Approved by OMB 3060-0627

FOR FCC USE ONLY

FCC 302-AM APPLICATION FOR AM BROADCAST STATION LICENSE

(Please read instructions before filling out form.

FOR COMMISSION USE ONLY

FILE NO.

SECTION I - APPLICANT FEE INFORMATION			
1. PAYOR NAME (Last, First, Middle Initial)			
MAILING ADDRESS (Line 1) (Maximum 35 characters)			
MAILING ADDRESS (Line 2) (Maximum 35 characters)			
CITY	STATE OR COUNTRY (if fo	reign address)	ZIP CODE
TELEPHONE NUMBER (include area code)	CALL LETTERS	OTHER FCC IDEN	NTIFIER (If applicable)
 2. A. Is a fee submitted with this application? B. If No, indicate reason for fee exemption (see 47 C.F.R. Section Governmental Entity Noncommercial educ C. If Yes, provide the following information: Enter in Column (A) the correct Fee Type Code for the service you Fee Filing Guide." Column (B) lists the Fee Multiple applicable for th 	cational licensee O are applying for. Fee Type Co is application. Enter fee amou (C)	ther (Please explain) odes may be found i nt due in Column (C	Yes No
FEE TYPE FEE MULTIPLE CODE 0 0 1	FEE DUE FOR FE TYPE CODE IN COLUMN (A)	E	FOR FCC USE ONLY
To be used only when you are requesting concurrent actions which re	sult in a requirement to list mo	re than one Fee Typ	e Code.
(A) 0 0 0 1	(C) \$		FOR FCC USE ONLY
ADD ALL AMOUNTS SHOWN IN COLUMN C, AND ENTER THE TOTAL HERE. THIS AMOUNT SHOULD EQUAL YOUR ENCLOSED REMITTANCE.	TOTAL AMOUNT REMITTED WITH TH APPLICATION		FOR FCC USE ONLY

SECTION II - APPLICANT	INFORMATION					
1. NAME OF APPLICANT						
MAILING ADDRESS						
CITY			STATE		ZIP CODE	
2. This application is for:		,	,			
	Commercial		Noncomm	nercial		
	AM Direct	ional	L AM N	on-Directional		
Call letters	Community of License	Construct	ion Permit File No.	Modification of Construction	Expiration Date of La	ast
	,			Permit File No(s).	Construction Permit	
2 la tha station no			motio program	test sutherity in	Yes	No
3. Is the station how	w operating pursuant t	to auto	matic program	test authority in		NO
accordance with 47 C.F.F	R. Section 73.1620?				Exhibit No	
					EXHIDIT NO.	
If No, explain in an Exhib	lt.					
4. Have all the terms,	, conditions, and obliga	ations s	et forth in the	above described	Yes	Νο
construction permit been	fully met?					
					Exhibit No.	
If No, state exceptions in	an Exhibit.					
5. Apart from the change	es already reported, has	s any ca	use or circumsta	ance arisen since	Yes	No
the grant of the underly	ring construction permit	which v	would result in a	any statement or		No
representation contained	in the construction perm	nit applic	ation to be now	incorrect?		
•	·	•••			Exhibit No.	
If Yes, explain in an Exhi	ibit.					
						Na
6. Has the permittee file	d its Ownership Report (FCC Fo	orm 323) or owne	ership	les	NO
certification in accordance	e with 47 C.F.R. Section	73.361	5(b)?	•		
					Does not an	vlac
						-1-1
If No, explain in an Exhibit	iit .				Exhibit No.	
7 Has an adverse findir	a been made or an adv	oreo fin	al action been to	ken by any court	Yes	No
7. Thas all adverse finding	ith respect to the applice		at action been to	action in a civil or		
or administrative body wi	In respect to the application	nt or pa	nies to the appli			
criminal proceeding, brou	agnt under the provisions	s or any	law relating to the	ne following: any		
reiony; mass media rel	lated antitrust or unfair	compe	etition; traudulei	nt statements to		
another governmental un	it; or discrimination?					
If the answer is Yes, at	tach as an Exhibit a ful	l disclo	sure of the pers	sons and matters	EXHIDIL NO.	
involved, including an ide	entification of the court of	r admini	istrative body an	nd the proceeding		
(by dates and file numb	ers), and the disposition	n of the	litigation. Wh	nere the requisite		
information has been e	arlier disclosed in con	nection	with another a	application or as		

required by 47 U.S.C. Section 1.65(c), the applicant need only provide: (i) an identification of that previous submission by reference to the file number in the case of an application, the call letters of the station regarding which the application or Section 1.65 information was filed, and the date of filing; and (ii) the disposition of the previously reported matter.

8. Does the applicant, or any party to the application, have a petition on file to migrate to the expanded band (1605-1705 kHz) or a permit or license either in the existing band or expanded band that is held in combination (pursuant to the 5 year holding period allowed) with the AM facility proposed to be modified herein?

If Yes, provide particulars as an Exhibit.

The APPLICANT hereby waives any claim to the use of any particular frequency or of the electromagnetic spectrum as against the regulatory power of the United States because use of the same, whether by license or otherwise, and requests and authorization in accordance with this application. (See Section 304 of the Communications Act of 1934, as amended).

The APPLICANT acknowledges that all the statements made in this application and attached exhibits are considered material representations and that all the exhibits are a material part hereof and are incorporated herein as set out in full in

CERTIFICATION

1. By checking Yes, the applicant certifies, that, in the case of an individual applicant, he or she is not subject to a denial of federal benefits that includes FCC benefits pursuant to Section 5301 of the Anti-Drug Abuse Act of 1988, 21 U.S.C. Section 862, or, in the case of a non-individual applicant (e.g., corporation, partnership or other unincorporated association), no party to the application is subject to a denial of federal benefits that includes FCC benefits pursuant to that section. For the definition of a "party" for these purposes, see 47 C.F.R. Section 1.2002(b).

2. I certify that the statements in this application are true, complete, and correct to the best of my knowledge and belief, and are made in good faith.

Name	Signature Brian U	Byrnes
Title	Date	

WILLFUL FALSE STATEMENTS ON THIS FORM ARE PUNISHABLE BY FINE AND/OR IMPRISONMENT (U.S. CODE, TITLE 18, SECTION 1001), AND/OR REVOCATION OF ANY STATION LICENSE OR CONSTRUCTION

FCC NOTICE REQUIRED BY THE PAPERWORK REDUCTION ACT

The solicitation of personal information requested in this application is authorized by the Communications Act of 1934, as amended. The Commission will use the information provided in this form to determine whether grant of the application is in the public interest. In reaching that determination, or for law enforcement purposes, it may become necessary to refer personal information contained in this form to another government agency. In addition, all information provided in this form will be available for public inspection. If information requested on the form is not provided, the application may be returned without action having been taken upon it or its processing may be delayed while a request is made to provide the missing information. Your response is required to obtain the requested authorization.

Public reporting burden for this collection of information is estimated to take from 4 to 20 hours per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. If you have any comments on this burden estimate, or how we can improve the collection and reduce the burden it causes you, please e-mail them to pra@fcc.gov or send to the Federal Communications Commission, AMD-PERM, Paperwork Reduction Project (3060-0627), Washington, DC 20554. Do NOT send completed forms to this address. Remember - you are not required to respond to a collection of information sponsored by the Federal government, and the government may not conduct or sponsor this collection, unless it displays a currently valid OMB control number or if we fail yo provide you with this notice. This collection has been assigned an OMB control number of 3060-0627.

THE FOREGOING NOTICE IS REQUIRED BY THE PAPERWORK REDUCTION ACT OF 1995, P.L. 104-13, OCTOBER 1, 1995, 44 U.S.C. 3507.

Yes	No
	-

Exhibit No.

	Yes		No
--	-----	--	----

SECTION III - L	ICENSE APPLICATION ENGI	NEERING DATA		
Name of Applicar	nt			
BRIAN BY	RNES, RECEIVER			
PURPOSE OF A	UTHORIZATION APPLIED FOR	: (check one)		
<u>✓</u> :	Station License	Direct Mea	surement of Power	
1. Facilities auth	orized in construction permit	1		
Call Sign	File No. of Construction Permit	Frequency	Hours of Operation	Power in kilowatts
WBGX	(if applicable) <mark>N/A</mark>	(kHz) 1570	Unlimited	Night Day 0.5 1.1
2. Station location	n		Γ	
State			City or Town	
ILLINOIS			HARVEY	
3. Transmitter lo	cation			
State	County		City or Town	Street address
IL	COOK		HARVEY	15700 Campbell Ave.
4. Main studio lo	cation			
State	County		City or Town	Street address
IL	COOK		CHICAGO	5956 S. Michigan Ave.
5. Remote contro	ol point location (specify only if a	uthorized direction	al antenna)	
State	County		City or Town	Street address
IL	COOK		CHICAGO	5956 S. Michigan Ave.
6. Has type-appr	roved stereo generating equipme	nt been installed?		Yes 🖌 No
7. Does the sam	pling system meet the requireme	nts of 47 C.F.R. S	Section 73.68?	✓ Yes No
				Not Applicable
Attach as an Ex	khibit a detailed description of the	sampling system	as installed.	Exhibit No. ENG.

8. Operating constants:							
RF common point or antenna current (in amperes) without modulation for night system 3.29			RF common modulation fo 4.87	RF common point or antenna current (in amperes) without modulation for day system 4.87			
Measured antenna or common operating frequency	point resistance	(in ohms) at	Measured an operating fre	itenna or common į quency	point reactance (in	ohms) at	
Night	Day				Day		
50.0	50.0		-4.7		-4.7		
Antenna indications for direction	nal operation						
Towers	Antenna monitor Phase reading(s) in degrees		Antenna monitor sample current ratio(s)		Antenna base currents		
	Night	Day	Night	Day	Night	Day	
1(N)	0.0		1.000				
2(C)	164.3	7.9	.826	.421			
3(S)	-45.6	142.5	.604	.754			
4(E)		0.0		.800			
Manufacturer and type of anten	ına monitor: F	Potomac Instrume	nts AM-19(204))			

SECTION III - Page 2

9. Description of antenna system ((f directional antenna is used, the information requested below should be given for each element of the array. Use separate sheets if necessary.)

