

7136 S Yale Ave Suite 501 Tulsa, OK 74133 o 918.664.4581
f 918.664.3066

www.iHeartMedia.com www.iHeartRadio.com #iheartradio

February 17, 2023

VIA EMAIL

Ms. Marlene H. Dortch, Secretary Federal Communications Commission 45 L Street NE Washington, DC 20554

RE: IHM LICENSES, LLC (FRN No. 0014042816)

FCC Form 302-AM

KXYZ (AM), 1320 kHz, Houston, TX; Facility ID No. 95

Dear Ms. Dortch:

On behalf of IHM LICENSES, LLC, the licensee of the above-referenced station, enclosed is a copy of FCC Form 302-AM.

Please contact the undersigned with any communications concerning this application.

Respectfully submitted, IHM LICENSES, LLC

Troy Langham

VP, Technical Regulatory Affairs

cc: Public Inspection File

Federal Communications Commission Washington, D. C. 20554

REMITTANCE.

Approved by OMB 3060-0627 Expires 01/31/98

FCC 302-AM APPLICATION FOR AM BROADCAST STATION LICENSE

FOR FCC	
USE ONLY	

FOR COMMISSION USE ONLY

(Please read instructions before filling out form.	FILE NO.	
SECTION I - APPLICANT FEE INFORMATION		
PAYOR NAME (Last, First, Middle Initial)		
IHM LICENSES, LLC		
MAILING ADDRESS (Line 1) (Maximum 35 characters) 7136 S YALE AVE		
MAILING ADDRESS (Line 2) (Maximum 35 characters) SUITE 501		
CITY TULSA	STATE OR COUNTRY (if foreign add	ress) ZIP CODE 74136
TELEPHONE NUMBER (include area code) 918-664-4581	CALL LETTERS OTHER 85 WXYZ 95	R FCC IDENTIFIER (If applicable)
2. A. Is a fee submitted with this application?		✓ Yes No
B. If No, indicate reason for fee exemption (see 47 C.F.R. Section		
Governmental Entity Noncommercial educa	other (Plea	se explain):
C. If Yes, provide the following information:		
Enter in Column (A) the correct Fee Type Code for the service you ar Fee Filing Guide." Column (B) lists the Fee Multiple applicable for this		
(A) (B)	(C)	
FEE TYPE FEE MULTIPLE	FEE DUE FOR FEE TYPE CODE IN	FOR FCC USE ONLY
M M R 0 0 1	\$ 645.00	
To be used only when you are requesting concurrent actions which resu	ult in a requirement to list more than or	ne Fee Type Code.
(A) (B)	(C)	
M O R 0 0 0 1	\$ 1260.00	FOR FCC USE ONLY
ADD ALL AMOUNTS SHOWN IN COLUMN C.	TOTAL AMOUNT REMITTED WITH THIS	FOR FCC USE ONLY
AND ENTER THE TOTAL HERE. THIS AMOUNT SHOULD EQUAL YOUR ENCLOSED	\$ 1905.00	
THIS AMOUNT SHOULD EQUAL TOUR ENGLOSED	φ 1905.00	

SECTION II - APPLICAN 1. NAME OF APPLICANT IHM LICENSES, LLC	T INFORMATION				
MAILING ADDRESS 7136 S YALE AVE, SUITE 5	501				
CITY TULSA			STATE OK		ZIP CODE 74136
2. This application is for:	✓ Commercial ✓ AM Direct	tional	Noncomn	nercial Ion-Directional	
Call letters	Community of License	Construct	tion Permit File No.	Modification of Construction	Expiration Date of Last
KXYZ	HOUSTON, TX	BP-202	210125AAC	Permit File No(s).	Construction Permit 05/04/2024
3. Is the station no accordance with 47 C.F. If No, explain in an Exhi		to auto	matic program	test authority in	Yes ✓ No Exhibit No.
4. Have all the terms construction permit been	s, conditions, and oblig n fully met?	ations s	et forth in the	above described	✓ Yes No Exhibit No.
If No, state exceptions in	n an Exhibit.				
the grant of the underl	ges already reported, ha ying construction permit d in the construction perr	which v	would result in	any statement or	Yes ✓ No
If Yes, explain in an Ex	hibit.				Exhibit No.
	ed its Ownership Report ce with 47 C.F.R. Section			ership	✓ Yes No Does not apply
If No, explain in an Exhi	bit.				Exhibit No.
or administrative body v criminal proceeding, bro	ing been made or an advith respect to the applications and the provision elated antitrust or unfaint; or discrimination?	ant or pa is of any	rties to the appli law relating to t	cation in a civil or he following: any	Yes ✓ No
involved, including an ice (by dates and file num information has been required by 47 U.S.C. Sof that previous submist the call letters of the st	attach as an Exhibit a fudentification of the court of bers), and the disposition earlier disclosed in confection 1.65(c), the application by reference to the tation regarding which the filling; and (ii) the disposition is at the disposition of the disposition in the disposition is at the disposition in the disposition in the disposition is at the disposition in the dispo	or admin on of the nnection ant need file num ne applic	istrative body are litigation. Whe with another and only provide: (ber in the case ation or Section	nd the proceeding nere the requisite application or as i) an identification of an application, a 1.65 information	Exhibit No.

8. Does the applicant, or any party to the application, have a petition on file to migrate to the expanded band (1605-1705 kHz) or a permit or license either in the existing band or expanded band that is held in combination (pursuant to the 5 year holding period allowed) with the AM facility proposed to be modified herein?	Yes	✓ No
If Yes, provide particulars as an Exhibit.	Exhibit No).

The APPLICANT hereby waives any claim to the use of any particular frequency or of the electromagnetic spectrum as against the regulatory power of the United States because use of the same, whether by license or otherwise, and requests and authorization in accordance with this application. (See Section 304 of the Communications Act of 1934, as amended).

The APPLICANT acknowledges that all the statements made in this application and attached exhibits are considered material representations and that all the exhibits are a material part hereof and are incorporated herein as set out in full in

CERTIFICATION

1. By checking Yes, the applicant certifies, that, in the case of an individual applicant, he or she is not subject to a denial of federal benefits that includes FCC benefits pursuant to Section 5301 of the Anti-Drug Abuse Act of 1988, 21 U.S.C. Section 862, or, in the case of a non-individual applicant (e.g., corporation, partnership or other unincorporated association), no party to the application is subject to a denial of federal benefits that includes FCC benefits pursuant to that section. For the definition of a "party" for these purposes, see 47 C.F.R. Section 1.2002(b).

✓	Yes		No
---	-----	--	----

2. I certify that the statements in this application are true, complete, and correct to the best of my knowledge and belief, and are made in good faith.

		Digitally signed by Troy Langham
Name	Signature	
Troy Langham	Troy Langha	email=Troylangham@iheartmedia.com, c=US Date: 2023 02 17 07:21:28 -06:00'
Title	Date C	Telephone Number
VP, Technical Regulatory Affairs	2/14/2023	918-664-4581

WILLFUL FALSE STATEMENTS ON THIS FORM ARE PUNISHABLE BY FINE AND/OR IMPRISONMENT (U.S. CODE, TITLE 18, SECTION 1001), AND/OR REVOCATION OF ANY STATION LICENSE OR CONSTRUCTION

FCC NOTICE TO INDIVIDUALS REQUIRED BY THE PRIVACY ACT AND THE PAPERWORK REDUCTION ACT

The solicitation of personal information requested in this application is authorized by the Communications Act of 1934, as amended. The Commission will use the information provided in this form to determine whether grant of the application is in the public interest. In reaching that determination, or for law enforcement purposes, it may become necessary to refer personal information contained in this form to another government agency. In addition, all information provided in this form will be available for public inspection. If information requested on the form is not provided, the application may be returned without action having been taken upon it or its processing may be delayed while a request is made to provide the missing information. Your response is required to obtain the requested authorization.

Public reporting burden for this collection of information is estimated to average 639 hours and 53 minutes per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the burden, can be sent to the Federal Communications Commission, Records Management Branch, Paperwork Reduction Project (3060-0627), Washington, D. C. 20554. Do NOT send completed forms to this address.

THE FOREGOING NOTICE IS REQUIRED BY THE PRIVACY ACT OF 1974, P.L. 93-579, DECEMBER 31, 1974, 5 U.S.C. 552a(e)(3), AND THE PAPERWORK REDUCTION ACT OF 1980, P.L. 96-511, DECEMBER 11, 1980, 44 U.S.C. 3507.

SECTION III - LICENSE APPLICATION ENGINEERING DATA							
Name of Applican							
PURPOSE OF A	JTHORIZATION	APPLIED FOR:	(check one)				4
✓ s BM	Station License		Direct Mea	surement of Pow	er		
1. Facilities author	orized in constru	ction permit					
Call Sign		struction Permit	Frequency (kHz)	Hours of Opera	ation	Power in	kilowatts
KXYZ	(if applicable) BP-20210125AA	Night 2.8	Day 8.4				
2. Station location	n						
State				City or Town			
Texas				Houston			
3. Transmitter loc	3. Transmitter location						
State	County			City or Town		Street address (or other identification)	otion)
TX Harris Houston					3000 Hansom R		
4. Main studio lo	cation						
State	County			City or Town		Street address	- C X
TX Harris Houston (or other identification)							
5. Remote contro	ol point location (specify only if au	uthorized direction	al antenna)			10-4-10-10-10-10-10-10-10-10-10-10-10-10-10-
State	County			City or Town		Street address	
TX	Harris			(or other		(or other identific 1233 West Loop	
						1235 (1.33) 234	7.5.5.00
6. Has type-appr	oved stereo gen	erating equipme	nt been installed?			Y	es ✓ No
7 Doos the same	olina avatam ma	ot the requireme	nto of 47 CED S	ootion 72 692		V	es No
7. Does the samp	billig system me	et the requiremen	1115 01 47 C.F.N. 3	ection 73.00?			
							Not Applicable
Attach as an Ex	hibit a detailed o	description of the	sampling system	as installed.		Exhi	ibit No.
			, ,			Eng Str	nt
8. Operating con-	stants:						
RF common point	t or antenna curr	ent (in amperes)	without	RF common po	oint or antenna	current (in ampere	s) without
modulation for nig 7.78	ght system			modulation for 13.30	day system		
Measured antenn	a or common po	int resistance (in	ohms) at	Measured ante	nna or commor	n point reactance (in ohms) at
operating frequen	су	D		operating frequ	iency	Deve	
Night 50		Day 50		Night -j 12.6		Day -j 12	6
				-, 12.0		-) 12	
Antenna indication	ns for directional	Antenna	monitor	Antenna mor	nitor sample		
Towe	rs	Phase reading(current		Antenna b	ase currents
		Night	Day	Night	Day	Night	Day
1(NEC) - ASR#10	The second secon	84.2	84.2	0.888 1.000	0.888	***	-/
2(SEC) - ASR#105		0.0 165.5	0.0	0.603	1.000 0.603	0.00	555
3(SE) - ASR#1058	1100	100.0	165.5	0.000	0.003		207(E)
**							+
Manufacturer and	type of antenna	monitor: Pot	omac Instrument	s, Model 1901-	3		

SECTION III - Page 2

9. Description of antenna system ((f directional antenna is used, the information requested below should be given for each element of the array. Use separate sheets if necessary.)

