258	Y(5, 2) 8.17E-07	0.000189
Y(1, 2) 0.000654	-0.00178	Y(5, 3) -0.00081	-0.00051
Y(1, 3) 9.86E-05	0.00178	Y (5, 4) -0.00062	-0.00135
Y(1, 4) -0.00145	7.67E-06	Y (5, 5) 4.52E-05	0.003579
Y(1, 5) 8.64E-05		Y (5, 6) 5.15E-05	2.67E-05
Y(1, 6) 8.75E-05	2.54E-05	Y(5, 7) 5.03E-05	2.16E-06
Y(1, 7) 9.55E-05	8.28E-06	Y (5, 8) 5.30E-05	3.18E-06
Y(1, 8) 9.31E-05	2.16E-05	Y(6, 1) 8.75E-05	2.54E-05
Y(2, 1) 0.000655	0.014258	Y(6, 2) -4.49E-05	0.000188
Y(2, 2) 0.006035	-0.01237	Y(6, 3) -0.00098	-0.00093
Y(2, 3) 0.003961	0.009461	Y(6, 4) -0.00078	-0.00087
Y(2, 4) -0.00091	-0.00312	Y(6, 5) 5.15E-05	2.67E-05
y(2, 5) 8.12E-07	0.000189	Y(6, 6) 6.40E-05	0.003592
Y(2, 6) -4.49E-05	0.000188	Y(6, 7) 6.56E-05	1.16E-05
Y(2, 7) -1.86E-06	0.000206	Y(6, 8) 5.75E-05	8.94E-06
Y(2, 8) -3.27E-05	0.000203	Y (7, 1) 9.55E-05	8.28E-06
Y(3, 1) 9.85E-05	-0.00178	Y (7, 2) -1.86E-06	0.000206
Y(3, 2) 0.00396	0.009461	Y(7, 3) -0.00092	-0.00049
Y(3, 3) 0.018001	-0.00704	Y(7, 4) -0.0008	-0.00114
Y(3, 4) 0.011738	0.005549	Y(7, 5) 5.03E-05	2.16E-06
Y(3, 5) -0.00081	-0.00051	Y(7, 6) 6.56E-05	1.16E-05
Y(3, 6) -0.00098	-0.00093	1	0.003583
Y(3, 7) -0.00092	-0.00049		3.58E-05
Y(3, 8) -0.00098	-0.00082	Y(7, 8) 5.28E-05 Y(8, 1) 9.31E-05	2.16E-05
Y(4, 1) -0.00145	0.000344	Y(8, 1) 3.312 03 Y(8, 2) -3.27E-05	0.000203
Y(4, 2) -0.00091	-0.00312		-0.00082
Y(4, 3) 0.011738	0.00555	1 2 0 7 2 7 2 7 2 7 2 7 2 7 2 7 2 7 2 7 2	-0.00098
y(4, 4) 0.029988	0.004501		3.19E-06
Y(4, 5) -0.00062	-0.00135	1 2 (0)	8.95E-06
Y(4, 6) -0.00078	-0.00087	1	3.58E-05
y(4, 7) -0.0008	-0.00114	5 575.05	0.003572
Y(4, 8) -0.00079	-0.00098	Y(8, 8) 6.57E-05	0,022

Station KFEQ St. Joseph, Missouri Page **56** of **80**

MoM Model Details - <u>Daytime</u> Directional Antenna Array Synthesis (3 of 7)

T	OWER IMPEDAN	CE MATRIX		TO	OWER IMPEDAN	CE MATRIX
impedance	real (mhos)	imaginary (mhos)	impeda		real (mhos)	imaginary (mhos)
Z(1, 1)	•	0.547378	Z(5,	1)	-	3.77249
Z(1, 2)		-17.197	Z(5,	2)		-2.9697
Z(1, 3)	-11.2498	-12.8395	Z(5,			-8.02896
Z(1, 4)	6.34419	6.87672	Z(5,	4)	10.1837	-5.00896
Z(1, 5)	-2.03021	3.77249	Z(5,	5)	5.67102	-284.608
Z(1, 6)	-4.93627	1.25998	Z(5,	6)	4.59588	-3.92875
Z(1, 7)	-2.50757	3.57161	Z(5,	7)	4.96507	-5.25936
Z(1, 8)	-4.36536	2.08021	Z(5,	8)	4.9569	-5.72777
Z(2, 1)	17.6245	-17.1958	Z(6,	1)	-4.93625	1.25996
Z(2, 2)	38.2204	18.2619	Z(6,	2)	-1.8853	-7.10712
Z(2, 3)	18.6546	-18.6317	Z(6,	3)	10.3133	-5.37482
Z(2, 4)	-9.37858	7.67616	Z(6,	4)	3.54336	-7.69535
Z(2, 5)	-5.10753	-2.96983	Z(6,	5)	4.59589	-3.92875
Z(2, 6)	-1.88504	-7.10714	Z(6,	6)	5.66234	-284.578
z(2, 7)	-4.90314	-3.50783	Z(6,	7)	4.8944	-5.02392
Z(2, 8)	-2.96289	-6.22434	Z(6,	8)	4.97284	-5.57071
Z(3, 1)	-11.2493	-12.8398	Z(7,	1)	-2.50755	3.57162
Z(3, 2)	18.6547	-18.6316	Z(7,	2)	-4.90328	-3.5077
Z(3, 3)	40.3574	20.2964	Z(7,	3)	4.17196	-7.97567
Z(3, 4)	-10.4243	-12.7302	Z(7,	4)	7.8508	-6.46062
Z(3, 5)	3.82151	-8.02861	Z(7,	5)	4.96507	-5.25937
z(3, 6)	10.314	-5.37355	Z(7,	6)	4.8944	-5.02392
Z(3, 7)	4.17251	-7.97529	Z(7,	7)	5.63642	-284.518
Z(3, 8)	8.7203	-6.33322	Z(7,	8)	4.02842	-3.14022
Z(4, 1)	6.34419	6.87673	Z(8,	1)	-4.36533	2.0802
Z(4, 2)	-9.3785	7.67637	Z(8,	2)	-2.96313	-6.22425
Z(4, 3)	-10.4248	-12.7299	Z(8,	3)	8.71956	-6.33427
Z(4, 4)	36.1562	1.35418	Z(8,	4)	5.05347	-7.38682
Z(4, 5)	10.1837	-5.00896	Z(8,	5)	4.95686	-5.7284
Z(4, 6)	3.54332	-7.69532	Z(8,	6)	4.97278	-5.5713
Z(4, 7)	7.85073	-6.46061	Z(8,	7)	4.02838	-3.1404
Z(4, 8)	5.0535	-7.38676	Z(8,	8)	5.55586	-286.323

Station KFEQ St. Joseph, Missouri Page **57** of **80**

MoM Model Details - <u>Daytime</u> Directional Antenna Array Synthesis (4 of 7)

vire	caps	Distance	Angle	_Z_	<u>radius</u>	
1	none	0	0	0	.231	10
Τ.	110110	0	0	86.		1.0
2	none	95.	273.	0	.205	10
2		95.	273.	89.		10
3	none	190.	273.		.25	10
9		190.	273.	90.		10
4	none	380.	273.		.205	10
-		380.	273.	87.		5
5	none	309.65	273.		.198)
		309.65	273.			5
6	none	261.72	268.		.198	j.
		261.72	268.			5
7	none	303.27	265.		.198	3
		303.27	265.		.198	5
8	none	273.41	277.			J
		273.41	277.	.4 43.	. 3	
Numb	er of v	vires	= 8	cı	errent nodes =	60
			minim	ım		imum
	vidual	mag	wire	value	wire	value
			8	8.66	3	9.02
segn	ent ler	ngtn	5	.198	3	.25
radi	us		3	,		
FLEC	CTRICAL	DESCRIPTIO	N: Frequ	encies (M	Hz)	
						(wavelengths)
	frequ			no. of	minimum	maximum
no	. lowes		₽p	steps	minimum .0240556	.0250556
1	.68	0		1	.0240550	.025050

Station KFEQ St. Joseph, Missouri Page **58** of **80**

MoM Model Details - <u>Daytime</u> Directional Antenna Array Synthesis (5 of 7)

Sources:	source 1 2 3	node 1 11 21	sector 1 1 1	magnitude 374.788 486.655 711.325	<u>phase</u> 245.4 67.2 306.2	<u>type</u> voltag voltag voltag	e
Lumped loa	ıds:						
	resista	nce :	reactance	inductance			sive
load node			(ohms)	(mH)	(uF)	cir	cuit
1 31			643.14	0	0		0
2 41			7,594.9	0	0		0
3 46			7,594.9	0	0		0
4 51			7,594.9	0	0		0
5 56			7,594.9	0	0		0
				er l - East)			
source = freq (MHz)		1, secto	or 1 (Tow imped (ohms)	phase '	vswr .088	s11 dB -5.8355	S12 dB -1.3129
source = freq (MHz) .68 source =	1; node resist (ohms) 19.106	1, sector react (ohms) 19.856	imped (ohms) 27.555	phase (deg) 46.1 3	.088	dB	đВ
source = freq (MHz) .68 source =	1; node resist (ohms) 19.106	1, sector react (ohms) 19.856	imped (ohms) 27.555	phase (deg) 46.1 3 ower 2 - East phase (deg)	.088 Central) VSWR	dB -5.8355	dB -1.3129 s12 dB
source = freq (MHz) .68 source =	1; node resist (ohms) 19.106	1, sector react (ohms) 19.856	imped (ohms) 27.555 ctor 1 (Timped (ohms)	phase (deg) 46.1 3 ower 2 - East phase (deg)	.088	dB -5.8355 s11	dB -1.3129 s12 dB
source = freq (MHz) .68 source = freq (MHz) .68	1; node resist (ohms) 19.106 2; node resist (ohms) 10.098	1, sector react (ohms) 19.856 11, sector (ohms) 22.905	imped (ohms) 27.555 ctor 1 (Timped (ohms) 25.032	phase (deg) 46.1 3 ower 2 - East phase (deg)	.088 Central) VSWR 5.0264	dB -5.8355 s11 dB -2.9095	dB -1.3129 s12 dB
source = freq (MHz) .68 source = freq (MHz) .68	1; node resist (ohms) 19.106 2; node resist (ohms) 10.098	1, sector react (ohms) 19.856 21, sector (ohms) 22.905	imped (ohms) 27.555 ctor 1 (Timped (ohms) 25.032	phase (deg) 46.1 3 ower 2 - East phase (deg) 66.2 6	.088 Central) VSWR 5.0264	dB -5.8355 s11 dB -2.9095	dB -1.3129 s12 dB
source = freq (MHz) .68 source = freq (MHz) .68 source =	1; node resist (ohms) 19.106 2; node resist (ohms) 10.098 3; nod resist	1, sector react (ohms) 19.856 21, sector (ohms) 22.905 21, sector (ohms) 21, sector (ohms)	imped (ohms) 27.555 ctor 1 (Timped (ohms) 25.032	phase (deg) 46.1 3 ower 2 - East phase (deg) 66.2 6	.088 Central) VSWR 5.0264 Central)	dB -5.8355 s11 dB -2.9095	dB -1.3129 s12 dB -3.1139
freq (MHz) .68 source = freq (MHz) .68	1; node resist (ohms) 19.106 2; node resist (ohms) 10.098	1, sector react (ohms) 19.856 21, sector (ohms) 22.905	imped (ohms) 27.555 ctor 1 (Timped (ohms) 25.032 ctor 1 (Timped (ohms)	phase (deg) 46.1 3 ower 2 - East phase (deg) 66.2 6 ower 3 - West phase (deg)	.088 Central) VSWR 5.0264 Central)	dB -5.8355 s11 dB -2.9095	dB -1.3129 S12 dB -3.1135

