
Kathleen A. Kirby 202.719.3360 kkirby@wiley.law

March 27, 2023

wiley.law

VIA e-mail: audiofilings@fcc.gov

Marlene H. Dortch, Secretary Federal Communications Commission 45 L Street NE Washington, DC 20554

Re: Salem Communications Holding Corporation – FRN 0003760352 Station KPXQ(AM), Glendale, AZ (Fac. ID 55912) Application for Direct Measurement of Power

Dear Ms. Dortch:

On behalf of Salem Communications Holding Corporation, licensee of AM station KPXQ, Glendale, AZ, we are submitting herewith an application on FCC Form 302-AM for direct measurement of power. There is no filing fee associated with this application.

Should there be any questions concerning this application, please contact the undersigned.

Respectfully Submitted,

Kathleen A. Kirby

Approved by OMB 3060-0627 Expires 01/31/98

FCC 302-AM

APPLICATION FOR AM BROADCAST STATION LICENSE

(Please read instructions before filling out form.

FOR COMMISSION USE ONLY

FILE NO.

SECTION I - APPLICANT FEE	INFO	RMATI	ON						
1. PAYOR NAME (Last, First, Mid	dle Initi	al)							
Salem Communications	Hold	ing Co	rporat	ion					
MAILING ADDRESS (Line 1) (Max 4880 Santa Rosa Road, Suite 300		35 chara	icters)						
MAILING ADDRESS (Line 2) (Max	imum 3	35 chara	icters)						
CITY Camarillo					ST/ C		NTRY (if fo	reign address)	ZIP CODE 93012
TELEPHONE NUMBER (include a (805)384-4502	rea coc	le)			-	LL LETTERS		OTHER FCC IDE 55912	NTIFIER (If applicable)
2. A. Is a fee submitted with this ap	oplicatio	on?							Yes No
B. If No, indicate reason for fee	exempt	tion (see	e 47 C.F	R. Sectior	۱				
Governmental Entity	L	N	loncom	nercial edu	cation	al licensee	•	ther (Please explair): Non-feeable application
C. If Yes, provide the following in	nformat	ion:							
Enter in Column (A) the correct Fe									
Fee Filing Guide." Column (B) lists	s the Fe	e Multip	ole appl	icable for tl	nis app	lication. Ente	er fee amou	nt due in Column (C	2).
(A)		(E	3)				(C)		
FEE TYPE CODE		FEE MU		<u>.</u>		TYPE	E FOR FE CODE IN	E	FOR FCC USE ONLY
	0	0	0	1		\$			
To be used only when you are requ	octing	CODOURC	nt actio	ns which r	ocult in		at to list mo		
· · · · · · · · · · · · · · · · · · ·	esung t	Joncurre			suit ii	alequilemen	(C)		
(A)	0	0	(B) 0	1		\$	(0)		FOR FCC USE ONLY
	0	0	0	I		• 			
ADD ALL AMOUNTS SHOWN IN	COLUN	1N C,				REMITTE	. AMOUNT D WITH TH ICATION	lis	FOR FCC USE ONLY
AND ENTER THE TOTAL HERE. THIS AMOUNT SHOULD EQUAL	YOUR	ENCLO	SED			<u>APPL</u> \$			
REMITTANCE.						*			

SECTION II - APPLICAN								
1. NAME OF APPLICANT Salem Communications Hold								
MAILING ADDRESS 4880 Santa Rosa Road, Sui	ite 300							
CITY Camarillo			STATE CA		ZIP CODE 93012			
2. This application is for:	Commercial	[Noncomm	nercial				
	AM Direc	tional	M N	lon-Directional				
Call letters	Community of License	Construct	tion Permit File No.	Modification of Construction Permit File No(s).	Expiration Date of Last Construction Permit			
KPXQ	Glendale, AZ	N/A		N/A	N/A			
3. Is the station n accordance with 47 C.F If No, explain in an Exhi					Yes No Exhibit No.			
 4. Have all the terms, conditions, and obligations set forth in the above described construction permit been fully met? If No, state exceptions in an Exhibit. Not applicable - Direct Measurement application 								
5. Apart from the chan the grant of the under	ges already reported, has lying construction permit d in the construction perm	which v	would result in	any statement or	Yes No			
If Yes, explain in an Ex	hibit. Not applicable -	Direct N	leasurement ap	plication	Exhibit No.			
•	led its Ownership Report ce with 47 C.F.R. Sectior	•	,	ership	Yes No			
			- ()		Does not apply			
If No, explain in an Exhi	If No, explain in an Exhibit.							
7. Has an adverse finding been made or an adverse final action been taken by any court or administrative body with respect to the applicant or parties to the application in a civil or criminal proceeding, brought under the provisions of any law relating to the following: any felony; mass media related antitrust or unfair competition; fraudulent statements to another governmental unit; or discrimination?								
involved, including an id (by dates and file num	attach as an Exhibit a fu dentification of the court o bers), and the dispositio earlier disclosed in cor	or admin on of the	istrative body ar litigation. Wh	nd the proceeding nere the requisite	Exhibit No.			

information has been earlier disclosed in connection with another application or as required by 47 U.S.C. Section 1.65(c), the applicant need only provide: (i) an identification of that previous submission by reference to the file number in the case of an application, the call letters of the station regarding which the application or Section 1.65 information was filed, and the date of filing; and (ii) the disposition of the previously reported matter.

CLEAR ALL PAGES

8. Does the applicant, or any party to the application, have a petition on file to migrate to the expanded band (1605-1705 kHz) or a permit or license either in the existing band or expanded band that is held in combination (pursuant to the 5 year holding period allowed) with the AM facility proposed to be modified herein?

If Yes, provide particulars as an Exhibit.

The APPLICANT hereby waives any claim to the use of any particular frequency or of the electromagnetic spectrum as against the regulatory power of the United States because use of the same, whether by license or otherwise, and requests and authorization in accordance with this application. (See Section 304 of the Communications Act of 1934, as amended).