Type Radiator Guyed Tower	Overall height in meters of radiator above base insulator, or above base, if grounded. 45.8	Overall height in meters above ground (without obstruction lighting) 46.3	Overall height in meters above ground (include obstruction lighting) 46.3	If antenna is either top loaded or sectionalized, describe fully in an Exhibit. Exhibit No. N/A
Excitation	✓ Series	Shunt		

Geographic coordinates to nearest second. For directional antenna give coordinates of center of array. For single vertical radiator give tower location.

North Latitude 41	0	36	'	14	"	West Longitude <mark>87</mark>	0	40	'	45	"

Exhibit No.

Exhibit No.

ENG.

ENG

If not fully described above, attach as an Exhibit further details and dimensions including any other antenna mounted on tower and associated isolation circuits.

Also, if necessary for a complete description, attach as an Exhibit a sketch of the details and dimensions of ground system.

10. In what respect, if any, does the apparatus constructed differ from that described in the application for construction permit or in the permit?

N/A

11. Give reasons for the change in antenna or common point resistance.

FM Installation and adjustment	

I certify that I represent the applicant in the capacity indicated below and that I have examined the foregoing statement of technical information and that it is true to the best of my knowledge and belief.

Name (Please Print or Type)	Signature (check appropriate box below)
Kurt Gorman	
Address (include ZIP Code)	Date
Phasetek Inc.	February 10, 2023
550 California Rd., Unit 11	Telephone No. (Include Area Code)
Quakertown, PA 18951	215-536-6648

-	-	-	-

Technical Director

Chief Operator

Technical Consultant

Other (specify)

ENGINEERING STATEMENT CONCERNING

APPLICATION FOR LICENSE INFORMATION EMPLOYING MOMENT METHOD MODELING

WBGX, 1570 KHZ, DA-2 HARVEY, ILLINOIS

FEBRUARY, 2023

ENGINEERING STATEMENT CONCERNING APPLICATION FOR LICENSE INFORMATION EMPLOYING MOMENT METHOD MODELING WBGX, 1570 KHZ, DA-2 HARVEY, ILLINOIS FEBRUARY, 2023

TABLE OF CONTENTS

302-AM

ENGINEERING STATEMENT

FIGURE 1:	ANTENNA SYSTEM AS ADJUSTED
FIGURE 2:	SAMPLING SYSTEM DESCRIPTION/MEASUREMENTS
FIGURE 3:	TOWER IMPEDANCE MEASUREMENTS VS. MODELED
FIGURE 4:	MOMENT MODEL PARAMETERS
FIGURE 5:	MOMENT MODEL SUMMARY FOR INDIVIDUAL TOWERS
FIGURE 6:	MOMENT MODEL ARRAY SYNTHESIS (DIRECTIONAL DAY)
FIGURE 7:	MOMENT MODEL SUMMARY FOR DIRECTIONAL DAY MODE
FIGURE 8:	MOMENT MODEL ARRAY SYNTHESIS (DIRECTIONAL – NIGHT)
FIGURE 9:	MOMENT MODEL SUMMARY FOR DIRECTIONAL NIGHT MODE
FIGURE 10:	DERIVED DIRECTIONAL PARAMETERS
FIGURE 11:	TOWER BASE CIRCUIT ANALYSIS DESCRIPTION
FIGURE 12:	CIRCUIT ANALYSIS FOR INDIVIDUAL TOWERS
FIGURE 13:	CIRCUIT ANALYSIS FOR DIRECTIONAL DAY MODE
FIGURE 14:	CIRCUIT ANALYSIS FOR DIRECTIONAL NIGHT MODE
FIGURE 15	REFERENCE FIELD INTENSITY MEASUREMENTS
FIGURE 16:	DAY CURRENT MOMENTS
FIGURE 17	NIGHT CURRENT MOMENTS

ENGINEERING STATEMENT CONCERNING APPLICATION FOR LICENSE INFORMATION EMPLOYING MOMENT METHOD MODELING WBGX, 1570 KHZ, DA-2 HARVEY, ILLINOIS FEBRUARY, 2023

SUMMARY

Adjustment of the Antenna System and a Proof of Performance employing Moment Method Modeling were performed on Radio Station WBGX, 1570 KHz, Harvey, Illinois, after installation of the FM antenna and associated line for FM translator W240EI. This FM translator is authorized in file Number: 0000163147. This report was prepared on behalf of Brian Byrnes, Receiver, licensee of Radio Station WBGX.

SITE MODIFICATIONS

The WBGX Transmitter site is that as currently licensed. The sampling system remains unchanged. All Towers remain unchanged except for the addition of the FM antenna with line. Towers #2, #3, and #4 are used for the Day pattern. Towers #1, #2, and #3 are used for the Night pattern. Unused towers are detuned. There are no changes to the presently licensed standard radiation patterns, therefore, a site survey is not included. A License Application employing Moment Method Modeling as set forth in Section 73.151(C) has been done to license Radio Station WBGX under the new rules.

REFERENCE POINTS

Reference Points were measured at pattern minima and maxima for the Directional modes of operation. These Points and their measured field intensity are shown in Figure 15.

ENGINEERING STATEMENT CONCERNING APPLICATION FOR LICENSE INFORMATION EMPLOYING MOMENT METHOD MODELING WBGX, 1570 KHZ, DA-2 HARVEY, ILLINOIS FEBRUARY, 2023

METHOD OF MOMENTS DETAIL

All Moment Method Modeling was done with Expert MININEC Broadcast Professional, Version 23. One wire was used to represent each tower. Towers were driven individually to verify the Model compared to measured impedance data. Once the Model was verified, both the Day and Night Directional Antenna Systems were computed. For Directional modes, the complex voltage values for sources located at ground level were computed. These sources produce current moment sums for each Tower that, when normalized, equate to the Theoretical Field Parameters for each respective Tower. Figure's 16 and 17 show the computed current moments.

MEASURING EQUIPMENT AND PERSONNEL

All Tower Resistance and Reactance measurements were made with a HP8753ES Network Analyzer with a Tunwall directional coupler and a Delta Electronics OIB-3 operating impedance bridge. Before use, tests of known impedances were made to verify operation. All Field Intensity Measurements were made with a Potomac Instruments Field Intensity Meter, model PI 4100, Serial Number 249, calibrated on January 21, 2016. The meter was calibrated by Potomac Instruments, Frederick, Maryland. The meter was compared to a Potomac Instruments FIM-41, Serial Number 2181, calibrated on June 21, 2022, and agreed. All measurements were taken by Phasetek Inc. personnel supervised by Kurt Gorman of Phasetek Inc.

ENGINEERING STATEMENT CONCERNING APPLICATION FOR LICENSE INFORMATION EMPLOYING MOMENT METHOD MODELING WBGX, 1570 KHZ, DA-2 HARVEY, ILLINOIS FEBRUARY, 2023

CONCLUSION

It is believed that the WBGX Antenna System has been constructed and adjusted in accordance with all applicable Commission rules and regulations. The foregoing was prepared on behalf of Brian Byrnes, Receiver, under the immediate supervision of Kurt Gorman, Phasetek Inc., Quakertown, Pennsylvania, whose qualifications are a matter of record with the Federal Communications Commission. The statements herein are true and correct of his knowledge, except such statements made on information and belief, and as to these statements he believes them to be true and correct.

Kurt Gorman, President Phasetek Inc. Quakertown, Pennsylvania

FIGURE 1

ANTENNA SYSTEM AS ADJUSTED

APPLICATION FOR LICENSE INFORMATION EMPLOYING MOMENT METHOD MODELING WBGX, 1570 KHZ, DA-2 HARVEY, ILLINOIS FEBRUARY, 2023

ANTENNA SYSTEM DESCRIPTION

- 1. The Antenna System consists of three (4), vertical steel transmitting Towers. All Towers are uniform cross section and guyed. All Towers stand 45.8M (86.5°) above their Base Insulators. The Towers are arranged with Tower 2 as a reference; Tower 1 is spaced 90.0° on a bearing of 5.0°T. Tower 3 is spaced 90.0° on a bearing of 185.0°T. Tower 4 is spaced 70.5° on a bearing of 132.1°T. Tower 1 supports a (4) bay FM antenna. The feed for the FM antenna is isolated at the base with an isocoupler. There is no lighting or other antennas attached to the towers.
- 2. The Ground System for each Tower remains as currently licensed. Copper strap connects all Towers to the main Transmitter grounding point.
- The Sampling System consists of four (4), Delta Electronics Inc. model TCT-1, 0.5 V/A Toroidal Current Transformers. All TCT's are at the Output of each Antenna Tuning Unit. These TCT's are connected to a Potomac Instruments AM-19(204) Antenna Monitor via three (4) equal lengths of RFS, FLC12-50J, 1/2" phase stabilized foam coaxial cable.

FIGURE 1 ANTENNA SYSTEM AS ADJUSTED

APPLICATION FOR LICENSE INFORMATION EMPLOYING MOMENT METHOD MODELING CONTINUED WBGX, 1570 KHZ, DA-2 HARVEY, ILLINOIS FEBRUARY, 2023

ANTENNA SYSTEM DESCRIPTION – Continued

DIRECTIONAL OPERATION (DAY)

COMMON POINT

Impedance= 50.0 - j 4.7 OhmsCurrent= 4.87 AmperesPower= 1,190 Watts

DIRECTIONAL OPERATION (NIGHT)

COMMON POINT

Impedance= 50.0 - j 4.7 OhmsCurrent= 3.29 AmperesPower= 540 Watts

Directional Antenna Monitor indications are within $\pm 5\%$ and $\pm 3^{\circ}$ of the modeled TCT values.

