du Treil, Lundin & Rackley, Inc. Consulting Engineers

APPLICATION FOR LICENSE INFORMATION RADIO STATION WCPT WILLOW SPRINGS, ILLINOIS

April 6, 2010

820 KHZ 5 KW - D 1.5 KW - N U DA-N

APPLICATION FOR LICENSE INFORMATION RADIO STATION WCPT WILLOW SPRINGS, ILLINOIS

820 KHZ 5 KW - D 1.5 KW - N U DA-N

Table of Contents

Executive Summary

Item 1	Analysis of Tower Impedance Measurements to Verify Method of Moments Model
Item 2	Derivation of Operating Parameters for Nighttime Directional Antenna
Item 3	Method of Moments Model Details for Towers Driven Individually
Item 4	Method of Moments Model Details for Nighttime Directional Antenna
Item 5	Sampling System Measurements
Item 6	Reference Field Strength Measurements
Item 7	Direct Measurement of Power
Item 8	Antenna Monitor
Item 9	RFR Protection
Item 10	Detuning of Nearby Communications Tower
Item 11	Summary of Certified Array Geometry
Appendix A	Certified Post Construction Array Geometry

Executive Summary - WCPT

This engineering exhibit supports an application for license for the newly constructed nighttime directional antenna system of radio station WCPT in Willow Springs, Illinois. WCPT is presently licensed to operate daytime (from local sunrise at Chicago, Illinois until local sunset at Grapevine, Texas) on 820 kilohertz with 5 kilowatts and a nondirectional antenna. Construction Permit BP-20050725ACV authorizes operation nighttime (from local sunset at Grapevine, Texas until local sunrise at Chicago, Illinois) with 1.5 kilowatts and a six-tower directional antenna system at a separate transmitter site.

The towers and ground system have been constructed in accordance with the terms of the construction permit and specifications that were provided in the application for construction permit. The directional antenna phasing and coupling equipment has been adjusted to produce the nighttime directional antenna pattern authorized by the construction permit.

Tower 6 supports an STL receiving antenna at approximately 280 feet above ground level. A coaxial transmission line that is bonded to tower potential connects the antenna to an isocoupler at the base of the tower, through which the signal is carried on to receiving equipment.

Information is provided herein demonstrating that the directional antenna parameters have been determined in accordance with the requirements of section 73.151(c) of the FCC Rules. The antenna system has been adjusted to produce antenna monitor parameters within +/- 5 percent in ratio and +/- 3 degrees in phase of the modeled values, as required by the Rules.

Information regarding direct measurement of power, radiofrequency radiation protection measures at the site and the detuning of a nearby communications tower is also included herein.

Program test authority for the nighttime directional antenna is hereby requested.

Vonald Darbly

Ronald D. Rackley, P.E. April 6, 2010

Analysis of Tower Impedance Measurements to Verify Method of Moments Model - WCPT

Tower base impedance measurements were made at the final J-plugs within the antenna tuning units ("ATUs") using a Hewlett-Packard 8751A network analyzer and a Tunwall Radio directional coupler in a calibrated measurement system. The other towers were all open circuited at the same points where impedance measurements were made for them (the "reference points") for each of the measurements.

The reference point at each tower is adjacent to the sampling transformer of the antenna monitor system at the output of the ATU enclosure. The current passes directly from that point over conductors through the enclosure insulator and on to the tower above the base insulator. There are no adjustable shunt components following the sampling transformers. An assumed value for the sum of the base insulator and base region stray capacitances and the measured reactance of the two parallel tower lighting chokes (one 3-wire choke and one 4-wire choke) across the ATU output were employed in the base circuit calculations for each tower. In addition, a capacitance representing the STL isocoupler across the base of tower 6 was included in the analysis. Circuit calculations were performed to relate the method of moments modeled impedances of the tower feedpoints to the ATU output measurement (reference) points as shown on the following pages. The Xoc shown for each tower, which was calculated for the assumed base conditions, was used in the method of moments model as a load at ground level for the open circuited case.

In addition to the page showing the schematic of the assumed circuit and tabulation of calculated values, pages showing the results of calculations using the WCAP network analysis program from Westberg Consulting are provided. WCAP performs such calculations using nodal analysis, as do other modern circuit analysis programs such as the commonly available ones based on SPICE software.

In each of the WCAP tabulations, node 2 represents the ATU output reference point and node 3 represents the tower feedpoint. Node 0 represents ground potential. The numerals in the file names shown on the tabulations correspond to the tower numbers. It should be noted that the calculated reference point impedances appear under the "TO NODE IMPEDANCE" columns of the WCAP tabulations, following the phantom 1.0 ohm resistors (R 1 - 2) that were included in series with the drive current sources (I 0 -1)) to provide calculation points for the impedances. The tower base impedances from the method of moments model are represented by complex loads from node 3 to ground (R 3 - 0). The shunt capacitive reactances shown for the towers on the schematic were used for the calculations, although they only appear to the nearest 0.0001 microfarad on the WCAP printout due to rounding.

The modeled and measured base impedances at the ATU output jacks with the other towers open circuited at their filter unit output jacks agree within +/- 2 ohms and +/- 4 percent for resistance and reactance, as required by the FCC Rules.

ANALYSIS OF TOWER IMPEDANCE MEASUREMENTS TO VERIFY METHOD OF MOMENTS MODEL

RADIO STATION WCPT WILLOW SPRINGS, ILLINOIS 820 KHZ 5 KW-D 1.5 KW-N U DA-N

du Treil, Lundin & Rackley, Inc. Sarasota, Florida

Tower 1 Individually Driven Base Circuit Analysis

WESTBERG CIRCUIT ANALYSIS PROGRAM

FILE NAME = wcptloc.txt

I	1.0000	0	1	.0000	.0000	.0000
R	1.0000	1	2	.0000	.0000	.0000
L	276.5720	2	0	.0000	.0000	.0000
L	1.7080	2	3	.0000	.0000	.0000
С	.0001	3	0	.0000	.0000	.0000
R	51.3680	3	0	53.2440	.0000	.0000
ΕX	.0000	0	0	.0000	.0000	.0000

FREQ = .820

NO	DE		VOLT MAG	VOLT PH	ASE						
1			79.4015	50.51	22						
2			78.7693	51.07	35						
3			72.6206	46.70	69						
				BRANCH	VOLTAGE	BRANCH	CURRENT	FROM NODE	IMPEDANCE	TO NODE	IMPEDANCE
				MAG	PHASE	MAG	PHASE	RESISTANCE	REACTANCE	RESISTAN	ICE
REACT	ANCE										
R	1-	2	1.000	1.00	.000	1.00	.000	50.49	61.28	49.49	61.28
L	2-	0	276.572	78.77	51.074	.06	-38.926	.00	1424.96	.00	.00
L	2-	3	1.708	8.43	92.079	.96	2.079	53.97	62.07	53.97	53.27
С	3-	0	.000	72.62	46.707	.03	136.707	.00	-2156.57	.00	.00
R	3-	0	51.368	72.62	46.707	.98	.680	51.37	53.24	.00	.00

Tower 2 Individually Driven Base Circuit Analysis

WESTBERG CIRCUIT ANALYSIS PROGRAM

FILE NAME = WCPT2OC.txt											
I	1.0000	0	1	.0000	.0000	.0000					
R	1.0000	1	2	.0000	.0000	.0000					
L	276.5720	2	0	.0000	.0000	.0000					
L	2.6590	2	3	.0000	.0000	.0000					
С	.0001	3	0	.0000	.0000	.0000					
R	47.9090	3	0	45.4500	.0000	.0000					
ΕX	.0000	0	0	.0000	.0000	.0000					

FREQ = .820

NO 1 2 3	DE		VOLT MAG 74.8209 74.1965 64 7242	VOLT PH 51.06 51.66 44 11	ASE 32 39 98						
5			01.7212	BRANCH	VOLTAGE PHASE	BRANCH MAG	CURRENT PHASE	FROM NODE RESISTANCE	IMPEDANCE REACTANCE	TO NODE RESISTAN	IMPEDANCE ICE
REACT	ANCE										
R	1-	2	1.000	1.00	.000	1.00	.000	47.02	58.20	46.02	58.20
L	2-	0	276.572	74.20	51.664	.05	-38.336	.00	1424.96	.00	.00
L	2-	3	2.659	13.15	91.929	.96	1.929	49.97	58.99	49.97	45.29
С	3-	0	.000	64.72	44.120	.03	134.120	.00	-2156.57	.00	.00
R	3-	0	47.909	64.72	44.120	.98	.629	47.91	45.45	.00	.00

Tower 3 Individually Driven Base Circuit Analysis

WESTBERG CIRCUIT ANALYSIS PROGRAM

FILE NAME = wcpt3oc.txt

I	1.0000	0	1	.0000	.0000	.0000
R	1.0000	1	2	.0000	.0000	.0000
L	276.5720	2	0	.0000	.0000	.0000
L	3.0080	2	3	.0000	.0000	.0000
С	.0001	3	0	.0000	.0000	.0000
R	50.8220	3	0	46.5610	.0000	.0000
ΕX	.0000	0	0	.0000	.0000	.0000