Station KFEQ St. Joseph, Missouri Page **59** of **80**

MoM Model Details - $\underline{\text{Daytime}}$ Directional Antenna Array Synthesis (6 of 7)

CURRENT: Efficier	: rms ncy: 100. %	Frequency: coordina	0.68 MHz ates in degre	Input powe	r: 5000	. watts	
current	x	Y	Z	mag	phase (deg)	real :	imaginary (amps)
CND	0	0	0 Twr 1	9.58927	199.3	-9.05058	-3.16878
GND	-	0	8.68	9.60819	198.6	-9.10797	-3.05978
2	0		17.36	9.36374	198.1	-8.90069	-2.90815
3	0	0		8.88406	197.7	-8.46287	-2.70304
4	0	0	26.04	8.18234	197.4	-7.80818	-2.44601
5	0	0	34.72		197.4	-6.95123	-2.14077
6	0	0	43.4	7.27341	196.9	-5.90845	-1.79206
7	0	0	52.08	6.17424		-4.697	-1.40497
8	0	0	60.76	4.90263	196.7		983718
9	0	0	69.44	3.47343	196.5	-3.33122	528452
10	0	0	78.12	1.88688	196.3	-1.81136	
END	0	0	86.8	0	0	0	0
GND	4.97193	94.8698		13.7065	1.	13.7044	.237176
12	4.97193	94.8698	8.99	13.7572	.6	13.7564	.145786
13	4.97193	94.8698	17.98	13.4182	.3	13.4179	.0809865
14	4.97193	94.8698	26.97	12.7339	.1	12.7339	.0285272
15	4.97193	94.8698	35.96	11.725	359.9	11.725	0129009
16	4.97193	94.8698	44.95	10.4148	359.8	10.4147	043154
17	4.97193	94.8698	53.94	8.82963	359.6	8.82941	06168
18	4.97193	94.8698	62.93	6.99798	359.4	6.99765	067813
	4.97193	94.8698	71.92	4.94456	359.3	4.94419	0608473
19	4.97193	94.8698	80.91	2.67418	359.1	2.67388	039791
20 END	4.97193	94.8698	89.9	0	0	0	0
CND	9.94386	189.74	0 Twr 3	6.89649	239.1	-3.54128	-5.91785
GND	9.94386	189.74	9.02	7.14233	238.	-3.78371	-6.05776
22		189.74	18.04	7.10797	237.3	-3.83586	-5.98409
23	9.94386	189.74	27.06	6.85474	236.8	-3.75058	-5.73764
24	9.94386		36.08	6.3979	236.4	-3.53897	-5.32999
25	9.94386	189.74	45.1	5.75088	236.1	-3.20951	-4.77197
26	9.94386	189.74	54.12	4.92825	235.8	-2.77097	-4.07546
27	9.94386	189.74	63.14	3.9453	235.5	-2.23245	-3.25293
28	9.94386	189.74		2.81519	235.3	-1.60183	-2.31505
29	9.94386	189.74	72.16	1.53933	235.1	88022	-1.26284
30 END	9.94386	189.74 189.74	81.18 90.2	0	0	0	0
				272402	241.4	178257	32707
GND	19.8877	379.479	0	.372492	241.4	101987	187457
32	19.8877	379.479	8.7				3091925
33	19.8877	379.479	17.4	.104361	241.7		3017681
34	19.8877	379.479	26.1	.0194705			.0380972
35	19.8877	379.479	34.8	.044605		.0232011	.0360972
36	19.8877	379.479	43.5	.088426		.0449233	.0967636
37	19.8877	379.479	52.2	.112283	59.5	.0569594	
38	19.8877	379.479	60.9	.116216	59.4	.059157	.100034
39	19.8877	379.479	69.6	.100172	59.2	.0512786	.0860514
40	19.8877	379.479	78.3	.063566		.032773	.054467
END	19.8877	379.479	87.	0	0	0	0

APPLICATION FOR STATION LICENSE METHOD OF MOMENTS - PROOF OF PERFORMANCE

Station KFEQ St. Joseph, Missouri Page **60** of **80**

MoM Model Details - <u>Daytime</u> Directional Antenna Array Synthesis (7 of 7)

no.	х	Y	Z	mag (amps)	phase (deg)	real i	imaginary (amps)
GND	18.3642	309.105	0	.0168237	302.8	9.12E-03	0141362
42	18.3642	309.105	8.7	.058471	122.9	0317243	.0491164
43	18.3642	309.105	17.4	.0899535	122.9	048855	.0755303
44	18.3642	309.105	26.1	.0912706		0496428	.0765893
45	18.3642	309.105	34.8	.0635167		0346128	.0532572
END	18.3642	309.105	43.5	0	0	0	0
GND	-5.93764	261.653	0	.0196496	341.	.0185752	-6.41E-03
47	-5.93764	261.653	8.7	.0683342	161.1	0646373	.0221714
48	-5.93764	261.653	17.4	.105206	161.2	0995908	.0339117
49	-5.93764	261.653	26.1	.106839	161.4	101232	.0341551
50	-5.93764	261.653	34.8	.0744246	161.5	0705986	.0235555
END	-5.93764	261.653	43.5	0	0	0	0
GND	-24.8495	302.25	0	.0165937	306.3	9.83E-03	0133661
52	-24.8495	302.25	8.7	.057687	126.4	0341996	.0464562
53	-24.8495	302.25	17.4	.0887715	126.4	0526594	.0714658
54	-24.8495	302.25	26.1	.0900893	126.4	0534868	.072493
55	-24.8495	302.25	34.8	.0627001	126.5	0372672	.0504229
END	-24.8495	302.25	43.5	0	0	0	0
GND	35.214	271.133	0	.0187555	331.9	.0165426	-8.84E-03
57	35.214	271.133	8.66	.064927	152.	0573075	.0305182
58	35.214	271.133	17.32	.0999587	152.1	0883082	.0468339
59	35.214	271.133	25.98	.101489	152.2	0897613	.04736
60	35.214	271.133	34.64	.0706818	152.3	0625973	.0328252
END	35.214	271,133	43.3	0	0	0	0

Station KFEQ St. Joseph, Missouri Page **61** of **80**

$MoM\ Model\ Details-\underline{Nighttime}\ Directional\ Antenna\ Array\ Synthesis\ (1\ of\ 7)$

DAYTIME MEDIUM WAVE ARRAY SYNTHESIS FROM FIELD RATIOS

Frequency = 0.68 MHz

	Field Ratio	Phase
<u>Tower</u>	<u>Magnitude</u>	(deg)
1	0.450	0.0
2	1.00E-05	0.0
3	1.000	0.0
4	0.556	0.0
5	1.00E-05	0.0
6	1.00E-05	0.0
7	1.00E-05	0.0
8	1.00E-05	0.0

VOLTAGES AND CURRENTS - rms

Source	Voltage	Current	Current	Phase
<u>Node</u>	<u>Magnitude</u>	Phase (deg)	<u> Magnitude</u>	(deg)
1	147.489	323.9	5.166300	2.1
11	324.407	319.6	0.503086	50.9
21	330.659	15.3	10.650300	2.8
31	179.093	330.5	6.341150	2.2
41	182.803	317.1	0.148530	47.4
46	197.107	320.6	0.160168	51.0
51	180.709	310.3	0.147202	40.4
56	196.391	318.1	0.159231	48.3

Sum of square of source currents = 361.354

Total power = 5,000. watts

Engineering Statement APPLICATION FOR STATION LICENSE

METHOD OF MOMENTS - PROOF OF PERFORMANCE

Station KFEQ St. Joseph, Missouri Page **62** of **80**

${\bf MoM\ Model\ Details-\underline{Nighttime}\ Directional\ Antenna\ Array\ Synthesis\ (2\ of\ 7)}$

-0.00	inary (mhos)				
		admitta	nce	real (mhos)	imaginary (mhos)
70 0.01	0741	Y(5,	1)	8.64E-05	7.67E-06
379 0.014	4258	Y(5,	2)	8.17E-07	0.000189
-0.00	0178	Y(5,	3)	-0.0008053	-0.00051
68 0.000	0344	Y(5,	4)	-0.0006159	-0.00135
7.67	E-06	Y(5,	5)	4.52E-05	0.003579
2.54	E-05	Y(5,	6)	5.15E-05	2.67E-05
8.28	E-06	Y(5,	7)	5.03E-05	2.16E-06
2.16	E-05	Y(5,	8)	5.30E-05	3.18E-06
462 0.01	.4258	Y(6,	1)	8.75E-05	2.54E-05
517 -0.01	1237	Y(6,	2)	-4.49E-05	0.000188
0.00	9461	Y(6,	3)	-0.0009766	-0.00093
)59 -0.00	0312	Y(6,	4)	-0.0007822	-0.00087
7 0.00	00189	Y(6,	5)	5.15E-05	2.67E-05
5 0.00	00188	Y(6,	6)	6.40E-05	0.003592
6 0.00	00206	Y(6,	7)	6.56E-05	1.16E-05
5 0.00	00203	Y(6,	8)	5.75E-05	8.94E-06
-0.00	0178	Y(7,	1)	9.55E-05	8.28E-06
0.00	09461	Y(7,	2)	-1.86E-06	0.000206
07 -0.0	0704	Y(7,	3)	-0.0009195	-0.00049
83 0.00	05549	Y(7,	4)	-0.0008017	-0.00114
054 -0.0	00051	Y(7,	5)	5.03E-05	2.16E-06
767 -0.0	00093	Y(7,	6)	6.56E-05	1.16E-05
195 -0.0	00049	Y(7,	7)	7.20E-05	0.003583
762 -0.0	00082	Y(7,	8)	5.28E-05	3.58E-05
467 0.00	00344	Y(8,	1)	9.31E-05	2.16E-05
058 -0.0	00312	Y(8,	2)	-3.27E-05	0.000203
881 0.00	0555	Y(8,	3)	-0.0009761	-0.00082
378 0.00	04501	Y(8,	4)	-0.0007857	-0.00098
	00135	Y(8,	5)	5.30E-05	3.19E-06
	00087	Y(8,	6)	5.75E-05	8.95E-06
	00114	Y(8,	7)	5.28E-05	3.58E-05
	00098	Y(8,	8)	6.57E-05	0.003572
3	7822 -0.0 8017 -0.0	7822 -0.00087 8017 -0.00114	7822 -0.00087 Y(8, 2017 -0.00114 Y(8,	7822 -0.00087 Y(8, 6) 78017 -0.00114 Y(8, 7)	Y(8, 6) 5.75E-05 Y(8, 7) 5.28E-05