Type Radiator Uniform cross-	Overall height in meters of radiator above base insulator, or above base, if	Overall height above ground obstruction lig	(without	Overall height in meters above ground (include obstruction lighting)	If antenna is either top loaded or sectionalized, describe fully in an Exhibit.
section, guyed,	grounded.	104.9		106.2	Exhibit No.
tower	103.5	104.9		100.2	N/A
Excitation	Series	Shunt			
Geographic coordinates tower location.	to nearest second. For direc	tional antenna g	give coordinate	es of center of array. For s	ingle vertical radiator give
North Latitude 29	° 54 ' 5	6 "	West Longitu	^{de} 95 ° 27	42 "
	ove, attach as an Exhibit furt ver and associated isolation c		dimensions ir	ncluding any other	Exhibit No. N/A
Also, if necessary for a dimensions of ground sy	a complete description, attac stem.	ch as an Exhib	oit a sketch o	of the details and	Exhibit No. On file
	ny, does the apparatus const	ructed differ fro	m that describ	ped in the application for co	onstruction permit or in the
permit? None		***************************************	***************************************		
11. Give reasons for the	e change in antenna or comm	on point resista	nce.		
N/A					
	the applicant in the capacity			have examined the forego	ing statement of technical
Name (Please Print or T	ype)	S	ignature (che	ck appropriate box below)	
James D. Sadler			{	Jun arg	
Address (include ZIP Co			Pate February	6 2023	
Carl T. Jones Co			-	(Include Area Code)	
Springfield, VA 2			(703) 56		
Language Property Control of Cont			***		
Technical Director			Registere	ed Professional Engineer	
Chief Operator		V	/ Technica	l Consultant	
Other (specify)					

FCC 302-AM (Page 5) August 1995

ENGINEERING EXHIBIT
IN SUPPORT OF AN
APPLICATION FOR STATION LICENSE
STATION KXYZ - HOUSTON, TEXAS
1320 kHz - 8.4 kW-D, 2.8 kW-N, U, DA-2
Facility ID: 95

Applicant: IHM Licensees, LLC

FEBRUARY, 2023

7901 Yarnwood Court Springfield, VA 22153-2899 tel: (703) 569-7704

fax: (703) 569-6417

email: info@ctjc.com

www.ctjc.com

TABLE OF CONTENTS

SECTION III OF FCC FORM 302-AM

ENGINEERING STATEMENT OF JAMES D. SADLER

	<u>FIGURE</u>
Tower Model Height and Radius	1
Measured and Modeled Impedances	2
Modeled and Adjusted Base Voltages	3
Daytime Antenna Monitor Parameters and Common Point Data	4
Nighttime Antenna Monitor Parameters and Common Point Data	5
Sample Line Verification Measurements	6
Sample Device Verification Report	7
Reference Field Strength Measurements	8
Measured Spurious and Harmonic Emissions – Daytime Operation	9
Measured Spurious and Harmonic Emissions – Nighttime Operation	10
Phasing and Coupling System Schematic Diagram	11
Tri-Plex Filter Circuit Schematic Diagram	12
Individual Tower Model	ppendix A
Daytime Directional Array ModelA	ppendix B
Nighttime Directional Array Model	ppendix C
Detune Model	nnendiy D

ENGINEERING STATEMENT OF JAMES D. SADLER IN SUPPORT OF AN **APPLICATION FOR STATION LICENSE** STATION KXYZ - HOUSTON, TEXAS 1320 kHz - 8.4 kW-D, 2.8 kW-N, U, DA-2

Facility ID: 95

Applicant: IHM Licensees, LLC

I am a Technical Consultant, an employee in the firm of Carl T. Jones Corporation, with offices located in Springfield, Virginia. My education and experience are a matter of record with the Federal Communications Commission.

1.0 GENERAL

This office has been authorized by IHM Licensees ("IHM"), licensee of AM Radio Station KXYZ, to prepare this engineering statement, FCC Form 302-AM, Section III, and the associated figures and appendices in support of an Application for License. Station KXYZ is licensed for operation on 1320 kilohertz with a daytime power of 10 kilowatts and a nighttime power of 5 kilowatts. The station uses the same directional antenna pattern for its daytime and nighttime operations (DA-2).

IHM was granted a Construction Permit on May 4, 2021, FCC File No. BP-20211012AAC, that authorizes relocation of the KXYZ transmission facilities to the transmitter site of Station KBME. The KXYZ Construction Permit authorizes operation

tel: (703) 569-7704

fax: (703) 569-6417

email: info@ctjc.com

www.ctjc.com

on 1320 kilohertz at a daytime power of 8.4 kilowatts and a nighttime power of 2.8 kilowatts employing the same three-tower directional antenna pattern for its daytime and nighttime operation (DA-2).

Station KBME is licensed for operation on 790 kilohertz at a power of 5 kilowatts during daytime and nighttime hours. The station uses a four tower directional antenna during daytime hours and an eight tower directional antenna during nighttime hours (DA-2). The four daytime towers are shared with the nighttime directional array. AM Station KPRC, licensed to serve Houston, Texas, also holds a construction permit, FCC File No. BP-20200917AAN, to relocate its transmission facilities to the transmitter site of Station KBME. Station KPRC is authorized to operate on 950 kHz at a daytime power of 7 kilowatts and a nighttime power of 4.3 kilowatts employing a single tower for daytime non-directional operation and four towers for nighttime directional operation (DA-N).

After completion of the installation of the new KXYZ and KPRC phasing and coupling systems and all triplexing filters required to minimize interaction between the three collocated stations, the KXYZ directional antenna pattern was verified using computer modeling and sample system verification techniques as described in Section 47 CFR 73.151(c) of the FCC's Rules and Regulations. The specific measurement and modeling techniques used in performing the verification of the KXYZ daytime and nighttime directional patterns are described in detail in this engineering statement.

Impedance measurement data, sample system verification measurement data, model derived operating parameters and reference point field strength measurement data are tabulated in the figures attached to this engineering statement. All pertinent

computer model input and output files are contained in the attached Appendices A, B, C, and D.

2.0 IMPEDANCE MEASUREMENTS, COMPUTER MODELING AND SAMPLE SYSTEM VERIFICATION

The proof of performance contained herein is based on the computer modeling and sample system verification procedures described in Section 47 CFR 73.151(c) of the FCC's Rules and Regulations. The KXYZ daytime and nighttime antenna arrays use three of the eight KBME triangular, uniform cross-section, guyed, series fed towers. The five unused towers are detuned at the KXYZ operating frequency. The height of each tower is 164.1 electrical degrees. The sampling system employs identical Kintronic Labs, Model VSU-INT, voltage sampling devices located on the tower side of the filter circuits and series capacitor at the output to the tower feed line.

2.1 INDIVIDUAL TOWER IMPEDANCE MEASUREMENTS

Tower base impedance measurements were performed at the triplex filter cabinet c output J-Plug located immediately adjacent to the KXYZ voltage sample unit. The triplex filter J-Plugs for KXYZ Towers 1, 2 and 3 are labeled JCOM61, JCOM71 and JCOM81, respectively. The impedance measurements were performed by Mr. Randy Mullinax, Corporate RF Engineer for the licensee, and the undersigned, using a Keysight, Model P5020A vector network analyzer; an ENI, Model 325LA, power amplifier; and a Tunwall Radio directional coupler. The impedance of each tower was measured with the other two KXYZ towers shorted to ground at the same J-Plug

location used to perform the impedance measurement. The five unused towers (KBME tower #1, #2, #3, #4, and #5) were left in the normal 1320 kilohertz detuned mode. The measured impedances are tabulated in Figure 2.

2.2 INDIVIDUAL TOWER COMPUTER MODELS

A Method of Moments ("MoM") computer model was developed to model each element in the array using Expert MiniNEC Broadcast Professional (Version 23.0). A wire model consisting of 24 segments was developed for each tower. To replicate the individual measured base impedances to within FCC specified tolerances, each tower's physical height was adjusted in the MiniNEC model and series inductances and shunt capacitances were employed in a separate circuit model. The actual equivalent physical radius of each tower was used in all computer models contained in this application. Details of the modeled individual adjusted tower heights are contained in Figure 1.

The values of the shunt capacitances and lumped series inductances used in the circuit model are contained in the table of Figure 2. A comparison of the measured individual tower impedances, the modeled individual tower impedances, and the adjusted modeled (circuit model) individual tower impedances is also contained in the table of Figure 2. The percentage difference between the adjusted modeled tower height and the actual physical tower height and the magnitude of the lumped series inductances and shunt capacitances that were used in the circuit models are all within the tolerances set forth in the Rules.

As demonstrated by the data contained in Figure 2, the adjusted modeled individual tower resistance and reactance for each tower is well within \pm 2 ohms and \pm 4 percent tolerance of the corresponding measured individual tower resistance and reactance. The text files containing all pertinent input and output data associated with the individual tower models are contained in Appendix A.

2.3 DIRECTIONAL ANTENNA COMPUTER MODEL AND ANTENNA MONITOR PARAMETERS

The KXYZ theoretical daytime and nighttime directional field parameters and the licensed tower spacings and orientations were used in combination with the adjusted individual tower models to produce the daytime and nighttime directional antenna computer models. From the daytime and nighttime directional computer models, tower currents were derived that, when numerically integrated and normalized to the appropriate reference tower, are essentially identical to the theoretical relative field parameters for the KXYZ daytime and nighttime directional antenna patterns.