The APPLICANT acknowledges that all the statements made in this application and attached exhibits are considered material representations and that all the exhibits are a material part hereof and are incorporated herein as set out in full in

CERTIFICATION

1. By checking Yes, the applicant certifies, that, in the case of an individual applicant, he or she is not subject to a denial of federal benefits that includes FCC benefits pursuant to Section 5301 of the Anti-Drug Abuse Act of 1988, 21 U.S.C. Section 862, or, in the case of a non-individual applicant (e.g., corporation, partnership or other unincorporated association), no party to the application is subject to a denial of federal benefits that includes FCC benefits pursuant to that section. For the definition of a "party" for these purposes, see 47 C.F.R. Section 1.2002(b).

2. I certify that the statements in this application are true, complete, and correct to the best of my knowledge and belief, and are made in good faith.

Name	Signature				
Christopher J. Henderson	Christophe	r Henderson			
Title Executive Vice President & Secretary	Date 3/27/2023	Telephone Number (805)987-0400			

WILLFUL FALSE STATEMENTS ON THIS FORM ARE PUNISHABLE BY FINE AND/OR IMPRISONMENT (U.S. CODE, TITLE 18, SECTION 1001), AND/OR REVOCATION OF ANY STATION LICENSE OR CONSTRUCTION

FCC NOTICE TO INDIVIDUALS REQUIRED BY THE PRIVACY ACT AND THE PAPERWORK REDUCTION ACT

The solicitation of personal information requested in this application is authorized by the Communications Act of 1934, as amended. The Commission will use the information provided in this form to determine whether grant of the application is in the public interest. In reaching that determination, or for law enforcement purposes, it may become necessary to refer personal information contained in this form to another government agency. In addition, all information provided in this form will be available for public inspection. If information requested on the form is not provided, the application may be returned without action having been taken upon it or its processing may be delayed while a request is made to provide the missing information. Your response is required to obtain the requested authorization.

Public reporting burden for this collection of information is estimated to average 639 hours and 53 minutes per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the burden, can be sent to the Federal Communications Commission, Records Management Branch, Paperwork Reduction Project (3060-0627), Washington, D. C. 20554. Do NOT send completed forms to this address.

THE FOREGOING NOTICE IS REQUIRED BY THE PRIVACY ACT OF 1974, P.L. 93-579, DECEMBER 31, 1974, 5 U.S.C. 552a(e)(3), AND THE PAPERWORK REDUCTION ACT OF 1980, P.L. 96-511, DECEMBER 11, 1980, 44 U.S.C. 3507.

FCC 302-AM (Page 3) August 1995

CLEAR ALL PAGES

Exhibit No.

No

✓	Yes		No
---	-----	--	----

ENGINEERING EXHIBIT IN SUPPORT OF AN APPLICATION FOR DIRECT MEASUREMENT OF POWER STATION KPXQ – GLENDALE, ARIZONA 1360 kHz – 50 kW-D, 1 kW-N, U, DA-N Facility ID: 55912

Applicant: Salem Communications Holding Corporation

March, 2023

7901 Yarnwood Court Springfield, VA 22153-2899 tel: (703) 569-7704 fax: (703) 569-6417

email: info@ctjc.com www.ctjc.com

TABLE OF CONTENTS

SECTION III OF FCC FORM 302-AM

ENGINEERING STATEMENT OF JAMES D. SADLER

FIGURE

Tower Model Height and Radius	. 1
Measured and Modeled Impedances	. 2
Nighttime Antenna Monitor Parameters and Common Point Data	. 3
Sample Toroid Reference Impedance	. 4
Sample Device Verification Measurements	. 5
Diplex Filter Circuit Schematic Diagram	. 6

Individual Tower Modeling	Appendix A
5	
Nighttime Directional Array Model	Appendix B
	Appendix D

		LICATION ENGI	NEERING DATA						
Name of Applicant Salem Communications Holding Corporation									
PURPOSE OF AUTHORIZATION APPLIED FOR: (check one)									
Station License 🗹 Direct Measurement of Power									
1. Facilities authorized in construction permit									
Call Sign	사망했다. 여러가 것 같은 것 같은	onstruction Permit		Hours of Operation	ation	Power in	·		
KPXQ	(if applicable) N/A		(kHz) 1360	Unlimited		Night 1	Day 50		
2. Station locatio	'n								
State				City or Town					
Arizona				Glendale					
3. Transmitter lo	cation								
State	County			City or Town		Street address (or other identification	ation)		
AZ	Maricop	а		Phoenix		7401 Camelback			
4. Main studio lo	cation								
State	County			City or Town		Street address	ation)		
AZ	Maricopa	à		Output(or other identification)Phoenix2425 E Camelback Road					
5. Remote contro	ol point location	n (specify only if au	uthorized direction	al antenna)					
State	County			City or Town		Street address (or other identification (or other identification)	ation		
AZ	Maricop	а		Phoenix	Phoenix 2425 E Camelback Road				
							es 🗸 No		
7. Does the sam	pling system m	neet the requireme	nts of 47 C.F.R. 5	ection 73.68?					
							lot Applicable		
Attach as an Ex	chibit a detaileo	d description of the	sampling system	as installed.		Exhi Eng Sin	bit No. nt		
8. Operating con	etante:								
RF common poin modulation for nig	t or antenna cu	urrent (in amperes)) without			current (in ampere	s) without		
modulation for hig	gni system	4.65		modulation for	day system	31.0			
Measured antenn operating frequen		point resistance (ir	ohms) at	Measured antenna or common point reactance (in ohms) at operating frequency					
Night	icy	Day		Night Day					
50.0		52.0		+j 0		+j 8.	2		
Antenna indicatio	ns for direction								
Towe	rs	Antenna Phase reading	(s) in degrees	Antenna mo current		(c) /	ase currents		
20 <u>10 10</u> 10 10 10		Night	Day	Night	Day	Night	Day		
1(NW		80.8 -60.8		1.428					
2(NE) 3(S))	0.0		1.000					

5

Manufacturer and type of antenna monitor:

Potomac Insturments, Model 1901-3

SECTION III - Page 2

9. Description of antenna system ((f directional antenna is used, the information requested below should be given for each element of the array. Use separate sheets if necessary.)