Station KFEQ St. Joseph, Missouri Page **63** of **80**

$MoM\ Model\ Details-\underline{Nighttime}\ Directional\ Antenna\ Array\ Synthesis\ (3\ of\ 7)$

	TOWER IMPEDAN	ICE MATRIX		то	WER IMPEDA	NCE MATRIX
impedance		imaginary (mhos)	impeda	nce	real (mhos)	imaginary (mhos)
Z(1, 1)		0.547378	Z(5,	1)	-2.03019	3.77249
Z(1, 2)		-17.197	Z(5,	2)	-5.10765	-2.9697
Z(1, 3)		-12.8395	Z(5,	3)	3.82097	-8.02896
Z(1, 4		6.87672	Z(5,	4)	10.1837	-5.00896
Z(1, 5		3.77249	Z(5,	5)	5.67102	-284.608
Z(1, 6		1.25998	Z(5,	6)	4.59588	-3.92875
Z(1, 7		3.57161	Z(5,	7)	4.96507	-5.25936
Z(1, 8		2.08021	Z(5,	8)	4.9569	-5.72777
Z(2, 1		-17.1958	Z(6,	1)	-4.93625	1.25996
Z(2, 2	•	18.2619	Z(6,	2)	-1.8853	-7.10712
Z(2, 3	,	-18.6317	Z(6,	3)	10.3133	-5.37482
Z(2, 4	•	7.67616	Z(6,	4)	3.54336	-7.69535
Z(2, 5		-2.96983	Z(6,	5)	4.59589	-3.92875
Z(2, 6		-7.10714	Z(6,	6)	5.66234	-284.578
	·) -4.90314	-3.50783	Z(6,	7)	4.8944	-5.02392
	3) -2.96289	-6.22434	Z(6,	8)	4.97284	-5.57071
	.) -11.2493	-12.8398	Z(7,	1)	-2.50755	3.57162
	2) 18.6547	-18.6316	Z(7,	2)	-4.90328	-3.5077
	3) 40.3574	20.2964	Z(7,	3)	4.17196	-7.97567
	1) -10.4243	-12.7302	Z(7,	4)	7.8508	-6.46062
	5) 3.82151	-8.02861	Z(7,	5)	4.96507	-5.25937
	5) 10.314	-5.37355	Z(7,	6)	4.8944	-5.02392
	7) 4.17251	-7.97529	Z(7,	7)	5.63642	-284.518
	8) 8.7203	-6.33322	Z(7,	8)	4.02842	-3.14022
	, 1) 6.34419	6.87673	Z(8,	1)	-4.36533	2.0802
	2) -9.3785	7.67637	Z(8,	2)	-2.96313	-6.22425
	3) -10.4248	-12.7299	Z(8,	3)	8.71956	-6.33427
	4) 36.1562	1.35418	Z(8,	4)	5.05347	-7.38682
	5) 10.1837	-5.00896	Z(8,	5)	4.95686	-5.7284
	6) 3.54332	-7.69532	Z(8,	6)	4.97278	-5.5713
	7) 7.85073	-6.46061	Z(8,	, 7)	4.02838	-3.1404
	8) 5.0535	-7.38676	Z(8)	, 8)	5.55586	-286.323
- \ - \						

 $\begin{array}{c} \text{Station KFEQ St. Joseph, Missouri} \\ \text{Page } \textbf{64} \text{ of } \textbf{80} \end{array}$

MoM Model Details - Nighttime Directional Antenna Array Synthesis (4 of 7)

ire	caps	Distance	Angle	_ Z		radius	segs
1	none	0	0	0	-	.231	10
T	110116	0	0	86	5.8		
2	none	95.	273.	0		.205	10
4	110110	95.	273.		9.9		
3	none	190.	273.			.25	10
3	HOHE	190.	273.		0.2		
4	none	380.	273.			.205	10
#	HOHE	380.	273.	8	7.		
5	none	309.65	273.			.198	5
5	HOHE	309.65	273.		3.5		
6	none	261.72	268.			.198	5
O	HOHE	261.72	268.		3.5		
7	none	303.27	265.			.198	5
/	Hone	303.27	265.		3.5		
8	none	273.41	277.			.198	5
0	Home	273.41	277.		3.3		
		273.11		_			
I i mb	er of w	ires	= 8	3	curr	ent nodes	= 60
i anii o							
			minir	num		maximum	
ndi	vidual	wires	wire	value		wire val	
	ent ler		8	8.66		3 9.0	
radi		-3	5	.198		3 .25	5
.auı	ub						
ELEC	TRICAL	DESCRIPTIO	N: Free	quencies	(MHz)		
	freque	ency		no. of		: length (wa	avelengths)
no.	lowes		p	steps			ximum
1	.68	0		1	.024055	.03	250556

APPLICATION FOR STATION LICENSE METHOD OF MOMENTS - PROOF OF PERFORMANCE

Station KFEQ St. Joseph, Missouri Page **65** of **80**

MoM Model Details - Nighttime Directional Antenna Array Synthesis (5 of 7)

Sources:	source	<u>node</u>	sector	magnitude	phase	typ	
	1	1	1	208.581	323.9	volt	~
	2	21	1	467.623	15.3	volt	-
	3	31	1	253.276	330.5	volt	.age
Sumped loa	ds:						
	resista	nce	reactance	inductanc	e capaci	tance p	assive
oad node	(ohms)	(ohms)	(mH)	(uF)	С	ircuit
1 11	0		644.66	0	0		0
2 41	0		7,594.9	0	0		0
3 46	0		7,594.9	0	0		0
4 51	0		7,594.9	0	0		0
5 56	0		7,594.9	0	0		0
				wer 1 - East)		
source =	1; node			wer 1 - East phase (deg)) VSWR	S11 dB	S12 dB
source = Ereq r (MHz) (1; node esist ohms)	1, sec	tor l (To	phase (deg)			đВ
freq r (MHz) (1; node esist ohms) 2.583 -	1, sec react (ohms) 17.806	imped (ohms) 28.758	phase (deg)	VSWR 2.5551	dB -7.1818	đВ
freq r (MHz) (.68 2:	1; node esist ohms) 2.583 -	1, sec react (ohms) 17.806	imped (ohms) 28.758 ector 1 (To	phase (deg) 321.7 2 ower 3 - West	VSWR 2.5551	dB -7.1818	dB 92238 s12
source = req r (MHz) (68 22 source = Freq r (MHz) (MHz) (1; node esist ohms) 2.583 - 2; node esist ohms)	1, sec react (ohms) 17.806 21, se react (ohms)	imped (ohms) 28.758 ector 1 (To imped (ohms)	phase (deg) 321.7 2 ower 3 - West phase (deg)	VSWR 2.5551 Central VSWR	dB -7.1818	dB 92238 s12 dB
source = Freq r (MHz) (68 22 Source = freq r (MHz) (MHz) (1; node esist ohms) 2.583 - 2; node esist ohms)	1, sec react (ohms) 17.806	imped (ohms) 28.758 ector 1 (To	phase (deg) 321.7 2 ower 3 - West phase (deg)	VSWR 2.5551 c Central	dB -7.1818	dB 92238 s12 dB
Freq r (MHz) (.68 2: Source = freq r (MHz) (.68 2:	1; node esist ohms) 2.583 - 2; node esist ohms) 9.895	1, section (ohms) 17.806 21, section (ohms) 6.6286	imped (ohms) 28.758 ector 1 (To imped (ohms) 30.621	phase (deg) 321.7 2 ower 3 - West phase (deg)	VSWR 2.5551 c Central VSWR 1.7176	dB -7.1818	dB 92238 s12
source = Freq r (MHz) (.68 2: Source = Freq r (MHz) (.68 2:	1; node esist ohms) 2.583 - 2; node esist ohms) 9.895	1, sec react (ohms) 17.806 21, se react (ohms) 6.6286	etor 1 (To imped (ohms) 28.758 ector 1 (To imped (ohms) 30.621	phase (deg) 321.7 ower 3 - West phase (deg) 12.5	VSWR 2.5551 c Central VSWR 1.7176	dB -7.1818	dB 92238 s12 dB
cource = ireq r MHz) (68 2: cource = ireq r (MHz) (68 2: cource =	1; node esist ohms) 2.583 - 2; node esist ohms) 9.895	1, section (ohms) 17.806 21, section (ohms) 6.6286	imped (ohms) 28.758 ector 1 (To imped (ohms) 30.621	phase (deg) 321.7 ower 3 - West phase (deg) 12.5	VSWR 2.5551 c Central VSWR 1.7176	dB -7.1818 .) S11 dB -11.566	dB 92238 s12 dB 31388

APPLICATION FOR STATION LICENSE METHOD OF MOMENTS - PROOF OF PERFORMANCE

Station KFEQ St. Joseph, Missouri Page **66** of **80**

$MoM\ Model\ Details\ - \underline{Nighttime}\ Directional\ Antenna\ Array\ Synthesis\ (6\ of\ 7)$

CURRENT: rms Frequency: 0.68 MHz Input power: 5000. watts							
Efficiency: 100. % coordinates in degrees							
curren				mag	phase	real	imaginary
no.	Х	Y	Z	(amps)	(deg)	(amps)	(amps)
GND	0	0		5.09206	2.2	5.08846	.191418
2	0	0	8.68	4.97502	1.3	4.97379	.110516
3	0	0	17.36	4.76817	. 7	4.76784	.0557276
4	0	0	26.04	4.46376	. 2	4.46374	.0132998
5	0	0	34.72	4.06534	359.7	4.0653	0185005
6	0	0	43.4	3.57911	359.4	3.57889	0402026
7	0	0	52.08	3.01276	359.	3.01231	0520368
8	0	0	60.76	2.3745	358.7	2.37388	0541736
9	0	0	69.44	1.67106	358.4	1.6704	0467464
10	0	0	78.12	.902221	358.1	.901733	0296511
END	0	0	86.8	0	0	0	0
GND	4.97193	94.8698	0	.497357	49.8	.320968	.379926
12	4.97193	94.8698	8.99	.280046	49.7	.181203	.213521
13	4.97193	94.8698	17.98	.132678	48.8	.0874444	.0997847
14	4.97193	94.8698	26.97	.0204731		.0166715	.0118831
15	4.97193	94.8698	35.96	.0636882			0535309
16	4.97193	94.8698	44.95	.118605	235.2		0974264
17	4.97193	94.8698	53.94	.146639	235.1	0839509	
18	4.97193	94.8698	62.93	.148745	235.3	0846593	
19	4.97193	94.8698	71.92	.125898	235.7	0709773	
20	4.97193	94.8698	80.91	.0784805			0651518
END	4.97193	94.8698	89.9	0	0	0	0
GND	9.94386	189.74	0 Twr 3	10.7214	2.8	10.7086	.523429
22	9.94386	189.74	9.02	10.6512	1.6	10.6471	.295722
23	9.94386	189.74	18.04	10.3211	. 8	10.3202	.141724
24	9.94386	189.74	27.06	9.74611	. 1	9.74608	.0225689
25	9.94386	189.74	36.08	8.93867	359.6	8.93842	06642
26	9.94386	189.74	45.1	7.9149	359.1	7.91389	126566
27	9.94386	189.74	54.12	6.69379	358.6	6.69192	158401
28	9.94386	189.74	63.14	5.29583	358.2	5.29334	162352
29	9.94386	189.74	72.16	3.73849	357.9	3.73591	138797
30	9.94386	189.74	81.18	2.02384	357.5	2.02194	0874865
END	9.94386	189.74	90.2	0	0	0	0
GND	19.8877	379.479	0 Twr 4	6.48725	2.5	6.48095	.285728
32	19.8877	379.479	8.7	6.35388	1.6	6.35125	.182555
33	19.8877	379.479	17.4	6.09911	1.	6.0981	.110908
34	19.8877	379.479	26.1	5.71634	.5	5.71608	.0540263
35	19.8877	379.479	34.8	5.21063	.1	5.21062	9.85E-03
36	19.8877	379.479	43.5	4.59023	359.7	4.59018	0221552
37	19.8877	379.479	52.2	3.86529	359.4	3.86506	0421531
38	19.8877	379.479	60.9	3.0466	359.1	3.04618	0502375
39	19.8877	379.479	69.6	2.14321	358.8	2.14271	0464867
40	19.8877	379.479	78.3	1.15539	358.5	1.15498	0404667
END	19.8877	379.479	87.	0	0	0	0
			- / 1			~	V