FREQ = .820

NO	DE		VOLT MAG	VOLT PH	ASE						
1			78.6503	50.83	03						
2			78.0226	51.39	97						
3			67.4559	43.15	87						
				BRANCH	VOLTAGE	BRANCH	CURRENT	FROM NODE	IMPEDANCE	TO NODE	IMPEDANCE
				MAG	PHASE	MAG	PHASE	RESISTANCE	REACTANCE	RESISTAN	ICE
REACT	ANCE										
R	1-	2	1.000	1.00	.000	1.00	.000	49.68	60.98	48.68	60.98
L	2-	0	276.572	78.02	51.400	.05	-38.600	.00	1424.96	.00	.00
L	2-	3	3.008	14.84	92.044	.96	2.044	53.06	61.81	53.06	46.31
С	3-	0	.000	67.46	43.159	.03	133.159	.00	-2156.57	.00	.00
R	3-	0	50.822	67.46	43.159	.98	.664	50.82	46.56	.00	.00

Tower 4 Individually Driven Base Circuit Analysis

WESTBERG CIRCUIT ANALYSIS PROGRAM

FILE NAME = wcpt4oc.txt

I	1.0000	0	1	.0000	.0000	.0000
R	1.0000	1	2	.0000	.0000	.0000
L	276.5720	2	0	.0000	.0000	.0000
L	2.1930	2	3	.0000	.0000	.0000
С	.0001	3	0	.0000	.0000	.0000
R	51.4390	3	0	52.7270	.0000	.0000
ΕX	.0000	0	0	.0000	.0000	.0000

FREQ = .820

NO	DE		VOLT MAG	VOLT PH	ASE						
1			80.7349	51.36	56						
2			80.1144	51.92	43						
3			72.1923	46.38	55						
				BRANCH	VOLTAGE	BRANCH	CURRENT	FROM NODE	IMPEDANCE	TO NODE	IMPEDANCE
				MAG	PHASE	MAG	PHASE	RESISTANCE	REACTANCE	RESISTAN	ICE
REACT	ANCE										
R	1-	2	1.000	1.00	.000	1.00	.000	50.41	63.07	49.41	63.07
L	2-	0	276.572	80.11	51.924	.06	-38.076	.00	1424.96	.00	.00
L	2-	3	2.193	10.81	92.078	.96	2.078	54.02	64.03	54.02	52.73
С	3-	0	.000	72.19	46.385	.03	136.385	.00	-2156.57	.00	.00
R	3-	0	51.439	72.19	46.385	.98	.677	51.44	52.73	.00	.00

Tower 5 Individually Driven Base Circuit Analysis

WESTBERG CIRCUIT ANALYSIS PROGRAM

FILE NAME = wcpt5oc.txt

I	1.0000	0	1	.0000	.0000	.0000
R	1.0000	1	2	.0000	.0000	.0000
L	276.5720	2	0	.0000	.0000	.0000
L	3.3770	2	3	.0000	.0000	.0000
С	.0001	3	0	.0000	.0000	.0000
R	46.6630	3	0	43.4030	.0000	.0000
ΕX	.0000	0	0	.0000	.0000	.0000

FREQ = .820

NO	ODE		VOLT MAG	VOLT PH	ASE						
-	1		75.0761	52.55	66						
2	2		74.4723	53.16	74						
3	3		62.3345	43.53	49						
				BRANCH	VOLTAGE	BRANCH	CURRENT	FROM NODE	IMPEDANCE	TO NODE	IMPEDANCE
				MAG	PHASE	MAG	PHASE	RESISTANCE	REACTANCE	RESISTAN	ICE
REAC	TANCE										
R	1-	2	1.000	1.00	.000	1.00	.000	45.64	59.61	44.64	59.61
L	2-	0	276.572	74.47	53.167	.05	-36.833	.00	1424.96	.00	.00
L	2-	3	3.377	16.68	91.873	.96	1.873	48.58	60.62	48.58	43.22
С	3-	0	.000	62.33	43.535	.03	133.535	.00	-2156.57	.00	.00
R	3-	0	46.663	62.33	43.535	.98	.608	46.66	43.40	.00	.00

Tower 6 Individually Driven Base Circuit Analysis

WESTBERG CIRCUIT ANALYSIS PROGRAM

FIL	FILE NAME = wcpt6oc.txt											
Ι	1.0000	0	1	.0000	.0000	.0000						
R	1.0000	1	2	.0000	.0000	.0000						
L	276.5720	2	0	.0000	.0000	.0000						
L	5.5120	2	3	.0000	.0000	.0000						
С	.0001	3	0	.0000	.0000	.0000						
R	48.8130	3	0	41.0290	.0000	.0000						
ΕX	.0000	0	0	.0000	.0000	.0000						

FREQ = .820

NC	DDE		VOLT MAG	VOLT PH	ASE						
1	1		82.5333	54.64	71						
2	2		81.9588	55.21	73						
3	3		62.4070	40.17	11						
				BRANCH	VOLTAGE	BRANCH	CURRENT	FROM NODE	IMPEDANCE	TO NODE	IMPEDANCE
				MAG	PHASE	MAG	PHASE	RESISTANCE	E REACTANCE	RESISTAN	ICE
REACT	FANCE										
R	1-	2	1.000	1.00	.000	1.00	.000	47.75	67.31	46.75	67.31
L	2-	0	276.572	81.96	55.217	.06	-34.783	.00	1424.96	.00	.00
L	2-	3	5.512	27.07	91.972	.95	1.972	51.44	68.88	51.44	40.48
С	3-	0	.000	62.41	40.171	.04	130.171	.00	-1552.73	.00	.00
R	3-	0	48.813	62.41	40.171	.98	.123	48.81	41.03	.00	.00

Derivation of Operating Parameters for Directional Antenna - WCPT

The method of moments model of the array, following verification with the measured individual open circuited base impedances, was utilized for directional antenna calculations. Calculations were made to determine the complex voltage values for sources located at ground level under each tower of the array to produce current moment sums for the towers that, when normalized, equated to the theoretical field parameters of the authorized directional antenna pattern. With these voltage sources, the tower currents were calculated. The currents at the ATU unit outputs, where the antenna monitor samples are taken, were calculated from the method of moments tower currents for directional antenna operation using WCAP circuit modeling with the assumptions that were derived from the single tower measurements on the array and the method of moments calculated tower operating impedances. In each of the following WCAP tabulations, node 2 represents the reference point and node 3 represents the tower feedpoint. Node 0 represents ground potential. The tower operating impedances are represented by complex loads from node 3 to ground (R 3 -0). It should be noted that the calculated reference point current magnitudes and phases appear in the first and fourth columns following the drive current sources (I 0 -1)). As the current transformers and sampling lines are identical, the antenna monitor ratios and phases corresponding to the theoretical parameters were calculated directly from the modeled reference point currents.

TOWER	Modeled Current Pulse	Modeled Current Magnitude @ Toroid (amperes)	Modeled Current Phase @ Toroid (degrees)	Modeled Antenna Monitor Ratio	Modeled Antenna Monitor Phase (degrees)
1	1	1.801	+101.2	0.397	+100.5
2	21	4.534	+0.7	1.000	0.0
3	41	2.418	-118.5	0.533	-119.2
4	61	1.544	-129.6	0.341	-130.3
5	81	3.446	-30.0	0.760	-30.7
6	101	1.806	+78.1	0.398	+77.4

Tower 1 DA Base Circuit Analysis

WESTBERG CIRCUIT ANALYSIS PROGRAM

FILE NAME = wcptlda.txt

I	18.0080	0	1	101.1600	.0000	.0000
R	1.0000	1	2	.0000	.0000	.0000
L	276.5720	2	0	.0000	.0000	.0000
L	1.7080	2	3	.0000	.0000	.0000
С	.0001	3	0	.0000	.0000	.0000
R	10.4120	3	0	29.1240	.0000	.0000
ΕX	.0000	0	0	.0000	.0000	.0000

FREQ = .820

NC	DE		VOLT MAG	VOLT P	HASE						
1			701.7974	174.5	412						
2	2		696.8608	175.9	602						
З	5		549.8102	171.6	262						
				BRANC	H VOLTAGE	BRANCH	CURRENT	FROM NODE	IMPEDANCE	TO NODE	IMPEDANCE
				MAG	PHASE	MAG	PHASE	RESISTANCE	REACTANCE	RESISTAN	ICE
REACI	ANCE										
R	1-	2	1.000	18.01	101.160	18.01	101.160	11.15	37.34	10.15	37.34
L	2-	0	276.572	696.86	175.960	.49	85.960	.00	1424.96	.00	.00
L	2-	3	1.708	154.32	-168.421	17.54	101.579	10.70	38.27	10.70	29.47
С	3-	0	.000	549.81	171.626	.25	-98.374	.00	-2156.57	.00	.00
R	3-	0	10.412	549.81	171.626	17.78	101.299	10.41	29.12	.00	.00

