The Law Office of

Dan J. Alpert

2120 N. 21st Rd. Arlington, VA 22201 **DJA@COMMLAW.TV**

April 6, 2010

(703) 243-8692 (fax)

Ms. Marlene Dortch Secretary Federal Communications Commission 445 12th St., S.W. Washington, DC 20054

FILED/ACCEPTED

APR - 8 2010

Federal Communications Commission Office of the Secretary

Re:

Station KSET(AM) Facility No. 31108

File No. BMML-20090622AGP

Lumberton, TX

Dear Ms. Dortch

(703) 243-8690

Proctor-Williams, Inc., by its attorney, hereby submits an amendment to the pending application (FCC Form 302-AM) for license to cover its construction permit.

If there are any questions, please contact this office.

Very truly yours.

Dan J. Alpert

Counsel for Proctor-Williams, Inc.

<u>AMENDMENT</u>

Please amend the pending application of Proctor-Williams, Inc. For license to cover its outstanding construction permit to include the attached revised documentation.

PROCTOR-WILLIAMS, INC.

William Hil

President

April 4, 2010

EXHIBIT # 1A

PURPOSE: To address item 2 of deficiencies letter, dated March 19, 2010, from Ann Gallagher, pertaining to KSET BMML-20090622AGP.

Tower matrix and model calibration:

	TOWER INFORMATION						
	Tower Height (°)	Spacing (°)	Orientation	Face Width (in.)	Radius (in.)	Velocity Factor	
Tower 1	90.4000	0.0000	0.0000	18.0000 / 18.0000	8.3138 / 8.3138	0.935000	
Tower 2	71.4000	90.1000	172,4000	18.0000 / 18.0000	8.3138 / 8.3138	0.935000	
Tower 3	90.4000	179.5000	175.2000	18.0000 / 18.0000	8.3138 / 8.3138	0.937000	
Tower 4	90.4000	360,0000	176.4000	18.0000 / 18.0000	8.3138 / 8.3138	0.937000	

Impedance measurement was made at the output "j" jack with the jack open. From this point the tubing conductor goes to the bowl insulator, is formed into a 3 turn loop and then is welded at the base of the tower. The only shunt devices are the base insulator and two lightning ball gaps, presenting an extremely high capacitive impedance.

	Measured	Modeled	Modeled w/Lumped inductances
Tower 1:	54 +j89.7	54.19 +j57.82	54.19 + j 89.62
Tower 2:	21.5 -j22.7	22.46 -j50.86	22.46 - j 22.68
Tower 3:	54 +j93.6	54.36 +j56.85	54.36 + j 93.60
Tower 4:	54 +j89.7	54.50 +j56.68	54.50 + j 89.67

Calibration required the addition of a series lumped inductance in the amounts of:

Tower 1 3.9 $uH = 31.8 \Omega$ 2 3.45 $uH = 28.18 \Omega$ 3 4.5 $uH = 36.75 \Omega$ 4 4.04 $uH = 32.99 \Omega$

Well within the 2 ohm and 10*u*H limitation.

	TO	WER DRIV	E INFORMATIO	N - DAY				
	Field Ratios	Field Phase	Drive Imped. (Ω)	Current	Power (W)			
Tower 1	0.5000	144.0000	-10.66 + j39.50	4.67 🗆 141.52	-232.9073			
Tower 2	1.0000	0,0000	15.08 - j38.22	13.33 🗆 0.00	2678.5233			
Tower 3	0.5000	190.0000	-25.86 + j107.42	4.15 🗆 -174.01	-446.3855			
	TOWER DRIVE INFORMATION - NIGHT							
	Field Ratios	Field Phase	Drive Imped. (Ω)	Current	Power (W)			
Tower 1	0.7050	108,7000	21.97 + j73.46	1.18 🗆 105.10	30.4123			
Tower 3	1.0000	0.0000	56.59 + j61.90	1.70 🗆 0.00	163.6767			
Tower 4	0.7000	267.3000	78.24 + j25.05	1.27 🗆 -89.98	125.9583			