Type Radiator Uniform cross- section, guyed, base insulated	Overall height in meters of radiator above base insulator, or above base, if	Overall height in meters above ground (without obstruction lighting)	Overall height in meters above ground (include obstruction lighting)	If antenna is either top loaded or sectionalized, describe fully in an		
	grounded. All - 54.9	All - 55.8	#1 & #2 - 56.7 #3 - 55.8	Exhibit. Exhibit No. N/A		

Excitation

1

Series

Shunt

Geographic coordinates to nearest second. For directional antenna give coordinates of center of array. For single vertical radiator give tower location.

North Latitude 33	0	30		28		West Longitude 112 o	13	811	01	- 51
-------------------	---	----	--	----	--	----------------------	----	-----	----	------

If not fully described above, attach as an Exhibit further details and dimensions including any other antenna mounted on tower and associated isolation circuits.

Exhibit No. N/A Exhibit No.

On File

Also, if necessary for a complete description, attach as an Exhibit a sketch of the details and dimensions of ground system.

10. In what respect, if any, does the apparatus constructed differ from that described in the application for construction permit or in the permit?

N/A	

11. Give reasons for the change in antenna or common point resistance.

Installation of diplex filters required for collocation of station KXXT

I certify that I represent the applicant in the capacity indicated below and that I have examined the foregoing statement of technical information and that it is true to the best of my knowledge and belief.

Name (Please Print or Type) James D. Sadler	Signature (check appropriate box below)
Address (include ZIP Code) Carl T. Jones Corporation	Date March 27, 2023
7901 Yarnwood Court	Telephone No. (Include Area Code)
Springfield, VA 22153	(703) 569-7704

Technical Director		Registered Professional Engineer
Chief Operator	\checkmark	Technical Consultant
Other (specify)		

ENGINEERING STATEMENT OF JAMES D. SADLER IN SUPPORT OF AN APPLICATION FOR DIRECT MEASUREMENT OF POWER STATION KPXQ – GLENDALE, ARIZONA 1360 kHz – 50 kW-D, 1 kW-N, U, DA-N Facility ID: 55912

Licensee: Salem Communications Holding Corporation

I am a Technical Consultant, an employee in the firm of Carl T. Jones Corporation, with offices located in Springfield, Virginia. My education and experience are a matter of record with the Federal Communications Commission.

1.0 GENERAL

This office has been authorized by Salem Communications Holding Corporation ("SCHC"), licensee of AM Station KPXQ, to prepare this engineering statement, FCC Form 302-AM and the associated figures and appendices in support of an Application for Direct Measurement of Power. Station KPXQ is licensed pursuant to a proof of performance using moment method modeling and internal array parameters (Section 47 CFR 73.151(c)) for operation on 1360 kilohertz at a power of 50 kilowatts during daytime hours and 1 kilowatt during nighttime hours.

AM Station KXXT holds a construction permit (FCC File No. BP-20210528AAJ) which authorizes collocation of its transmission facilities at the KPXQ transmitter site

.

and diplexing onto the KPXQ towers. The KXXT construction permit specifies operation on 1010 kilohertz with a daytime power of 23 kilowatts, a critical hours power of 9.8 kilowatts, and a nighttime power of 0.3 kilowatts. The KXXT daytime and critical hours directional antenna will use KPXQ towers #1 and #2 and the KXXT nighttime hours directional antenna will use KPXQ towers #1 and #3.

Following the installation of the new diplexing filters and the KXXT phasing and coupling systems, the KPXQ sample transformer for each tower was replaced and the new transformers relocated from the output of the ATU networks to the output of the filter networks. The location of the sample transformers are shown on the diplex filter circuit schematic diagrams included in Figure 6. Impedance measurements were performed at the output of each of the KPXQ filter networks with the other towers open circuited at the corresponding filter output locations. The location of the relocated KPXQ sample toroidal transformer. Based on these measurements, it was determined that it would be necessary to modify the previous moment method model and file FCC Form 302-AM.

The specific measurement and modeling techniques used in performing the modified proof of performance on the KPXQ directional pattern are described in detail in this engineering statement. Impedance measurement data and model derived operating parameters are tabulated in the figures attached to this engineering statement. In accordance with the Rules, sampling system measurements, and the reference field strength measurements have not been repeated. However, because

the sample transformers were replaced, measurements were performed to verify the performance of the new transformers and, in addition, the sample line measurements with the transformers attached have been repeated. All pertinent modified computer model input and output files are contained in the attached Appendices A and B.

2.0 IMPEDANCE MEASUREMENTS, COMPUTER MODELING AND PARTIAL SAMPLE SYSTEM VERIFICATION

The pattern verification proof of performance contained herein is based on the computer modeling and sample system verification procedures described in Section 47 CFR 73.151(c) of the FCC's Rules and Regulations. The KPXQ antenna array consists of three, triangular, uniform cross-section, guyed towers. All three towers have an electrical height of 89.6 degrees and a face width of 16 inches. Towers 1 and 2 are identical. Tower 3 was replaced in recent years and is just slightly different in that the face width on the bottom 10 foot section tapers from 16 inches to 10 inches at the base insulator. Due to the relatively short and insignificant nature of the tapered section on tower 3 and, as was done in the previous method of moments proof, all three towers were modeled using the same cylindrical vertical wire model. A detailed description of the tower base impedance measurements and the computer models employed is contained below.

The sampling system employs identical Delta Electronics Model TCT-1 toroidal current transformers located in the output branch of each tower's filter network except that the toroidal current transformer at tower 1 is a high voltage unit to handle the high

STATEMENT OF JAMES D. SADLER STATION KXPQ, GLENDALE, ARIZONA

daytime voltage on tower 1. The performance of the toroidal current transformers was verified by driving a common reference current through each transformer and comparing the outputs as observed on the Hewlett-Packard Model 8753C network analyzer. A tabulation of the toroidal current transformer measurement data along with the serial number of each current transformer is contained in Figure 5. The measured ratio and relative phase values for each of the current transformers when compared to the reference transformer were within the manufacturers stated accuracy.