Tower 2 DA Base Circuit Analysis

WESTBERG CIRCUIT ANALYSIS PROGRAM

FILE NAME = wcpt2da.txt

I	45.3440	0	1	.7300	.0000	.0000
R	1.0000	1	2	.0000	.0000	.0000
L	276.5720	2	0	.0000	.0000	.0000
L	2.6590	2	3	.0000	.0000	.0000
С	.0001	3	0	.0000	.0000	.0000
R	35.6390	3	0	40.5120	.0000	.0000
ΕX	.0000	0	0	.0000	.0000	.0000

FREQ = .820

NC	DDE		VOLT MAG	VOLT PH	IASE						
1	1	2	896.3410	57.16	55						
2	2	2	871.5200	57.91	.95						
3	3	2	400.7430	49.85	95						
				BRANCH	I VOLTAGE	BRANCH	CURRENT	FROM NODE	IMPEDANCE	TO NODE	IMPEDANCE
				MAG	PHASE	MAG	PHASE	RESISTANCE	REACTANCE	RESISTAN	ICE
REACT	TANCE										
R	1-	2	1.000	45.34	.730	45.34	.730	35.31	53.22	34.31	53.22
L	2-	0	276.572	2871.52	57.919	2.02	-32.081	.00	1424.96	.00	.00
L	2-	3	2.659	598.18	92.163	43.66	2.163	37.01	54.36	37.01	40.66
С	3-	0	.000	2400.74	49.860	1.11	139.860	.00	-2156.57	.00	.00
R	3-	0	35.639	2400.74	49.860	44.49	1.198	35.64	40.51	.00	.00

Currents are multiplied X 10 for improved resolution.

Tower 3 DA Base Circuit Analysis

WESTBERG CIRCUIT ANALYSIS PROGRAM

FILE NAME = wcpt3da.txt

I	24.1830	0	1	241.5260	.0000	.0000
R	1.0000	1	2	.0000	.0000	.0000
L	276.5720	2	0	.0000	.0000	.0000
L	3.0080	2	3	.0000	.0000	.0000
С	.0001	3	0	.0000	.0000	.0000
R	60.3730	3	0	130.6200	.0000	.0000
ΕX	.0000	0	0	.0000	.0000	.0000

FREQ = .820

N	ODE		VOLT MAG	VOLT P	HASE						
	1	3	656.2850	-50.4	861						
	2	3	647.2900	-50.1	339						
	3	3	341.5010	-52.5	065						
				BRANC	H VOLTAGE	BRAN	CH CURRENT	FROM NODE	IMPEDANCE	TO NODE	IMPEDANCE
				MAG	PHASE	MAG	PHASE	RESISTANC	E REACTANCE	RESISTAN	ICE
REAC	TANCE										
R	1-	2	1.000	24.18	-118.474	24.18	-118.474	56.67	140.17	55.67	140.17
L	2-	0	276.572	3647.29	-50.134	2.56	-140.134	.00	1424.96	.00	.00
L	2-	3	3.008	338.23	-25.993	21.82	-115.993	68.35	152.50	68.35	137.00
С	3-	0	.000	3341.50	-52.506	1.55	37.494	.00	-2156.57	.00	.00
R	3-	0	60.373	3341.50	-52.506	23.22	-117.700	60.37	130.62	.00	.00

Tower 4 DA Base Circuit Analysis

WESTBERG CIRCUIT ANALYSIS PROGRAM

FILE NAME = wcpt4da.txt

I	15.4380	0	1	230.4180	.0000	.0000
R	1.0000	1	2	.0000	.0000	.0000
L	276.5720	2	0	.0000	.0000	.0000
L	2.1930	2	3	.0000	.0000	.0000
С	.0001	3	0	.0000	.0000	.0000
R	105.2300	3	0	61.4690	.0000	.0000
ΕX	.0000	0	0	.0000	.0000	.0000

FREQ = .820

N	ODE	V	OLT MAG	VOLT P	HASE						
	1	193	4.3010	-93.7	829						
	2	192	1.8010	-93.5	137						
	3	183	9.7540	-97.9	090						
				BRANC	H VOLTAGE	BRAN	CH CURRENT	FROM NODE	IMPEDANCE	TO NODE	IMPEDANCE
				MAG	PHASE	MAG	PHASE	RESISTANCE	REACTANCE	RESISTAN	ICE
REAC	TANCE										
R	1-	2	1.000	15.44	-129.582	15.44	-129.582	101.62	73.29	100.62	73.29
L	2-	0	276.572	1921.80	-93.514	1.35	176.486	.00	1424.96	.00	.00
L	2-	3	2.193	165.92	-35.325	14.68	-125.325	111.21	68.99	111.21	57.69
С	3-	0	.000	1839.75	-97.909	.85	-7.909	.00	-2156.57	.00	.00
R	3-	0	105.230	1839.75	-97.909	15.10	-128.200	105.23	61.47	.00	.00

Currents are multiplied X 10 for improved resolution.

Tower 5 DA Base Circuit Analysis

WESTBERG CIRCUIT ANALYSIS PROGRAM

FILE NAME = wcpt5da.txt

I	34.4610	0	1	330.0000	.0000	.0000
R	1.0000	1	2	.0000	.0000	.0000
L	276.5720	2	0	.0000	.0000	.0000
L	3.3770	2	3	.0000	.0000	.0000
С	.0001	3	0	.0000	.0000	.0000
R	22.8530	3	0	27.9810	.0000	.0000
ΕX	.0000	0	0	.0000	.0000	.0000

FREQ = .820

NO	DE		VOLT MAG	VOLT PH	IASE						
1		1	724.7110	32.61	151						
2	2	1	709.1350	33.64	109						
3	5	1	222.1030	21.05	591						
				BRANCH	H VOLTAGE	BRANCH	CURRENT	FROM NODE	IMPEDANCE	TO NODE	IMPEDANCE
				MAG	PHASE	MAG	PHASE	RESISTANCE	REACTANCE	RESISTAN	ICE
REACT	ANCE	R									
R	1-	2	1.000	34.46	-30.000	34.46	-30.000	23.02	44.44	22.02	44.44
L	2-	0	276.572	1709.13	33.641	1.20	-56.359	.00	1424.96	.00	.00
L	2-	3	3.377	580.96	60.914	33.39	-29.086	23.46	45.50	23.46	28.10
С	3-	0	.000	1222.10	21.059	.57	111.059	.00	-2156.57	.00	.00
R	3-	0	22.853	1222.10	21.059	33.83	-29.701	22.85	27.98	.00	.00

Tower 6 DA Base Circuit Analysis

WESTBERG CIRCUIT ANALYSIS PROGRAM

FILE NAME = wcpt6da.txt

I	18.0620	0	1	78.0500	.0000	.0000
R	1.0000	1	2	.0000	.0000	.0000
L	276.5720	2	0	.0000	.0000	.0000
L	5.5120	2	3	.0000	.0000	.0000
С	.0001	3	0	.0000	.0000	.0000
R	-20.9270	3	0	26.8070	.0000	.0000
ΕX	.0000	0	0	.0000	.0000	.0000

FREQ = .820

NOI	DE	7	VOLT MAG	VOLT P	HASE						
1		102	27.6000	-172.3	661						
2		103	33.7940	-171.4	229						
3		60	01.5423	-154.0	252						
				BRANC	H VOLTAGE	BRANCH	CURRENT	FROM NODE	IMPEDANCE	TO NODE	IMPEDANCE
				MAG	PHASE	MAG	PHASE	RESISTANCE	REACTANCE	RESISTAN	ICE
REACT	ANCE										
R	1-	2	1.000	18.06	78.050	18.06	78.050	-19.07	53.60	-20.07	53.60
L	2-	0	276.572	1033.79	-171.423	.73	98.577	.00	1424.96	.00	.00
L	2-	3	5.512	493.70	167.212	17.38	77.212	-21.66	55.38	-21.66	26.98
С	3-	0	.000	601.54	-154.025	.39 -	-64.025	.00	-1552.73	.00	.00
R	3-	0	-20.927	601.54	-154.025	17.69	77.997	-20.93	26.81	.00	.00

Currents are multiplied X 10 for improved resolution.

Method of Moments Model Details for Towers Driven Individually - WCPT

The array of towers was modeled using Expert MININEC Broadcast Professional Version 14.5. One wire was used to represent each tower. The tower geometry was specified using the geographic coordinate system. Each tower was modeled using 20 wire segments. As the towers are physically 87.0 degrees in electrical height, the segment length is 4.35 electrical degrees.

The individual tower characteristics were adjusted to provide a match of their modeled impedances, when presented to a circuit model which included branches representing the shunt capacitances and feedline hookup inductances with the base impedances that were measured at the output jacks of the filter units while the other towers of the array were open circuited. The method of moments model assumed loads at ground level having the reactances that were calculated for them using the base circuit models for the open circuited towers of the array.