FIGURE 2 WBGX SAMPLING SYSTEM DESCRIPTION/MEASUREMENTS

APPLICATION FOR LICENSE INFORMATION EMPLOYING MOMENT METHOD MODELING WBGX, 1570 KHZ, DA-2 HARVEY, ILLINOIS FEBRUARY, 2023

SAMPLING SYSTEM DESCRIPTION

The Sampling System consists of Delta Electronics Inc. model TCT-1 Toroidal Sampling Transformers (0.5 volt/amp) mounted at the base of each Tower. The sampling devices are connected to the Antenna Monitor with equal lengths of RFS FLC12-50J. The Antenna Monitor is a Potomac Instruments Model AM-19(204), Serial Number 1775.

SAMPLE LINE MEASUREMENTS

Impedance measurements were made of the Antenna Sampling Lines using an HP8753ES Network Analyzer and Tunwall directional coupler. Measurements were done with the lines open circuited and then connected to the TCT's.

The table below shows the frequencies above and below the carrier frequency where resonance, defined as zero reactance corresponding with low resistance, was found. Frequencies of resonance occur at odd multiples of 90 degrees electrical length, the Sample Line length at the resonant frequency below the carrier frequency, which is the closest one to the carrier frequency, was found to be 270 electrical degrees. The electrical length at carrier frequency appearing in the table below was calculated by ratioing the frequencies.

SAMPLE LINE MEASUREMENTS

	Resonant Frequency (KHz) below 1570 KHz	Resonant Frequency (KHz) above 1570 KHz	Calculated Electrical Length (deg) at 1570 KHz	Measured Impedance (ohms) Connected to TCT @ 1570 KHz
Tower 1	1285.62	2146.31	329.7	49.6 +j 0.1
Tower 2	1287.73	2151.35	329.2	49.7 +j 0.3
Tower 3	1286.37	2149.16	329.5	51.0 –j 0.4
Tower 4	1285.14	2145.43	329.8	49.8 –j 0.2

FIGURE 2 WBGX SAMPLING SYSTEM DESCRIPTION/MEASUREMENTS

APPLICATION FOR LICENSE INFORMATION EMPLOYING MOMENT METHOD MODELING WBGX, 1570 KHZ, DA-2 HARVEY, ILLINOIS FEBRUARY, 2023 CONTINUED

SAMPLE LINE MEASUREMENTS (CONTINUED)

To determine the characteristic impedance values of the Sample Lines, open-circuited measurements were made with frequencies offset to produce \pm 45 degrees of electrical length from resonance. The characteristic impedance was calculated using the following formula, where R1 +j X1 and R2 +j X2 are the measured impedances at the +45 and -45 degree offset frequencies, respectively:

$$Z_0 = ((R_1^2 + X_1^2)^{1/2} \bullet (R_2^2 + X_2^2)^{1/2})^{1/2}$$

Tower	+ 45 Degree Offset Frequency (kHz)	+ 45 Degree Measured Impedance (Ohms)	- 45 Degree Offset Frequency (kHz)	- 45 Degree Measured Impedance (Ohms)	Calculated Characteristic Impedance (Ohms)
1	1499.9	4.9 +j 49.4	1071.3	3.2 –j 48.2	48.97
2	1502.4	4.8 +j 50.4	1073.1	3.1 –j 46.9	48.78
3	1500.8	4.9 +j 50.2	1071.9	3.1 –j 47.4	48.95
4	1499.4	4.8 +j 50.1	1070.9	3.0 –j 47.2	48.79

SAMPLING TCT MEASUREMENTS

Measurements of the Delta Electronics Inc. Model TCT-1, 0.5 V/A Toroidal Current Transformers were performed by a Hewlett Packard 8752A, Network Analyzer. Measurements are normalized to Tower #4 (Day reference) and are within the manufacturer's rating of $\pm 2.0\%$ and $\pm 2.0\%$.

FIGURE 2 WBGX SAMPLING SYSTEM DESCRIPTION/MEASUREMENTS

APPLICATION FOR LICENSE INFORMATION EMPLOYING MOMENT METHOD MODELING WBGX, 1570 KHZ, DA-2 HARVEY, ILLINOIS FEBRUARY, 2023 CONTINUED

SAMPLING TCT MEASUREMENTS CONT'D

TOWER	TCT SERIAL #	MAGNITUDE	PHASE
1	132	.998	-0.4°
2	143	.999	0.1 [°]
3	6659	1.001	-0.1 [°]
4	1665	1.000	0.0 [°]

ANTENNA MONITOR MEASUREMENT

Measurement of the Potomac Instruments Model AM-19(204) Antenna Monitor was performed to verify calibration. A single RF Voltage was applied to both the Day/Night Reference Input (Tower #4/#1) and each other Input by use of a "T" divider and equal electrical length coaxial cables. This yields the following:

Tower	D Ratio	D Phase	N Ratio	N Phase
1	1.001	0.0 ⁰	1.000	0.0 ⁰
2	1.001	0.2 ⁰	1.000	0.2 ⁰
3	1.000	-0.2 ⁰	.998	-0.2 ⁰
4	1.000	0.0 ⁰	.999	0.0 ⁰

The above is within the manufacturer's rating of $\pm 1.0\%$ and $\pm 1.0^{\circ}$.

FIGURE 3 WBGX TOWER IMPEDANCE MEASUREMENTS COMPARED TO METHOD OF MOMENTS MODEL

TOWER	Specified	Measured	Measured	Modeled	Modeled	Measured
	Cs (pf)	$L_F(\mu H)$	X _F (Ω)	Z _{ANT} (Ω)	Z _{ATU} (Ω)	Z _{ATU} (Ω)
1	35	2.03	+j20.0	46.79 +j 41.68	48.75 +j 61.64	48.8 +j 61.8
2	15	2.74	+j27.0	40.33 +j 30.16	41.16 +j 57.21	40.9 +j 57.4
3	15	3.14	+j31.0	42.19 +j 28.18	43.05 +j 59.20	42.9 +j 59.7
4	15	2.53	+j25.0	37.21 +j 14.20	37.66 +j 39.04	36.9 +j 39.5

Tower	Calculated X_{OC} (Ω)

1	-j 2,244.9
2	-j 4,028.4
3	-j 4,027.7
4	-j 4,028.7

FIGURE 4 WBGX MOMENT MODEL PARAMETERS

APPLICATION FOR LICENSE INFORMATION EMPLOYING MOMENT METHOD MODELING WBGX, 1570 KHZ, DA-2 HARVEY, ILLINOIS FEBRUARY, 2023

Tower #	Wire #	# of Segments	Base Node
1	1	18	1
2	2	18	19
3	3	18	37
4	4	18	55

Tower #	Physical Height Degrees	Modeled Height Degrees	Modeled Radius Meters	% of Equivalent Radius
1	86.5	93.5	.1455	100.0
2	86.5	92.0	.1759	100.0
3	86.5	91.5	.1759	100.0
4	86.5	89.0	.1455	100.0

Towers are uniform cross section, guyed with Base Insulator. Towers #1 and #4 are three (3) sided with a 12" face width. Towers #2 and #3 are three (3) sided with a 14.5" face width.

All Base Insulators are manufactured by Lapp, with an assumed capacity of 15pf (-j6,758.2 ohms @ 1570 kHz). Tower #1 has a Phasetek Inc. P600-408 FM isocoupler with a measured capacity of 20pf.

All Towers have a Phasetek Inc. static drain choke. These measure –j10,000.0 ohms @ 1570 kHz.

WBGX TOWER 1 (OTHERS OPEN)

GEOMETRY Wire coordinates in degrees; other dimensions in meters Environment: perfect ground

wire 1	caps D none 9	istance 0. 0	Angle 5.	2	Z)) 3 5	rac .14	lius 155	segs 18	
2	none 0	0.	0	()	.17	759	18	
3	none 9	0.	185.	(92.))1 E	.17	759	18	
4	none 7	0.5 0.5	185. 132.1 132.1	(91.5) 89.	.14	155	18	
Numbe	r of wi cu	res rrent nodes	= 4 = 72						
Indi∨ segme radiu	idual w nt leng s	ires w th	minimu vire 4 1	m value 4.94445 .1455		max wire 1 2	kimum Value 5.19445 .1759		
ELECT Frequ no. 1	RICAL D encies frequen lowest 1.57	ESCRIPTION (MHz) cy step 0		no. of steps 1	segment minimum .0137340	lengtł 6	n (waveler maximum .014429	igths)	
Sourc sourc 1	es e node 1	sector 1	magnitu 1.	de	phase 0		type voltage		
Lumpe	d loads	nocictore		c+2000	induc	tanca	conscitor		ccivo
load 1 2 3	node 19 37 55	(ohms) 0 0 0	(oh -4, -4, -4,	ctance ms) 028.4 027.7 028.7	(mH) 0 0 0	cance	Capacitar (uF) 0 0 0	ci ci 0 0 0	rcuit

IMPEDANCE normalization = 50. freq imped phase VSWR S11 S12 resist react (MHz) (ohms) (ohms) (ohms) (deg) dв dв source = 1; node 1, sector 1 1.57 46.79 41.68 62. 62.662 41.7 2.315 -8.0312 -.74356