Exhibit # 4A Page 1 of 2

Day Pattern

TOWER CURRENTS

Mode 1

Tower 1

0.000000 > 0.000000 - 90.40° above ground 0.984488 > 142.920378 - 81.36° above ground 1.783770 > 142.900485 - 72.32° above ground 2.510438 > 142.870574 - 63.28° above ground 3.157384 > 142.824582 - 54.24° above ground 3.713278 > 142.755771 - 45.20° above ground 4.165379 > 142.656137 - 36.16° above ground 4.501665 > 142.515441 - 27.12° above ground 4.711352 > 142.318651 - 18.08° above ground 4.784870 > 142.041948 - 9.04° above ground 4.674962 > 141.518909 - -0.00° above ground

Tower 2

0.000000 > 0.000000 - 71.40° above ground 2.905163 > -2.893524 - 62.48° above ground 5.213990 > -2.624954 - 53.55° above ground 7.272776 > -2.341420 - 44.63° above ground 9.068734 > -2.030880 - 35.70° above ground 10.579268 > -1.682078 - 26.78° above ground 11.781797 > -1.277783 - 17.85° above ground 12.662127 > -0.791232 - 8.93° above ground 13.325356 > 0.000000 - 0.00° above ground

Tower 3

0.000000 > 0.000000 - 90.40° above ground 1.076195 > -169.878079 - 81.36° above ground 1.925941 > -170.101242 - 72.32° above ground 2.675836 > -170.340387 - 63.28° above ground 3.318868 > -170.603916 - 54.24° above ground 3.843491 > -170.899594 - 45.20° above ground 4.236677 > -171.238789 - 36.16° above ground 4.486031 > -171.639670 - 27.12° above ground 4.579596 > -172.134507 - 18.08° above ground 4.504918 > -172.783263 - 9.04° above ground 4.154541 > -174.006269 - -0.00° above ground

Tower 4

0.000000 > 0.000000 - 90.40° above ground 0.064212 > 53.864154 - 81.36° above ground 0.098626 > 54.298810 - 72.32° above ground 0.113370 > 54.724799 - 63.28° above ground 0.108788 > 55.187947 - 54.24° above ground 0.085016 > 55.804366 - 45.20° above ground 0.042151 > 57.322259 - 36.16° above ground 0.019949 > -129.841485 - 27.12° above ground 0.101581 > -125.526954 - 18.08° above ground 0.204868 > -124.801503 - 9.04° above ground 0.371577 > -124.339370 - -0.00° above ground

Exhibit # 4A Page 2 of 2

Night Pattern

Tower 1

0.000000 > 0.000000 - 90.40° above ground
0.281298 > 101.269490 - 81.36° above ground
0.504722 > 101.494238 - 72.32° above ground
0.703327 > 101.730874 - 63.28° above ground
0.875503 > 101.988427 - 54.24° above ground
1.018525 > 102.274627 - 45.20° above ground
1.129323 > 102.599955 - 36.16° above ground
1.205022 > 102.980214 - 27.12° above ground
1.242936 > 103.442376 - 18.08° above ground
1.240399 > 104.034528 - 9.04° above ground
1.176449 > 105.104864 - -0.00° above ground

Tower 2

0.000000 > 0.000000 - 71.40° above ground 0.018013 > -73.198695 - 62.48° above ground 0.026047 > -73.625284 - 53.55° above ground 0.027062 > -74.086503 - 44.63° above ground 0.021059 > -74.702803 - 35.70° above ground 0.007915 > -76.701575 - 26.78° above ground 0.012738 > 107.318836 - 17.85° above ground 0.041580 > 105.921087 - 8.93° above ground 0.091542 > 105.391758 - 0.00° above ground

Tower 3

0.000000 > 0.000000 - 90.40° above ground
0.396936 > -10.056750 - 81.36° above ground
0.712816 > -9.463131 - 72.32° above ground
0.994277 > -8.838879 - 63.28° above ground
1.239089 > -8.159677 - 54.24° above ground
1.443467 > -7.404862 - 45.20° above ground
1.603174 > -6.546810 - 36.16° above ground
1.714304 > -5.544392 - 27.12° above ground
1.777361 > -4.328219 - 18.08° above ground
1.777169 > -2.776444 - 9.04° above ground
1.700746 > 0.000000 - -0.00° above ground