Each tower's modeled height relative to its physical height falls within the required range of 75 to 125 percent and each modeled radius falls within the required range of 80 percent to 150 percent of the radius of a circle having a circumference equal to the sum of the widths of the tower sides. The array consists of identical, triangular uniform cross section towers having a face width of 24 inches.

TOWER	Physical Height (degrees)	Modeled Height (degrees)	Modeled Percent of Height	Modeled Radius (meters)	Percent Equivalent Radius
1	87.0	95.6	109.9	0.291	100
2	87.0	94.6	108.7	0.291	100
3	87.0	94.6	108.7	0.291	100
4	87.0	95.6	109.9	0.291	100
5	87.0	94.1	108.2	0.291	100
6	87.0	93.5	107.5	0.291	100

The following pages show the details of the method of moments models for the individually driven towers. The numerals in the file names shown on the tabulations correspond to the tower numbers.

Tower 1 Driven Individually

C:\MBPR014.5\WCPT1OC 04-01-2010 07:35:57 IMPEDANCE normalization = 50. freq resist react imped phase VSWR S11 S12 (MHz) (ohms) (ohms) (ohms) (deg) dB dB source = 1; node 1, sector 1 .82 51.368 53.244 73.984 46. 2.7395 -6.6479 -1.0589 GEOMETRY Wire coordinates in degrees; other dimensions in meters Environment: perfect ground

 wire
 caps
 Distance
 Angle
 Z

 1
 none
 0
 0
 0

 2
 none
 93.2
 36.9
 0

 3
 none
 164.6
 37.2
 0

 164.6
 37.2
 94.6

 4
 none
 327.4
 70.
 0

 327.4
 70.
 95.6
 0
 95.6

 5
 none
 251.6
 81.
 0

 251.6
 81.
 94.1
 0

 6
 none
 198.
 98.5
 93.5

 radius seqs .291 20 .291 20 .291 20 .291 20 .291 20 .291 20 Number of wires = 6 current nodes = 120 minimum maximum Individual wireswirevaluewirevaluesegment length64.67514.78radius1.2911.291 ELECTRICAL DESCRIPTION Frequencies (MHz) no. of segment length (wavelengths) steps minimum maximum frequency no. lowest step 1 .82 0 .0129861 .0132778 1.82 1 Sources source node sector magnitude phase type 0 1 1 1 1. voltage Lumped loads Inductanceresistancereactanceinductancecapacitancepassiveloadnode(ohms)(ohms)(mH)(uF)circuit12104,320.00024104,337.00036104,299.00048104,354.0005101022,662.000 load node 1 21 2 41 3 61

Tower 2 Driven Individually

C:\MBPR014.5\WCPT2OC 04-01-2010 07:41:49 IMPEDANCE normalization = 50. freq resist react imped phase VSWR S11 S12 (MHz) (ohms) (ohms) (ohms) (deg) dB dB source = 1; node 21, sector 1 .82 47.909 45.45 66.037 43.5 2.4572 -7.504 -.8495 GEOMETRY Wire coordinates in degrees; other dimensions in meters Environment: perfect ground

 wire
 caps
 Distance
 Angle
 Z

 1
 none
 0
 0
 0

 2
 none
 93.2
 36.9
 0

 3
 none
 164.6
 37.2
 0

 164.6
 37.2
 94.6

 4
 none
 327.4
 70.
 0

 327.4
 70.
 95.6
 0
 95.6

 5
 none
 251.6
 81.
 0

 251.6
 81.
 94.1
 0

 6
 none
 198.
 98.5
 93.5

 radius seqs .291 20 .291 20 .291 20 .291 20 .291 20 .291 20 Number of wires = 6 current nodes = 120 minimum maximum Individual wireswirevaluewirevaluesegment length64.67514.78radius1.2911.291 ELECTRICAL DESCRIPTION Frequencies (MHz) no. of segment length (wavelengths) steps minimum maximum frequency no. lowest step 1 .82 0 .0129861 .0132778 1.82 1 Sources source node sector magnitude phase type 0 1 21 1 1. voltage Lumped loads numped foadsresistancereactanceinductancecapacitancepassiveload node(ohms)(ohms)(mH)(uF)circuit1104,276.00024104,337.00036104,299.00048104,354.0005101022,662.000 load node 1 1 1 1

Tower 3 Driven Individually

C:\MBPR014.5\WCPT3OC 04-01-2010 07:45:10 IMPEDANCE normalization = 50. freq resist react imped phase VSWR S11 S12 (MHz) (ohms) (ohms) (ohms) (deg) dB dB source = 1; node 41, sector 1 .82 50.822 46.561 68.926 42.5 2.4443 -7.5489 -.83988 GEOMETRY Wire coordinates in degrees; other dimensions in meters Environment: perfect ground

 wire
 caps
 Distance
 Angle
 Z

 1
 none
 0
 0
 0

 2
 none
 93.2
 36.9
 0

 3
 none
 164.6
 37.2
 0

 164.6
 37.2
 94.6

 4
 none
 327.4
 70.
 0

 327.4
 70.
 95.6
 0
 95.6

 5
 none
 251.6
 81.
 0

 251.6
 81.
 94.1
 0

 6
 none
 198.
 98.5
 93.5

 radius seqs .291 20 .291 20 .291 20 .291 20 .291 20 .291 20 Number of wires = 6 current nodes = 120 minimum maximum Individual wireswirevaluewirevaluesegment length64.67514.78radius1.2911.291 ELECTRICAL DESCRIPTION Frequencies (MHz) no. of segment length (wavelengths) steps minimum maximum frequency no.lowest step 1 82 0 .0129861 .0132778 1.82 1 Sources source node sector magnitude phase type 0 1 41 1 1. voltage Lumped loads Inductanceresistancereactanceinductancecapacitancepassiveloadnode(ohms)(ohms)(mH)(uF)circuit1104,276.00022104,320.00036104,299.00048104,354.0005101022,662.000 load node 1 1 01

Tower 4 Driven Individually

C:\MB	PRO14.	5\WCPT40C	04-0	1-2010	07:48	:09					
IMPED. no:	ANCE rmaliz	ation = 5	Э.								
freq (MHz)	re (0 0 - 1	sist rea hms) (ol	act nms)	imped (ohms)	phas (deg	e VS	WR	S11 dB	S12 dB		
.82	51	.439 52	.727	73.662	45.7	2.	7132	-6.7188	-1.	0395	
GEOME Wire Envir	TRY coordi onment	nates in o : perfect	degree groun	s; other d	dimen	sions i	n met	ers			
wire	caps	Distance	An	qle	Z		ra	dius	seq	s	
1	none	0	0	-	0	_	.2	91	20		
2	none	0 93 2	0 36	9	95.	6	2	91	20		
2	none	93.2	36	.9	94.	6	• 2	<i>J</i> 1	20		
3	none	164.6	37	.2	0	<i>c</i>	.2	91	20		
4	none	164.6 327.4	37 70	• 2	94. 0	6	.2	91	2.0		
-		327.4	70		95.	6	• =		20		
5	none	251.6	81	•	0	1	.2	91	20		
6	none	198.	81 98	.5	94. 0	T	.2	91	20		
		198.	98	.5	93.	5					
Numbe	r of w c	ires urrent noo	= des =	6 120							
T eo el d'ara	1		mi	nimum	-		ma	ximum			
seame:	nt len	wires ath	wire 6	vaiu 4.67	e 5		wire 1	4.78			
radiu	s		1	.291			1	.291			
ELECT	RICAL	DESCRIPTIO	ON								
Frequ	encıes freque	(MHZ) ncv		no.	of s	egment	lengt	h (wavele	nath	s)	
no.	lowest	ste	∋p	ste	ps m	inimum	-) -	maximum	L L	- /	
1	.82	0		1	•	0129861		.013277	8		
Sourc	es										
sourc	e node	sector	r mag	nitude	ph	ase		type			
1	61	1	1.		0			voltage			
Lumpe	d load	.S									
امما		resistan	nce	reactan	ce	induct	ance	capacita	nce	passiv	e +
⊥uaα 1	noae 1	(onms)		(ONMS) 4 276		(mH) 0		(ur) 0		orcui	L
2	<u>+</u> 21	0		4,320.		0		0		0	
3	41	0		4,337.		0		0		Ō	
4	81	0		4,354.		0		0		0	
5	101	0		22,662.		0		0		0	