2.1 BASE IMPEDANCE MEASUREMENTS

An impedance measurement was performed, by the undersigned, at the output J-Plug of each KPXQ filter network with the other towers open circuited at the corresponding J-Plug location. This location is immediately adjacent to the sampling system toroidal current transformer. The impedance measurement was performed using a Hewlett-Packard Model 4396A network analyzer; an Amplifier Research Model 5W1000 power amplifier; and a Tunwall Radio directional coupler. The new measured impedances are contained in Figure 2.

2.2 INDIVIDUAL TOWER COMPUTER MODELS

The original moment method computer model and the separate circuit model were modified for each tower in order to replicate the new measured base impedances. The modified individual tower models were developed using Expert MiniNEC Broadcast Professional (Version 23.0). To replicate the individual measured base impedances to

within the tolerance specified in the FCC's Rules, each tower's physical height and radius was adjusted in the MiniNEC model and series inductance and shunt capacitance and inductance were employed in a separate circuit model.¹ Details of the modeled individual tower adjusted heights and radii are contained in Figure 1.

The values of the lumped series inductances and shunt reactances used in the circuit model are contained in Figure 2. The measured individual tower impedances, the modeled individual tower impedances, and the adjusted modeled (circuit model) individual tower impedances are also contained in Figure 2. The percentage difference between the adjusted modeled tower heights and radii and the physical tower heights and radii are within the tolerances set forth in the FCC's Rules. The magnitude of the lumped series inductance and shunt capacitance that was used in each circuit model is also within the tolerances set forth in the FCC's Rules.

As demonstrated by the data contained in Figure 2, the adjusted modeled individual tower resistance and reactance for each tower is well within ± 2 ohms and ± 4 percent tolerance of the corresponding measured individual tower resistance and reactance. The text files containing all pertinent input and output data associated with the individual tower models are contained in Appendix A.

¹ A shunt inductor is installed between the KXXT and KPXQ filters and the base of the tower on towers #1 and #2 to enhance the bandwidth performance of the stations. Each shunt inductor was adjusted for a value of 40 uH. The measured shunt inductance was included in a separate circuit model for towers #1 and #2 as indicated on Figure 2.

2.3 DIRECTIONAL ANTENNA COMPUTER MODEL AND ANTENNA MONITOR PARAMETERS

The theoretical directional field parameters and the licensed tower spacings and orientations were used in combination with the adjusted individual tower models to produce the nighttime directional antenna computer model. From the directional computer model, tower currents were derived for each wire segment of each antenna. Each segment current was multiplied by the segment length and numerically integrated and normalized to the appropriate reference tower to verify that the modeled current moments are essentially identical to the authorized relative directional field parameters.

The new nighttime directional array operating parameters were determined from the modeled base currents and are tabulated in Figure 3. Also included in Figure 3 is the adjusted common point impedance and common point current for the licensed nighttime 1 kilowatt operation. The text files containing all pertinent input and output data associated with the nighttime directional antenna computer model are contained in Appendix B.

3.0 MEASURED DAYTIME BASE IMPEDANCE AND CURRENT

The daytime non-directional base impedance of tower 1 was measured by the undersigned using a Delta Electronics OIB-3 impedance bridge and found to be Z = 52.0 + j8.2 Ohms. The transmitter was adjusted for a base current of 31.00 Amperes corresponding to an antenna input power of 50,000 Watts.

STATEMENT OF JAMES D. SADLER STATION KXPQ, GLENDALE, ARIZONA

4.0 SUMMARY

It is submitted that the KPXQ nighttime directional antenna pattern fully complies with the terms of the station's FCC Authorization and all applicable FCC Rules and Regulations. It is requested that a superseding license be issued to SCHC reflecting the new Moment Method model derived nighttime operating parameters and to reflect the new daytime measured non-directional base impedance and current as contained herein and on FCC Form 302-AM.

This engineering statement and the attached figures and appendices were prepared by the undersigned or under the direct supervision of the undersigned and are believed to be true and correct.

Dated: March 27, 2023

James D. Sadler

TOWER MODEL HEIGHT AND RADIUS

Tower	Physical Height (degrees)	Modeled Height (degrees)	Percent of Physical Height	Tower Face Width (meters)	Equivalent Radius (meters)	Modeled Radius (meters)	Percent of Equivalent Radius
1	89.60	97.66	109.0	0.4064	0.1940	0.1940	100.0
2	89.60	86.91	97.0	0.4064	0.1940	0.1940	100.0
3	89.60	96.32	107.5	0.4064	0.1940	0.1940	100.0