Station KFEQ St. Joseph, Missouri Page **67** of **80**

MoM Model Details - Nighttime Directional Antenna Array Synthesis (7 of 7)

42 18.3642 309.105 8.7 .0667024 226.3 0460927 0482 43 18.3642 309.105 17.4 .102185 226.5 0703546 07416 44 18.3642 309.105 26.1 .103125 226.7 0485723 05215 45 18.3642 309.105 34.8 .0712995 227.1 0485723 05215 END 18.3642 309.105 43.5 0 0 0 0 0 GND -5.93764 261.653 0 .0207754 49.6 .0134678 .015816 47 -5.93764 261.653 8.7 .0719673 229.8 0464952 05492 48 -5.93764 261.653 17.4 .110241 230. 0709064 08444 49 -5.93764 261.653 26.1 .111233 230.2 0711303 08555 50 -5.93764 261.653 34.8 .0768784 230.6 0488067 05935 END -5.93764 261.653 43.	current no.	х	Y	Z	mag (amps)	phase (deg)	real (amps)	imaginary (amps)
43					.0192551	46.1	.0133428	.0138827
44 18.3642 309.105 26.1 .103125 226.7070666307514 45 18.3642 309.105 34.8 .0712995 227.1048572305212 END 18.3642 309.105 43.5 0 0 0 0 GND -5.93764 261.653 0 .0207754 49.6 .0134678 .015816 47 -5.93764 261.653 8.7 .0719673 229.8046495205492 48 -5.93764 261.653 17.4 .110241 230070906408442 49 -5.93764 261.653 26.1 .111233 230.2071130308552 50 -5.93764 261.653 34.8 .0768784 230.6048806705932 END -5.93764 261.653 43.5 0 0 0 GND -24.8495 302.25 0 .0190942 39.3 .0147804 .012086 52 -24.8495 302.25 8.7 .0662023 219.4051183404196 53 -24.8495 302.25 17.4 .101524 219.5078365906452 54 -24.8495 302.25 26.1 .102577 219.6079011806542 55 -24.8495 302.25 34.8 .0710101 219.8054553504542 END -24.8495 302.25 43.5 0 0 0 GND 35.214 271.133 0 .0207008 47.1 .0140899 .015169 57 35.214 271.133 17.32 .109528 227.4074132408062 59 35.214 271.133 25.98 .110628 227.6074566308172 60 35.214 271.133 34.64 .0765602 227.905133905675	-		309.105	8.7	.0667024	226.3	0460927	0482149
45					.102185	226.5	0703546	0741078
END 18.3642 309.105 43.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	44	18.3642	309.105	26.1	.103125	226.7	0706663	0751062
GND -5.93764 261.653 0 .0207754 49.6 .0134678 .015818 47 -5.93764 261.653 8.7 .0719673 229.8046495205495 48 -5.93764 261.653 17.4 .110241 230070906408445 49 -5.93764 261.653 26.1 .111233 230.2071130308555 50 -5.93764 261.653 34.8 .0768784 230.6048806705935 END -5.93764 261.653 43.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	45	18.3642	309.105	34.8	.0712995	227.1	0485723	0521953
47	END	18.3642	309.105	43.5	0	0	0	0
48	GND	-5.93764	261.653	0	.0207754	49.6	.0134678	.0158189
49	47	-5.93764	261.653	8.7	.0719673	229.8	0464952	0549316
50	48	-5.93764	261.653	17.4	.110241	230.	0709064	0844121
END -5.93764 261.653 43.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	49	-5.93764	261.653	26.1	.111233	230.2	0711303	0855172
GND -24.8495 302.25 0 .0190942 39.3 .0147804 .012088 52 -24.8495 302.25 8.7 .0662023 219.4051183404198 53 -24.8495 302.25 17.4 .101524 219.5078365906456 54 -24.8495 302.25 26.1 .102577 219.6079011806545 55 -24.8495 302.25 34.8 .0710101 219.8054553504545 220	50	-5.93764	261.653	34.8	.0768784	230.6	0488067	0593986
52 -24.8495 302.25 8.7 .0662023 219.4 0511834 04196 53 -24.8495 302.25 17.4 .101524 219.5 0783659 06456 54 -24.8495 302.25 26.1 .102577 219.6 0790118 06545 55 -24.8495 302.25 34.8 .0710101 219.8 0545535 04545 END -24.8495 302.25 43.5 0 0 0 0 0 GND 35.214 271.133 0 .0207008 47.1 .0140899 .015169 57 35.214 271.133 8.66 .0714341 227.2 0485032 05246 58 35.214 271.133 17.32 .109528 227.4 0741324 08067 59 35.214 271.133 25.98 .110628 227.6 0745663 0817 60 35.214 271.133 34.64 .0765602 227.9 051339 05679	END	-5.93764	261.653	43.5	0	0	0	0
53	GND	-24.8495	302.25	0	.0190942	39.3	.0147804	.0120884
54 -24.8495 302.25 26.1 .102577 219.6 0790118 06545 55 -24.8495 302.25 34.8 .0710101 219.8 0545535 04545 END -24.8495 302.25 43.5 0 0 0 0 0 GND 35.214 271.133 0 .0207008 47.1 .0140899 .015169 57 35.214 271.133 8.66 .0714341 227.2 0485032 05246 58 35.214 271.133 17.32 .109528 227.4 0741324 08067 59 35.214 271.133 25.98 .110628 227.6 0745663 0817 60 35.214 271.133 34.64 .0765602 227.9 051339 05675	52	-24.8495	302.25	8.7	.0662023	219.4	0511834	0419883
54 -24.8495 302.25 26.1 .102577 219.6 0790118 06545 55 -24.8495 302.25 34.8 .0710101 219.8 0545535 04545 END -24.8495 302.25 43.5 0 0 0 0 0 GND 35.214 271.133 0 .0207008 47.1 .0140899 .015169 57 35.214 271.133 8.66 .0714341 227.2 0485032 05246 58 35.214 271.133 17.32 .109528 227.4 0741324 08067 59 35.214 271.133 25.98 .110628 227.6 0745663 0817 60 35.214 271.133 34.64 .0765602 227.9 051339 05675	53	-24.8495	302.25	17.4	.101524	219.5	0783659	0645433
55	54	-24.8495		26.1	.102577	219.6	0790118	065415
END -24.8495 302.25 43.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	55	-24.8495	302.25		.0710101		0545535	0454572
57 35.214 271.133 8.66 .0714341 227.2 0485032 05244 58 35.214 271.133 17.32 .109528 227.4 0741324 08062 59 35.214 271.133 25.98 .110628 227.6 0745663 08172 60 35.214 271.133 34.64 .0765602 227.9 051339 05679	END	-24.8495	302.25	43.5				
58	GND	35.214	271.133	0	.0207008	47.1	.0140899	.0151657
59 35.214 271.133 25.98 .110628 227.6 0745663 08173 60 35.214 271.133 34.64 .0765602 227.9 051339 05679	57	35.214	271.133	8.66	.0714341	227.2	0485032	0524433
60 35.214 271.133 34.64 .0765602 227.905133905679	58	35.214	271.133	17.32	.109528	227.4	0741324	080628
60 35.214 271.133 34.64 .0765602 227.905133905679	59	35.214	271.133	25.98	.110628	227.6		
	60	35.214	271.133	34.64	.0765602	227.9		0567959
	END							

Station KFEQ St. Joseph, Missouri Page **68** of **80**

Derivation of Directional Antenna System "Antenna Monitor" Parameters

With the modeled directional antenna ground level complex voltage and current values for the sources located at ground level for each tower now having been derived for each pattern, WCAP circuit analysis calculations⁵ were run to develop the current magnitude and phase information that will be present at the pertinent tower ATU reference point, where the TCT sampling devices are located. Since the current transformers and sampling lines are essentially identical, the antenna monitor ratios and phases corresponding to the theoretical parameters can be calculated and normalized directly from the modeled ATU currents for each pattern, as shown in the following tables.

Geometric Reference

KFEQ Tower 1 – "East" (FCC ASRN 1006053) is the array geometry reference for both patterns. All towers are referenced in distance and azimuth from this tower – no reference flags are set.

Electrical Reference

Pattern "electrical reference" towers were selected based upon the analysis results (highest current magnitude tower), which were consistent with the normalized corrected theoretical references. As such, for the <u>daytime</u> pattern, Tower 2 – "East-Central" (FCC ASRN 1006054) is designated as the daytime reference tower. Tower 4 – "West" (FCC ASRN 1006056) is detuned during normal daytime operation.

For the <u>nighttime</u> pattern, Tower 3 – "West-Central" (FCC ASRN 1006055) is designated as the reference tower. Tower 2 – "East-Central" (FCC ASRN 1006054) is detuned during normal nighttime operation.

 $^{^5}$ For the WCAP driven tower analysis, the same schematic diagrams and node nomenclature are employed as were described previously for the OC-self analysis. Specifically, KFEQ node 2 represents the ATU TCT reference point and KFEQ node 5 represents the tower feedpoint. Node 0 represents ground potential. The tower operating impedances were represented by complex loads from KFEQ node 5 to ground $(R_{5\,\text{-}0})$.