Tower 5 Driven Individually

C:\MBPR014.5\WCPT5OC 04-01-2010 07:50:22 IMPEDANCE normalization = 50. freq resist react imped phase VSWR S11 S12 (MHz) (ohms) (ohms) (ohms) (deg) dB dB source = 1; node 81, sector 1 .82 46.663 43.403 63.727 42.9 2.3946 -7.7269 -.80282 GEOMETRY Wire coordinates in degrees; other dimensions in meters Environment: perfect ground

 wire
 caps
 Distance
 Angle
 Z

 1
 none
 0
 0
 0

 2
 none
 93.2
 36.9
 0

 3
 none
 164.6
 37.2
 0

 164.6
 37.2
 94.6

 4
 none
 327.4
 70.
 0

 327.4
 70.
 95.6
 0
 95.6

 5
 none
 251.6
 81.
 0

 251.6
 81.
 94.1
 0

 6
 none
 198.
 98.5
 93.5

 radius seqs .291 20 .291 20 .291 20 .291 20 .291 20 .291 20 Number of wires = 6 current nodes = 120 minimum maximum Individual wireswirevaluewirevaluesegment length64.67514.78radius1.2911.291 ELECTRICAL DESCRIPTION Frequencies (MHz) no. of segment length (wavelengths) steps minimum maximum frequency no.lowest step 1 .82 0 .0129861 .0132778 1.82 1 Sources source node sector magnitude phase type 0 1 81 1 1. voltage Lumped loads Inductanceresistancereactanceinductancecapacitancepassiveloadnode(ohms)(ohms)(mH)(uF)circuit1104,276.00022104,320.00034104,337.00046104,299.0005101022,662.000 load node 1 1 21

Tower 6 Driven Individually

C:\MBPR014.5\WCPT6OC 04-01-2010 07:52:36 IMPEDANCE normalization = 50. freq resist react imped phase VSWR S11 S12 (MHz) (ohms) (ohms) (ohms) (deg) dB dB source = 1; node 101, sector 1 .82 48.813 41.029 63.766 40. 2.2448 -8.3217 -.69139 GEOMETRY Wire coordinates in degrees; other dimensions in meters Environment: perfect ground

 wire
 caps
 Distance
 Angle
 Z

 1
 none
 0
 0
 0

 2
 none
 93.2
 36.9
 0

 3
 none
 164.6
 37.2
 0

 164.6
 37.2
 94.6

 4
 none
 327.4
 70.
 0

 327.4
 70.
 95.6
 0
 95.6

 5
 none
 251.6
 81.
 0

 251.6
 81.
 94.1
 0

 6
 none
 198.
 98.5
 93.5

 radius seqs .291 20 .291 20 .291 20 .291 20 .291 20 .291 20 Number of wires = 6 current nodes = 120 minimum maximum Individual wireswirevaluewirevaluesegment length64.67514.78radius1.2911.291 ELECTRICAL DESCRIPTION Frequencies (MHz) no. of segment length (wavelengths) steps minimum maximum frequency no.lowest step 1 82 0 .0129861 .0132778 1.82 1 Sources source node sector magnitude phase type 0 1 101 1 1. voltage Lumped loads

 resistance
 reactance
 inductance
 capacitance
 passive

 node
 (ohms)
 (ohms)
 (mH)
 (uF)
 circuit

 1
 0
 4,276.
 0
 0
 0

 21
 0
 4,320.
 0
 0
 0

 41
 0
 4,337.
 0
 0
 0

 61
 0
 4,354.
 0
 0
 0

 load node 1 1 01 2 3 4 5

Method of Moments Model Details for Directional Antenna- WCPT

The array of towers was modeled using Expert MININEC Broadcast Professional Version 14.5 with the individual towers characteristics that were verified by the individual tower impedance measurements. Calculations were made to determine the complex voltage values for sources located at ground level under each tower of the array to produce current moment sums for the towers that, when normalized, equated to the theoretical field parameters of the authorized directional antenna pattern. The following pages contain details of the method of moments model of the directional antenna pattern.

Tower	Wire	Base Node	
1	1	1	
2	2	21	
3	3	41	
4	4	61	
5	5	81	
6	6	101	

It should be noted that voltages and currents shown on the tabulations that are not specified as "rms" values are the corresponding peak values.

C:\MBPR014.5\WCPTDA 04-01-2010 07:56:55 MEDIUM WAVE ARRAY SYNTHESIS FROM FIELD RATIOS Frequency = .82 MHz field ratio tower magnitude phase (deg) 1 .418 100. -2.5 2 1.06 -122.9 3 .644 -138.6 .382 4 .783 -32.1 5 6 .406 80. VOLTAGES AND CURRENTS - rms source voltage current node magnitude phase (deg) magnitude phase (deg) 1 54.9857 171.7 1.77778 101.3 49.9 21 240.079 4.44942 1.2 2.32237 307.5 41 334.182 242.3 61 183.992 81 122.224 1.50978 262.1 231.8 21. 206. 3.38312 330.3 81 122.224 101 60.1691 1.76925 78. Sum of square of source currents = 90.4127 Total power = 1,500. watts IMPEDANCE normalization = 50. freq resist react imped phase VSWR S11 S12 (ohms) (ohms) (ohms) (deg) (MHz) dB source = 1; node 1, sector 1 .82 10.412 29.124 30.929 70.3 6.4853 -2.7002 -3.3443 source = 2; node 21, sector 1 .82 35.639 40.512 53.957 48.7 2.661 -6.8647 -1.0009 source = 3; node 41, sector 1 .82 60.373 130.62 143.9 65.2 7.5554 -2.3128 -3.8416 source = 4; node 61, sector 1

105.23 61.469 121.87 30.3

.82 22.853 27.981 36.128 50.8 2.9965 -6.0283 -1.2468

128.

source = 5; node 81, sector 1

source = 6; node 101, sector 1 .82 -20.927 26.807 34.008

.82

dB

2.96 -6.1087 -1.2204

**** ****

GEOMETRY Wire coordinates in degrees; other dimensions in meters Environment: perfect ground

wire	caps	Distance	Angle	Z	radius	segs
1	none	0	0	0	.291	20
		0	0	95.6		
2	none	93.2	36.9	0	.291	20
		93.2	36.9	94.6		
3	none	164.6	37.2	0	.291	20
		164.6	37.2	94.6		
4	none	327.4	70.	0	.291	20
		327.4	70.	95.6		
5	none	251.6	81.	0	.291	20
		251.6	81.	94.1		
6	none	198.	98.5	0	.291	20
		198.	98.5	93.5		

Number of wires = 6 current nodes = 120

	mini	.mum	maximum		
Individual wires	wire	value	wire	value	
segment length	6	4.675	1	4.78	
radius	1	.291	1	.291	

ELECTRICAL DESCRIPTION

Frequencies (MHz)

no. 1	frequency lowest .82	step 0	no. ste 1	of segment ps minimur .012986	t length (wavelengths) n maximum 51 .0132778
Sour	ces				
sour	ce node	sector	magnitude	phase	type
1	1	1	77.7615	171.7	voltage
2	21	1	339.523	49.9	voltage
3	41	1	472.604	307.5	voltage
4	61	1	260.204	262.1	voltage
5	81	1	172.851	21.	voltage
6	101	1	85.0919	206.	voltage

CURRE	NT rms						
Frequ	ency	= .82 MHz					
Input	power	= 1,500. wat	ts				
Effic	iency	= 100. %					
coord	inates	in degrees					
curre	nt			mag	phase	real	imaginary
no.	Х	Y	Z	(amps)	(deg)	(amps)	(amps)
GND	0	0	0	1.77779	101.3	349247	1.74315
2	0	0	4.78	1.80004	101.	343919	1.76688
3	0	0	9.56	1.80175	100.8	337964	1.76977
4	0	0	14.34	1.78993	100.6	330344	1.75918
5	0	0	19.12	1.76555	100.5	320975	1.73613
6	0	0	23.9	1.72914	100.3	309871	1.70115
7	0	0	28.68	1.68113	100.2	297083	1.65467
8	0	0	33.46	1.62192	100.	282695	1.59709
9	0	0	38.24	1.55194	99.9	266807	1.52883
10	0	0	43.02	1.47162	99.8	249533	1.45031
11	0	0	47.8	1.38146	99.6	231002	1.36201
12	0	0	52.58	1.28197	99.5	211352	1.26443