A tabulation of the modeled and adjusted base voltages for both the daytime and nighttime antenna systems is contained in Figure 3. The daytime and nighttime directional array operating parameters were determined from the modeled base voltages as adjusted by the circuit model and are tabulated in Figure 4 and 5, respectively. The text files containing all pertinent input and output data associated with the daytime and nighttime directional antenna computer models are contained in Appendix B and C. Note that in Appendix B and C the unused towers (#1, #2, #3, #4, and #5) are detuned in the model at their bases. Under normal operation, the unused

towers are detuned at their base using the detuning impedance determined by modeling for the adjusted tower's height. Details of the detune model are contained in Appendix D.

2.4 SAMPLE SYSTEM DESCRIPTION AND VERIFICATION MEASUREMENTS

The KXYZ antenna sampling system is comprised of: 1) Kintronic Labs, Model VSU-INT, voltage sampling devices mounted in an identical manner on the tower side of the filter circuits and series capacitor at the output to the tower feed line; 2) equal lengths of RFS LCF12-50JCT, phase stabilized, 1/2-inch, foam dielectric, coaxial cable; and 3) a Potomac Instruments, Model 1901-3, antenna monitor. Each sample line between the ATU building and the transmitter building, including excess lengths, is buried such that each cable is subjected to the same environmental conditions.

The sample lines were verified to be equal in length by measuring the open-circuit series resonate frequency closest to the carrier frequency. The characteristic impedance was verified by measuring the impedance at frequencies corresponding to odd multiples of 1/8 wavelength immediately above and below the open circuit series resonant frequency closest to the carrier frequency, while the line was open-circuited at the sample element end of the line. The characteristic impedance was calculated by the following formula:

$$Z = \sqrt{\sqrt{R_1^2 + X_1^2}} \times \sqrt{R_2^2 + X_2^2}$$

where:

 $\mathbf{Z} = Characteristic$ impedance and $\mathbf{R}_1 + \mathbf{j} \ \mathbf{X}_1$ and $\mathbf{R}_2 + \mathbf{j} \ \mathbf{X}_2$ are the measured impedances at ± 45 degrees offset frequencies.

A tabulation of the measured sample line lengths and the characteristic impedance of each line is contained in Figure 6. All sample line verification measurements were performed by Mr. Jake Wyatt, Corporate RF Engineer for the licensee, using a Keysight, Model P5020A vector network analyzer; an ENI, Model 325LA, power amplifier; and a Tunwall Radio directional coupler. As demonstrated by the measured values in Figure 6, the measured sample line lengths are within 1 electrical degree with respect to each other and the measured characteristic impedances are well within 2 ohms of each other, as required by Section 47 CFR 73.151(c)(2)(I) of the FCC Rules and Regulations.

An impedance measurement was performed at the input to each sample line, at the antenna monitor end of the line, with the voltage sampling device connected. The measurement was performed at the KXYZ operating frequency of 1320 kilohertz. The measured sample line impedances with the voltage sampling devices connected are tabulated in Figure 6 under the heading "Reference Impedance Voltage Sampler Connected." The performance of the voltage sampling units was performed by Kintronic Labs immediately prior to shipping the units. The test confirmed that the performance of the three KXYZ voltages samplers is within the manufacturer's stated accuracy. A test report prepared by Kintronic Labs is included herein as Figure 7.

The antenna monitor that is employed by KXYZ is a Potomac Instruments, Model 1901-3 from the licensed antenna system. The antenna monitor was sent to Potomac Instruments to have filters installed and was recalibrated in June, 2021.

3.0 COMMON POINT IMPEDANCE AND COMMON POINT CURRENT

The networks associated with the daytime and nighttime directional antenna systems were adjusted for proper impedance transformation and the daytime and nighttime common point impedance matching networks were set for Z = 50 -j 12.6 Ohms. The transmitter output power level was adjusted for a daytime common point current of 13.30 amperes and a nighttime common point current of 7.78 amperes. This corresponds to a daytime input power of 8,845 Watts and a nighttime input power of 3,024 Watts, respectively.

4.0 REFERENCE FIELD STRENGTH MEASUREMENTS

Reference field strength measurements were performed on the KXYZ daytime and nighttime directional antenna patterns on the 133° and 217° radial bearings, corresponding to the major lobes of the pattern. In addition, reference field strength measurements were performed on the 39.5°, 89°, 175°, 261° and 310.5° radial bearings, corresponding to the daytime and nighttime directional pattern minima. Three reference field strength measurements were performed on each of the selected radial bearings.

The measurements were performed by Mr. Randy Mullinax and Mr. Nicolas Blomstrand. Mr. Blomstrand is also a Corporate RF Engineer for the licensee. A single

Potomac Instruments, Model PI-4100, Serial Number 133, last calibrated June, 2021, was used to perform the measurements.

The measured field strength value for each established reference point location is tabulated in Figure 8, Sheets 1 through 4. The tabulations contained in Figure 8 also include for each reference location; GPS coordinates (NAD83), distance from the KXYZ array center, and a description of measurement location.

5.0 CONSTRUCTION PERMIT SPECIAL CONDITIONS

The KXYZ construction permit contains several special conditions with regard to common usage of the towers at the transmitter site. The construction permit requires that before program tests are authorized: 1) sufficient data shall be submitted to show that adequate filters, traps and other equipment has been installed and adjusted to prevent interaction, intermodulation and/or generation of spurious radiation products; 2) there shall be filed with the license application copies of a firm agreement entered into by the three stations involved clearly fixing the responsibility of each with regard to the installation and maintenance of such equipment; 3) field observations shall be made to determine whether spurious emissions exist and any objectionable problems resulting therefrom shall be eliminated; and 4) all three stations shall each measure antenna or common point resistance and submit FCC Form 302 as application notifying the return to direct measurement of power.

IHM has designed, purchased, installed and adjusted filtering and detuning equipment sufficient to prevent interaction and the generation of spurious emissions.

The schematic diagram of Figure 11 shows the KXYZ phasing and coupling system.

The schematic diagrams of Figure 12 show the triplexing filters and detuning circuits that have been installed at the base of each tower for this purpose.

KXYZ, KBME and KPRC are currently owned by IHM, which assumes sole responsibility for the installation and maintenance of the filtering and detuning equipment and, therefore, the requirement for the submission of an agreement is moot. Applications for License for Stations KBME and KPRC will be filed nearly concurrent with this application. Both stations have outstanding Construction Permits which will make the requirement for an application notifying the return to direct measurement of power unnecessary.

Measurements of spurious and harmonic emissions radiated by the combined operations of KXYZ, KBME and KPRC were performed by the Mr. Randy Mullinax and Mr. Nicolas Blomstrand. The measurement data confirms that all spurious and harmonic emissions generated by the common usage of the transmitter site and antennas are below the emissions limits specified in Section 73.44(b) of the Commission's Rules and Regulations. Also included in the measurements were intermodulation products that included nearby stations operating on 1070 kHz and 610 kHz. The spurious, harmonic and intermodulation product emission measurement data is tabulated in Figures 9 and 10.

6.0 SUMMARY

It is submitted that the KXYZ daytime and nighttime directional antenna systems have been properly adjusted to comply with the technical specifications contained in Construction Permit, FCC File No. BP-20210125AAC. The daytime and nighttime

STATEMENT OF JAMES D. SADLER STATION KXYZ - HOUSTON, TEXAS PAGE 11 OF 11

directional pattern performance has been verified using computer modeling and sample

system verification procedures in accordance with Section 47 CFR 73.151(c) of the

Commission's Rules and Regulations. It is believed that the daytime and nighttime

directional antenna patterns, as adjusted, fully comply with the terms of the station's

FCC Authorization and all applicable FCC Rules and Regulations.

With the filing of the information contained herein and the near concurrent filing

of the KBME and KPRC applications for license, it is submitted that IHM has satisfied all

of the special conditions contained in the construction permit regarding the common

usage of the antennas at the transmitter site by all three stations. It is requested that

program test authority be issued at the full authorized daytime and nighttime power

levels and that a license be issued to IHM reflecting the new MoM model derived

operating parameters as contained herein and in Section III of FCC Form 302-AM.

This engineering statement, FCC Form 302-AM, Section III, and the attached

figures and appendices were prepared by the undersigned or under the direct

supervision of the undersigned and are believed to be true and correct.

Dated: February 6, 2023

James D. Sadler

TOWER MODEL HEIGHT AND RADIUS

Tower	Physical Height (meters)	Modeled Height (meters)	Percent of Physical Height	Modeled Radius (meters)	Percent of Equivalent Radius
1	103.5	112.0	108.2	0.2911	100.0
2	103.5	113.5	109.6	0.2911	100.0
3	103.5	110.0	106.2	0.2911	100.0

MEASURED AND MODELED IMPEDANCES

Tower	Measured Tower Base Impedance ¹	Modeled Tower Base Impedance	Shunt Capacitance (pF)	Modeled plus Shunt Reactance	Lumped Series Inductance (uH)	Total Adjusted Tower Base Impedance
1	422.0 -j 438.1	476.4 -j 488.1	15.0	422.1 -j 483.7	5.5	422.1 -j 438.0
2	381.5 -j 434.3	430.7 -j 492.7	15.0	381.5 -j 483.5	5.9	381.5 -j 434.3
3	493.8 -j 448.8	555.6 -j 472.0	15.0	493.6 -j 478.1	3.5	493.6 -j 448.9

¹ Measured at output J-Plug at the base of the tower with other towers used by KXYZ shorted to ground at the same location. The remaining five unused towers were all detuned at 1320 kilohertz as they are during normal operation.