APPLICATION FOR STATION LICENSE METHOD OF MOMENTS - PROOF OF PERFORMANCE

Station KFEQ St. Joseph, Missouri Page **69** of **80**

Daytime and Nighttime Directional Antenna System "Antenna Monitor" Parameters

Daytime Directional Antenna Monitor Operating Parameters

KFEQ Tower	Modeled Current Pulse	Current Magnitude at Toroid	Current Phase at Toroid	Antenna Monitor	
(and ASRN)				Ratio	Phase
1 – East (ASRN 1006053)	1	9.57854	199.424°	0.700	-161.6°
2 - East-Central (ASRN 1006054)	11	13.6770	1.066°	1.000	0.0°
3 – West-Central (ASRN 1006055)	21	6.8456	239.285°	0.501	-121.7°

Nighttime Directional Antenna Monitor Operating Parameters

KFEQ Tower	Modeled Current Pulse	Current Magnitude at Toroid	Current Phase at Toroid	Antenna Monitor	
(and ASRN)				Ratio	Phase
1 - East	1	5.10412	2.346°	0.476	-0.6°
(ASRN 1006053)	I have a	3.10412	2.540	0.470	0.0
3 - West-Central	21	10.7214	2.994°	1.000	0.0°
(ASRN 1006055)	21	10.7214	2.334	1.000	0.0
4 – West	21	6.5047	2.651°	0.607	-0.3°
(ASRN 1006056)	31	0.3047	2.031	0.007	-0.3

The phasing and coupling systems for the authorized patterns were adjusted accordingly such that the antenna monitor phase and ratio indications were within 5% of the ratio values, and 3° of the phase values shown above, per the requirements of \$73.62(a) of the Commission's Rules.

APPLICATION FOR STATION LICENSE

METHOD OF MOMENTS - PROOF OF PERFORMANCE Station KFEQ St. Joseph, Missouri

Page **70** of **80**

Survey Certification

Per the FCC's Public Notice of October 29, 2009 (DA 09-2340), licensed stations such as

KFEQ, which are not proposing a change in the authorized theoretical patterns, are exempt from

the provisions of Section 73.151(c)(1)(ix) of the Commission's Rules. Accordingly, a surveyor's

certification is not included herewith.

Sampling System Measurements

Impedance and length measurements were made of the antenna monitor sampling system

using a precision calibrated measurement system consisting of a Hewlett-Packard model 8753C

network analyzer in conjunction with a Tunwall Radio directional coupler system and an

Electronic Navigation Industries (ENI) Model 310 L RF amplifier. Analyzer calibration was

field verified prior to each measurement using the procedures specified in the manufacturer's

instruction manual using precision calibration standards and techniques.

The measurements were accomplished by looking into the antenna monitor ends of the

sampling lines for two conditions - with and without the sampling lines connected to the

sampling devices at the tower bases under open-circuited conditions.

The following table shows the frequency nearest the carrier frequency where resonance

(zero reactance corresponding with low resistance) was found. As the length of a distortion-less

transmission line is 180 electrical degrees at the difference frequency between adjacent

frequencies of resonance, and frequencies of resonance occur at odd multiples of 90 degrees

electrical length, the sampling line length at the resonant frequency below carrier frequency,

which is the closest one to the carrier frequency in terms of the ratio of frequencies, was found to

be 270 electrical degrees.

The electrical lengths at carrier frequency appearing in the following table were

calculated by ratioing the frequencies in the customary fashion.

APPLICATION FOR STATION LICENSE METHOD OF MOMENTS - PROOF OF PERFORMANCE

Station KFEQ St. Joseph, Missouri Page **71** of **80**

KFEQ Tower	Sampling Line Open- Circuited Resonance Nearest to 680 kHz	Sampling Line Ratio Calculated Electrical Length at 680 kHz	680 kHz Measured Impedance with Sampling Toroid (TCT) Connected	
1 – East	886.39 kHz	345.2°	48.002 +j0.6125 Ω	
2 - East Central	886.53 kHz	345.2°	48.209 +j0.7777 Ω	
3 - West Central	886.60 kHz	345.1°	48.127 +j0.7949 Ω	
4 – West	886.46 kHz	345.2°	47.857 +j0.8049 Ω	

As shown, the sampling line lengths meet the Commission's requirement that they be equal in length within ± 1 electrical degree.

The characteristic impedance of the sampling lines was calculated using the following formula, where R_1 +j X_1 and R_2 +j X_2 are the measured impedances at the +45 and -45 degree offset frequencies, respectively:

$$Z_0 = \sqrt{\sqrt{R_1^2 + X_1^2}} \cdot \sqrt{R_2^2 + X_2^2}$$

KFEQ Tower	-45 Degree Offset Frequency (kHz)	-45 Degree Measured Impedance (Ohms)	+45 Degree Offset Frequency (kHz)	+45 Degree Measured Impedance (Ohms)	Calculated Characteristic Impedance (Ohms)
1 – East	443.2	4.5723 –j49.967	620.5	9.3809 +j51.389	51.20
2 – East Central	443.3	4.5801 -j49.967	620.6	9.3535 +j51.389	51.20
3 – West Central	443.3	4.5343 -j49.969	620.6	9.3145 +j51.279	51.14
4 – West	443.2	4.5859 -j49.787	620.5	9.3359 +j51.172	51.00

As shown, the sampling line measured characteristic impedances meet the Commission's requirement that they be equal within \pm 0 ohms.

The *Delta Electronics, Inc.* TCT-3 toroidal transformers used for the station were calibrated by measuring their outputs with a common reference signal using a *Hewlett-Packard* 8753C network analyzer in a calibrated measurement system. They were placed side-by-side

Station KFEQ St. Joseph, Missouri Page **72** of **80**

with a conductor passing the reference signal through them. The outputs of the TCT-3 were fed into the A and B receiver inputs of the analyzer which was configured to measure the relative ratios and phases of their output voltages.

The following results were found for the carrier frequency, 680 kilohertz:

Tower	TCT Serial Number	Test 1 Ratio	Test 1 Phase	Test 2 Ratio	Test 2 Phase
1 – NW	17977	0.99982	+0.22797°	Reference	Reference
2 – SE	17978	Reference	Reference		
3 – SW	17979	0.9991	+0.397°		
4 – NW	17980	0.99985	+0.4078°	0.99963	+0.213°

Delta type TCT-3 toroidal transformers are rated for absolute magnitude accuracy of $\pm 2\%$ and absolute phase accuracy of ± 2 degrees. As the maximum measured transformer-to-transformer variations between the three transformers were fractional amounts, they clearly provide far more accurate relative indications than could be the case assuming their rated accuracies.

The calibration of the *Potomac Instruments* Antenna Monitor (factory calibrated –new-on October 18, 2010) was also field verified.

Reference Point Field Strength Measurements

Reference field strength measurements on the adjusted nighttime directional antenna pattern were made using *Potomac Instruments* Model FIM-21, Serial Number 447, last factory calibrated November 14, 1978 and a *Potomac Instruments, Inc.* model FIM-4100, Serial Number 122, last calibrated on July 27, 2009. The calibration of the FIM-21 was field verified against the FIM-4100 and found to be in substantial agreement.

Measurement points were selected at three locations along the designated "monitored radials" and pattern maxima for both patterns as described in the following.

Station KFEQ St. Joseph, Missouri Page **73** of **80**

For the daytime mode of operation, the monitored radials are 67°, 180°, 206°, and 330°, and would customarily be included in a set of reference point measurements. However, FCC Staff has indicated that, due to pattern symmetry, there is no need to obtain measurements on the 67° and 180° radials, so these radial directions were omitted from the measurement series. The daytime main lobe radial of 273° was included as required.

Similarly, for the nighttime mode of operation, the monitored radials are 73.5° , 103° , 203.4° , 245° , 273° and 302° . However, FCC Staff has indicated that it is permissible to drop the measurements on the 203.4° and 273° radials, so these radial directions were omitted from the measurement series. The nighttime main lobe radials are 3° and 183° . Since FCC Staff agreed that it would be permissible to drop one of these radials due to symmetry, the 183° radial was dropped and the 3° main lobe was included.

The radial directions, measured field strengths, location descriptions, and GPS coordinates (with datum reference) for these reference points are shown in the following tables.

Daytime Pattern Reference Point Field Measurements

Reference Point Field Strength Measurements - 206° Day (Monitored Minima)

Date/Time	Point	Field Strength	GPS Coordinates NAD-83	Description
12/08/2010 12:34 PM	1	100.8 mV/m	39° 47′ 42.1″ 94° 49′ 37.3″	Lovers Land & Colony Street
12/08/2010 12:40 PM	2	101.5 mV/m	39° 48′ 02.9″ 94° 49′ 24.2″	3901 N 29 th Street
12/08/2010 12:47 PM	3	77 mV/m	39° 47' 30.9" 94° 49' 44.0"	Eugene Field School

Reference Point Field Strength Measurements – 273° Day (Maxima)

Date/Time	Point	Field Strength	GPS Coordinates NAD-83	Description
12/08/2010 11:10 AM	1	292 mV/m	39° 49′ 48.2″	50 ft South of 2044 mailbox – Rd 380
12/08/2010		000 111	94° 50′ 36.5″ 39° 49′ 48.9″	
11:20 AM	2	2 232 mV/m	94° 50' 53.5"	20400 Rd 379
12/08/2010 11:28 AM	3	229 mV/m	39° 49' 50.3" 94° 50' 38.9"	50 ft North of 20294 mailbox. K Highway on West side of road.

APPLICATION FOR STATION LICENSE METHOD OF MOMENTS - PROOF OF PERFORMANCE

Station KFEQ St. Joseph, Missouri Page **74** of **80**

Daytime Pattern Reference Point Field Measurements (continued)

Reference Point Field Strength Measurements – 330° Day (Monitored Minima)

Date/Time	Point	Field Strength	GPS Coordinates NAD-83	Description
12/08/2010	1	50 mV/m	39° 53′ 48.7″	East side of New 71 Highway, 1/10 mile
11:42 AM	1	30 m v/m	94° 51' 24.1"	South of bridge
12/08/2010	2	47 mV/m	39° 53′ 54.7"	Rd 369, 75 yards West of bridge
11:56 AM	2	47 111 7/111	94° 51' 29.5"	Ku 309, 73 yarus West of bridge
12/08/2010	3	84 mV/m	39° 51' 53.3"	Rd 361, 100 yards from Highway DD
12:05 PM	3	04 111 7/111	94° 49′ 58.0"	Ku 301, 100 yaius irom nighway DD

Nighttime Pattern Reference Point Field Measurements

Reference Point Field Strength Measurements – 3° Night (Maxima)

Date/Time	Point	Field Strength	GPS Coordinates NAD-83	Description
01/14/2011 11:06 AM	1	124 mV/m	39° 54' 04.1" 94° 48' 03.4"	Rd 344
01/14/2011 11:17 AM	2	180 mV/m	39° 52' 58.6" 94° 48' 06.7"	Rd 345
01/14/2011 11:21 AM	3	288 mV/m	39° 51' 54.2" 94° 48' 10.7"	Rd 348

Reference Point Field Strength Measurements – 73.5° Night (Monitored Minima)

Date/Time	Point	Field Strength	GPS Coordinates NAD-83	Description
12/08/2010 2:20 PM	1	10.05 mV/m	39° 50′ 51.7" 94° 43′ 27.4"	Rd 294
12/08/2010 2:31 PM	2	15.5 mV/m	39° 50' 36.3" 94° 44' 35.4"	Across from 19504 mailbox on W Hwy
12/08/2010 2:44 PM	3	27.2 mV/m	39° 50' 07.2" 94° 46' 37.2"	Rd 304, 100yards from Rd 305

Reference Point Field Strength Measurements – 103° Night (Monitored Minima)