WBGX TO	wer 2	(OTHERS	OPEN)					
GEOMETR Wire co Environ	Y ordina ment:	ates in perfect	degrees ground	s; other d	limension	s in meto	ers	
wire c 1 n	aps D ⁻ one 9(istance	Ang 5.	gle	Z 0	ra(.14	dius 455	segs 18
2 n	one 0	J.	5. 0		93.5	.1	759	18
3 n	one 90).	185 185	5.	92. 0 01 5	.17	759	18
4 n	one 70 70).5).5).5	132 132	2.1 2.1	91.5 0 89.	.14	455	18
Number	of wiı cu	res rrent no	= des =	4 72				
Individ segment radius	ual w [.] Iengi	ires th	mir wire 4 1	nimum value 4.9444 .1455	15	max wire 1 2	kimum value 5.19445 .1759	
ELECTRI Frequen fr no. lo 1 1.	CAL DE cies (equence west 57	ESCRIPTI (MHz) Cy St 0	ON ep	no. c steps 1	of segmen s minim .0137	nt lengtl um 346	ı (wavele maximum .014429	ngths)
Sources source 1	node 19	secto 1	r magr 1.	nitude	phase 0		type voltage	
Lumped	loads	resista	nce	reactance	indu	uctance	canacita	nce nassive
load n 1 2 3	ode 1 37 55	(ohms) 0 0 0		(ohms) -2,244.9 -4,027.7 -4,028.7	(mH) 0 0 0)	(uF) 0 0 0	circuit 0 0 0
IMPEDAN norm freq (MHz)	ICE lalizat res ⁻ (ohr	tion = 5 ist re ns) (o	0. act hms)	imped (ohms)	phase (deg)	VSWR	S11 dB	S12 dB
source 1.57	= 1; 40.3	node 19 325 30	, secto .162	or 1 50.358	36.8	1.9969	-9.5607	50925

WBGX 7	FOWER 3	(OTHERS	OPEN)					
GEOMET Wire o Enviro	TRY coordina onment:	ates in c perfect	legree: groun	s; other d d	dimension	s in met	ers	
wire 1	caps D none 9	istance 0.	Ang 5.	gle	Z 0	ra .1	dius 455	segs 18
2	none 0	0.	5. 0		95.5 0 02	.1	759	18
3	none 9	0.	18 18	5.	92. 0 91 5	.1	759	18
4	none 7	0.5 0.5	13 13	2.1 2.1	0 89.	.1	455	18
Number	r of wi cu	res rrent noc	= les =	4 72				
Indivi segmer radius	idual w [.] nt leng [.] 5	ires th	min wire 4 1	nimum value 4.9444 .1455	45	ma: wire 1 2	ximum value 5.19445 .1759	
ELECTR Freque no. 1	RICAL D encies frequend lowest 1.57	ESCRIPTIC (MHZ) Cy Ste 0	PN PP	no. o steps 1	of segme s minim .0137	nt lengt um 346	h (wavele maximum .014429	ngths)
Source source 1	es e node 37	sector 1	magı 1.	nitude	phase 0		type voltage	
Lumpeo	d loads	resistar	ICA	reactance	, ind	uctance	canacita	nce nassive
load 1 2 3	node 1 19 55	(ohms) 0 0 0		(ohms) -2,244.9 -4,028.4 -4,028.7	(mH 0 0 0)	(uF) 0 0 0	circuit 0 0 0
IMPEDA noi freq (MHz)	ANCE rmaliza res (ohu	tion = 50 ist rea ns) (or). LCT IMS)	imped (ohms)	phase (deg)	VSWR	S11 dB	S12 dB
source 1.57	e = 1; 42.	node 37, 19 28.	secto 177	or 1 50.734	33.7	1.8707	-10.362	41913

WBGX TOWER 4 (OTHERS OPEN))						
GEOMETRY Wire coordinates in degree Environment: perfect groun	es; other d nd	limensions	s in meto	ers			
wire caps Distance Ar 1 none 90. 5	ngle	Z 0	ra(.14	dius 455	segs 18		
2 none 0 0	•	95.5 0 02	.1	759	18		
3 none 90. 18	35.	92. 0	.1	759	18		
4 none 70.5 13 70.5 13	35. 32.1 32.1	91.5 0 89.	.14	455	18		
Number of wires = 4 current nodes = 72							
mi Individual wires wire segment length 4 radius 1	inimum e value 4.9444 .1455	15	max wire 1 2	kimum value 5.19445 .1759			
ELECTRICAL DESCRIPTION Frequencies (MHz) frequency no.lowest step 1 1.57 0	no. o steps 1	of segmen 5 minimu .01373	nt lengtl um 346	n (wavele maximum .014429	ngths)		
Sources source node sector mag 1 55 1 1.	gnitude	phase 0		type voltage			
Lumped loads	roactance	indu	ictanco	capacita	nco possivo		
load node (ohms) 1 1 0 2 19 0 3 37 0	(ohms) -2,244.9 -4,028.4 -4,027.7	2 11100 (mH) 0 0 0)	(uF) 0 0 0	circuit 0 0 0		
IMPEDANCE normalization = 50. freq resist react	imped	phase	VSWR	S11	\$12		
(MHz) (ohms) (ohms) source = 1; node 55, sect 1 57 37 212 14 195	(ohms) tor 1 39 828	(deg) 20.9	1 5517	dB -13 302	dB - 20794		

FIGURE 6 WBGX MOMENT MODEL ARRAY SYNTHESIS (DIRECTIONAL – DAY)

WBGX D	WBGX DAY							
MEDIUM	WAVE ARRAY	SYNTHESIS	FROM	FIELD F	RATIOS			
Freque	ncy = 1.57	MHZ						
tower 1 2 3 4	field ratio magnitude 0 .6 1. 1.05	phase (0 214. 0 212.	deg)					
VOLTAGI source node 1 19 37 55 Sum of Total	ES AND CURRE wagnitude 157.854 230.948 108.273 230.112 square of s power = 1,10	NTS - rms phase (180.1 251.8 105.3 254.6 ource cur 0. watts	deg) rents	current magnitu .298739 2.24313 3.9938 4.2448 = 78.17	- ide } ?93	phase 270.3 223.2 359.3 216.1	(deg)	
TOWER admitta Y(1, 1) Y(1, 2) Y(1, 3) Y(1, 4) Y(2, 1) Y(2, 2) Y(2, 2) Y(2, 3) Y(2, 4) Y(2, 4) Y(3, 2) Y(3, 3) Y(3, 4) Y(4, 2) Y(4, 4) Y(4, 4)	ADMITTANCE M ance real) .0088) .0033)000) .0018) .0033) .0038) .0014) .0014) .0014) .0014) .0014) .0084) .0018) .0019	ATRIX (mhos) 7348 1053 372836 0663 1052 9058 8357 120523 372812 8355 7835 01203 0655 120714 01001 126	ima 0 .00 0 .00 0 .00 0 .00 0 .00 .0	aginary 00880974 0644572 00060231 0119831 0644581 0125956 0375633 0060232 0375633 0128284 0980467 0119828 006244 098047 0169826	(mhos) 4 14			
TOWER 2 impedan Z(1, 1 Z(1, 2 Z(1, 3 Z(1, 4 Z(2, 1 Z(2, 2 Z(2, 3 Z(2, 4 Z(2, 4 Z(3, 1 Z(3, 2 Z(3, 3 Z(3, 4 Z(3, 4 Z(4, 1 Z(4, 2 Z(4, 4) Z(4, 4)	IMPEDANCE MA nce real 46.86 21.44 -13.5 -1.75 21.44 1.10 20.50 26.34 -13.5 20.50 26.34 -1.75 26.27 -1.75 26.34 26.27 37.56	TRIX (ohms) 42 73 193 287 69 93 34 09 194 33 24 79 331 03 75 15	ima 41. -19 -22 -19 30. -20 -14 -20 28. -19 -20 28. -19 -20 -14 -19 -20 -14 -19 -19 -19 -19 -19 -19 -19 -19 -19 -19	aginary 5483 9.9661 5.9094 2.3109 9.9663 2924 9.7705 4.4524 5.9092 9.7705 2412 5.4333 2.3107 4.453 5.4337 2008	(ohms)			

FIGURE 7 WBGX MOMENT MODEL SUMMARY FOR DIRECTIONAL DAY MODE

WBGX	DAY								
GEOME Wire Envir	TRY coordi onment	nates : perfe	in degree ect grou	es; other nd	dimensior	is in met	ers		
wire 1	caps none	Distand 90.	ce Al	ngle	Z O	ra .1	dius 455	segs 18	
2	none	90. 0	5 0	•	93.5 0	.1	759	18	
3	none	0 90.	0 1	85.	92. 0	.1	759	18	
4	90. 18 none 70.5 13 70.5 13		85. 32.1 32.1	5. 91.5 2.1 0 2.1 89.		455	18		
Numbe	r of v	vires current	nodes	= 4 = 72					
Indiv segme radiu	idual nt ler s	wires ngth	m wir 4 1	inimum e value 4.944 .1455	45	ma wire 1 2	ximum value 5.19445 .1759		
ELECT Frequent no. 1	RICAL encies freque lowest 1.57	DESCRIF (MHZ) ency	Step 0	no. step 1	of segme os minin .0137	ent lengt um '346	h (wavele maximum .014429	ngths)	
Source source 1 2 3	es e node 19 37 55	e seo 1 1	ctor ma 32 15 32	gnitude 6.61 3.121 5.427	phase 251.8 105.3 254.6		type voltage voltage voltage		
Lumpe load 1	d load node 1	ls resis (ohms 0	stance 5)	reactanc (ohms) 528.4	ce inc (m⊦ O	luctance I)	capacita (uF) O	nce passiv circu 0	ve it
IMPED no freq (MHz) source	ANCE rmaliz re (c e = 1	zation = esist ohms) L; node	= 50. react (ohms) 19, sec 49 145	imped (ohms) tor 1 102 86	phase (deg) 28 5	VSWR	S11 dB -7 3787	S12 dB	
sourc 1.57	e = 2	2; node 7.4698	37, sec 26.062	tor 1 27.111	106.	****	****	****	
sourc	e = 3	3; node 2.429	55, sec ⁻ 33,774	tor 1 54.23	38.5	2.0851	-9.0759	57352	