MODELED AND ADJUSTED BASE VOLTAGES

	DAYTIME PATTERN							
			Adjuste	ed Base	Normalized			
	Modele	d Base	Voltage (RMS)		Adju	sted		
	Voltage (RMS)		(Circuit	Model)	Base \	/oltage		
		Phase	Phase			Phase		
Tower	Magnitude	(degrees)	Magnitude	(degrees)	Ratio	(degrees)		
1	1754.81	83.6	1677.39	84.7	0.888	84.2		
2	2042.60	356.3	1889.61	0.5	1.000	0.0		
3	1207.74	164.2	1140.20	166.0	0.603	165.5		

	NIGHTTIME PATTERN											
			Adjuste	ed Base	Normalized							
	Modele	d Base	Voltage	(RMS)	Adjusted							
	Voltage	e (RMS)	(Circuit	Model)	Base Voltage							
		Phase		Phase		Phase						
Tower	Magnitude	(degrees)	Magnitude	(degrees)	Ratio	(degrees)						
1	1013.14	83.6	968.44	84.7	0.888	84.2						
2	1179.30	356.3	1090.97	0.5	1.000	0.0						
3	697.29	164.2	658.29	166.0	0.603	165.5						

DAYTIME ANTENNA MONITOR PARAMETERS AND COMMON POINT DATA

STATION KXYZ - HOUSTON, TEXAS 1320 kHz - 8.4 kW-D, 2.8 kW-N, U, DA-2 FEBRUARY, 2023

	Modeled P	arameters
Tower	Ratio	Phase (deg)
1(NEC) - ASR#1058675	0.888	84.2
2(SEC) - ASR#1058676	1.000	0.0
3(SE) - ASR#1058677	0.603	165.5

Common Point Impedance = 50 -j 12.6 ohms

Common Point Current = 13.30 amperes

Antenna Input Power = 8,845 Watts

NIGHTTIME ANTENNA MONITOR PARAMETERS AND COMMON POINT DATA

STATION KXYZ - HOUSTON, TEXAS 1320 kHz - 8.4 kW-D, 2.8 kW-N, U, DA-2 FEBRUARY, 2023

	Modeled P	arameters
Tower	Ratio	Phase (deg)
1(NEC) - ASR#1058675	0.888	84.2
2(SEC) - ASR#1058676	1.000	0.0
3(SE) - ASR#1058677	0.603	165.5

Common Point Impedance = 50 -j 12.6 ohms

Common Point Current = 7.78 amperes

Antenna Input Power = 3,024 Watts

SAMPLE LINE VERIFICATION MEASUREMENTS

Tower	Open Circuit Series Resonant Frequency ¹ (kHz)	Open Circuit Measured Line Length ² (degrees)	Resonant Frequency -45 degree Offset Frequency (kHz)	Resonant Frequency -45 degree Offset Impedance (Ohms)	Resonant Frequency +45 degree Offset Frequency (kHz)	Resonant Frequency +45 degree Offset Impedance (Ohms)	Calculated Characteristic Impedance (Ohms)	Reference Impedance Voltage Sampler Connected ² (Ohms)
1	1294.65	642.3	1202.2	10.14 -j 48.28	1387.1	12.01 +j 48.27	49.54	43.98 -j 120.56
2	1294.45	642.4	1202.0	10.14 -j 48.28	1386.9	11.95 +j 48.14	49.47	44.03 -j 119.08
3	1294.68	642.3	1202.2	10.12 -j 48.36	1387.2	11.91 +j 48.20	49.53	42.77 -j 117.39

 $^{^{\}rm 1}$ At this frequency, the sample line electrical length is equal to 630°. $^{\rm 2}$ At carrier frequency (1320 kHz)

KINTRONIC LAB

An ISO 9001 registered company

Supporting the broadcast industry with quality products and services for over 60 years

Date:

December 15, 2021

Product Report:

VSU-INT Sampling System for KXYZ in Houston, TX

Prepared By:

James Moser, Senior Staff Engineer, Kintronic Laboratories

Requested By:

Randy Mullinax, IheartMedia Technology Operations

Radio Station: Application:

KXYZ AM Radio, Frequency 1320 KHz, Houston TX Triplexed Array with 3 Towers Active on 1320 KHz

Shipping Date:

December 23, 2021

Serial Numbers:

12162021-1, 12162021-2, 12162021-3

Kintronic Job Number:

118488

Test RF Power:

1mW

Test Equipment:

Agilent Model E5071C Network Analyzer, S/N E5071C -ATO-57723 MY46100502

Test Equipment Calibration: 9/13/21, by Analyzer Repair Inc.

~ 25 pF

June B Mores

VSU Input Capacitance: VSU Voltage Ratio:

Nominal

Temperature Range:

-50°C to 77°C

Tracking Performance:

Serial Number	Ratio	Phase	Output For 25V In	Ratio Delta	Phase Delta
12162021-1	-43.57 dB	-15.79°	.1657V	0.0%	0.0° (Reference)
12162021-2	-43.41dB	-17.17°	.1688V	1.9%	-1.38°
12162021-3	-43.44dB	-15.53°	.1682V	1.5%	+0.26°

Absolute Accuracy

±2%

Validation Signature:

Page 1 of 1

MAILING ADDRESS: PO Box 845, Bristol, TN 37621-0845

SHIPPING ADDRESS: 144 Pleasant Grove Rd., Bluff City, TN 37618

PHONE: +1 423 878-3141 e-mail: KTL@kintronic.com website: www.kintronic.com

Tower	Serial Number
1	1216201-3
2	1216201-1
3	1216201-2

STATION KXYZ - HOUSTON, TEXAS 1320 kHz - 8.4 kW-D, 2.8 kW-N, U, DA-2 FEBRUARY, 2023

39.5 Degree Radial

		Daytime	Nighttime	Geographic	Coordinates	
Point	Distance	Field	Field	(NA	D83)	
Number	(km)	(mV/m)	(mV/m)	Latitude	Longitude	Description
1	3.80	74.20	43	29° 56' 31.8"	95° 26' 13.4"	Point is located on Sharmon Road, 20 meters south of stop sign.
2	7.93	23.70	13.9	29° 58' 14.7"	95° 24' 34.9"	Point is located on the northwest corner of intersection of Silky Leaf Drive and Desert Marigold Drive.
3	8.97	25.50	15.4	29° 58' 40.6"	95° 24' 10.1"	Point is located at #19449 Verde Trails Drive.

89 Degree Radial

Point	Distance	•	Nighttime Field	Geographic Coordinates (NAD83)		
Number	(km)	(mV/m)	(mV/m)	Latitude	Longitude	Description
1	4.15	209	116	29° 54' 59.1"	95° 25' 08.1"	Point is located on the manhole cover on west edge of Greens Crossing Boulevard.
2	5.63	122	73.4	29° 54' 59.7"	95° 24' 13.1"	Point is located at #14919 Wellman Lane.
3	6.60	101	57.7	29° 55' 00.2"	95° 23' 36.7"	Point is located at #14823 Estrellita Drive.

STATION KXYZ - HOUSTON, TEXAS 1320 kHz - 8.4 kW-D, 2.8 kW-N, U, DA-2 FEBRUARY, 2023

133 Degree Radial

		•	Nighttime	Geographic	Coordinates	
	Distance		Field		D83)	
Number	(km)	(mV/m)	(mV/m)	Latitude	Longitude	Description
1	3.46	271	157	29° 53' 40.6"	95° 26' 08.5"	Point is located across from #9223 Buford Lane.
2	4.52	196	114	29° 53' 17.0"	95° 25' 39.9"	Point is located at #1602 Willow Rock Road.
3	5.82	149	88.3	29° 52' 48.4"	95° 25' 04.4"	Point is located at #838 Marcolin Street.

175 Degree Radial

Point	Distance	_	Nighttime Field	Geographic Coordinates (NAD83)		
Number	(km)	(mV/m)	(mV/m)	Latitude	Longitude	Description
1	3.16	350	206	29° 53' 15.1"	95° 27' 32.8"	Point is located at #3302 McCrarey Drive.
2	4.27	232	135	29° 52' 39.3"	95° 27' 29.1"	Point is located at #3607 Abinger Lane.
3	6.14	158	87.7	29° 51' 38.8"	95° 27' 23.5"	Point is located at #3203 Areba Street.

STATION KXYZ - HOUSTON, TEXAS 1320 kHz - 8.4 kW-D, 2.8 kW-N, U, DA-2 FEBRUARY, 2023

217 Degree Radial

Delet	Distance	•	Nighttime	Geographic Coordinates		
Point Number	Distance (km)	Field (mV/m)	Field (mV/m)	(NA) Latitude	D83) Longitude	Description
1	3.36	370	174	29° 53' 29.8"	95° 28' 58.6"	Point is located at #8602 Bold Forest Drive.
2	4.39	198	114	29° 53' 03.5"	95° 29' 21.4"	Point is located at #6714 Jasmine Arbor Lane.
3	5.59	170	100	29° 52' 32.4"	95° 29' 48.5"	Point is located at #7107 Woodland Trails Drive.

261 Degree Radial

Point	Distance	Daytime Field	Nighttime Field	Geographic Coordinates (NAD83)		
Number	(km)	(mV/m)	(mV/m)	Latitude	Longitude	Description
1	3.74	103.0	63.7	29° 54' 37.1"	95° 30' 01.0"	Point is located at the mailbox for #7355 West Road.
2	7.77	46.0	27.3	29° 54' 17.3"	95° 32' 29.4"	Point is located at #9402 Plum Ridge Drive.
3	9.78	40.3	23.6	29° 54' 07.1"	95° 33' 43.5"	Point is located at #9646 Therrell Drive.

STATION KXYZ - HOUSTON, TEXAS 1320 kHz - 8.4 kW-D, 2.8 kW-N, U, DA-2 FEBRUARY, 2023

310.5 Degree Radial

Point	Distance	Daytime Field	Nighttime Field	Geographic Coordinates (NAD83)		
Number	(km)	(mV/m)	(mV/m)	Latitude	Longitude	Description
1	3.42	84.0	49.1	29° 56' 08.6"	95° 29' 20.0"	Point is located at #6929 Greenyard Drive.
2	4.79	63.2	37.10	29° 56' 37.3"	95° 29' 59.1"	Point is located at #5326 Oak Falls Drive.
3	5.97	60.0	35.20	29° 57' 02.2"	95° 30' 32.6"	Point is located at #6418 Castle Lane Drive.