Date/Time	Point	Field Strength	GPS Coordinates NAD-83	Description
12/08/2010 1:33 PM	1	42 mV/m	39° 49' 04.0" 94° 44' 35.1"	W Highway
12/08/2010 1:59 PM	2	4.7 mV/m	39° 48′ 42.9″ 94° 42′ 37.2″	58 th Road
12/08/2010 2:05 PM	3	4.5 mV/m	39° 48′ 20.7″ 94° 40′ 40.3″	Cook Road at Z Highway

Reference Point Field Strength Measurements – 245° Night (Monitored Minima)

Date/Time	Point	Field Strength	GPS Coordinates NAD-83	Description
01/14/2011 12:17 PM	1	13.0 mV/m	39° 48′ 56.6″ 94° 50′ 27.9″	South side of K Highway near 59 Highway
01/14/2011 12:40 PM	2	10.0 mV/m	39° 48' 39.2" 94° 51' 19.0"	5006 Amazonia Road
01/14/2011 12:47 PM	3	12.2 mV/m	39° 48' 49.2" 94° 50' 53.4"	Maxwell Road

Engineering Statement APPLICATION FOR STATION LICENSE

METHOD OF MOMENTS - PROOF OF PERFORMANCE

Station KFEQ St. Joseph, Missouri Page **75** of **80**

Nighttime Pattern Reference Point Field Measurements (continued)

Reference Point Field Strength Measurements – 302° Night (Monitored Minima)

Date/Time	Point	Field Strength	GPS Coordinates NAD-83	Description
01/14/2011 11:53 AM	1	14.5 mV/m	39° 51' 12.0" 94° 51' 27.0"	Rd 375
01/14/2011 11:57 AM	2	8.2 mV/m	39° 51' 30.5" 94° 52' 02.0"	Rd 375 at the end of the bridge
01/14/2011 12:01 PM	3	11.8 mV/m	39° 51' 23.8" 94° 51' 51.2"	Rd 375

Direct Measurement of Power

Phasor Common point impedance measurements were made using a *Hewlett-Packard* model 8753C network analyzer in conjunction with a *Tunwall Radio* directional coupler system and an *Electronic Navigation Industries* (ENI) Model 310 L RF amplifier. Analyzer calibration was field verified prior to each measurement using the procedures specified in the manufacturer's instruction manual using precision calibration standards and techniques. The "as adjusted" common point impedance measurements were made at the phasor cabinet input jack adjacent to the common point current meter that is used to determine operating power. The results are as follows:

Mode	Common Point Resistance	Common Point Reactance
Directional - Daytime	53.0 Ω	+j31.1 Ω

Mode	Common Point Resistance	Common Point Reactance
Directional - Nighttime	53.0 Ω	-j31.1 Ω

The authorized directional power is 5 kW for both the day and night modes of operation. The common point input power of the nominal 5000 W (day and night) directional antenna system is 5400 watts. This value is obtained by applying the provisions of \$73.51(b)(1) of the Commission's Rules, i.e. 5000 Watts x 1.08 = 5400 Watts. Accordingly, the currents for each mode of operation, found by the following calculation (Watts/Resistance)^{1/2} are:

Engineering Statement APPLICATION FOR STATION LICENSE

METHOD OF MOMENTS - PROOF OF PERFORMANCE

Station KFEQ St. Joseph, Missouri Page **76** of **80**

Mode	Operating Power	Common Point Current
Directional - Daytime	5400 Watts	10.0939 (10.1) Amperes

Mode	Operating Power	Common Point Current
Directional - Nighttime	5400 Watts	10.0939 (10.1) Amperes

RF Exposure Evaluation

The operation of facility described herein will not result in the exposure of workers or the general public to levels of radio frequency radiation in excess of the limits specified in FCC Rule Section 1.1310. In particular, fences have been installed around the tower bases to restrict public access. The as-constructed fence distances are beyond those necessary to prevent electric and magnetic field exposure above the levels described in the Commission's Rules.

The minimum fence sizes were determined with reference to FCC OET Bulletin 65 (Edition 97-01). Interpolated values from the Supplement A tables can be employed to estimate the necessary "Distance for Compliance with FCC limits" at 680 kilohertz, for each tower using the MoM modeled base currents and drive point impedances, or actual measured values. In this instance, the interpolated fence values from Tables 1 and 2 of Supplement A of OET Bulletin 65 were used as a guideline.

Assuming the KESJ electrical tower heights of 82.13° and a maximum ("worst case") power at any tower of 5 kW, the minimum fence distance should be 2.6 meters. However, non-metallic fences were constructed about each tower base that come no closer than 2.74 meters to any tower surface. Based upon the above, it is believed that the Commission's RF exposure prevention requirements are met in that the fences limit public access to areas with fields that exceed the requirements of the Rules for this directional antenna operation. Further, the entire site is fenced, and all fence enclosure areas are posted with RF exposure warning signs on all fence sides.

APPLICATION FOR STATION LICENSE METHOD OF MOMENTS - PROOF OF PERFORMANCE

Station KFEQ St. Joseph, Missouri Page **77** of **80**

With respect to worker safety, no work will be permitted that will endanger employees or subcontractors. Access to high exposure or shock/burn areas will be controlled and supervised by knowledgeable, responsible, station personnel. If it is necessary for workers to be inside the tower base fence enclosures for extended periods of time, the station may switch to low power nondirectional operation on alternative towers, or it may choose to temporarily terminate operation entirely while work is performed within the enclosures. No one will be permitted to climb an energized tower. It is therefore believed that the constructed facility is in full compliance with the FCC's requirements with regard to radio frequency energy exposure.

Satisfaction of CP Conditions of Collocated KESJ

Co-owned KESJ was constructed on the same parcel occupied by the KFEQ array. Although these stations are not physically diplexed together, the KESJ Construction Permit was subject to five Special Operating Conditions or restrictions, several of which related to the KFEQ operation. As was discussed in the recently filed KESJ *application for license*, all five Special Operating Conditions were met. *The conditions that are specifically related to KFEQ* are again discussed below for completeness of the record since these two radio stations are collocated.

KESJ Special Operating Condition 1 required that the KESJ Permittee submit a proof of performance as set forth in either Section 73.151(a) or 73.151(c) of the Rules before program tests (PTA) would be authorized. Accordingly, a proof of performance was conducted under the provisions of Section 73.151(c) of the Commission's Rules and filed with the station's Application for License. Compliance with the Commission's performance rules was demonstrated in that filing; Program test Authority was subsequently granted.

KESJ Special Operating Condition 3 required that, prior to the construction authorized in the KESJ CP, the permittee was to notify KFEQ, so that, if necessary it could determine operating power by a method described in Section 73.51(a)(1) or (d), and/or request temporary authority from the Commission in Washington, D.C. to operate with parameters at variance in order to maintain monitoring point field strengths within authorized limits. As discussed herein

Station KFEQ St. Joseph, Missouri Page **78** of **80**

(and in the KESJ filing), Station KFEQ is also licensed to the permittee of KESJ, and as such, the licensee of KFEQ was fully aware of the proposed KESJ construction. Further, the entire KFEQ array was reconstructed (including new towers, sample lines, transmission lines, antenna monitor) as part of the KESJ construction project.

This Method of Moments proof of performance was completed on the KFEQ antenna array following the completion of the construction and tuning authorized in the KESJ CP. The filing of this proof for KFEQ follows the filing of the KESJ application for license/proof-of-performance (see BMML-20110322ABY), and supports the statements made in the KESJ proof that the KFEQ array is operating properly following the KESJ construction. Further, Special Temporary Authority was requested and received from the FCC to operate KFEQ with parameters at variance during the construction (see BSTA-20101123ARJ). In particular, KFEQ is authorized under the STA to operate with substantially adjusted Method of Moments antenna parameters, as it is presently.

KESJ Special Operating Condition 3 also stated that the Permittee shall be responsible for installation and continued maintenance of detuning apparatus necessary to prevent adverse effects upon the radiation pattern of the AM station. This has been accomplished as part of the KFEQ re-build and KESJ construction.

KESJ Special Operating Condition 5 stated that, before program tests are authorized, sufficient data shall be submitted to show that adequate filters, traps and other equipment had been installed and adjusted to prevent interaction, intermodulation and/or generation of spurious radiation products which may be caused by "common usage of the same antenna system" by KESJ and KFEQ, and there shall be filed with the license application copies of a firm agreement entered into by the 2 stations involved clearly fixing the responsibility of each with regard to the installation and maintenance of such equipment.

Engineering Statement APPLICATION FOR STATION LICENSE

METHOD OF MOMENTS - PROOF OF PERFORMANCE

Station KFEQ St. Joseph, Missouri Page **79** of **80**

In addition, field observations were to be made to determine whether spurious emissions exist and any objectionable problems resulting therefrom shall be eliminated. Finally, following construction, and prior to authorization of program test under the KESJ grant, KESJ and KFEQ were to each measure antenna or common point resistance and submit FCC Form 302 as application notifying the return to direct measurement of power. As part of the replacement RF system for KFEQ, and the new RF system for KESJ, filters and traps were factory installed within the equipment as necessary to prevent undesired interaction between the two stations.

It should be noted that the two facilities share the same parcel of land, but do NOT share antenna structures or the same antenna system. (No direct connections or diplexers are involved.) Only the buried wire copper ground radials are interconnected. Inasmuch as the two stations are commonly owned, licensed, and operated, a written agreement, as stipulated above, has not been drafted since it is not possible to enter into an agreement with one's self. However, in the event of a transfer of control (sale) to another entity, the licensee will draft such an agreement as required to provide clear lines of responsibility for each party with regard to the installation and maintenance of said filtering and trap equipment.

Regarding the required field observations to determine whether spurious emissions or objectionable interference problems exist, such measurements have been undertaken, were attached to the KESJ proof and application for license, and are also included with this proof-of-performance statement as **Attachment II** to provide complementary documentation. As shown therein, no instances of spurious emissions, harmonics, or unpermitted out of band emissions were observed.

Finally, **KESJ Condition 5** required that, following construction, and prior to authorization of KESJ's program tests, Stations KESJ and KFEQ were to have each measured antenna or common point resistance and submit FCC Form 302 applications notifying the return to direct measurement of power. FCC Form 302-AM (with appropriate antenna impedance measurements) was supplied as an attachment to the Statement for KESJ. FCC Form 302-AM

Station KFEQ St. Joseph, Missouri Page **80** of **80**

(with appropriate antenna impedance measurements) is supplied herewith for KFEQ, along with this proof-of-performance. Accordingly, it was felt that this Condition for KESJ was essentially satisfied.

Certification

These application materials have been prepared on behalf of *Eagle Communications, Inc.* by the undersigned or under his direction and are true and correct to the best of his knowledge and belief. Mr. Cavell's qualifications are a matter of record before the FCC.

Respectfully submitted,

Garrison C. Cavell

Cavell, Mertz & Associates, Inc.

7732 Donegan Drive, Manassas, Virginia 20109 703.392.9090; Facsimile 703.392.9559

E-Mail: gcavell@cavellmertz.com

Attachment I

SUPPLEMENT TO AN APPLICATION FOR STATION LICENSE METHOD OF MOMENTS - PROOF OF PERFORMANCE

prepared for
Eagle Communications, Inc.
Station KFEQ St. Joseph, Missouri
680 kHz DA-2 5 kW-U

Copy of 1994 KFEQ License

This Attachment provides a copy of the last license (1994) for KFEQ and is supplied to document the applied for, granted, and licensed array geometry for this station (which differs from that shown in CDBS). This license also provides the latest antenna system theoretical parameters.