13	0	0	57.36	1.17368	99.4	190725	1.15808
14	0	0	62.14	1.05713	99.2	169267	1.04349
15	0	0	66.92	.932809	99.1	147117	.921135
16	0	0	71.7	.801198	98.9	124409	.79148
17	0	0	76.48	.662588	98.8	101251	.654806
18	0	0	81.26	.51698	98.6	0777062	.511107
19	0	0	86.04	.363633	98.5	05373	.359641
20	0	0	90.82	199859	983	- 0290053	197743
END	0	Õ	95.6	0	0	0	0
GND	74 5306	-55 9591	0	4 44942	1 2	4 44838	0961581
22	74 5306	-55 9591	4 73	4 5321	2	4 53208	0145222
23	74 5306	-55 9591	9 46	4 55407	•2 359 5	4 55392	- 0372667
24	74 5306	-55 9591	1/ 10	1.53936	350	1.53865	- 0798628
25	74.5306	-55 9591	18 92	4.00000	358 5	4.0000	- 11568/
26	74.5306	-55 9591	23 65	4.49101	358 1	4.40932	- 145717
20	74.5306	-55 9591	22.05	4.41004	357 7	4.40025	- 170/18
20	74.5306	-55 9591	20.50	4.29934	357 /	4.29390	- 190021
20	74.5300	-55.9591	27 01	3 00000	257 1	3 00000	20466
20	74.5300	-55.9591	12 57	2 70025	356 0	2 70/10	20400
21	74.5300	-55.9591	42.57	J. 7902J	350.0 256 5	3.70410	21442
22	74.5506	-55.9591	4/.3	2 21600	250.0	3.0000	219303
22	74.5506	-55.9591	52.05	3.31009	330.Z	3.30002	21954
33	74.5306	-55.9591	56.76	3.0423	300.9	3.03469	215
34	74.5306	-55.9591	61.49	2.14578	300./ 255.5	2.73806	20579
35	74.5306	-55.9591	00.22	2.42/8	300.0	2.4202	191954
36	74.5306	-55.9591	70.95	2.08946	355.2	2.08224	1/352
37	74.5306	-55.9591	/5.68	1.73146	355.	1.7249	150483
38	74.5306	-55.9591	80.41	1.353/1	354.8	1.34814	12276
39	74.5306	-55.9591	85.14	.954181	354.6	.949921	0900629
40	74.5306	-55.9591	89.87	.525665	354.4	.52313	05156
END	/4.5306	-55.9591	94.6	0	0	0	0
GND	131.109	-99.517	0	2.32236	242.3	-1.07796	-2.05/03
42	131.109	-99.517	4.73	2.4/019	240.0	-1.21408	-2.15813
43	131.109	-99.517	9.46	2.55/32	239.7	-1.29156	-2.20/21
44	131.109	-99.517	14.19	2.606	238.9	-1.34586	-2.23157
45	131.109	-99.51/	18.92	2.627	238.3	-1.38124	-2.23457
46	131.109	-99.51/	23.65	2.6224/	237.7	-1.39956	-2.21//9
4 /	131.109	-99.51/	28.38	2.59362	237.3	-1.40183	-2.18215
48	131.109	-99.51/	33.11	2.54134	236.9	-1.388/1	-2.12836
49	131.109	-99.517	37.84	2.46641	236.5	-1.36076	-2.05706
50	131.109	-99.517	42.57	2.36956	236.2	-1.3184/	-1.96888
51	131.109	-99.51/	4/.3	2.2516	235.9	-1.26234	-1.86446
52	131.109	-99.51/	52.03	2.11333	235.6	-1.19288	-1./4448
53	131.109	-99.51/	56.76	1.95561	235.4	-1.11063	-1.60964
54	131.109	-99.517	61.49	1.77931	235.2	-1.01613	-1.46062
55	131.109	-99.517	66.22	1.58524	235.	909906	-1.2981
56	131.109	-99.51/	70.95	1.3/416	234.8	/9242/	-1.12266
57	131.109	-99.51/	/5.68	1.14651	234.6	664004	934662
58	131.109	-99.51/	80.41	.902254	234.4	524638	/34041
59	131.109	-99.517	85.14	.639974	234.3	3/3531	519655
60	131.109	-99.51/	89.87	.354/45	234.1	20/801	28/511
END	131.109	-99.51/	94.6	0	0	0	0
GND	111.977	-307.655	0	1.50978	231.8	934351	-1.18593
62	111.977	-307.655	4.78	1.556/4	228.7	-1.02801	-1.16903
63	111.977	-307.655	9.56	1.5//9	226.8	-1.08009	-1.15029
64 CE	111.077	-307.655	10 10	1.58493	223.3	-1.11502	-1.1263/
65	111.077	-307.655	19.12	1.5/904	224.	-1.135/8	-1.0969/
66	111.077	-30/.655	23.9	1.560/5	222.9	-1.14368	-1.06205
6/	111.9//	-30/.655	28.68	1.53042	221.9	-1.13943	-1.021/1
68	111.977	-307.655	33.46	1.48833	221.	-1.12352	9/6126
69	111.977	-30/.655	38.24	1.43478	220.2	-1.09638	925498
70	111.977	-307.655	43.02	1.37012	219.4	-1.0584	8/0074
1/1	111.977	-307.655	47.8	1.29475	218.7	-1.00997	810147
72	111.977	-307.655	52.58	1.20908	218.1	951505	745991

73	111.977	-307.655	57.36	1.11356	217.5	883418	677935
74	111.977	-307.655	62.14	1.00868	216.9	806145	606277
75	111.977	-307.655	66.92	.894896	216.4	720097	531318
76	111.977	-307.655	71.7	.772622	215.9	625657	453318
77	111.977	-307.655	76.48	.642134	215.5	523076	37246
78	111.977	-307.655	81.26	.503417	215.	412367	288759
79	111.977	-307.655	86.04	.355729	214.6	292933	201826
80	111.977	-307.655	90.82	.196403	214.1	162558	110223
END	111.977	-307.655	95.6	0	0	0	0
GND	39.3589	-248.502	0	3.38312	330.3	2.93819	-1.67706
82	39.3589	-248.502	4.705	3.42322	329.6	2.95273	-1.732
83	39.3589	-248.502	9.41	3.42538	329.2	2.94176	-1.75479
84	39.3589	-248.502	14.115	3.40233	328.8	2.91128	-1.76077
85	39.3589	-248.502	18.82	3.35577	328.5	2.86221	-1.75184
86	39.3589	-248.502	23.525	3.28666	328.3	2.79515	-1.72895
87	39.3589	-248.502	28.23	3.19576	328.	2.71066	-1.69269
88	39.3589	-248.502	32.935	3.08378	327.8	2.60931	-1.64354
89	39.3589	-248.502	37.64	2.95147	327.6	2.49171	-1.58196
90	39.3589	-248.502	42.345	2.79964	327.4	2.35853	-1.50842
91	39.3589	-248.502	47.05	2.62915	327.2	2.2105	-1.42341
92	39.3589	-248.502	51.755	2.44092	327.1	2.0484	-1.32746
93	39.3589	-248.502	56.46	2.2359	326.9	1.87301	-1.22108
94	39.3589	-248.502	61.165	2.01503	326.8	1.68515	-1.10482
95	39.3589	-248.502	65.87	1.77925	326.6	1.48558	979181
96	39.3589	-248.502	70.575	1.52933	326.5	1.27494	844612
97	39.3589	-248.502	75.28	1.26578	326.3	1.05368	701411
98	39.3589	-248.502	79.985	.988528	326.2	.821708	549531
99	39.3589	-248.502	84.69	.696056	326.1	.577795	388133
100	39.3589	-248.502	89.395	.383119	326.	.317594	214275
END	39.3589	-248.502	94.1	0	0	0	0
GND	-29.2663	-195.825	0	1.76925	78.	.368478	1.73045
102	-29.2663	-195.825	4.675	1.78903	78.6	.353743	1.7537
103	-29.2663	-195.825	9.35	1.78939	79.	.342213	1.75636
104	-29.2663	-195.825	14.025	1.77672	79.3	.330386	1.74573
105	-29.2663	-195.825	18.7	1.75188	79.5	.317867	1.7228
106	-29.2663	-195.825	23.375	1.71534	79.8	.304508	1.6881
107	-29.2663	-195.825	28.05	1.66751	80.	.290256	1.64205
108	-29.2663	-195.825	32.725	1.60875	80.2	.275101	1.58505
109	-29.2663	-195.825	37.4	1.53945	80.3	.259055	1.5175
110	-29.2663	-195.825	42.075	1.46003	80.5	.24214	1.43981
111	-29.2663	-195.825	46.75	1.37094	80.6	.224389	1.35245
112	-29.2663	-195.825	51.425	1.27265	80.7	.205835	1.25589
113	-29.2663	-195.825	56.1	1.16566	80.8	.186517	1.15064
114	-29.2663	-195.825	60.775	1.05045	80.9	.166466	1.03718
115	-29.2663	-195.825	65.45	.927512	81.	.145714	.915994
116	-29.2663	-195.825	70.125	.797238	81.	.124278	.787491
117	-29.2663	-195.825	74.8	.659878	81.1	.102156	.651923
118	-29.2663	-195.825	79.475	.515386	81.1	.0792957	.50925
119	-29.2663	-195.825	84.15	.362958	81.2	.0555364	.358684
120	-29.2663	-195.825	88.825	.19984	81.2	.0304261	.197511
END	-29.2663	-195.825	93.5	0	()	0	0

Sampling System Measurements - WCPT

Impedance measurements were made of the antenna monitor sampling system using a Hewlett-Packard 8751A network analyzer and a Tunwall Radio directional coupler in a calibrated measurement system. The measurements were made looking into the antenna monitor ends of the sampling lines for two conditions – with them open circuited at their tower ends and with them connected to the sampling devices at the tower bases.

The following table shows the frequencies above and below the carrier frequency where resonance – zero reactance corresponding with low resistance – was found. As the length of a distortionless transmission line is 180 electrical degrees at the difference frequency between adjacent frequencies of resonance, and frequencies of resonance occur at odd multiples of 90 degrees electrical length, the sampling line length at the resonant frequency above carrier frequency – which is the closest one to the carrier frequency in terms of the ratio of frequencies – was found to be 450 electrical degrees. The electrical lengths at carrier frequency appearing in the table below were calculated by ratioing the frequencies.