MEASURED SPURIOUS AND HARMONIC EMISSIONS DAYTIME OPERATION

STATION KXYZ - HOUSTON, TEXAS 1320 kHz - 8.4 kW-D, 2.8 kW-N, U, DA-2 FEBRUARY, 2023

Measured Attenuation

	Fraguanay	Field	Reference	Below Carrier	FCC Limit
<u>Emission</u>	Frequency (kHz)	Strength (mV/m)	<u>Carrier</u>	(dBc)	
<u>Emission</u> F1	<u>(KHZ)</u> 790	1050	Carrier	(<u>ubc)</u>	<u>(dBc)</u>
F2	950	804			
F3	1320	1500			
F3	1070	210			
F5	610	42.5			
2F2-F3	580	0.022	-91.3	F2	90.0
					-80.0
2F1-F2	630	0.109	(Note 1)	F1	-80.0
2F2-F1	1110	1.35	(Note 1)	F2	-80.0
F1-F2+F3	1160	0.024	-90.5	F2	-80.0
F1+F5	1400	0.431	(Note 1)	F1	-80.0
-F1+F2+F3	1480	2.17	(Note 1)	F2	-80.0
F2+F5	1560	0.953	(Note 1)	F2	-80.0
2F1	1580	0.066	(Note 2)	F1	-80.0
2F3-F2	1690	0.018	-98.4	F3	-80.0
F1+F2	1740	0.035	-89.5	F2	-80.0
2F3-F1	1850	0.025	-95.6	F3	-80.0
F1+F4	1860	0.029	-91.2	F1	-80.0
2F2	1900	0.019	-92.5	F2	-80.0
F3+F5	1930	0.011	-102.7	F3	-80.0
F2+F4	2020	0.013	-95.8	F2	-80.0
F1+F3	2110	0.052	-86.1	F1	-80.0
F5+2F1	2190	0.011	-99.6	F1	-80.0
F2+F3	2270	0.075	-80.6	F2	-80.0
F1+F2+F5	2350	0.01	-98.1	F2	-80.0
3F1	2370	0.025	-92.5	F1	-80.0
F3+F4	2390	0.025	-95.6	F3	-80.0
F5+2F2	2510	0.011	-97.3	F2	-80.0
F2+2F1	2530	0.032	-90.3	F1	-80.0
2F3	2640	0.095	-84.0	F3	-80.0
F4+2F1	2650	0.011	-99.6	F1	-80.0

Measured Attenuation

		Field		Below	FCC
	Frequency	Strength	Reference	Carrier	Limit
Emission	<u>(kHz)</u>	<u>(mV/m)</u>	<u>Carrier</u>	<u>(dBc)</u>	<u>(dBc)</u>
F1+2F2	2690	0.018	-93.0	F2	-80.0
F1+F3+F5	2720	0.01	-100.4	F1	-80.0
F1+F2+F4	2810	0.01	-98.1	F2	-80.0
3F2	2850	0.016	-94.0	F2	-80.0
F2+F3+F5	2880	0.01	-98.1	F2	-80.0
F3+2F1	2900	0.027	-91.8	F1	-80.0
F4+2F2	2970	0.01	-98.1	F2	-80.0
F1+F2+F3	3060	0.03	-88.6	F2	-80.0
F1+F3+F4	3180	0.011	-99.6	F1	-80.0
F3+2F2	3220	0.033	-87.7	F2	-80.0
F5+2F3	3250	0.058	-88.3	F3	-80.0
F2+F3+F4	3340	0.01	-98.1	F2	-80.0
F1+2F3	3430	0.043	-90.9	F3	-80.0
F2+2F3	3590	0.072	-86.4	F3	-80.0
F4+2F3	3710	0.013	-101.2	F3	-80.0
3F3	3960	0.084	-85.0	F3	-80.0

Note 1 - Signal from another station, no audio from reference station(s) observed

Note 2 - Splatter from strong local station on adjacent frequency, no audio from reference station(s) observed

MEASURED SPURIOUS AND HARMONIC EMISSIONS NIGHTTIME OPERATION

STATION KXYZ - HOUSTON, TEXAS 1320 kHz - 8.4 kW-D, 2.8 kW-N, U, DA-2 FEBRUARY, 2023

Measured Attenuation

		Field		Below	FCC
	Frequency	Strength	Reference	Carrier	Limit
<u>Emission</u>	(kHz)	(mV/m)	Carrier	(dBc)	(dBc)
<u></u> F1	790	1860			
F2	950	920			
F3	1320	870			
F4	1070	162			
F5	610	10.4			
2F2-F3	580	0.023	-92.0	F2	-79.3
2F1-F2	630	0.109	(Note 1)	F1	-80.0
2F2-F1	1110	1.22	(Note 1)	F2	-79.3
F1-F2+F3	1160	0.025	-91.3	F2	-79.3
F1+F5	1400	0.39	(Note 1)	F1	-80.0
-F1+F2+F3	1480	2.06	(Note 1)	F2	-79.3
F2+F5	1560	0.881	(Note 1)	F2	-79.3
2F1	1580	0.629	(Note 2)	F1	-80.0
2F3-F2	1690	0.017	-94.2	F3	-77.5
F1+F2	1740	0.036	-88.1	F2	-79.3
2F3-F1	1850	0.022	-91.9	F3	-77.5
F1+F4	1860	0.019	-99.8	F1	-80.0
2F2	1900	0.016	-95.2	F2	-79.3
F3+F5	1930	0.011	-98.0	F3	-77.5
F2+F4	2020	0.014	-81.3	F2	-79.3
F1+F3	2110	0.078	-87.5	F1	-80.0
F5+2F1	2190	0.011	-104.6	F1	-80.0
F2+F3	2270	0.062	-83.4	F2	-79.3
F1+F2+F5	2350	0.01	-99.3	F2	-79.3
3F1	2370	0.089	-86.4	F1	-80.0
F3+F4	2390	0.023	-91.6	F3	-77.5
F5+2F2	2510	0.011	-98.4	F2	-79.3
F2+2F1	2530	0.065	-89.1	F1	-80.0
2F3	2640	0.08	-80.7	F3	-77.5
F4+2F1	2650	0.017	-100.8	F1	-80.0

Measured Attenuation

		Field		Below	FCC
	Frequency	Strength	Reference	Carrier	Limit
Emission	<u>(kHz)</u>	<u>(mV/m)</u>	<u>Carrier</u>	<u>(dBc)</u>	<u>(dBc)</u>
F1+2F2	2690	0.035	-88.4	F2	-79.3
F1+F3+F5	2720	0.011	-104.6	F1	-80.0
F1+F2+F4	2810	0.014	-81.3	F2	-79.3
3F2	2850	0.015	-95.8	F2	-79.3
F2+F3+F5	2880	0.011	-98.4	F2	-79.3
F3+2F1	2900	0.046	-92.1	F1	-80.0
F4+2F2	2970	0.01	-99.3	F2	-79.3
F1+F2+F3	3060	0.043	-86.6	F2	-79.3
F1+F3+F4	3180	0.019	-99.8	F1	-80.0
F3+2F2	3220	0.029	-90.0	F2	-79.3
F5+2F3	3250	0.059	-83.4	F3	-77.5
F2+F3+F4	3340	0.013	-81.9	F2	-79.3
F1+2F3	3430	0.067	-82.3	F3	-77.5
F2+2F3	3590	0.036	-87.7	F3	-77.5
F4+2F3	3710	0.038	-87.2	F3	-77.5
3F3	3960	0.022	-91.9	F3	-77.5

Note 1 - Signal from another station, no audio from reference station(s) observed

Note 2 - Splatter from strong local station on adjacent frequency, no audio from reference station(s) observed

APPENDIX A

INDIVIDUAL TOWER MODEL

APPENDIX A – INDIVIDUAL TOWER MODEL STATION KXYZ- HOUSTON, TEXAS

IMPEDANCE - TOWER #1
 normalization = 50.

freq resist react imped phase VSWR S11 S12 (MHz) (ohms) (ohms) (ohms) (deg) dB dB

source = 1; node 121, sector 1

1.32 476.42 -488.08 682.05 314.3 19.583 -.88787 -7.3307

GEOMETRY - TOWER #1

Wire coordinates in degrees; other dimensions in meters

Environment: perfect ground

wire	caps	Distance	Angle	Z	radius	segs
1	none	0	0	0	.2911	24
		0	0	164.1		
2	none	167.1	175.	0	.2911	24
		167.1	175.	164.1		
3	none	334.2	175.	0	.2911	24
		334.2	175.	164.1		
4	none	501.3	175.	0	.2911	24
		501.3	175.	164.1		
5	none	324.2	45.	0	.2911	24
		324.2	45.	164.1		
6	none	251.7	75.6	0	.2911	24
		251.7	75.6	177.52		
7	none	278.4	111.9	0	.2911	24
		278.4	111.9	179.92		
8	none	384.	134.7	0	.2911	24
		384.	134.7	174.36		

Number of wires = 8 current nodes = 192

ELECTRICAL DESCRIPTION - TOWER #1

Frequencies (MHz)

frequency no. of segment length (wavelengths) no. lowest step steps minimum maximum 1 1.32 0 1 .0189931 .0208241

Sources

source node sector magnitude phase type 1 121 1 1. 0 voltage

Lumped loads

		resistance	reactance	inductance	capacitance	passive
load	node	(ohms)	(ohms)	(mH)	(uF)	circuit
1	1	1.E-03	0	.0275	0	0
2	25	1.E-03	0	.0275	0	0
3	49	1.E-03	0	.0275	0	0
4	73	1.E-03	0	.0275	0	0
5	97	1.E-03	0	.0275	0	0
6	121	1.E-03	0	0	0	0
7	145	1.E-03	49.48	0	0	0
8	169	1.E-03	29.3	0	0	0

APPENDIX A – INDIVIDUAL TOWER MODEL STATION KXYZ– HOUSTON, TEXAS

IMPEDANCE - TOWER #2
 normalization = 50.

freq resist react imped phase VSWR S11 S12 (MHz) (ohms) (ohms) (ohms) (deg) dB dB

source = 1; node 145, sector 1

 $1.32 \qquad 430.74 \quad -492.66 \quad 654.41 \quad 311.2 \quad 19.95 \quad -.87148 \quad -7.4037$

GEOMETRY - TOWER #2

Wire coordinates in degrees; other dimensions in meters $\[$

Environment: perfect ground

wire	caps	Distance	Angle	Z	radius	segs
1	none	0	0	0	.2911	24
		0	0	164.1		
2	none	167.1	175.	0	.2911	24
		167.1	175.	164.1		
3	none	334.2	175.	0	.2911	24
		334.2	175.	164.1		
4	none	501.3	175.	0	.2911	24
		501.3	175.	164.1		
5	none	324.2	45.	0	.2911	24
		324.2	45.	164.1		
6	none	251.7	75.6	0	.2911	24
		251.7	75.6	177.52		
7	none	278.4	111.9	0	.2911	24
		278.4	111.9	179.92		
8	none	384.	134.7	0	.2911	24
		384.	134.7	174.36		