CURRENT	rms						
Input r	1Cy = 1.1	57 MHZ 100. watts					
Efficie	ncy = 100	0. %					
coordi	nates in de	egrees				-	
current	t v	V	7	mag	phase	real	imaginary
GND	89.6575	-7.844	0	.298767	270.1	5.91E-04	298767
2	89.6575	-7.844	5.19445	.211557	270.1	4.01E-04	211556
3	89.6575	-7.844	10.3889	.154146	270.1	2.37E-04	154146
4	89.6575	-7.844	15.5833	.105828	270.	5.99E-05	105828
5	89.6575	-7.844	20.///8	.0640929	269.9	-1.32E-04	0640928
7	89.6575	-7.844	31.1667	3.05E-03	100.3	-5.47E-04	3.E-03
8	89.6575	-7.844	36.3611	.0290168	91.5	-7.56E-04	.029007
9	89.6575	-7.844	41.5556	.0501728	91.1	-9.55E-04	.0501637
10 11	89.6575	-7.844	46.75 51 9 <i>444</i>	.066554	91. 91.	-1.13E-03	.0665444
12	89.6575	-7.844	57.1389	.0852033	90.9	-1.38E-03	.0851921
13	89.6575	-7.844	62.3333	.0875736	90.9	-1.42E-03	.087562
14	89.6575	-7.844	67.5278	.0853755	90.9	-1.4E-03	.0853639
15 16	89.6575	-7.844	77 9167	.0786469	91. 91	-1.31E-03	.0786361
17	89.6575	-7.844	83.1111	.0514576	91.	-8.64E-04	.0514503
18	89.6575	-7.844	88.3056	.0304053	91.	-5.08E-04	.0304011
END	89.6575	-7.844	93.5	0	0	0	0
GND 20	0	0	0 5 11111	2.24486	223.3	-1.6348 -1.75692	-1.53844 _1 49112
21	ŏ	Ő	10.2222	2.32516	218.6	-1.81802	-1.44955
22	0	0	15.3333	2.32304	217.1	-1.85165	-1.40283
23	0	0	20.4444	2.29962	215.9	-1.86175	-1.34987
24 25	0	0	23.3330	2.23308	214.9 214	-1.85015	-1.29039 -1.22438
26	ŏ	Ő	35.7778	2.10826	213.1	-1.76566	-1.15204
27	0	0	40.8889	2.00582	212.4	-1.6943	-1.07363
28	0	0	46.	1.88502	211.7	-1.60442	989512
29	0	0	51.1111 56 2222	1.74648	211. 210 <i>4</i>	-1.496/1 _1 37188	900033
31	Ŏ	0	61.3333	1.419	209.9	-1.23057	706572
32	Õ	Õ	66.4444	1.23136	209.3	-1.07343	603327
33	0	0	71.5556	1.02843	208.8	90086	496108
34	0	0	/6.666/ 81 7778	.810165	208.4	/1286/	38495
36	Ŏ	0	86.8889	.319648	207.5	283604	147458
END	Ō	Ō	92.	0	0	0	0
GND	-89.6575	7.84401	0	3.99313	359.3	3.99284	0483235
38 30	-89.65/5	7.84401 7.84401	5.08333	4.03944	359.6	4.03932	031/145
40	-89.6575	7.84401	15.25	3.99303	359.8	3.99301	013359
41	-89.6575	7.84401	20.3333	3.91868	359.9	3.91867	-6.73E-03
42	-89.6575	7.84401	25.4167	3.81239	360.	3.81239	-1.39E-03
43 11	-89.65/5	7.84401 7.84401	30.5 35 5833	3.6/534	0.0	3.6/534	2.82E-03
45	-89.6575	7.84401	40.6667	3.31383	.1	3.31382	8.22E-03
46	-89.6575	7.84401	45.75	3.09203	.2	3.09201	9.62E-03
47	-89.6575	7.84401	50.8333	2.84479	.2	2.84477	.0102729
48 19	-89.65/5	7.84401 7.84401	55.9167 61	2.5/362	.2	2.5/30	.0102852 9 76E-03
50	-89.6575	7.84401	66.0833	1.96533	.2	1.96531	8.78E-03
51	-89.6575	7.84401	71.1667	1.63062	.3	1.6306	7.46E-03
52	-89.6575	7.84401	76.25	1.27619	.3	1.27618	5.89E-03
53 54	-89.65/5	7.84401 7.84401	81.3333 86 4167	.900453	. 3	.900443	4.13E-03
END	-89.6575	7.84401	91.5	0	0	0	0
GND	-47.2651	-52.3093	0	4.24262	216.1	-3.42887	-2.49855
56	-47.2651	-52.3093	4.94445	4.30472	214.8	-3.53426	-2.45755
57 58	-47.2051 -47 2651	-32.3093 -52 3093	9.00009 14 8333	4.30954 1 27561	214. 213 <i>1</i>	-3.3/1/2 _3 57032	-2.41142 _2 35237
59	-47.2651	-52.3093	19.7778	4.20544	212.8	-3.53395	-2.27967
60	-47.2651	-52.3093	24.7222	4.10047	212.3	-3.46457	-2.1933
61	-47.2651	-52.3093	29.6667	3.96182	211.9	-3.36352	-2.09351

-47.2651	-52.3093	34.6111	3.79065	211.5	-3.23199	-1.98073
-47.2651	-52.3093	39.5556	3.58813	211.1	-3.07113	-1.8555
-47.2651	-52.3093	44.5	3.35556	210.8	-2.88215	-1.71844
-47.2651	-52.3093	49.4444	3.09429	210.5	-2.66628	-1.57022
-47.2651	-52.3093	54.3889	2.80574	210.2	-2.42481	-1.41155
-47.2651	-52.3093	59.3333	2.4913	209.9	-2.15899	-1.24312
-47.2651	-52.3093	64.2778	2.15222	209.7	-1.86993	-1.06556
-47.2651	-52.3093	69.2222	1.78939	209.4	-1.55845	879297
-47.2651	-52.3093	74.1667	1.40291	209.2	-1.22464	684408
-47.2651	-52.3093	79.1111	.990865	209.	866839	480004
-47.2651	-52.3093	84.0556	.546002	208.8	478671	262664
-47.2651	-52.3093	89.	0	0	0	0
	-47.2651 -47.2651 -47.2651 -47.2651 -47.2651 -47.2651 -47.2651 -47.2651 -47.2651 -47.2651 -47.2651 -47.2651 -47.2651	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

FIGURE 8 WBGX MOMENT MODEL ARRAY SYNTHESIS (DIRECTIONAL – NIGHT)

WBGX NI	IGHT					
MEDIUM	WAVE ARRAY SY	YNTHESIS FI	ROM FIELD	RATIOS		
Frequer	ncy = 1.57 Mł	Ηz				
tower 1 2 3 4	field ratio magnitude 1. .82 .52 0	phase (de 0 166.6 -44.2 0	g)			
VOLTAGE source node 1 19 37 55 Sum of Total p	ES AND CURREN voltage magnitude 275.857 244.746 25.9862 115.224 square of sou	TS - rms phase (deg 72.7 254.6 327.2 242.5 Jrce curren watts	curren g) magnit 4.3682 3.5654 2.5696 .21279 nts = 76.8	t ude 5 7 8 848	phase 2.1 166.9 316.9 332.8	(deg)
TOWER / admitta Y(1, 1) Y(1, 2) Y(1, 3) Y(1, 4) Y(2, 2) Y(2, 2) Y(2, 2) Y(2, 3) Y(2, 3) Y(3, 1) Y(3, 2) Y(3, 3) Y(3, 4) Y(4, 2) Y(4, 3) Y(4, 4)	ADMITTANCE MA ance real (r) .008873) .003310) .001800) .001800) .003310) .003310) .003310) .003890) .001483) .001483) .000478) .000901) .001800) .001800) .000901) .000901) .010912	TRIX nhos) 348 053 72836 563 052 058 357 20523 72812 355 835 1203 555 20714 1001 26	imaginary 0088097 .00644572 0006023 .00119831 .00644581 0125956 .00375633 .0106243 0006023 .00375633 0128284 .00980467 .00119828 .0106244 .0098047 0169826	(mhos) 4 14 21)	
TOWER 1 impedan Z(1, 1) Z(1, 2) Z(1, 3) Z(1, 4) Z(2, 2) Z(2, 2) Z(2, 2) Z(2, 3) Z(2, 4) Z(3, 1) Z(3, 2) Z(3, 3) Z(3, 4) Z(3, 4) Z(4, 1) Z(4, 2) Z(4, 4) Z(4, 4)	IMPEDANCE MATH ince real 0 46.8642 0 -13.519 0 -1.7528 0 21.4469 0 21.4469 0 21.4469 0 21.4469 0 21.5032 0 26.3409 0 20.5033 0 20.5033 0 26.2779 0 26.2779 0 26.3403 0 26.3403 0 26.2779 0 26.3403 0 26.3403 0 26.2779 0 26.3403 0 26.3403 0 26.3403 0 26.2779 0 26.2779 0 26.2779 0 26.2779 0 26.2779 0 26.2779 0 26.2779 0 26.2779	RIX ohms) 2 3 3 3 3 8 7 9 3 3 4 9 9 4 9 9 4 3 1 3 5 5	<pre>imaginary 41.5483 -19.9661 -16.9094 -22.3109 -19.9663 30.2924 -20.7705 -14.4524 -16.9092 -20.7705 28.2412 -15.4333 -22.3107 -14.453 -15.4337 14.2008</pre>	(ohms))	