Tower	Sampling Line Open-Circuited Resonance Below 820 kHz (kHz)	Sampling Line Open-Circuited Resonance Above 820 kHz (kHz)	Sampling Line Calculated Electrical Length at 820 kHz (degrees)	820 kHz Measured Impedance with Sampling Loop Connected (Ohms)
1	585.50	978.80	377.0	46.6 – j 166.6
2	585.20	978.35	377.2	48.2 – j 174.2
3	585.65	978.95	376.9	48.7 – j 175.0
4	585.35	978.65	377.1	49.5 – j 171.6
5	585.35	978.65	377.1	47.0 – j 169.4
6	585.65	978.65	377.1	50.4 – j 170.2

The sampling line lengths meet the requirement that they be equal in length within 1 electrical degree.

The characteristic impedance was calculated using the following formula, where $R_1 + j X_1$ and $R_2 + j X_2$ are the measured impedances at the +45 and -45 degree offset frequencies, respectively:

$$\mathsf{Zo} = ((\mathsf{R_1}^2 + \mathsf{X_1}^2)^{1/2} \bullet (\mathsf{R_2}^2 + \mathsf{X_2}^2)^{1/2})^{1/2}$$

Tower	-45 Degree Offset Frequency (kHz)	-45 Degree Measured Impedance (Ohms)	+45 Degree Offset Frequency (kHz)	+45 Degree Measured Impedance (Ohms)	Calculated Characteristic Impedance (Ohms)
1	880.92	7.1 – j 49.0	1076.68	9.0 + j 49.5	49.9
2	880.52	7.2 – j 50.0	1076.19	9.0 + j 50.1	50.7
3	881.06	7.2 – j 49.9	1076.85	9.0 + j 50.1	50.7
4	880.79	7.2 – j 49.1	1076.52	8.9 + j 48.7	49.6
5	880 79	7.1 – j 49.2	1076.52	9.0 + j 49.4	50.0
6	880.79	7.4 – j 48.8	1076.52	9.2 + j 48.8	49.5

The sampling line measured characteristic impedances meet the requirement that they be equal within 2 ohms.

The toroidal transformers were calibrated by measuring their outputs with a common reference signal using a Hewlett-Packard 8751A network analyzer in a calibrated measurement system. They were placed side-by-side with a conductor carrying the reference signal passing through them and their outputs were fed into the A and B receiver inputs of the analyzer which was configured to measure the relative ratios and phases of their output voltages. The following results were found for carrier frequency, 820 kilohertz:

Tower	Toroid Ratio	Toroid Phase (Degrees)
1	1.000	- 0.099
2	Reference	Reference
3	0.999	-0.106
4	0.999	-0.289
5	0.998	-0.194
6	0.998	-0.167

Delta type TCT-5 toroidal transformers are rated for absolute magnitude accuracy of +/- 2% and absolute phase accuracy of +/- 3 degrees. As the maximum measured transformer-to-transformer variations among of the six were less than 0.1 percent and 0.3 degree, they provide far more accurate relative indications than could be the case within their rated accuracies.

Reference Field Strength Measurements – WCPT

No radial azimuths are specified to have monitor points on the construction permit. Reference field strength measurements were made at three locations each along radials at azimuths corresponding to the pattern minima, rounded to the nearest 0.5 degree, at 113.0, 190.5, 228.0, 247.0, and 311.5 degrees true. Additionally, measurements were made on the major lobe maximum radiation radial at 17.0 degrees true. The measured field strengths, descriptions and GPS coordinates for the reference measurement points are shown on the following page.

Reference Field Strength Measurements

WCPT DA-N

Radial	Point	Distance	Field	Coordinates (NAD 27)		Description
(Deg.)		(Km)	(mV/m)	N	W	
	1	4.56	165	41:34:48	88:01:05	Fire Hydrant at intersection of Mohican and Swift Arrow Rds.
17.00	2	6.70	138	41:35:54	88:00:38	Northeast corner of Illinois Rt. 7 bridge deck over I-355, at north guard rail expansion joint
	3	14.5	37	41:39:54	87:58:57	At mailbox of 1155 Country Ln., next to driveway
	1	5.84	1.30	41:31:15	88:58:11	At east driveway curb along Elm Dr. just south of Kimberly (address not evident)
113.0	2	10.7	2.0	41:30:13	87:55:00	Driveway at curb, 755 Westwind
	3	11.6	1.75	41:30:00	87:54:22	Mailbox of 21407 Prestancia
	1	3.64	7.0	41:30:31	88:02:32	50ft. East of Briggs on south side of Carey St.
190.5	2	8.33	4.9	41:28:01	88:03:07	Across from driveway of 18041 Schwietzer.
	3	11.6	3.9	41:26:20	88:03:34	Center of creek bridge on Rowell Rd.
	1	4.12	750uV	41:50:38	88:04:17	Center of south school parking area between retaining wall, school and playground.
228.0	2	6.22	650uV	41:30:12	88:05:24	East side of Patterson at railroad grade crossing.
	3	10.2	460uV	41:28:46	88:07:33	On Laraway at driveway island before "Road Closed" fence gate.

Radial	Point	Distance	Field	Coordinates (NAD 27)		Description
(Deg.)		(Km)	(mV/m)	N	W	
	1	4.87	2.7	41:31:38	88:05:16	Along east curb at sidewalk, northwest corner of 30 N. Bluff. (100 ft. south of Jefferson St.)
247.0	2	6.8	550uV	41:31:03	88:06:32	At stop sign, southwest corner of Reed and Morgan.
	3	12.6	420uV	41:29:51	88:10:22	On Joliet Community College entrance drive, at 30MPH speed limit sign (200ft. in from street)
	1	8.33	4.1	41:35:03	88:06:49	At intersection Spirea and Palm Dr., southwest sidewalk crossing
311.5	2	12.0	3.5	41:36:44	88:08:03	At mail box/driveway of 318 Zinna
	3	14.0	1.55	41:37:28	88:09:39	At driveway of 14258 Napa

All measurements were taken on April 3, 2010 with Potomac Instruments FIM-41 serial number 302, which was most recently calibrated by its manufacturer in July of 2004. Prior to making the measurements, its readings were compared with those made with Potomac Instruments FIM-41 serial number 1128, which was most recently calibrated by its manufacturer on March 21, 2007. The readings with both meters were found to be in agreement.

Direct Measurement of Power - WCPT

Common point impedance measurements were made using the permanently installed Delta Electronics CPB-1 Common Point Bridge. The bridge is located in the circuit adjacent to the common point current meter that is used to determine operating power. The bridge readings were confirmed by comparison with those made by a calibrated network analyzer measurement system employing a Hewlett-Packard 8751A vector network analyzer. The common point impedance was adjusted to 50.0 - j 6.0 ohms for the directional pattern. The reactance was set to -j 6.0 to compensate for series inductance in the circuit between the transmitter and the common point in the phasor cabinet, including the main-auxiliary transmitter switching contactor, in order to provide a non-reactive load for the transmitter's output port at carrier frequency.

Antenna Monitor - WCPT

The antenna monitor is a Potomac Instruments model AM-1901. The sampling devices are Delta Electronics Type TCT-5 shielded toroidal transformers located at the ATU output reference points. The TCT-5 transformers have a sensitivity of 2.0 volt per ampere of RF current. The toroids are connected through equal length ½ inch foam heliax sampling lines to the antenna monitor.

The antenna monitor is new. As it was calibrated by its manufacturer prior to installation, no calibration measurements are necessary for this proof of performance.

RFR Protection - WCPT

The operation of WCPT will not result in the exposure of workers or the general public to levels of radio frequency radiation in excess of the limits specified in 47 CFR 1.1310. Fences have been installed about the tower bases to restrict access beyond the distances necessary to prevent electric and magnetic exposure above the required levels.

The minimum fence distances from the tower bases were determined with reference to Table 2 of Supplement A to FCC OET Bulletin 65 (Edition 97-01). According to Table 2, the predicted "Distance for Compliance with FCC Limits" at 820 kilohertz, for 5 kilowatts fed into a single tower 0.25 wavelengths in height, is 2 meters. As the total input power is lower than that, at 1.5 kilowatts, and it is divided between the six towers, the 5-kilowatt assumption is a very conservative one for predicting the minimum fence distances for the WCPT nighttime directional antenna system. Fences have been installed to restrict access to a radius of 20 feet (6.1 meters) around each tower base to ensure that the requirement is met.

The fences limit access to areas with fields that exceed the requirements of the Rules when the WCPT nighttime site is in operation. If it is necessary for workers to be inside them for extended periods of time, the antenna system has the ability to be switched for nondirectional operation with either tower 3 or tower 5 to de-activate the remaining towers. In the daytime, WCPT operates from a separate site and all of the towers at the nighttime site are de-activated. The WCPT nighttime facility is, therefore, in full compliance with the FCC's requirements with regard to radio frequency radiation exposure. The established radio frequency protection measures at the daytime site remain in effect.