This license copy is provided to support a request for modification of the array description in CDBS, as discussed in the attached Engineering Statement. The attached Statement also requests that the 1994 theoretical parameters be normalized against the highest power tower for each mode.

FCC Form 352 May 1988

UNITED STATES OF AMERICA FEDERAL COMMUNICATIONS COMMISSION

AM BROADCAST STATION LICENSE

File No. : BZ-941031AA

FAC ID: 34419

	AM BROADCAST STATION	N LICENSE Call Sign : KFEQ
LICENSEE:	KFEQ, Inc.	
Community of License	: St. Joseph, Missouri	3. Transmitter(s): Type Accepted. See Sections 73.1660, 73.1665 and 73.1670 of the Commission's rules)

4. Main Studio Location: (See Section 73.1125) Transmitter location....: 5.5 miles north-4305 Frederick Avenue St. Joseph, Missouri northeast of

St. Joseph, Missouri 5. Remote control location

4305 Frederick Avenue 39° 49' North Latitude....: St. Joseph, Missouri 940

West Longitude : 6. Antenna and ground system:

Obstruction marking and lighting specifications - FCC Form 715, paragraphs: 1, 3, 12 & 21.

Frequency....: 680

Nominal power (kW).....: 5.0 5.0 Night

Antenna input power (kW):

Attached

- ☐ Non-directional antenna: current Day 5.59 amperes: resistance 173 ohms. Directional antenna
- Non-directional antenna: current 5.59 amperes: resistance 173 Night Directional antenna
- 10. Hours of operation: As in BR-635 (Unlimited)

11. Conditions. : --

Subject to the provisions of the Communications Act of 1934, as amended, subsequent Acts, Treaties, and Commission rules made thereunder, and further subject to conditions set forth in this license,1 the LICENSEE is hereby authorized to use and operate the radio transmitting apparatus herein described for the purpose of broadcasting for the term ending 3 A.M. Local Time

February 1, 1997

The Commission reserves the right during said license period of terminating this license or making effective any change, or modification of this license which may be necessary to comply with any decision of the Commission rendered as a result of any hearing held under the rules of the Commission prior to the commencement of this license period.

The license is issued on the licensee's representation that the statements contained in the licensee's application are true and that the undertakings therein contained so far as they are consistent herewith, will be carried out in good faith. The licensee shall, during the term of this license, render such broadcasting service as will serve the public interest, convenience,or necessity to the full extent of the privileges herein conferred.

This license shall not vest in the licensee any right to operate the station nor any right in the use of the frequency designated in the license beyond the term hereof, nor in any other manner than authorized herein. Neither the license nor the right granted hereunder shall be assigned or otherwise transferred in violation of the Communications Act of 1934, as amended. This license is subject to the right for control by the Government of the United States conferred by section 606 of the Communications Act of 1934, as amended.

EAL:rao

FEDERAL COMMUNICATIONS

COMMISSION

 1 This license consists of this page and pages 2, 3, 4 & 5

Dated:

FCC Form 353-A June 1980

File No.: BZ-941031AA Call Sign: KFEQ

1. DESCRIPTION OF DIRECTIONAL ANTENNA SYSTEM

No. and Type of Elements: Four uniform cross-section, guyed, series-excited, vertical radiators. Theoretical RMS: 685.58 mV/m at 1 km, night; 683.97 mV/m at 1 km, day. Augmented PTN RMS: 725.81 mV/m at 1 km, night; 733.69 mV/m at 1km, day. Q = 22.36, night; 29.97, day.

Height above Insulators:

100.6 m (82°)

Overall Height: 102.4 m

Spacing and Orientation: Tower 1, 2, and 3 spaced 116.6 m (95°) between adjacent towers. Tower 3 and 4 spaced 233.2 m (190°). Line of towers bears 93° true.

Non-Directional Antenna: None authorized.

Ground System consists of 120-91.4 m buried copper radials equally spaced plus a 7.3 m x 7.3 m copper ground screen under each tower.

2. THEORETICAL SPECIFICATIONS

	Towers:		E(#1)	EC(#2)	WC(#3)	W(#4)
	Phasing:	Night: Day:	0° -19.5°	 142.9°	0° 19.5°	0°
	Field Ratio:	Night: Day:	0.81 1.26	 1.868	1.80 1.0	1.0
3.	OPERATING S		ATIONS			
	rnase muican	Night:	4.0°		0°	-3.0°
		Day:	169.0°	0°	-127.0°	
	Antenna Base Current Ratio:					
		Night: Day:	0.54 .722	1.0	1.0 0.476	0.488
	Antenna Moni Current Ratio:	•	le			
		Night:	0.56		1.0	0.479
		Day:	0.735	1.0	0.498	

^{*} As indicated by Potomac Instruments AM-19 (204) Antenna Monitor.

Antenna sampling system approved under Section 73.68 (b) of the Rules.

File No: BZ-941031AA Call Sign: KFEQ

DESCRIPTION OF AND FIELD INTENSITY AT MONITORING POINTS:

Direction of 67° True North. Start from the transmitter driveway and US Highway 71 (Belt Highway). Proceed south on US-71, 1.75 miles to the junction of US-169. Turn left and proceed on US-169 Northeast for 2.75 miles to the intersection of Castle Road. Turn right (east) and travel 1 mile to the "Y" at the end of the road. Turn left (north) and proceed .10 mile, taking road just past wooden bridge across creek. Reading is taken from center of road. This is point number 9 on the N. 67°E. radial which is 1.89 miles away from the antenna. The field intensity measured at this point should not exceed 192.3 mV/m, day.

Direction of 180° True North. Start from the transmitter driveway and US Highway 71 (Belt Highway). Proceed south on US-71 for 3.75 miles to intersection of Frederick Boulevard. Turn right (west) on Frederick Boulevard and proceed .25 miles west to Woodson Loop on the grounds of the State Hospital. Enter the loop on the west side and take the right turn onto Panttiere. Proceed to the driveway at the rear of the three story building on south side of Panttiere. Reading is taken on yard at midpoint between the building and Frederick Avenue to the north. This is point number 12 on the N. 180° E. radial which is 3.51 miles away from the antenna. The field intensity measured at this point should not exceed 95.5 mV/m, day.

Direction of 206° True North. Start from the transmitter driveway and US Highway 71 (Belt Highway). Proceed south on US-71 Highway two miles, just past US-169, to Ashland Avenue. Turn right (west) on Ashland two blocks to blinking yellow light at intersection of Lover's Lane. Turn right (west) and proceed on Lover's Lane for 1 mile to 4 way stop at 22nd Street. Turn left (south) and proceed two blocks to Marion Street. Turn right one block to Eugene Field Avenue. Turn left (south) and proceed 1/3 block to third house on right. 2110 Eugene Field Avenue. Reading is taken on east side of street opposite the front door of this house. This is point number 10 on the N 206° E radial which is 3.19 miles away from the antenna. The field intensity measured at this point should not exceed 100.3 mV/m, day.

Direction of 330° True North. Start from the transmitter driveway and US Highway 71 (Belt Highway). Proceed north on US-71 .2 miles to intersection of US-59 Highway. Turn left and proceed southwest on US-59 1 mile to intersection of State Road "DD". Turn right on "DD" and proceed north approximately 3 miles to gravel road on left. Turn left (west) and proceed .2 miles to a point where creek to south has eroded close to road. This point is also halfway between the fourth and fifth utility poles from State Road "DD". Reading is taken in the center of the gravel road. This is point number 8 on the N 330° E radial which is 2.95 miles away from the antenna. The field intensity measured at this point should not exceed 87.7 mV/m, day.

File No: BZ-941031AA Call Sign: KFEQ

DESCRIPTION OF AND FIELD INTENSITY AT MONITORING POINTS:

Direction of 73.5° True North. Start from the transmitter driveway and US Highway 71 (Belt Highway). Proceed south on US-71 for 1.75 miles to the junction of US-169. Turn left and proceed on US-169 Northeast for 2.75 miles to the intersection of Castle Road. Turn right (east) and travel 1 mile to "Y" at the end of the road. Turn right (south) and proceed .1 mile south to dirt road that is to the left. The point is .05 miles down this road (east) adjacent to white outbuilding on farmland to the South. Reading is taken from the center of the road. This is point number 3 on the N 73.5° E radial which is 1.8 miles away from the antenna. The field intensity measured at this point should not exceed 23.7 mV/m, night.

Direction of 103° True North. Start from the transmitter driveway and US Highway 71 (Belt Highway). Proceed south on US-71 for 1.75 miles to the junction of US-169. Turn left and proceed on US-169 northeast for 1.75 miles to intersection of Andrew County Road 307. Proceed right (east) on County Road 307 two miles to County Road 304. Turn left (north) .05 miles to large post at end of fence, also at the crest of a small hill. Reading is taken in center of road. This is point number 3 on the N 103° E radial which is 1.73 miles from the antenna. The field intensity measured at this point should not exceed 51.7 mV/m, night.

Direction of 203.4° True North. Start from the transmitter driveway and US Highway 71 (Belt Highway). Proceed south on US-71 two miles, just past US-169, to Ashland Avenue. Turn right (west) on Ashland two blocks to blinking yellow light at intersection of Lover's Lane. Turn right (west) and proceed on Lover's Lane for 2.2 miles to intersection of Jones Street. This is one block past a large school on left (east) side of street. At Jones Street, turn left (east) and proceed 1/3 block to house at 1812 Jones Street. Reading is taken in center of street in front of this house. This is point number 11 on the N 203.4° E radial which is 3.9 miles away from the antenna. The field intensity measured at this point should not exceed 160 mV/m, night.

Direction of 245° True North. Start from the transmitter driveway and US Highway 71 (Belt Highway). Proceed north on US-71 .2 miles to intersection of US-59 Highway. Turn left and proceed southwest on US-59 for 2 miles to intersection of State Road "K". Turn right (northwest) and proceed .1 miles to a hollow on right side of road, adjacent to driveway marked as "5601 K Highway." Reading is taken on northeast side of "K" Highway in center of hollow. This is point number 6 on the N 245° E radial which is 1.89 miles away from the antenna. The field intensity measured at this point should not exceed 14.3 mV/m, night.

Direction of 273° True North. Start from the transmitter driveway and US Highway 71 (Belt Highway). Proceed north US-71 .2 miles to intersection of US-59 Highway. Turn left and proceed Southwest on US-59 for 1 mile to intersection of State Road "DD". Turn right on DD and immediately cross west to gravel road, Andrew County Road 381. Proceed on County Road 381 .05 mile to driveway of house on north side of road. Reading is taken in center of road by driveway and mailbox. This is point number 4 on the N 273° E radial which is 1.45 miles away from the antenna. The field intensity measured at this point should not exceed 11.2 mV/m, night.