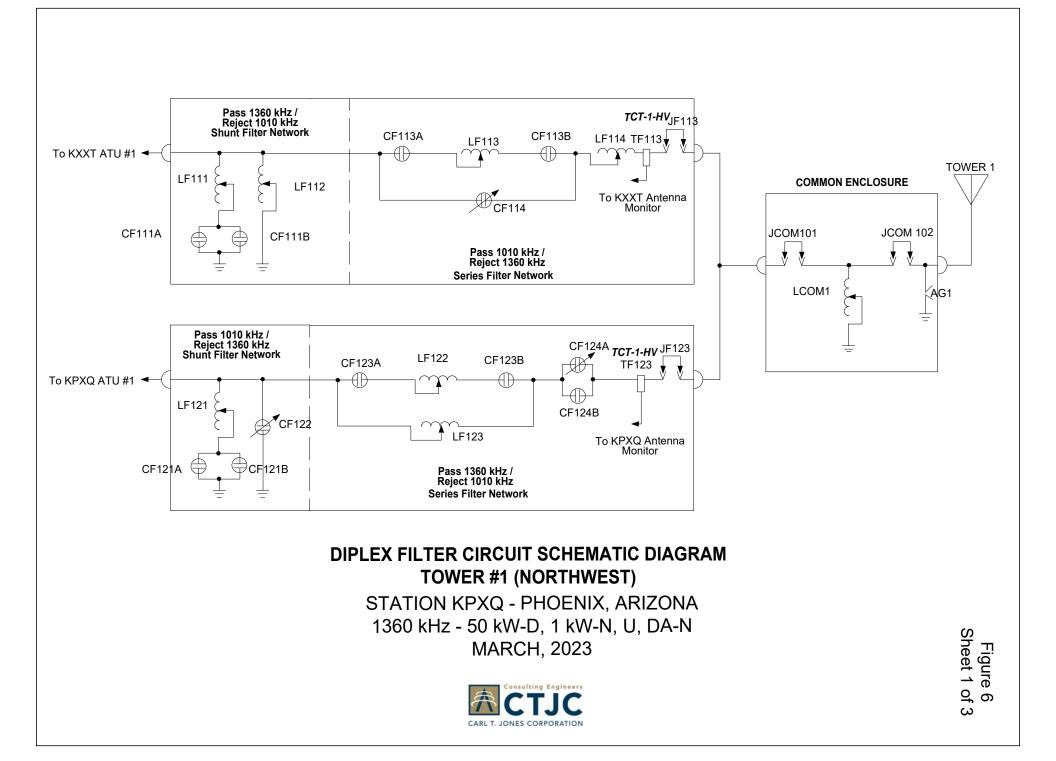
MEASURED AND MODELED IMPEDANCES

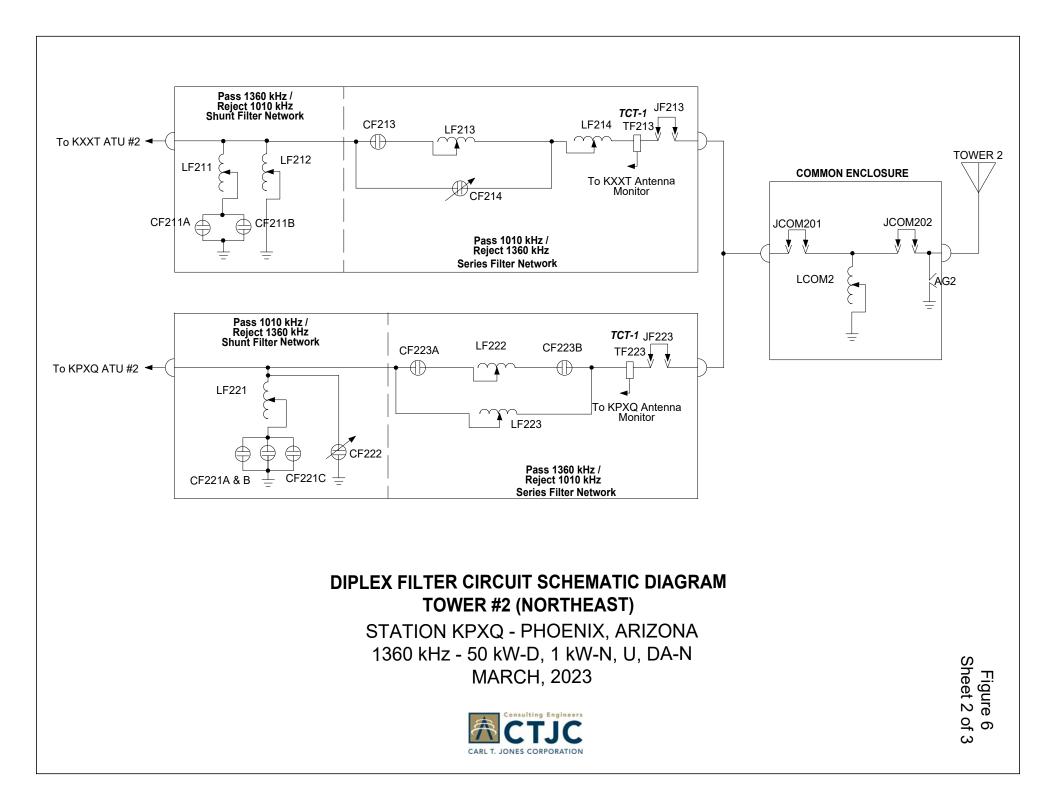
STATION KPXQ - GLENDALE, ARIZONA 1360 kHz - 50 kW-D, 1 kW-N, U, DA-N MARCH, 2023

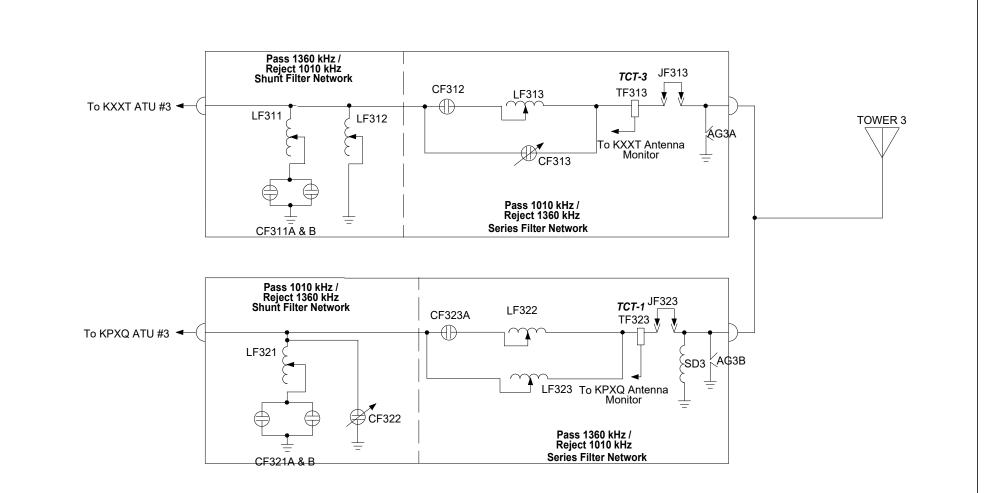
Tower	Measured Tower Base Impedance ¹	Modeled Tower Base Impedance	Shunt Capacitance (pF)	Shunt Inductance (uH)	Modeled plus Shunt Reactance	Lumped Series Inductance (uH)	Total Adjusted Tower Base Impedance
1	45.0 +j 80.3	59.2 +j 65.0	90.0	40.0	45.0 +j 62.1	2.13	45.0 +j 80.3
2	36.8 +j 73.9	38.2 +j 4.5	15.0	40.0	36.9 +j 8.4	7.67	36.9 +j 73.9
3	59.3 +j 76.3	53.6 +j 56.6	105.0	0.0	59.3 +j 56.5	2.32	59.3 +j 76.3

¹ Measured at output of Filter network adjacent to the sample toroid with the other towers open circuited at the same relative location.