FIGURE 9 WBGX MOMENT MODEL SUMMARY FOR DIRECTIONAL NIGHT MODE

WBGX NIGHT GEOMETRY Wire coordinates in degrees; other dimensions in meters Environment: perfect ground wire caps Distance Angle Ζ radius segs 1 none 90. 5. 0 .1455 18 90. 5. 93.5 2 none 0 0 0 .1759 18 0 0 92. 3 none 90. 185. 0 .1759 18 90. 91.5 185. 4 none 70.5 132.1 0 .1455 18 70.5 132.1 89. Number of wires 4 = current nodes = 72 minimum maximum Individual wires value value wire wire segment length 4.94445 5.19445 4 1 .1455 2 radius 1 .1759 ELECTRICAL DESCRIPTION Frequencies (MHz) segment length (wavelengths) no. of frequency no. lowest steps minimum maximum step 1 1.57 0 1 .0137346 .014429 Sources magnitude phase source node sector type 72.7 254.6 voltage 390.121 1 1 1 voltage 2 19 1 346.124 3 37 1 36.7501 327.2 voltage Lumped loads resistance inductance capacitance passive reactance (ohms) node (ohms) (mH) circuit load (uF)1 55 0 541.5 Λ 0 0 IMPEDANCE normalization = 50. resist react imped phase VSWR S11 S12 freq (MHz) (ohms) (ohms) (ohms) (deg) dB dB 1; node 1, sector 1 source = 1.57 20.957 59.598 63.175 70.6 6.0289 -2.9083 -3.1147source = 2; node 19, sector 1 1.57 2.7307 68.569 68.0 68.623 87.7 52.781 -.32917 -11.367source = 3; node 37, sector 1 1.8051 1.57 9.9508 10.113 10.3 5.0315 -3.4991 -2.571

CURRENT	rms	F7 MIL-					
Frequer	1Cy = 1.0	57 MHZ 0 watts					
Efficie	encv = 100	0. %					
coordin	nates in d	egrees					
current	t	-		mag	phase	real	imaginary
no.	X	Y	Z	(amps)	(deg)	(amps)	(amps)
GND	89.65/5	-7.844		4.3665	2.1	4.36364	.15/992
2	89.6575	-7.844	10 3889	4.49527	1.4 1	4.49100	0827189
4	89.6575	-7.844	15.5833	4.53115	.7	4.53078	.057461
5	89.6575	-7.844	20.7778	4.48129	.5	4.48115	.0355701
6	89.6575	-7.844	25.9722	4.38952	.2	4.38949	.0165447
7	89.6575	-7.844	31.1667	4.25754	0.0	4.25754	1.7E-04
ð G	89.6575	-7.844 -7.844	30.3011 41 5556	4.08088	359.8	4.08085	0130527 024971
10	89.6575	-7.844	46.75	3.63587	359.5	3.63571	033809
11	89.6575	-7.844	51.9444	3.35891	359.3	3.35867	040182
12	89.6575	-7.844	57.1389	3.05004	359.2	3.04972	0441037
13 14	89.03/3	-7.844	67 5278	2.71100	339. 358 Q	2.71067	0455881
15	89.6575	-7.844	72.7222	1.94911	358.8	1.94867	0412915
16	89.6575	-7.844	77.9167	1.52793	358.7	1.52752	0355009
17	89.6575	-7.844	83.1111	1.07845	358.6	1.07811	0271978
18	89.65/5	-7.844	88.3056	.593194	358.4	.592975	0161195
	0	-7.044	95.5	3 56649	166 9	-3 47341	809526
20	ŏ	ŏ	5.11111	3.69628	166.8	-3.59851	.844527
21	0	0	10.2222	3.74544	166.7	-3.64558	.859108
22	0	0	15.3333	3.75148	166.7	-3.65081	.86323
25 24	0	0	20.4444	3.71903	166 6	-3.01009	.030097 844322
25	ŏ	ŏ	30.6667	3.54737	166.6	-3.45075	.822289
26	0	0	35.7778	3.41112	166.6	-3.31783	.792315
27	0	0	40.8889	3.24307	166.5	-3.15403	.754726
28	0	0	46. 51 1111	3.04462	166.5 166.5	-2.96072	.709833
30	0	0	56.2222	2.56239	166.5	-2.49128	.599469
31	Õ	Õ	61.3333	2.28159	166.4	-2.21806	.534664
32	0	0	66.4444	1.97617	166.4	-1.92096	.463855
33	0	0	71.5556	1.64715	166.4	-1.60098	.387262
24 35	0	0	70.0007 81 7778	91744	166.4	- 20000	216417
36	ŏ	ŏ	86.8889	.508493	166.3	494092	.120158
END	0	0	92.	0	0	0	0
GND	-89.6575	7.84401	0	2.5695	316.9	1.8767	-1.75508
38 30	-89.6575	7.84401	5.08333	2.50310	316.0 316.7	1.8019	-1.76158 _1.7508
40	-89.6575	7.84401	15.25	2.49405	316.2	1.80015	-1.72619
41	-89.6575	7.84401	20.3333	2.4325	316.	1.75117	-1.68834
42	-89.6575	7.84401	25.4167	2.35355	315.9	1.69033	-1.63768
43	-89.65/5	7.84401 7.84401	30.5	2.25//2	315.8 215 7	1.61/96	-1.5/465
44	-89.6575	7.84401	40.6667	2.01803	315.5	1.44045	-1.41334
46	-89.6575	7.84401	45.75	1.8757	315.4	1.3364	-1.31616
47	-89.6575	7.84401	50.8333	1.7195	315.3	1.22297	-1.20874
48	-89.6575	7.84401	55.9167	1.55033	315.2	1.10078	
49 50	-89.6575	7.84401	66 0833	1 17653	315.1	832684	- 831185
51	-89.6575	7.84401	71.1667	.973325	315.	.687801	688688
52	-89.6575	7.84401	76.25	.759626	314.9	.535979	538292
53	-89.6575	7.84401	81.3333	.534517	314.8	.376586	37933
	-89.03/3	7.84401 7.84401	80.4107 91 5	.294264	314.7 0	.207012	209134
GND	-47.2651	-52.3093	0	.212784	332.5	.188743	0982503
56	-47.2651	-52.3093	4.94445	.151036	332.5	.133963	0697548
57	-47.2651	-52.3093	9.88889	.110619	332.5	.0980877	0511413
20 59	-47.2031 -47 2651	-32.3093 -52 3093	19 7778	.0/03011	332.4 337 7	.00/0303 0416160	0334942 - 0219816
60	-47.2651	-52.3093	24.7222	.0214252	331.4	.0188021	0102722
61	-47.2651	-52.3093	29.6667	9.08E-04	193.9	-8.81E-04	-2.17E-04

-47.2651	-52.3093	34.6111	.0194044	154.8	0175597	8.26E-03
-47.2651	-52.3093	39.5556	.0347828	154.1	0312897	.015192
-47.2651	-52.3093	44.5	.0468668	153.9	042092	.0206098
-47.2651	-52.3093	49.4444	.0556629	153.9	0499682	.0245264
-47.2651	-52.3093	54.3889	.0611685	153.9	0549098	.0269536
-47.2651	-52.3093	59.3333	.0633735	153.9	0569013	.0279005
-47.2651	-52.3093	64.2778	.0622593	153.9	0559191	.0273728
-47.2651	-52.3093	69.2222	.057791	154.	0519253	.0253687
-47.2651	-52.3093	74.1667	.049897	154.	0448494	.0218686
-47.2651	-52.3093	79.1111	.0384104	154.	034537	.0168094
-47.2651	-52.3093	84.0556	.0229009	154.1	0205977	.0100094
-47.2651	-52.3093	89.	0	0	0	0
	-47.2651 -47.2651 -47.2651 -47.2651 -47.2651 -47.2651 -47.2651 -47.2651 -47.2651 -47.2651 -47.2651 -47.2651 -47.2651	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

FIGURE 10 DERIVED DIRECTIONAL PARAMETERS

APPLICATION FOR LICENSE INFORMATION EMPLOYING MOMENT METHOD MODELING WBGX, 1570 KHZ, DA-2 HARVEY, ILLINOIS FEBRUARY, 2023

DAY:

	Theoretical		Base Netv Cur	vork Input rent	Normalized TCT	
Tower	Field	Phase	Amplitude	Phase	Amplitude	Phase
2 (C)	.600	214.0°	2.21	-135.44°	.526	7.9°
3 (S)	1.000	0.0°	3.96	-0.80°	.943	142.5°
4 (E)	1.050	212.0°	4.20	-143.31°	1.000	0.0°

NIGHT:

	Theoretical		Base Netv Cur	vork Input rent	Normalized TCT	
Tower	Field	Phase	Amplitude	Phase	Amplitude	Phase
1 (N)	1.000	0.0 [°]	4.24	2.63°	1.000	0.0 [°]
2 (C)	.820	166.6°	3.50	166.92°	.826	164.3°
3 (S)	.520	-44.2°	2.56	-42.97°	.604	-45.6°

Note: for Day operation, antenna monitor reference set to 80% due to sample voltage.

FIGURE 11 WBGX TOWER BASE CIRCUIT ANALYSIS DESCRIPTION

APPLICATION FOR LICENSE INFORMATION EMPLOYING MOMENT METHOD MODELING WBGX, 1570 KHZ, DA-2 HARVEY, ILLINOIS FEBRUARY, 2023

CIRCUIT ANALYSIS

Circuit Analysis was performed on each Tower of the WBGX model. "Phasetek" nodal Circuit Analysis program was used to compute base model Input/Output voltages and currents. For the Directional modes, the calculated Mininec Tower Base Drive Voltage was used to determine the Base Network Input Current. This point is the location of the Sampling TCT. "Z₁" represents the ATU Shunt impedance, "Z₂" represents the Tower Feed impedance, and "Z₃" represents the Tower Base Shunt impedance.