File No: BZ-941031AA Call Sign: KFEQ

DESCRIPTION OF AND FIELD INTENSITY AT MONITORING POINTS:

Direction of 302° True North. Start from the transmitter driveway and US Highway 71 (Belt Highway). Proceed north on US-71 .2 miles to intersection US-59 Highway. Turn left and proceed across US-59 to Ridgeland Road. Proceed west on Ridgeland .6 miles to the St. Joseph country Club main parking lot. There is a blacktop road proceeding north from this lot to maintenance building on north side of property. Proceed on this road to a point half-way between the creek at the bottom of the hill and the road north of the maintenance building. Reading is taken in center of service road just south of gravel parking area. This is point number 1 on the N 302° E radial which is 1.0 miles away from the antenna. The field intensity measured at this point should not exceed 56 mV/m, night.

Attachment II

SUPPLEMENT TO AN APPLICATION FOR STATION LICENSE METHOD OF MOMENTS - PROOF OF PERFORMANCE

prepared for
Eagle Communications, Inc.
Station KFEQ St. Joseph, Missouri
680 kHz DA-2 5 kW-U

Spurious Emissions Testing

This Attachment will serve to document the installation of filters and traps at the KFEQ/KESJ common site as well as the subsequent, post-construction, harmonic, spurious emission and intermodulation interference measurements. As will be shown herein, no objectionable effects were observed.

 $680~\mathrm{kHz}$ "reject" filters were installed at the base of each KESJ tower. They were measured from the filter cabinet output j-plug back toward the ATU networks with a 50 ohm termination to ground at the ATU output j-plug to confirm proper adjustment and operation. The measurements are as follows: $680~\mathrm{kHz}$ reject $1550~\mathrm{kHz}$ pass circuits were:

	<u>680 kHz</u>	<u>1550 kHz</u>
T1	121 ohms +j 1464.3 ohms	50.125 ohms -j 0.55 ohm
T2	128 ohms +j 1511.2 ohms	50.200 ohms -j 0.01 ohm
T3	121 ohms +j 1487.2 ohms	50.187 ohms -j 0.27 ohm
T4	126 ohms +j 1478.9 ohms	50.118 ohms -j 0.32 ohm

The 680 kHz shunt trap to ground between the KESJ antenna system and the KESJ transmitter measured 0 ohm +/-j 0 ohm at 680 kHz. The 1550 kHz shunt trap to ground between the KFEQ antenna system and the KFEQ transmitter measured 0 ohm +/-j 0 ohm at 1550 kHz. Additionally, filters and traps are installed in the phasor cabinet prior to the common point.

Intermodulation product frequencies were calculated for specific observations, through the third harmonic, as follows:

870, 1060, 1360 (KMRN), 1740, 2040, 2230, 2420, 2610, 2910, 3100, 3290, 3590, 3780, and 3970 kilohertz.

Attachment II (continued)

SUPPLEMENT TO AN APPLICATION FOR STATION LICENSE

prepared for
Eagle Communications, Inc.
Station KFEQ St. Joseph, Missouri
680 kHz DA-2 5 kW-U

Observations and measurements were made with an *Anritsu* Model 2721A spectrum analyzer and a *Chris Scott* magnetic loop antenna. The measurement observation location was 1.25 km distant on bearing 319 degrees True, from the approximate center of both KFEQ and KESJ arrays. The specific location is on John Glenn Drive, at the west end of the gravel parking lot of the fire station.

Measurements were made with both stations operating in various combinations of Daytime and Nighttime modes for both stations. The analyzer reports/plots follow this narrative and show no evidence of undesired emissions being emitted by the collocated stations.

In addition to the spectrum analyzer measurements, field strength measurements were made with a *Potomac Instruments* Model 4100 Field Strength Meter, Serial #122, factory calibrated on 07/27/2009. In particular, measurements were made at each of the above listed intermod frequencies as well as harmonic frequencies. Observed values were found to be near zero microvolts/meter and were simply noise, with the exception of 1360 kHz (twice the KFEQ licensed frequency), which was the carrier for KMRN, Cameron, Missouri (located 53.6 km distant at 108.6 degrees True). No audio was detectable on any intermod or harmonic frequency.

Accordingly, it is believed that KFEQ and KESJ (under its present Program Test Authority) are operating in full accordance with the Rules and Regulations of the Federal Communications Commission with respect to prohibited RF out-of-band emissions.

Charteim Analyzor	Specifical Ariangeer
Spectrum Analyzer Data	kesj_mid-third (2/7/2011 3:18:32 PM)

	7	1921			163	V.	种類	3
	3.04 3.22 Span: 1.800 000 MHz	Delta Amp	i i	1	î Î	(m) (m)	-	
	3.04 Span: 1					-		, d
	2.86	Delta Fred) 1	î	Î.	Ţ.		(m) (m/)
	2.68		u.	u	Ц		n.	. u
	2.50	Ref Amp	-87.847999573 dBm	-87.974975586 dBm	-87.772956848 dBm	-87.9529953 dBm	-87.338996887 dBm	-88.159988403 dBm
	2.32	Re	-87.8479	-87.9749	-87.7729	-87.952	-87.3389	-88.1599
	.96 2.14 30 000 MHz	red	028 7 MHz	231 6 MHz	.421 5 MHz	.611 3 MHz	MHz	.098 9 MHz
	1.5	Ref Fred	2.028 7	2.231 6	2.421 5	2.6113	2.909 1 MHz	3.0989
	1.78 Center Freq: 2	Delta						
	Cente	Ref						
-50.0	-100.0 dBm	Mkr	J	2	3	4	5	9

Trace Mode = Average	VBW = 3.0 MHz Operator Name =
Trace Average = 100	Detection = Sample Tower =
Trace Mode = Average	Center Frequency = 2.500 000 Misserial Number = 623020
Preamp = ON	Start Frequency = 1.600 000 MHzBase Ver. = V1.78
Min Sweep Time = 5E-05 S	Stop Frequency = 3.400 000 MHzApp Ver. = V1.79
Reference Level Offset = -55.6	Reference Level Offset = -55.6 dB-requency Span = 1.800 000 MHzDate = 2/7/2011 3:18:32 PM
Input Attenuation = 0.0 dB	Reference Level = -55.600 dBm Device Name = Willoughby-Voss
RBW = 300.0 Hz	Scale = 10.0 dB/div

Reference Level = -55.600 dBm Device Name = Willoughby-Voss

Reference Level Offset = -55.6 dB-requency Span = 1.800 000 MHzDate = 2/7/2011 3:23:00 PM

Scale = 10.0 dB/div

Stop Frequency = 4.550 000 MHzApp Ver. = V1.79

Min Sweep Time = 5E-05 S

Input Attenuation = 0.0 dB

RBW = 300.0 Hz

Spectrum Analyzer		3.04 3.22 Span: 1.800 000 MHz	Delta Amp		ė. I		\$ \$		T.	Operator Name =		umber = 623020	r. = V1.78	.=V1.79
ata 35:22 PM)		2.86	Delta Freq		•	B N	Į.	i i	1	Operato	Tower =	00 Misserial N	MHzBase Ve	MHzApp Ver
Spectrum Analyzer Data kesj_nite_mid-third (2/7/2011 3:35:22 PM)		2.32 2.50 2.68	Ref Amp	-87.944000244 dBm	-88.025993347 dBm	-87.636001587 dBm	-87.823989868 dBm	-86.926063538 dBm	-87.960998535 dBm	VBW = 3.0 MHz	Detection = Sample	Center Frequency = 2.500 000 Mitterial Number = 623020	Start Frequency = 1.600 000 MHzBase Ver. = V1.78	Stop Frequency = 3.400 000 MHzApp Ver. = V1.79
Spe kesj_nite_m		1.78 1.96 2.14 Center Freq: 2.500 000 MHz	Ref Freq	2.038 5 MHz	2.231 6 MHz	2.421 5 MHz	2.611 3 MHz	2.909 1 MHz	3.098 9 MHz					
	-50.0	dBm 1.78 Center Freq:	Mkr Ref Delta		2	3	4	5	9	Trace Mode = Average	Trace Average = 100	Trace Mode = Average	Preamp = ON	Min Sweep Time = 5E-05 S

Reference Level = -55.600 dBm Device Name = Willoughby-Voss

Reference Level Offset = -55.6 dB-requency Span = 1.800 000 MHzDate = 2/7/2011 3:35:22 PM

Input Attenuation = 0.0 dB

RBW = 300.0 Hz

Scale = 10.0 dB/div

		kesj	Spectrum Analyzer Data kesj_nite_hi-third (2/7/2011 3:41:40 PM)	trum /	Spectrum Analyzer Data hite_hi-third (2/7/2011 3:41:40	er Data I 3:41:4	0 PM)	ģ	Spectrum Analyzer
					Anneher dente		(mindi midapo de la presidad presidente parada la Adistribuidad proprio de depres antique proprio de la Companyo de la companyo de la compa		
0		edigenetisenstelen							
-0.00						e de la compresención de l	1	en acomate in distribute en esperante de la presenta del presenta de la presenta de la presenta del presenta de la presenta del la presenta del la presenta de la presenta del la presenta de la presenta de la presenta de la presenta del la presenta della	
0	Anna Company Company and Anna Company and Anna Anna Anna Anna Anna Anna Anna		Company of the second	with the second	and the second s	MATERIAL PROPERTY OF THE PROPE	AND THE PROPERTY OF THE PROPER	Harriston of the State State State of the St	n en
-100 98.0 98.0	2.93	3.11	3.29	3.47	3.65	3.83	4.01	4.19	4.19 4.37
	Center Freq: 3.650 000 MHz	3.650 00	MHZ O					Span: 1.	Span: 1.800 000 MHz
The second second	1000年の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の	The Control of the Co	Control of the Contro	-0 1	and the state of t	C Michigan Paris	SHIPS - SHIPS SHIPS - BEST		STATE OF STREET AND STREET OF STREET

46/

보	Ref	Delta	Ref Fred	Ref Amp	Delta Fred	Delta Amp
-			3.290 0 MHz	-87.784004211 dBm	Ď	t.
2			3.591 1 MHz	-88.364997864 dBm	900	
3			3.780 9 MHz	-87.793006897 dBm	bes (mm	TO.
4			3.970 7 MHz	-88.09198761 dBm		
5			(m) (m)	•		
9				i i como	•	i Î

Trace Mode = Average	VBW = 3.0 MHz	Operator Name =
Trace Average = 100	Detection = Sample	Tower =
Trace Mode = Average	Center Frequency = 3.65	Center Frequency = 3.650 000 Miserial Number = 623020
Preamp = ON	Start Frequency = 2.750	Start Frequency = 2.750 000 MHzBase Ver. = V1.78
Min Sweep Time = 5E-05 S	Stop Frequency = 4.550	Stop Frequency = 4.550 000 MHzApp Ver. = V1.79
Reference Level Offset = -55.	6 dFrequency Span = 1.800	Reference Level Offset = -55.6 dFrequency Span = 1.800 000 MHzDate = 2/7/2011 3:41:40 PM
Input Attenuation = 0.0 dB	Reference Level = -55.6(Reference Level = -55.600 dBm Device Name = Willoughby-Voss
RBW = 300.0 Hz	Scale = 10.0 dB/div	