	MiniNEC Modeled Parameters						
Tower	Ratio	Phase (degrees)					
1	1.428	80.8					
2	1.288	-60.8					
3	1.000	0.0					
	Common Point Impedance	= 50 +j 0 ohms					
	Common Point Current =	4.65 amperes					
	Antenna Input Power =	1,080 Watts					


SAMPLE TOROID REFERENCE IMPEDANCE


Tower Number	Measured Impedance (Ohms)
1	50.22 +j 0.94
2	49.72 +j 0.05
3	49.77 +j 0.08


SAMPLE DEVICE CALIBRATION

Reference	Measured	Meas	sured
Sample Toroid	Sample Toroid	Field	Phase
Number	Number	Ratio	(degrees)
1	2	1.003	-0.4
1	3	1.003	-0.3
2	3	1.003	-0.1

Sample Toroid Number	Туре	Serial Number
1	Delta Electronics, TCT-1HV	1462
2	Delta Electronics, TCT-1	4925
3	Delta Electronics, TCT-1	15054

DIPLEX FILTER CIRCUIT SCHEMATIC DIAGRAM TOWER #3 (SOUTH) STATION KPXQ - PHOENIX, ARIZONA 1360 kHz - 50 kW-D, 1 kW-N, U, DA-N MARCH, 2023

Figure 6 Sheet 3 of 3

APPENDIX A

INDIVIDUAL TOWER MODEL

APPENDIX A – INDIVIDUAL TOWER MODEL STATION KPXQ – GLENDALE, ARIZONA

freq re (MHz) (o source = 2	zation = 50. esist react ohms) (ohms l; node 1, se) (ohms) ctor 1	phase (deg)	VSWR	S11 dB	S12 dB
		7 87.954	47.7	3.1300	-5.7383	-1.3477
	inates in deg : perfect gr		dimension	s in mete	ers	
	Distance	Angle 0	Z O		dius	segs
1 none	0	0	0 97.66	.19	94	21
2 none	89.6	62. 62.	0	.19	94	21
3 none	89.6 179.2	62. 157.	86.91 0	.19	94	21
5 110110	179.2	157.	96.32	•	51	21
Number of v	wires current nodes	= 3 = 63 minimum			ximum	
Individual	wires w	ire value	2		value	
segment ler		2 4.138	357	1	4.65048	
radius		1.194		1	.194	
ELECTRICAL Frequencies freque no. lowest 1 1.36	ency			um	h (wavele maximum .012918	
Sources						
source node 1 1		magnitude 1.	phase 0		type voltage	
Lumped load						
load node	resistance (ohms)	reactand (ohms)	ce indu (mH	uctance	capacita: (uF)	nce passive circuit
1 1	.01	(OIIIIS) 0	(III.H 0	1	(ur) 0	0
2 22	.01	357.47	0		0	0
3 43	.01	-1,114.5	53 0		0	0

APPENDIX A – INDIVIDUAL TOWER MODEL STATION KPXQ – GLENDALE, ARIZONA

IMPEDANCE - normaliza	TOWER #2 tion = 50.					
(MHz) (oh	ist react ms) (ohms)		phase (deg)	VSWR	S11 dB	S12 dB
source = 1; 1.36 38.	node 22, sect 287 4.558	or 1 38.558	6.8	1.3315	-16.944	-8.9E-02
	OWER #2 ates in degree perfect grour		dimension	s in met	ers	
wire caps D 1 none O		ngle	Z 0		dius 94	segs 21
0 2 none 8	9.6 62	•	97.66 0	.1	94	21
3 none 1		2. 57. 57.	86.91 0 96.32	.1	94	21
Number of wi cu	res = rrent nodes =	= 3 = 63				
		.nimum			ximum	
Individual w segment leng radius		e value 4.1385 .194	57	wire 1 1	value 4.65048 .194	
ELECTRICAL D Frequencies frequen no. lowest 1 1.36		COWER #2 no. o steps 1	-	um	h (wavele maximum .012918	
Sources source node 1 22	sector mag 1 1.	nitude	phase 0		type voltage	
Lumped loads						
load node 1 1 2 22 3 43	resistance (ohms) .01 .01 .01	reactance (ohms) 463.7 0 -1,114.53	(mH 0 0	uctance)	capacita (uF) 0 0 0	nce passive circuit 0 0 0

APPENDIX A – INDIVIDUAL TOWER MODEL STATION KPXQ – GLENDALE, ARIZONA

freq res (MHz) (ohu source = 1;	tion = 50. ist react ms) (ohms node 43, s) (ohms) ector 1	phase (deg)	VSWR	S11 dB	S12 dB
1.36 53.	527 56.42	9 77.777	46.5	2.8426	-6.3838	-1.1348
GEOMETRY - T Wire coordin Environment:	ates in deg		dimensions	s in meto	ers	
wire caps D	istance	Angle	Z	ra	dius	segs
1 none 0		0	0	.1	94	21
0 2 none 8	0 6	0 62.	97.66 0	1	94	21
	9.6	62.	0 86.91	• 1 3	94	ZI
3 none 1		157.	0	.1	94	21
1	79.2	157.	96.32			
Number of wi cu	res rrent nodes					
Individual w	iroa w	minimum ire value			ximum value	
segment leng		2 4.138		1	4.65048	
radius		1.194		1	.194	
ELECTRICAL D	ESCRIPTION	- TOWER #3				
Frequencies	(MHz)					
frequen	-	no.	-	-	h (wavele	-
no. lowest 1 1.36	step 0	step 1	s minimu .01149		maximum .012918	
1 1.30	0	T	.01145	90	.012910	
Sources						
source node		magnitude	phase		type	
1 43	1	1.	0		voltage	
Lumped loads	resistance	reactanc	a ind	uctance	appadito	nce passive
load node	(ohms)	(ohms)	e Indi (mH)		(uF)	circuit
1 1	.01	463.7	0	•	0	0
2 22	.01	357.47	0		0	0
3 43	.01	0	0		0	0