Number of wires = 8 current nodes = 192

ELECTRICAL DESCRIPTION - TOWER #2

Frequencies (MHz)

frequency no. of segment length (wavelengths) no. lowest step steps minimum maximum 1 1.32 0 1 .0189931 .0208241

Sources

source node sector magnitude phase type 1 145 1 1. 0 voltage

Lumped loads

		resistance	reactance	inductance	capacitance	passive
load	node	(ohms)	(ohms)	(mH)	(uF)	circuit
1	1	1.E-03	0	.0275	0	0
2	25	1.E-03	0	.0275	0	0
3	49	1.E-03	0	.0275	0	0
4	73	1.E-03	0	.0275	0	0
5	97	1.E-03	0	.0275	0	0
6	121	1.E-03	45.96	0	0	0
7	145	1.E-03	0	0	0	0
8	169	1.E-03	29.3	0	0	0

APPENDIX A – INDIVIDUAL TOWER MODEL STATION KXYZ- HOUSTON, TEXAS

IMPEDANCE - TOWER #3 normalization = 50.freq resist react imped phase VSWR (MHz) (ohms) (ohms) (ohms) (deg) S11 S12 dВ dВ source = 1; node 169, sector 1 1.32 555.6 -472.03 729.05 319.6 19.171 -.90699 -7.2474 GEOMETRY - TOWER #3 Wire coordinates in degrees; other dimensions in meters Environment: perfect ground wire caps Distance Angle Z
1 none 0 0 0
0 164.1
2 none 167.1 175. 0
167.1 175. 164.1
3 none 334.2 175. 0
334.2 175. 164.1
4 none 501.3 175. 0
501.3 175. 164.1
5 none 324.2 45. 0
324.2 45. 164.1
6 none 251.7 75.6 0
251.7 75.6 0
278.4 111.9 0
278.4 111.9 179.92
8 none 384. 134.7 0
384. 134.7 174.36 radius segs .2911 24 .2911 24 .2911 24 .2911 24 .2911 24 .2911 24 .2911 24 .2911 2.4 Number of wires = 8 current nodes = 192 minimum maximum ELECTRICAL DESCRIPTION - TOWER #3 Frequencies (MHz) frequency no. of segment length (wavelengths) no. lowest step steps minimum maximum 1 1.32 0 .0208241 1 .0189931 Sources source node sector magnitude phase 1 169 1 1. type voltage Lumped loads Lumped loads

resistance reactance inductance capacitance passive

load node (ohms) (ohms) (mH) (uF) circuit

1 1 1.E-03 0 .0275 0 0

2 25 1.E-03 0 .0275 0 0

3 49 1.E-03 0 .0275 0 0

4 73 1.E-03 0 .0275 0 0

5 97 1.E-03 0 .0275 0 0

6 121 1.E-03 0 .0275 0 0

7 145 1.E-03 45.96 0 0 0

8 169 1.E-03 0 0 0 0

0 0

APPENDIX B

DAYTIME DIRECTIONAL ARRAY MODEL

		- DAYTIN zation :		ERATI	ON					
freq (MHz)	re ((esist ohms) 1; node	react	3)		phase (deg)	VSWR	S11 dB	S12 dB	
1.32					1,076.5	294.7	51.698	33607	-11.281	
sourc 1.32		2; node 44.41			or 1 500.67	313.5	14.634	-1.189	-6.2071	
sourc 1.32	source = 3; node 169, sector 1 1.32 236.14 -421.48 483.12 299.3 19.9387237 -7.3997									
Wire	coord:	DAYTIMI inates : t: perfe	in deg	grees	; other	dimension	ns in met	ers		
wire	caps	Distand	ce	Ang	le	Z	ra	dius	segs	
1	none	0		0		0		911	24	
2	none	0 167.1		0 175		164.1 0	. 2	911	24	
2		167.1		175		164.1	0	011	0.4	
3	none	334.2 334.2		175 175		0 164.1	. 2	911	24	
4	none	501.3		175		0	. 2	911	24	
		501.3		175		164.1				
5	none	324.2		45.		0	.2	911	24	
		324.2		45.		164.1				
6	none	251.7 251.7		75. 75.		0 177.52	. 2	911	24	
7	none	278.4		111	.9	0	.2	911	24	
		278.4		111		179.92				
8	none	384. 384.		134 134		0 174.36	. 2	911	24	
		384.		134	. /	1/4.30				
Numbe	r of v	wires current	nodes	= =	_					
				min	imum		ma	ximum		
Indiv	idual	wires	V	vire	value		wire	value		
_	nt ler	ngth		1	6.837		7	7.49667		
radiu	S			1	.2911		1	.2911		
		DESCRII	PTION	- DA	YTIME OP	ERATION				
_	freque				no.	of segme	ent lengt	h (wavele	ngths)	
	no. lowest step steps minimum maximum									
Sourc	es									
	e node	e sec	ctor	maqn	itude	phase		type		
1	123			2,48		83.6		voltage		
2	145	5 1		2,88		356.3		voltage		
3	169	9 1		1,70	7.84	164.2		voltage		

Lumpe	d loads	5						
_			istance	reactance	indu	ctance	capacitano	ce passive
load	node	(ohr	ms)	(ohms)	(mH)		(uF)	circuit
1	1	1.E-	-03	0	.027	5	0	0
2	25	1.E-	-03	0	.027	5	0	0
3	49	1.E-	-03	0	.027		0	0
4	73	1.E-	-03	0	.027	5	0	0
5	97	1.E-	-03	0	.027	5	0	0
6	121	1.E-	-03	0	0		0	0
7	145	1.E-	-03	0	0		0	0
8	169	1.E-	-03	0	0		0	0
RMS CI	TRRENT	- DZ	YTIME OPERA	MOTTA				
Freque			32 MHz	1111011				
_	-		400. watts					
	iency	= 100						
	inates							
curre			-5		mag	phase	real	imaginary
no.	X		Y	Z	(amps)	(deg)	(amps)	(amps)
GND	0		0	0	1.28186	218.	-1.01008	789238
2	0		0	6.8375	1.04201	218.	82081	641917
3	0		0	13.675	.87712	218.1	690063	541436
4	0		0	20.5125	.726803	218.3	570274	450589
5	0		0	27.35	.585386	218.7	456996	365829
6	0		0	34.1875	.451239	219.3	34897	28607
7	0		0	41.025	.324327	220.6	246165	211166
8	0		0	47.8625	.205414	223.5	149061	141335
9	0		0	54.7	.0965857	232.8	0583623	0769587
10	0		0	61.5375	.0311867	323.7	.0251319	0184662
11	0		0	68.375	.106101	18.5	.100602	.033714
12	0		0	75.2125	.185055	25.3	.167256	.0791889
13	0		0	82.05	.253321	27.7	.224357	.117623
14	0		0	88.8875	.309362	28.7	.271252	.148753
15	0		0	95.725	.352423	29.3	.307381	.172393
16	0		0	102.563	.382005	29.6	.332289	.188446
17	0		0	109.4	.397784	29.7	.345633	.196901
18	0		0	116.238	.399587	29.7	.347178	.197832
19	0		0	123.075	.387372	29.6	.33679	.191388
20	0		0	129.913	.3612	29.5	.314417	.177784
21	0		0	136.75	.321178	29.3	.280036	.157273
22	0		0	143.588	.267345	29.1	.233563	.130085
23	0		0	150.425	.199385	28.9	.174589	.0962974
24	0		0	157.263	.115849	28.6	.101705	.0554702
END	0		0	164.1	0	0	0	0
GND	-166.		-14.5637	0	1.20985	202.3	-1.11922	459423
26	-166.		-14.5637	6.8375	.983478	202.3	909665	373817
27	-166.	.464	-14.5637	13.675	.827849	202.4	76526	315772
28	-166.		-14.5637	20.5125	.685971	202.6	633293	26362
29	-166.		-14.5637	27.35	.552494	202.9	508827	215278
30	-166.		-14.5637	34.1875	.425871	203.5	390431	170088
31	-166.		-14.5637	41.025	.306061	204.7	278042	127929
32	-166.		-14.5637	47.8625	.193746	207.3	172149	088894
33	-166.		-14.5637	54.7	.0906935		073484	0531547
34	-166.		-14.5637	61.5375	.0270253		.0171187	0209121
35	-166.		-14.5637	68.375	.0991054		.0988105	7.64E-03
36	-166.		-14.5637	75.2125	.173811	10.7	.170777	.0323347
37	-166.		-14.5637	82.05	.238249	12.9	.23227	.0530393
38	-166.		-14.5637	88.8875	.291095	13.8	.282636	.0696669
39	-166.	.464	-14.5637	95.725	.331668	14.3	.321326	.0821793