CUSTOMER : WBGX NETWORK ID : TOWER 1 (OTHERS OPEN)

FREQUENCY : 1570.00 kHz ATU SHUNT IMPEDANCE (R,X) : 0.00,-10000.00 OHMS TOWER FEED IMPEDANCE (R,X) : 0.00, 20.00 OHMS TOWER SHUNT IMPEDANCE (R,X) : 0.00, -2896.40 OHMS TOWER IMPEDANCE (R,X) : 46.79, 41.68 OHMS

NODE	то	NODE	IMPEDANCE R	(OHMS) X
1		GROUND	0.00	-10000.00
2		GROUND	48.15	41.50
1		2	0.00	20.00

	VOLTAC	ΞE
NODE	MAGNITUDE	PHASE
1	100.00	0.00
2	81.38	-11.18

	REAL	IMAGINARY	MAGNITUDE	PHASE
INPUT IMPEDANCE (OHMS) :	48.75	61.64	78.59	51.66
INPUT CURRENT (AMPS) :	0.79	-1.00	1.27	-51.66
OUTPUT CURRENT (AMPS) :	0.78	-1.04	1.30	-52.88

INPUT/OUTPUT CURRENT RATIO = 0.9797 INPUT/OUTPUT PHASE = 1.22 DEGREES

CUSTOMER : WBGX NETWORK ID : TOWER 2 (OTHERS OPEN)

FREQUENCY : 1570.00 kHz ATU SHUNT IMPEDANCE (R,X) : 0.00,-10000.00 OHMS TOWER FEED IMPEDANCE (R,X) : 0.00, 27.00 OHMS TOWER SHUNT IMPEDANCE (R,X) : 0.00, -6758.20 OHMS TOWER IMPEDANCE (R,X) : 40.33, 30.16 OHMS

NODE	то	NODE	IMPEDANCE R	(OHMS) X
1		GROUND	0.00	-10000.00
2		GROUND	40.69	30.05
1		2	0.00	27.00

	VOLTAG	ĩΕ
NODE	MAGNITUDE	PHASE
1 2	100.00 72.19	0.00 -18.06

	REAL	IMAGINARY	MAGNITUDE	PHASE
INPUT IMPEDANCE (OHMS) :	41.16	57.21	70.48	54.27
INPUT CURRENT (AMPS) :	0.83	-1.15	1.42	-54.27
OUTPUT CURRENT (AMPS) :	0.83	-1.17	1.43	-54.85

INPUT/OUTPUT CURRENT RATIO = 0.9899 INPUT/OUTPUT PHASE = 0.58 DEGREES

CUSTOMER : WBGX NETWORK ID : TOWER 3 (OTHERS OPEN)

FREQUENCY : 1570.00 kHz ATU SHUNT IMPEDANCE (R,X) : 0.00,-10000.00 OHMS TOWER FEED IMPEDANCE (R,X) : 0.00, 31.00 OHMS TOWER SHUNT IMPEDANCE (R,X) : 0.00, -6758.20 OHMS TOWER IMPEDANCE (R,X) : 42.19, 28.18 OHMS

NODE	то	NODE	IMPEDANCE R	(OHMS) X
1		GROUND	0.00	-10000.00
2		GROUND	42.54	28.03
1		2	0.00	31.00

	VOLTA	GE
NODE	MAGNITUDE	PHASE
1	100.00	0.00
2	70.02	-20.84

	REAL	IMAGINARY	MAGNITUDE	PHASE
INPUT IMPEDANCE (OHMS) :	43.05	59.20	73.20	53.98
INPUT CURRENT (AMPS) :	0.80	-1.10	1.37	-53.98
OUTPUT CURRENT (AMPS) :	0.80	-1.12	1.38	-54.58

INPUT/OUTPUT CURRENT RATIO = 0.9900 INPUT/OUTPUT PHASE = 0.60 DEGREES

CUSTOMER : WBGX NETWORK ID : TOWER 4 (OTHERS OPEN)

FREQUENCY : 1570.00 kHz ATU SHUNT IMPEDANCE (R,X) : 0.00,-10000.00 OHMS TOWER FEED IMPEDANCE (R,X) : 0.00, 25.00 OHMS TOWER SHUNT IMPEDANCE (R,X) : 0.00, -6758.20 OHMS TOWER IMPEDANCE (R,X) : 37.21, 14.20 OHMS

NODE	то	NODE	IMPEDANCE R	(OHMS) X
1		GROUND	0.00	-10000.00
2		GROUND	37.37	14.02
1		2	0.00	25.00

	VOLTAC	ΞE
NODE	MAGNITUDE	PHASE
1	100.00	0.00
2	73.87	-25.67

	REAL	IMAGINARY	MAGNITUDE	PHASE
INPUT IMPEDANCE (OHMS) :	37.66	39.04	54.24	46.03
INPUT CURRENT (AMPS) :	1.28	-1.33	1.84	-46.03
OUTPUT CURRENT (AMPS) :	1.28	-1.35	1.85	-46.56

INPUT/OUTPUT CURRENT RATIO = 0.9940 INPUT/OUTPUT PHASE = 0.53 DEGREES

FIGURE 13 WBGX CIRCUIT ANALYSIS FOR DIRECTIONAL DAY MODE

CUSTOMER : WBGX NETWORK ID : TOWER 2 DAY

FREQUENCY : 1570.00 kHz ATU SHUNT IMPEDANCE (R,X) : 0.00,-10000.00 OHMS TOWER FEED IMPEDANCE (R,X) : 0.00, 27.00 OHMS TOWER SHUNT IMPEDANCE (R,X) : 0.00, -6758.20 OHMS TOWER IMPEDANCE (R,X) : 90.37, 49.15 OHMS

NODE	то	NODE	IMPEDANCE R	(OHMS) X
1		GROUND	0.00	-10000.00
2		GROUND	91.68	48.28
1		2	0.00	27.00

	VOLTAC	ΞE
NODE	MAGNITUDE	PHASE
1	264.41	-96.58
2	230.95	251.80
2	230.95	251.80

	REAL	IMAGINARY	MAGNITUDE	PHASE
INPUT IMPEDANCE (OHMS) :	93.07	74.99	119.52	38.86
INPUT CURRENT (AMPS) :	-1.58	-1.55	2.21	-135.44
OUTPUT CURRENT (AMPS) :	-1.63	-1.54	2.25	-136.74

INPUT/OUTPUT CURRENT RATIO = 0.9854 INPUT/OUTPUT PHASE = 1.30 DEGREES

FIGURE 13 WBGX CIRCUIT ANALYSIS FOR DIRECTIONAL DAY MODE

CUSTOMER : WBGX NETWORK ID : TOWER 3 DAY

FREQUENCY : 1570.00 kHz ATU SHUNT IMPEDANCE (R,X) : 0.00,-10000.00 OHMS TOWER FEED IMPEDANCE (R,X) : 0.00, 31.00 OHMS TOWER SHUNT IMPEDANCE (R,X) : 0.00, -6758.20 OHMS TOWER IMPEDANCE (R,X) : -7.47, 26.06 OHMS

NODE	то	NODE	IMPEDANCE R	(OHMS) X
1 2		GROUND GROUND	0.00 -7.53	-10000.00 26.15
1		2	0.00	31.00

	VOLTAG	Ε
NODE	MAGNITUDE	PHASE
1	229.34	96.75
Z	108.27	TO2.30

	REAL	IMAGINARY	MAGNITUDE	PHASE
INPUT IMPEDANCE (OHMS) :	-7.61	57.48	57.98	97.55
INPUT CURRENT (AMPS) :	3.96	-0.06	3.96	-0.80
OUTPUT CURRENT (AMPS) :	3.99	-0.05	3.99	-0.69

INPUT/OUTPUT CURRENT RATIO = 0.9905 INPUT/OUTPUT PHASE = -0.11 DEGREES

FIGURE 13 WBGX CIRCUIT ANALYSIS FOR DIRECTIONAL DAY MODE

CUSTOMER : WBGX NETWORK ID : TOWER 4 DAY

FREQUENCY : 1570.00 kHz ATU SHUNT IMPEDANCE (R,X) : 0.00, -10000.00 OHMS TOWER FEED IMPEDANCE (R,X) : 0.00, 25.00 OHMS TOWER SHUNT IMPEDANCE (R,X) : 0.00, -6758.20 OHMS TOWER IMPEDANCE (R,X) : 42.43, 33.77 OHMS

NODE	то	NODE	IMPEDANCE R	(OHMS) X
1		GROUND	0.00	-10000.00
2 1		GROUND 2	42.86 0.00	33.67 25.00

	VOLTA	GE
NODE	MAGNITUDE	PHASE
1	306.76 230 11	-89.70 254 60

	REAL	IMAGINARY	MAGNITUDE	PHASE
INPUT IMPEDANCE (OHMS) :	43.36	58.83	73.08	53.61
INPUT CURRENT (AMPS) :	-3.37	-2.51	4.20	-143.31
OUTPUT CURRENT (AMPS) :	-3.43	-2.50	4.24	-143.92

INPUT/OUTPUT CURRENT RATIO = 0.9892 INPUT/OUTPUT PHASE = 0.61 DEGREES

FIGURE 14 WBGX CIRCUIT ANALYSIS FOR DIRECTIONAL NIGHT MODE

CUSTOMER : WBGX NETWORK ID : TOWER 1 NIGHT

FREQUENCY : 1570.00 kHz ATU SHUNT IMPEDANCE (R,X) : 0.00,-10000.00 OHMS TOWER FEED IMPEDANCE (R,X) : 0.00, 20.00 OHMS TOWER SHUNT IMPEDANCE (R,X) : 0.00, -2896.40 OHMS TOWER IMPEDANCE (R,X) : 20.96, 59.60 OHMS