APPENDIX B

NIGHTTIME DIRECTIONAL ARRAY MODEL

APPENDIX B – NIGHTTIME DIRECTIONAL ARRAY MODEL PAGE B-1 STATION KPXQ – GLENDALE, ARIZONA

noi	rmaliza	tion :	= 50.	PERATI	011				
	(oh		(ohms) (o		phase (deg)	VSWR	S11 dB	S12 dB
1.36	e = 1; 7.4		1, se 74.31		.696	84.2	21.514	80805	-7.7012
source 1.36	e = 2; 30.		-	ector 5 37		34.7	2.042	-9.306	54201
source 1.36	e = 3; 57.		43, s 47.04		1 .647	39.1	2.3624	-7.8468	77888
Wire d	TRY - N coordin onment:	ates :	in deg	rees;		dimension	ıs in met	ers	
wire	caps D	istan	ce	Angle		Z	ra	dius	segs
1	none 0			0		0	.1	94	21
2	0 none 8 8			0 62. 62.		97.66 0 86.91	.1	94	21
3	none 1			157. 157.		0 96.32	.1	94	21
	cu	irrent	nodes	= 6 minim					
	idual w			ire	value		wire	ximum value	
	nt leng							value	3
segmer radius ELECTF	nt leng s	th DESCRII		ire 2 1	value 4.138 .194		wire 1 1	value 4.65048	3
segmer radius ELECTF Freque	nt leng s RICAL D encies frequen	DESCRII (MHz) LCY	PTION	ire 2 1	value 4.138 .194 TTIME no.	OPERATION of segme	wire 1 1 u ent lengt	value 4.65048 .194 h (wavele	engths)
segmer radius ELECTF Freque f no.]	nt leng s RICAL D encies	DESCRII (MHz) LCY		ire 2 1	value 4.138 .194 TTIME	OPERATION of segme	wire 1 1 un um	value 4.65048 .194	engths)
segmer radius ELECTF Freque no. 1 1 1 Source	nt leng s RICAL D encies frequen lowest 1.36	th DESCRII (MHz) CY	Step 0	ire 2 1	value 4.138 .194 TTIME no. step 1	OPERATION of segme os minim	wire 1 1 un um	value 4.65048 .194 h (wavele maximum	engths)
segmer radius ELECTF Freque f no. 1 1 1 Source source 1	At leng RICAL D encies frequen lowest 1.36 es e node 1	escrif (MHz) cy sec 1	Step 0	ire 2 1 - NIGH magnit 375.69	value 4.138 .194 TTIME no. step 1 ude 7	OPERATION of segme os minim .0114 phase 85.1	wire 1 1 un um	<pre>value 4.65048 .194 h (wavele maximum .012918 type voltage</pre>	engths)
segmer radius ELECTF Freque f no. 1 1 1 Source source	nt leng RICAL D encies frequen lowest 1.36 es e node	th ESCRII (MHz) Cy Sec	step 0	ire 2 1 - NIGH magnit	value 4.138 .194 TTIME no. step 1 ude 7	OPERATION of segme os minim .0114 phase	wire 1 1 un um	<pre>value 4.65048 .194 h (wavele maximum .012918 type</pre>	engths)
segmer radius ELECTF Freque f no. 1 1 1 Source source 1 2 3	At leng RICAL D encies frequen lowest 1.36 es e node 1 22	th DESCRII (MHz) CCY sec 1 1 1	Step 0	ire 2 1 - NIGH 375.69 186.37 318.06	value 4.138 .194 TTIME no. step 1 ude 7 4	OPERATION of segme os minim .0114 phase 85.1 257.9 315.3	wire 1 1 ent lengt 196	<pre>value 4.65048 .194 h (wavele maximum .012918 type voltage voltage voltage</pre>	engths) 1
segmer radius ELECTF Freque f no. 1 1 1 Source source 1 2 3 Lumpeo	AlCAL D encies frequen lowest 1.36 es e node 1 22 43 d loads	th DESCRII (MHz) Cy sec 1 1 1 1 : resi:	Step 0 Ctor	ire 2 1 - NIGH 375.69 186.37 318.06	value 4.138 .194 TTIME no. step 1 ude 7 4 actanc	OPERATION of segme os minim .0114 phase 85.1 257.9 315.3 :e ind	wire 1 2 ent lengt 196	<pre>value 4.65048 .194 h (wavele maximum .012918 type voltage voltage voltage capacita</pre>	engths) 1 3 ance passiv
segmer radius ELECTF Freque f no. 1 1 1 Source source 1 2 3	At leng RICAL D encies frequen lowest 1.36 es e node 1 22 43	th DESCRII (MHz) CCY sec 1 1 1	Step 0 Ctor	ire 2 1 - NIGH 375.69 186.37 318.06	value 4.138 .194 TTIME no. step 1 ude 7 4	OPERATION of segme os minim .0114 phase 85.1 257.9 315.3	wire 1 2 ent lengt 196	<pre>value 4.65048 .194 h (wavele maximum .012918 type voltage voltage voltage</pre>	engths)
segmer radius ELECTF Freque f no. 1 1 1 Source source 1 2 3 Lumpec load	Al Leng RICAL D encies frequen lowest 1.36 es e node 1 22 43 d loads node	sth DESCRID (MHz) CCY sec 1 1 1 1 s (ohms)	Step 0 Ctor	ire 2 1 - NIGH 375.69 186.37 318.06 re (o	value 4.138 .194 TTIME no. step 1 ude 7 4 actanc	OPERATION of segme os minim .0114 phase 85.1 257.9 315.3 :e ind (mH	wire 1 2 ent lengt 196	<pre>value 4.65048 .194 h (wavele maximum .012918 type voltage voltage voltage capacita (uF)</pre>	engths) 1 3 unce passiv circu