40 -166.464 -14.5637 102.563 .359513 14.6 .347912 .0905889

41	-166.464	-14.5637	109.4	.374335	14.7	.36209	.0949596
42	-166.464	-14.5637	116.238	.375982	14.7	.363676	.095405
43	-166.464	-14.5637	123.075	.364425	14.6	.352599	.0920823
44	-166.464	-14.5637	129.913	.339731	14.5	.328876	.0851895
45	-166.464	-14.5637	136.75	.302014	14.4	.292567	.0749449
46	-166.464	-14.5637	143.588	.251325	14.2	.243668	.0615672
47	-166.464	-14.5637	150.425	.187381	14.	.181845	.0452095
48	-166.464	-14.5637	157.263	.108837	13.7	.105736	.0257962
END	-166.464	-14.5637	164.1	0	0	0	0
GND	-332.928	-29.1275	0	1.03494	79.3	.19254	1.01687
50	-332.928	-29.1275	6.8375	.841101	79.3	.156105	.826488
51	-332.928	-29.1275	13.675	.707399	79.4	.130118	.695329
52	-332.928	-29.1275	20.5125	.5851	79.6	.105546	.575501
53	-332.928	-29.1275	27.35	.469656	80.	.0815889	.462515
54	-332.928	-29.1275	34.1875	.359795	80.7	.058072	.355077
55	-332.928	-29.1275	41.025	.255551	82.1	.0350741	.253132
56	-332.928	-29.1275	47.8625	.157644	85.3	.0127858	.157125
57	-332.928	-29.1275	54.7	.0682594		-8.55E-03	.0677224
58	-332.928	-29.1275	61.5375	.0320211		0286415	
59	-332.928	-29.1275	68.375	.100066	241.8	0472109	
60	-332.928	-29.1275	75.2125	.166083	247.3	0639592	
61	-332.928	-29.1275	82.05	.223087	249.4	0785978	
62	-332.928	-29.1275	88.8875	.269919	250.3	0908484	
63	-332.928	-29.1275	95.725	.30592	250.8	100452	288957
64	-332.928	-29.1275	102.563 109.4	.330621	251.1	107169	312771
65	-332.928	-29.1275		.343697	251.2	110781	325354 326569
66	-332.928	-29.1275	116.238	.344949	251.2	111098	
67	-332.928	-29.1275	123.075	.334289	251.2	107948	31638
68 69	-332.928 -332.928	-29.1275 -29.1275	129.913 136.75	.311713	251.1 250.9	101179 0906398	294835
70	-332.928	-29.1275 -29.1275	143.588	.277262	250.9	0906398	
70	-332.928	-29.1275	150.425	.172337	250.7	0574079	
72	-332.928	-29.1275	150.425	.10022	250.3	0374079	
END	-332.928	-29.1275	164.1	0	0	0	0
GND	-499.392	-43.6912	0	1.0041	317.7	.742866	675549
74	-499.392	-43.6912	6.8375	.815993	317.7	.603966	548698
75	-499.392	-43.6912	13.675	.686149	317.7	.508701	460461
76	-499.392	-43.6912	20.5125	.567287	318.1	.422062	379049
77	-499.392	-43.6912	27.35	.455003	318.5	.340746	30153
78	-499.392	-43.6912	34.1875	.348071	319.3	.263771	227109
79	-499.392	-43.6912	41.025	.246546	320.8	.191052	155834
80	-499.392	-43.6912	47.8625	.151184	324.4	.122861	0881006
81	-499.392	-43.6912	54.7	.0644516		.0596265	0244682
82	-499.392	-43.6912	61.5375	.0344827		1.84E-03	.0344338
83	-499.392	-43.6912	68.375	.101184	119.6		.087955
84	-499.392	-43.6912	75.2125	.165728	125.2	0954814	
85	-499.392	-43.6912	82.05	.221559	127.3	13413	.176345
86	-499.392	-43.6912	88.8875	.2675	128.3	165619	.210063
87	-499.392	-43.6912	95.725	.302875	128.8	189672	.236131
88	-499.392	-43.6912	102.563	.3272	129.	206096	.254134
89	-499.392	-43.6912	109.4	.340132	129.2	21478	.263741
90	-499.392	-43.6912	116.238	.341445	129.2	215691	.264693
91	-499.392	-43.6912	123.075	.331025	129.1	208877	.256804
92	-499.392	-43.6912	129.913	.308837	129.	194443	.239943
93	-499.392	-43.6912	136.75	.274884	128.9	172525	.214001
94	-499.392	-43.6912	143.588	.229107	128.7	143236	.178812
95	-499.392	-43.6912	150.425	.171136	128.5	106502	.133958
96	-499.392	-43.6912	157.263	.099618	128.2	0616641	.0782386
END	-499.392	-43.6912	164.1	0	0	0	0
GND	229.244	-229.244	0	.790876	43.7	.572194	.545966

98	229.244	-229.244	6.8375	.642726	43.7	.464871	.443838
99	229.244	-229.244	13.675	.540486	43.7	.390493	.373684
100	229.244	-229.244	20.5125	.446916	43.9	.322132	.309782
101	229.244	-229.244	27.35	.358544	44.1	.257297	.249705
102	229.244	-229.244	34.1875	.274395	44.6	.195306	.192738
103	229.244	-229.244	41.025	.19447	45.6	.136184	.138826
104	229.244	-229.244	47.8625	.119227	47.7	.0802475	.0881777
105	229.244	-229.244	54.7	.0497161	55.8	.0279447	.0411191
106	229.244	-229.244	61.5375	.0203204	185.6	0202238	-1.98E-03
107	229.244	-229.244	68.375	.075654	212.6		0407401
108	229.244	-229.244	75.2125	.126601	216.2	102137	0748063
109	229.244	-229.244	82.05	.170276	217.6	134939	103852
110	229.244	-229.244	88.8875	.206028	218.3	161759	1276
111	229.244	-229.244	95.725	.233415	218.7	18226	145821
112	229.244	-229.244	102.563	.252111	218.9	196181	158345
113	229.244	-229.244	109.4	.261891	219.1	203329	165057
114	229.244	-229.244	116.238	.262628	219.2	20359	165904
115	229.244	-229.244	123.075	.25428	219.2	196914	160882
116	229.244	-229.244	129.913	.236874	219.3	183305	150028
117	229.244	-229.244	136.75	.210472	219.3	162797	1334
118	229.244	-229.244 -229.244	143.588	.175092	219.4	135391	111025 0827832
119 120	229.244	-229.244	150.425 157.263	.13052		100908	0827832
END	229.244	-229.244	164.1	0	0	0	0
GND	62.5952	-243.792	0	1.62996	149.	-1.39675	.840156
122	62.5952	-243.792	7.39667	.678524	82.6	.0875738	.672849
123	62.5952	-243.792	14.7933	1.22033	27.1	1.08603	.55655
124	62.5952	-243.792	22.19	2.01256	12.9	1.96142	.450782
125	62.5952	-243.792	29.5867	2.77066	7.3	2.74824	.351731
126	62.5952	-243.792	36.9833	3.46568	4.3	3.45604	.258381
127	62.5952	-243.792	44.38	4.08886	2.4	4.0853	.170749
128	62.5952	-243.792	51.7767	4.63403	1.1	4.63317	.089244
129	62.5952	-243.792	59.1733	5.09565	. 2	5.09563	.0144258
130	62.5952	-243.792	66.57	5.46882	359.4	5.46856	0531072
131	62.5952	-243.792	73.9667	5.74939	358.9	5.74829	112782
132	62.5952	-243.792	81.3633	5.93422	358.4	5.93195	164087
133	62.5952	-243.792	88.76	6.02123	358.	6.01769	206597
134	62.5952	-243.792	96.1567	6.00958	357.7	6.00479	239985
135	62.5952	-243.792	103.553	5.89966	357.4	5.89375	264034
136	62.5952	-243.792	110.95	5.69308	357.2	5.68626	278641
137	62.5952	-243.792	118.347	5.39269	357.	5.38522	283814
138	62.5952	-243.792	125.743	5.00243	356.8	4.99461	279673
139	62.5952	-243.792	133.14	4.52717	356.6	4.51933	266435
140	62.5952		140.537	3.97247			244399
141	62.5952	-243.792	147.933	3.34401	356.3		213909
142	62.5952	-243.792	155.33	2.64676	356.2	2.64095	175282
143	62.5952	-243.792	162.727	1.8825	356.1	1.8781	128635
144	62.5952 62.5952	-243.792	170.123 177.52	1.04353	356.	1.04095	0733999
END		-243.792 -258.31		0	0 42.8	0 00245	0 2.77138
GND 146	-103.84 -103.84	-258.31	0 7.49667	4.07938 3.04407	19.5	2.99345 2.8687	1.01829
147	-103.84	-258.31	14.9933	2.76613	356.4	2.76072	17298
148	-103.84	-258.31	22.49	2.91309	335.1	2.64219	-1.22676
149	-103.84	-258.31	29.9867	3.32746	319.	2.51126	-2.18302
150	-103.84	-258.31	37.4833	3.86327	307.8	2.36824	-3.05226
151	-103.84	-258.31	44.98	4.42782	300.	2.21446	-3.83429
152	-103.84	-258.31	52.4767	4.96838	294.4	2.05167	-4.52498
153	-103.84	-258.31	59.9733	5.45383	290.2	1.88197	-5.11883
154	-103.84	-258.31	67.47	5.86436	286.9	1.70764	-5.61022
155	-103.84	-258.31	74.9667	6.18657	284.3	1.53105	-5.99413

156	-103.84	-258.31	82.4633	6.41123	282.2	1.35463	-6.26648
157	-103.84	-258.31	89.96	6.5321	280.4	1.18078	-6.42449
158	-103.84	-258.31	97.4567	6.54545	278.9	1.01189	-6.46676
159	-103.84	-258.31	104.953	6.44966	277.6	.850176	-6.39338
160	-103.84	-258.31	112.45	6.24509	276.4	.697791	-6.20598
161	-103.84	-258.31	119.947	5.93382	275.4	.556672	-5.90765
162	-103.84	-258.31	127.443	5.51954	274.5	.428569	-5.50288
163	-103.84	-258.31	134.94	5.00725	273.6	.315013	-4.99733
164	-103.84	-258.31	142.437	4.40293	272.8	.217299	-4.39756
165	-103.84	-258.31	149.933	3.71296	272.1	.13649	-3.71045
166	-103.84	-258.31	157.43	2.94303	271.4	.0734331	-2.94211
167	-103.84	-258.31	164.927	2.09551	270.8	.0288218	-2.09531
168	-103.84	-258.31	172.423	1.16226	270.2	3.38E-03	-1.16226
END	-103.84	-258.31	179.92	0	0	0	0
GND	-270.104	-272.947	0	2.49964	225.	-1.76903	-1.766
170	-270.104	-272.947	7.265	1.6822	207.9	-1.48728	786006
171	-270.104	-272.947	14.53	1.29263	185.6	-1.28655	125149
172	-270.104	-272.947	21.795	1.1904	157.4	-1.09879	.457959
173	-270.104	-272.947	29.06	1.34728	132.9	917832	.98628
174	-270.104	-272.947	36.325	1.6435	116.8	742293	1.46632
175	-270.104	-272.947	43.59	1.98302	106.8	57263	1.89854
176	-270.104	-272.947	50.855	2.31768	100.2	410039	2.28112
177	-270.104	-272.947	58.12	2.62393	95.6	256058	2.6114
178	-270.104	-272.947	65.385	2.88879	92.2	112355	2.8866
179	-270.104	-272.947	72.65	3.10423	89.6	.0193941	3.10417
180	-270.104	-272.947	79.915	3.26492	87.6	.137585	3.26202
181	-270.104	-272.947	87.18	3.36729	85.9	.240735	3.35867
182	-270.104	-272.947	94.445	3.40911	84.5	.327534	3.39334
183	-270.104	-272.947	101.71	3.38931	83.3	.39686	3.36599
184	-270.104	-272.947	108.975	3.3078	82.2	.447814	3.27734
185	-270.104	-272.947	116.24	3.16543	81.3	.479725	3.12887
186	-270.104	-272.947	123.505	2.96388	80.4	.492152	2.92273
187	-270.104	-272.947	130.77	2.70548	79.7	.484874	2.66167
188	-270.104	-272.947	138.035	2.3931	79.	.45786	2.34889
189	-270.104	-272.947	145.3	2.0298	78.3	.411198	1.98771
190	-270.104	-272.947	152.565	1.61821	77.7	.344945	1.58102
191	-270.104	-272.947	159.83	1.15907	77.1	.258754	1.12982
192	-270.104	-272.947	167.095	.647179	76.5	.150833	.629357
END	-270.104	-272.947	174.36	0	0	0	0