NODE	то	NODE	IMPEDANCE R	(OHMS) X
1		GROUND	0.00	-10000.00
2		GROUND	21.85	60.69
1		2	0.00	20.00

	VOLTAC	ΞE
NODE	MAGNITUDE	PHASE
1	357.51	77.35
2	275.86	72.70

	REAL	IMAGINARY	MAGNITUDE	PHASE
INPUT IMPEDANCE (OHMS) :	22.21	81.30	84.28	74.72
INPUT CURRENT (AMPS) :	4.24	0.19	4.24	2.63
OUTPUT CURRENT (AMPS) :	4.36	0.16	4.37	2.08

INPUT/OUTPUT CURRENT RATIO = 0.9715 INPUT/OUTPUT PHASE = 0.55 DEGREES

FIGURE 14 WBGX CIRCUIT ANALYSIS FOR DIRECTIONAL NIGHT MODE

CUSTOMER : WBGX NETWORK ID : TOWER 2 NIGHT

FREQUENCY : 1570.00 kHz ATU SHUNT IMPEDANCE (R,X) : 0.00,-10000.00 OHMS TOWER FEED IMPEDANCE (R,X) : 0.00, 27.00 OHMS TOWER SHUNT IMPEDANCE (R,X) : 0.00, -6758.20 OHMS TOWER IMPEDANCE (R,X) : 2.73, 68.57 OHMS

NODE	то	NODE	IMPEDANCE R	(OHMS) X
1		GROUND	0.00	-10000.00
2		GROUND	2.79	69.27
1		2	0.00	27.00

	VOLTA	GE
NODE	MAGNITUDE	PHASE
1	340.01	-104.75
2	244.75	254.60

	REAL	IMAGINARY	MAGNITUDE	PHASE
INPUT IMPEDANCE (OHMS) :	2.84	97.21	97.25	88.33
INPUT CURRENT (AMPS) :	-3.41	0.79	3.50	166.92
OUTPUT CURRENT (AMPS) :	-3.47	0.81	3.57	166.88

INPUT/OUTPUT CURRENT RATIO = 0.9803 INPUT/OUTPUT PHASE = 0.04 DEGREES

FIGURE 14 WBGX CIRCUIT ANALYSIS FOR DIRECTIONAL NIGHT MODE

CUSTOMER : WBGX NETWORK ID : TOWER 3 NIGHT

FREQUENCY : 1570.00 kHz ATU SHUNT IMPEDANCE (R,X) : 0.00,-10000.00 OHMS TOWER FEED IMPEDANCE (R,X) : 0.00, 31.00 OHMS TOWER SHUNT IMPEDANCE (R,X) : 0.00, -6758.20 OHMS TOWER IMPEDANCE (R,X) : 9.95, 1.81 OHMS

NODE	то	NODE	IMPEDANCE R	(OHMS) X
1		GROUND	0.00	-10000.00
2		GROUND	9.96	1.80
1		2	0.00	31.00

	VOLTAG	Ε
NODE	MAGNITUDE	PHASE
1 2	88.06 25.99	30.09 327.20

	REAL	IMAGINARY	MAGNITUDE	PHASE
INPUT IMPEDANCE (OHMS) :	10.02	32.89	34.39	73.06
INPUT CURRENT (AMPS) :	1.87	-1.75	2.56	-42.97
OUTPUT CURRENT (AMPS) :	1.88	-1.76	2.57	-43.11

INPUT/OUTPUT CURRENT RATIO = 0.9965 INPUT/OUTPUT PHASE = 0.14 DEGREES

FIGURE 15 WBGX REFERENCE FIELD INTENSITY MEASUREMENTS FEBRUARY, 2023

WBGX DAY REFERENCE POINT MEASUREMENTS – JANUARY 17, 2023

	CO-ORD NAD27										
<u>Radial</u>		<u>bist</u> <u>km</u>	<u>mV/m</u>	<u>Time</u>		<u>Deg</u>	<u>Min</u>	<u>Sec</u>	Description		
38°	1	1.05	428	1310	N W	41 87	36 40	40.4 16.4	Dixie Hwy. at Police entrance		
	2	1.89	124	1315	N W	41 87	37 39	01.8 53.9	Opposite #147 150 th St.		
	3	2.31	149	1319	N W	41 87	37 39	12.9 43.0	Honore St.		
150.5°	1	2.35	16.4	1338	N W	41 87	35 39	07.8 55.1	#16721 Dixie Hwy./Robey St.		
	2	2.70	10.3	1414	N W	41 87	34 39	58.0 47.2	NE corner, intersection of Lincoln St. and 169 th St.		
	3	2.98	9.1	1332	N W	41 87	34 39	50.4 40.7	South side of 170 th St. at entrance to commuter parking lot.		
282°	1	1.32	55.0	1428	N W	41 87	36 41	22.9 41.1	Kedzie Ave. at drive for Midwestern Electric.		
	2	1.73	48.5	1437	N W	41 87	36 41	25.6 58.1	#15531 Homan Ave.		
	3	3.21	19.0	1448	N W	41 87	36 43	35.1 01.0	East Side of Pulaski Ave. at drive #15425 for Tom's Collision Clinic		

FIGURE 15

WBGX REFERENCE FIELD INTENSITY MEASUREMENTS

CONTINUED

WBGX NIGHT REFERENCE POINT MEASUREMENTS – JANUARY 17, 2023

		.				CO-0	DRD N	AD27	
<u>Radial</u>		<u>Dist</u> <u>km</u>	<u>mV/m</u>	<u>Time</u>		Deg	<u>Min</u>	<u>Sec</u>	Description
5°	1	1.49	138	1514	N W	41 87	37 40	02.1 39.2	#369 150 th St.
	2	1.68	99.2	1518	N W	41 87	37 40	08.1 38.9	149 th St. at building
	3	1.89	92.7	1525	N W	41 87	37 40	15.1 38.2	148 th St. by trees
73.5°	1	0.92	20.0	1532	N W	41 87	36 40	22.3 07.1	#212 156 th St.
	2	1.38	15.2	1538	N W	41 87	36 39	26.6 47.4	#15517 Lincoln St.
	3	1.58	12.1	1545	N W	41 87	36 39	28.9 39.6	SW corner, intersection of Wood St. and 155 th St.
150.5°	1	2.35	17.9	1605	N W	41 87	35 39	07.8 55.1	#16721 Dixie Hwy./Robey St.
	2	2.70	9.6	1602	N W	41 87	34 39	58.0 47.2	NE corner, intersection of Lincoln St. and 169 th St.
	3	2.98	12.6	1558	N W	41 87	34 39	50.4 40.7	South side of 170 th St. at entrance to commuter parking lot.

FIGURE 15

WBGX REFERENCE FIELD INTENSITY MEASUREMENTS

CONTINUED

WBGX NIGHT REFERENCE POINT MEASUREMENTS – JANUARY 17, 2023

		-				CO-0	DRD N	AD27	
<u>Radial</u>		<u>Dist</u> <u>km</u>	<u>mV/m</u>	<u>Time</u>		Deg	<u>Min</u>	<u>Sec</u>	Description
219.5°	1	2.03	34.3	1620	N W	41 87	35 41	23.4 40.9	SW corner, intersection of Kedzie Ave. and 165 th St.
	2	2.28	28.5	1616	N W	41 87	35 41	17.2 47.9	#16549 Spaulding/166 th St.
	3	3.35	18.0	1633	N W	41 87	34 42	50.2 17.4	#17003 Central Park Ave.
296.5°	1	2.92	13.0	1655	N W	41 87	36 42	56.3 38.5	#15222 Ridgeway Ave.
	2	3.19	16.2	1650	N W	41 87	37 42	00.5 48.8	#15153 Avers Ave.
	3	4.01	15.6	1704	N W	41 87	37 43	11.6 20.8	Intersection, 150 th St./Keeler Ave.

FIGURE 16 WBGX CURRENT MOMENTS FOR DAY MODE

WBGX DAY

CURRENT MOMENTS(amp-degrees) rms

Frequency = 1.57 MHz Input power = 1,100. watts

тприс	$p_{0We1} - 1, 10$	U. Walls		
			vertical cu	rrent moment
wire	magnitude	phase (deg)	magnitude	phase (deg)
1	.0473741	180.3	.0473741	180.3
2	112.998	214.1	112.998	214.1
3	188.189	360.	188.189	360.
4	197.537	212.	197.537	212.

Medium wave array vertical current moment (amps-degrees) rms (Calculation assumes tower wires are grouped together. The first wire of each group must contain the source.)

nitude	phase	(deg)
73741	180.3	
.998	214.1	
.189	360.	
.537	212.	
	nitude 73741 .998 .189 .537	nitude phase 73741 180.3 .998 214.1 .189 360. .537 212.

FIGURE 17 WBGX CURRENT MOMENTS FOR NIGHT MODE

WBGX NIGHT

CURRENT MOMENTS(amp-degrees) rms

Frequency = 1.57 MHz Input power = 500. watts

			vertical cu	rrent moment
wire	magnitude	phase (deg)	magnitude	phase (deg)
1	222.416	0.0	222.416	0.0
2	182.491	166.6	182.491	166.6
3	115.688	315.8	115.688	315.8
4	.0547232	242.8	.0547232	242.8

Medium wave array vertical current moment (amps-degrees) rms (Calculation assumes tower wires are grouped together. The first wire of each group must contain the source.)

tower	magnitude	phase	(deg)
1	222.416	0.0	
2	182.491	166.6	
3	115.688	315.8	
4	.0547232	242.8	