Tower 4

0.000000 > 0.000000 - 90.40° above ground 0.266423 > -105.283062 - 81.36° above ground 0.481320 > -104.324117 - 72.32° above ground 0.675579 > -103.318385 - 63.28° above ground 0.847640 > -102.229039 - 54.24° above ground 0.994926 > -101.026546 - 45.20° above ground 1.114601 > -99.672605 - 36.16° above ground 1.204145 > -98.111684 - 27.12° above ground 1.261549 > -96.252174 - 18.08° above ground 1.285482 > -93.939549 - 9.04° above ground 1.268835 > -89.981577 - -0.00° above ground

Exhibit #6A

Supplement to Exhibit #6 of KSET sample line characteristic impedance measurements.

PURPOSE: To address item 3 of deficiencies letter, dated March 19, 2010, from Ann Gallagher, pertaining to KSET BMML-20090622AGP. Showing completed computations of the calculated characteristic impedance of the 4 "monitor sample lines".

KSET

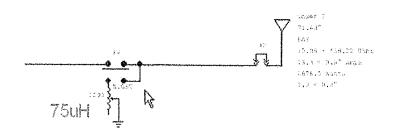
Summary of/and computation of characteristic impedance using formula $Z_0 = ((R_1^2 + X_1^2)^{1/2} * (R_2^2 + X_2^2)^{1/2})^{1/2}$						
Tower sample	+45 degree offset freq. (MHz)	+45 degree Measure Z (Ohms)	-45 degree offset freq. (MHz)	-45 degree Measure Z (Ohms)	Calculated characteristic Z (Ohms)	
1	1.464	7.47+i 50.04	1.046	3.47-j 49.67	50.19	
2	1.462	6.52+j 49.67	1.044	3.92-j 49.84	50.04	
3	1.461	6.52+j 49.67	1.044	3.69-j 50.26	50.24	
4	1.460	6.52+j 49.67	1.043	4.10-j 49.93	50.09	

Exhibit # 9A

Detuning of unused towers

PURPOSE: To address item 1 of deficiencies letter, dated March 19, 2010, from Ann Gallagher, pertaining to KSET BMML-20090622AGP.

According to Jerry Westberg, developer of the "Phasor Pro" and "WCAP" programs, the "Phasor Pro" program models the array based upon the detuning of the unused tower(s) for the particular mode. The detuning is computed but not presented in the modeling output, but is available by using the "WCAP" program.


The method of detuning is depicted in the ATU design of "Phasor Pro", shown as a series inductance to ground when the tower is in an unused mode. Tower 4 is not used as part of the daytime pattern, and "WCAP" shows a inductive reactance of 488 Ohms in order to match the currents depicted in "Phasor Pro". Tower 2 is not used in the Nighttime pattern and "WCAP" shows an inductive reactance of 608 Ohms is needed to match the currents as depicted in "Phasor Pro".

As per the computations of the mentioned programs, 75uH inductance was placed to ground from the Night Tower 2 ATU output relay. A 60uH inductance was placed to ground was placed to ground from the Day Tower 4 ATU output relay.

This detuning procedure places the "as built" plant to agree with the modeling criteria of the Phasor Pro modeling program and it's associated schematic. Tower 2 Day is representative of Tower 4 Night schematically, except for a coil value of 60uH and reversal of the "day/night" mode.

The item below is <u>incorrectly</u> marked "Exhibit 8-1" when it should read "9-1",

Exhibit 8-1

EXHIBIT 5A

PURPOSE: To address item 4 of deficiencies letter, dated March 19, 2010, from Ann Gallagher, pertaining to KSET BMML-20090622AGP.

A Potomac 1901 was used temporarily while the AM-19 was being repaired. The Antenna Monitor being used by the KSET system is in fact; a "Potomac AM-19" serial number 1188, as calibrated by MPA with certificate of calibration shown as "Exhibit 5".