APPENDIX B – NIGHTTIME DIRECTIONAL ARRAY MODEL PAGE B-2 STATION KPXQ – GLENDALE, ARIZONA

RMS CURRENT - NIGHTTIME OPERATION Frequency = 1.36 MHz Input power = 1,000. watts Efficiency = 99.97 % coordinates in degrees current mag phase real imaginary											
		37	8	mag	phase	real	imaginary				
no.	X	Y	Z	(amps)	(deg)	(amps)	(amps)				
GND	0	0	0	3.55651	.9	3.5561	.0536196				
2	0	0	4.65048	3.69067	.6	3.69045	.0411008				
3	0	0	9.30095	3.75101	.5	3.75087	.0328462				
4	0	0	13.9514	3.77594	. 4	3.77585	.0255895				
5	0	0	18.6019	3.76998	.3	3.76993	.0189828				
6	0	0	23.2524	3.73529	.2	3.73527	.0128961				
7	0	0	27.9029	3.67318	.1	3.67317	7.29E-03				
8	0	0	32.5533	3.58466	0.0	3.58466	2.15E-03				
9	0	0	37.2038	3.47066	360.	3.47066	-2.49E-03				
10	0	0	41.8543	3.3321	359.9	3.3321	-6.62E-03				
11	0	0	46.5048	3.16995	359.8	3.16993	0101946				
12	0	0	51.1552	2.9852	359.7	2.98517	0131783				
13	0	0	55.8057	2.77891	359.7	2.77887	0155312				
14	0	0	60.4562	2.55215	359.6	2.55209	017213				
15	0	0	65.1067	2.30599	359.5	2.30592	0181835				
16	0	0	69.7572	2.04145	359.5	2.04137	0184031				
17	0	0	74.4076	1.75937	359.4	1.75928	0178324				
18	0	0	79.0581	1.46028	359.4	1.46019	0164292				
19	0	0	83.7086	1.14397	359.3	1.14388	0141429				
20	0	0	88.3591	.808522	359.2	.808449	0108968				
21	0	0	93.0095	.447685	359.2	.447637	-6.54E-03				
END	0	0	97.66	0	0	0	0				
GND 23	42.0647 42.0647	-79.1121 -79.1121	0 4.13857	3.49989 3.52958	223.2 222.3	-2.55268	-2.39438 -2.3743				
23 24	42.0647	-79.1121	4.13057 8.27714	3.52958	222.3	-2.61163 -2.63165	-2.34773				
24	42.0647	-79.1121	12.4157	3.50188	221.7	-2.63103	-2.34773				
26	42.0647	-79.1121	16.5543	3.45647	221.3	-2.6125	-2.2632				
20	42.0647	-79.1121	20.6929	3.39119	220.9	-2.5765	-2.2032				
28	42.0647	-79.1121	24.8314	3.30657	220.0	-2.52391	-2.13618				
29	42.0647	-79.1121	24.0314	3.20313	220.2	-2.45526	-2.05711				
30	42.0647	-79.1121	33.1086	3.0814	219.7	-2.37105	-1.96804				
31	42.0647	-79.1121	37.2471	2.94196	219.4	-2.27176	-1.86928				
32	42.0647	-79.1121	41.3857	2.78541	219.2	-2.15793	-1.7612				
33	42.0647	-79.1121	45.5243	2.6124	219.2	-2.03007	-1.64422				
34	42.0647	-79.1121	49.6629	2.42359	218.8	-1.88872	-1.51873				
35	42.0647	-79.1121	53.8014	2.21966	218.6	-1.73442	-1.38517				
36	42.0647	-79.1121		2.00125			-1.24391				
37	42.0647	-79.1121	62.0786	1.76893	218.3	-1.38901	-1.09533				
38	42.0647	-79.1121	66.2172	1.5231	218.1	-1.19869	939667				
39	42.0647	-79.1121	70.3557	1.26387	217.9	996822	77699				
40	42.0647	-79.1121	74.4943	.990669	217.8	782965	606953				
41	42.0647	-79.1121	78.6329	.701397	217.6	555447	428294				
42	42.0647	-79.1121	82.7714	.390205	217.5	309615	237484				
END	42.0647	-79.1121	86.91	0	0	0	0				
GND	-164.955	-70.019	0	3.01293	276.2	.324388	-2.99542				
44	-164.955	-70.019	4.58667	3.08281	274.4	.23822	-3.07359				
45	-164.955	-70.019	9.17333	3.10832	273.4	.183139	-3.10292				
46	-164.955	-70.019	13.76	3.10961	272.5	.136279	-3.10662				
47	-164.955	-70.019	18.3467	3.08891	271.8	.0951221	-3.08745				
48	-164.955	-70.019	22.9333	3.04735	271.1	.0586266	-3.04679				
49	-164.955	-70.019	27.52	2.98563	270.5	.0263236	-2.98552				
50	-164.955	-70.019	32.1067	2.90436	270.	-2.02E-03					
51	-164.955	-70.019	36.6933	2.80412	269.5	0265115					

APPENDIX B – NIGHTTIME DIRECTIONAL ARRAY MODEL PAGE B-3 STATION KPXQ – GLENDALE, ARIZONA

52 53	-164.955 -164.955	-70.019 -70.019	41.28 45.8667	2.68555 2.54932	269. 268.6	0472211 064178	-2.68514 -2.54851
54	-164.955	-70.019	50.4533	2.39614	268.1	0774027	-2.39489
55	-164.955	-70.019	55.04	2.22678	267.8	0869133	-2.22508
56	-164.955	-70.019	59.6267	2.04201	267.4	0927264	-2.0399
57	-164.955	-70.019	64.2133	1.84262	267.	0948626	-1.84018
58	-164.955	-70.019	68.8	1.62935	266.7	093343	-1.62668
59	-164.955	-70.019	73.3867	1.4028	266.4	0881825	-1.40003
60	-164.955	-70.019	77.9733	1.16332	266.1	0793784	-1.16061
61	-164.955	-70.019	82.56	.910681	265.8	0668779	908222
62	-164.955	-70.019	87.1467	.643294	265.5	0505048	641309
63	-164.955	-70.019	91.7333	.356134	265.2	029753	354889
END	-164.955	-70.019	96.32	0	0	0	0