Detuning of Communications Tower - WCPT

A communications tower is located outside the ground system area to the south of the WCPT array. The array location was chosen to reduce coupling of field from the WCPT directional antenna pattern to this tower and it is in an area of high signal suppression. In addition, the communications tower is detuned by means of a six-wire skirt connected to a detuning network in a weatherproof enclosure at its base. To monitor the state of its detuning, a sampling loop has been permanently mounted on the tower at the height where tower current is nulled for the detuned condition. A sampling line has been installed from this loop to the WCPT transmitter building to allow regular monitoring of its induced voltage.

The detuning system was tested, found to be functioning correctly and adjusted to detune the tower before the tower base impedances included herein were measured. With a field strength meter connected to the sampling line to monitor the loop voltage on 820 kilohertz and the tower exposed to incident field from the daytime WCPT transmitter site, the detuning network was adjusted and a pronounced null in tower current was found while adjusting the detuning network either side of the minimum condition. The network adjustment was left for the minimum condition.

Summary of Certified Array Geometry - WCPT

The tower locations based on the relative distances in meters and azimuths (referenced to True North) provided in the Tower Location Certification of Appendix A were compared to the relative distances and azimuths of the array elements specified on the construction permit. The Certified and specified values were converted to the rectangular coordinate system to facilitate calculating the individual tower specified-to-certified distances, which were then converted to the polar coordinate system to determine their magnitudes. This tabulation shows those distances and other information that is relevant to their determination.

Tower	Specifi	ed Array Ge	eometry	Post-Cor Certific	nstruction cation*	Distance From Specified Base Location	
101101	Spacing (Deg.)	Spacing (Meters)	Azimuth (Deg. T.)	Spacing (Meters)	Azimuth (Deg. T.)	(Meters)	(Deg.)
1	Ref.	Ref.	Ref.	Ref.	Ref.	Ref.	Ref.
2	93.2	94.65	36.9	94.596	36.899	0.05	0.05
3	164.6	167.16	37.2	167.209	37.185	0.07	0.07
4	327.4	332.49	70.0	332.467	70.000	0.02	0.02
5	251.6	255.51	81.0	255.528	80.998	0.02	0.02
6	198.0	201.08	98.5	201.117	98.507	0.04	0.04

* As built tower locations from March 16, 2010 Tower Location Certification prepared by Robert A. Rogina, P.E., I.P.L.S. of Rogina & Associates, Ltd. Engineers, Surveyors and Planners, Joliet, Illinois. Appendix A Certified Post Construction Array Geometry

ENGINEERS · SURVEYORS · PLANNERS

March 16, 2010

Newsweb Radio Company 6012 S. Pulaski Ave. Chicago, IL. 60629 Attn: Michael G. McCarthy, CSRE, CEA Director of Engineering

Re: Tower Location Certification

FCC Construction Permit # BP20050725ACV, WYPA, Inc (WCPT-AM), Night site Job No. 4669.03

Dear Mr. McCarthy,

We are certifying to the as built location of the six new towers located at 750 Fox Street, Joliet, Illinois.

The locations are located at designated positions and orientation as specified on sheet C5 on the drawings prepared by Jacob & Hefner Associates, Inc., dated March 13, 2009. The following tower location distances and orientations are referenced to True North and from Tower #1. Electrical distance to each succeeding tower from the reference tower is based on 3.33333 ft./1.01626M per electrical degree. Full wave free space of 820 khz is 1200.000ft./365.853M.

Tower #1: Reference

Tower #2: 36.8994 deg. True, 93.1051 Degrees Distant. (310.35 ft., 94.596M) Tower #3: 37.1847 deg. True, 164.5772 Degrees Distant. (548.59 ft., 167.209M) Tower #4: 70.0008 deg. True, 327.2313 Degrees Distant. (1090.77 ft., 332.467M) Tower #5: 80.9981 deg. True, 251.5053 Degrees Distant. (838.35 ft., 255.528M) Tower #6: 98.5072 deg. True, 197.9492 Degrees Distant. (659.83 ft., 201.117M)

Sincorely

Robert A. Rogina P.E., I.P.L.S. Rogina & Associates, Ltd.

SECTION III - L	ICENSE APP	LICATION ENGI	NEERING DAT	۹				
Name of Applica	nt				(:	e ferrie europie		
WYPA, In	С.				(Licens	e for new nig	nt site only)	
PURPOSE OF A	UTHORIZATIC	N APPLIED FOR	: (check one)					
 	Station License		Direct Mer	asurement of Pow	ver			
1. Facilities auth	File No. of Co	ruction permit	Frequency			Power in	kilowatta	
	(if applicable)	Instruction Permit	(kHz)	Hours of Opera	ation	Night	Dav	
VUGFT	BP-2005072	5ACV	`820´	Unlimited		1.5	5.0	
2. Station location	on							
State				City or Town	Durational			
IIIInois				VVIIIOW 3	Springs			
3. Transmitter lo	cation							
State	County			City or Town		or other identifica	tion)	
Illinois	Will			Joliet To	wnship	750 Fox Street		
4. Main studio lo	ocation							
State	County			City or Town		Street address	tion)	
Illinois	Cook			Chicago		6012 S Pulaski Avenue		
5. Remote contr	ol point location	n (specify only if au	uthorized directio	nal antenna)				
State	County			City or Town		Street address		
Illinois	Cook			Chicago		(or other identifica	tion) Avenue	
6. Has type-app	roved stereo ge	enerating equipme	nt been installed'	?		Ye	s 🖌 No	
	-						<u> </u>	
7. Does the sam	pling system m	leet the requireme	nts of 47 C.F.R.	Section 73.68?		Ye	s No	
							ot Applicable	
Attach as an E	xhibit a detaileo	I description of the	sampling system	n as installed.		Exhib	bit No.	
						Ling		
8. Operating cor	nstants:							
RF common poin	nt or antenna cu	irrent (in amperes)) without	RF common po	oint or antenna	current (in amperes	s) without	
5.69	gni system			No Change				
Measured antenr	na or common p	point resistance (in	ohms) at	Measured ante	enna or commo	n point reactance (ii	n ohms) at	
operating freque	ncy	Dav	,	operating frequ	lency	Dav	·	
50			hange	Night Day			Change	
Antenna indicatio	ons for direction] 0				
		Antenna	monitor	Antenna mo	nitor sample	Antonna ha		
Towe	ers	Phase reading	(s) in degrees	current	ratio(s)	Antenna ba		
		Night	Day	Night	Day	Night	Day	
		+ 100.5		1.000		INOL REQUIRED		

3 4 - 119.2 0.533 ---------... - 130.3 ---0.341 ------5 ... - 30.7 0.760 ---------+ 77.4 6 ---0.398 --н ---Manufacturer and type of antenna monitor: Potomac Instruments AM-1901

SECTION III - Page 2

9. Description of antenna system ((f directional antenna is used, the information requested below should be given for each element of the array. Use separate sheets if necessary.)

Type Radiator	Overall height in meters of radiator above base insulator, or above base, if grounded.	Overall height in meters above ground (without obstruction lighting)	Overall height in meters above ground (include obstruction lighting)	If antenna is either top loaded or sectionalized, describe fully in an Exhibit.
Towers 1, 2, 3, 4, 5, 6	88.4, 88.4, 88.4, 88.4, 88.4, 88.4	91.7, 91.1, 90.8, 90.8, 90.8, 90.8	91.7, 91.1, 90.8, 90.8, 90.8, 90.8	Exhibit No. <mark>N/A</mark>
Excitation	Series	Shunt		

Geographic coordinates to nearest second. For directional antenna give coordinates of center of array. For single vertical radiator give tower location.

North Latitude 41	0	32	'	30	"	West Longitude 88	0	02	'	03	"
-------------------	---	----	---	----	---	-------------------	---	----	---	----	---

Exhibit No.

Exhibit No.

Eng

N/A

If not fully described above, attach as an Exhibit further details and dimensions including any other antenna mounted on tower and associated isolation circuits.

Also, if necessary for a complete description, attach as an Exhibit a sketch of the details and dimensions of ground system.

10. In what respect, if any, does the apparatus constructed differ from that described in the application for construction permit or in the permit?

None		

11. Give reasons for the change in antenna or common point resistance.

N/A	

I certify that I represent the applicant in the capacity indicated below and that I have examined the foregoing statement of technical information and that it is true to the best of my knowledge and belief.

Name (Please Print or Type) Ronald D. Rackley, P.E.	Signature (check appropriate box below)
Address (include ZIP Code) du Treil, Lundin & Rackley, Inc.	Date April 6, 2010
201 Fletcher Avenue	Telephone No. (Include Area Code)
Sarasota, Florida 34237	941 329 6000

Technical Director	✓ Registered Professional Engineer
Chief Operator	Technical Consultant

Other (specify)