APPENDIX C

NIGHTTIME DIRECTIONAL ARRAY MODEL

Tree		ANCE - NIG		OPERAT	ION						
1.32	(MHz) (ohms) (ohms) (deg) dB dB source = 1; node 121, sector 1										
1.32	1.32 449.84 -978.69 1,077.1 294.7 51.67433622 -11.279										
Carrell											
Wire coordinates in degrees; other dimensions in meters Environment: perfect ground Angle Z radius segs 1 none 0 0 0 .2911 24 0 0 0 .2911 24 1 none 167.1 175. 0 .2911 24 1 167.1 175. 164.1 .2911 24 334.2 175. 0 .2911 24 334.2 175. 164.1 .2911 24 4 none 501.3 175. 0 .2911 24 501.3 175. 164.1 .2911 24 50.0 .2911 24 .2911 24 324.2 45. 164.1 .2911 24 6 none 251.7 75.6 0 .2911 24 251.7 75.6 177.52 .2911 24 7 278.4 111.9 0 .2911 24 <tr< td=""><td></td><td colspan="10"></td></tr<>											
1 none 0 0 0 164.1 24	Wire	coordinate	s in de	grees;		dimension	s in met	ers			
0	wire	caps Dist	ance	Angl	е	Z	ra	dius	segs		
2 none 167.1 175. 0 .2911 24	1						. 2	911	24		
3 none 334.2 175. 0 .2911 24	2	none 167.		175.		0	. 2	911	24		
4 none 501.3 175. 0 .2911 24 501.3 175. 164.1 324.2 45. 0 .2911 24 6 none 251.7 75.6 0 .2911 24 251.7 75.6 177.52 7 none 278.4 111.9 0 .2911 24 278.4 111.9 179.92 384. 134.7 0 .2911 24 8 none 384. 134.7 174.36 384. 174.36 384. 174.36 384. 174.36 384. 174.36 384. 174.36 384. 174.36 384. 384. 174.36 384. 3	3						. 2	911	24		
Sources											
5 none 324.2 45. 0 .2911 24	4					-	. 2	911	24		
324.2 45. 164.1 6 none 251.7 75.6 0 .2911 24 251.7 75.6 177.52 7 none 278.4 111.9 0 .2911 24 278.4 111.9 179.92 8 none 384. 134.7 174.36	5						. 2	911	24		
7 none 278.4 111.9 0 .2911 24 278.4 111.9 179.92 8 none 384. 134.7 0 .2911 24 384. 134.7 174.36 Number of wires = 8 current nodes = 192 minimum maximum Individual wires wire value wire value segment length 1 6.8375 7 7.49667 radius 1 .2911 1 .2911 ELECTRICAL DESCRIPTION - NIGHTTIME OPERATION Frequencies (MHz) frequency no. of segment length (wavelengths) no. lowest step steps minimum maximum 1 1.32 0 1 .0189931 .0208241 Sources source node sector magnitude phase type 1 121 1 1,432.66 83.6 voltage 2 145 1 1,667.63 356.3 voltage											
8 none 384. 134.7 0 .2911 24 384. 134.7 174.36 Number of wires = 8	6						. 2	911	24		
8 none 384. 134.7 0 .2911 24 384. 134.7 174.36 Number of wires = 8	7					-	. 2	911	24		
Number of wires = 8 current nodes = 192 minimum maximum	0						0	011	2.4		
Number of wires = 8 current nodes = 192 minimum maximum	8						. 2	911	24		
current nodes = 192 minimum maximum Individual wires wire value wire value segment length 1 6.8375 7 7.49667 radius 1 .2911 1 .2911 ELECTRICAL DESCRIPTION - NIGHTTIME OPERATION Frequencies (MHz) frequency no. of segment length (wavelengths) maximum 1 1.32 0 1 0.0189931 0.0208241 Sources source node sector magnitude phase type 1 121 1 1,432.66 83.6 voltage 2 145 1 1,667.63 356.3 voltage		304.		134.	,	174.50					
Individual wires wire value wire value segment length 1 6.8375 7 7.49667 radius 1 .2911 1 .2911 1 .2911	Numbe										
Frequencies (MHz) frequency no. of segment length (wavelengths) no. lowest step steps minimum maximum 1 1.32 0 1 0.0189931 .0208241 Sources source node sector magnitude phase type 1 121 1 1,432.66 83.6 voltage 2 145 1 1,667.63 356.3 voltage	segme	Individual wires wire value wire value segment length 1 6.8375 7 7.49667									
no. lowest step steps minimum maximum 1 1.32 0 1 .0189931 .0208241 Sources source node sector magnitude phase type 1 121 1 1,432.66 83.6 voltage 2 145 1 1,667.63 356.3 voltage				- NIG	HTTIME	OPERATION					
source node sector magnitude phase type 1 121 1 1,432.66 83.6 voltage 2 145 1 1,667.63 356.3 voltage	frequency no. of segment length (wavelengths) no. lowest step steps minimum maximum										
source node sector magnitude phase type 1 121 1 1,432.66 83.6 voltage 2 145 1 1,667.63 356.3 voltage	C										
1 121 1 1,432.66 83.6 voltage 2 145 1 1,667.63 356.3 voltage											
2 145 1 1,667.63 356.3 voltage				_		-					
3 169 1 986.023 164.2 voltage								_			
	3	169	1	986.0	23	164.2		voltage			

Lumpeo	Lumped loads									
resistance reactance inductance capacitance passive										
load	node	(ohms)	(ohms)	(mH)		(uF)	circuit			
1	1	1.E-03	0	.027		0	0			
2	25	1.E-03	0	.027		0	0			
3	49	1.E-03	0	.027		0	0			
4	73	1.E-03	0	.027		0	0			
5	97	1.E-03	0	.027	5	0	0			
6	121	1.E-03	0	0		0	0			
7	145	1.E-03	0	0		0	0			
8	169	1.E-03	0	0		0	0			
RMS CI	JRRENT	- NIGHTTIME OP	ERATION							
Freque	ency	= 1.32 MHz								
Input	power	= 2,800. watts	1							
Effici	iency	= 100. %								
coord	inates	in degrees								
currer	nt			mag	phase	real	imaginary			
no.	X	Y	Z	(amps)	(deg)	(amps)	(amps)			
GND	0	0	0	.740576	218.	583568	455962			
2	0	0	6.8375	.602008	218.	474219	370851			
3	0	0	13.675	.506745	218.1	39868	312801			
4	0	0	20.5125	.4199	218.3	329472	260316			
5	0	0	27.35	.338199	218.7	264027	211349			
6	0	0	34.1875	.260697	219.3	201616	16527			
7	0	0	41.025	.187376	220.6	142221	121996			
8	0	0	47.8625	.118676	223.5		0816538			
9	0	0	54.7	.0558017		033719	0444618			
10	0	0	61.5375	.0180178		.0145191	0106694			
11	0	0	68.375	.0612978		.0581214	.0194763			
12	0	0	75.2125	.106912	25.3	.0966301	.0457482			
13	0	0	82.05	.146352	27.7	.12962	.0679525			
14 15	0	0 0	88.8875 95.725	.178729	28.7 29.3	.156713 .177586	.0859365			
16	0	0	102.563	.203607	29.5	.191976	.108869			
17	0	0	102.503	.229813	29.7	.199685	.113753			
18	0	0	116.238	.230855	29.7	.200578	.11429			
19	0	0	123.075	.223798	29.6	.194577	.110568			
20	0	0	129.913	.208677	29.5	.181651	.102709			
21	0	0	136.75	.185555	29.3	.161787	.090859			
22	0	0	143.588	.154454	29.1	.134938	.0751523			
23	0	0	150.425	.115192	28.9	.100867	.0556327			
24	0	0	157.263	.0669296		.058759	.032046			
END	0	0	164.1		0	0	0			
GND	-166.	464 -14.5637	0	.698702	202.3	646278	265538			
26	-166.	464 -14.5637	6.8375	.56797	202.4	52527	216059			
27	-166.	464 -14.5637	13.675	.478092	202.4	441885	182509			
28	-166.	464 -14.5637	20.5125	.396157	202.6	365684	152366			
29	-166.	464 -14.5637	27.35	.319072	203.	293812	124424			
30	-166.	464 -14.5637	34.1875	.245947	203.6	225446	0983037			
31	-166.	464 -14.5637	41.025	.176756	204.7	160549	0739355			
32	-166.		47.8625	.111892	207.3		0513722			
33	-166.		54.7	.052379	215.9	042429	030714			
34	-166.		61.5375	.0156088		9.89E-03	0120766			
35	-166.		68.375	.0572328		.0570612	4.43E-03			
36	-166.		75.2125	.100375	10.7	.0986176	.0187027			
37	-166.		82.05	.137589	12.9	.134126	.0306712			
38	-166.		88.8875	.168107	13.9	.163209	.0402832			
39 40	-166.		95.725	.191539	14.4	.185551	.0475163			
40	-166.	464 -14.5637	102.563	.207619	14.6	.200904	.0523778			

41	-166.464	-14.5637	109.4	.216179	14.7	.209091	.0549046
42	-166.464	-14.5637	116.238	.21713	14.7	.210006	.055162
43	-166.464	-14.5637	123.075	.210456	14.7	.20361	.0532416
44	-166.464	-14.5637	129.913	.196195	14.5	.189912	.0492564
45	-166.464	-14.5637	136.75	.174413	14.4	.168944	.0433335
46	-166.464	-14.5637	143.588	.145141	14.2	.140708	.0355991
47	-166.464	-14.5637	150.425	.108213	14.	.105008	.0261413
48	-166.464	-14.5637	157.263			.0610581	.0149164
END	-166.464	-14.5637	164.1	0	0	0	0
GND	-332.928	-29.1275	0	.597263	79.3	.11102	.586854
50	-332.928	-29.1275	6.8375	.485399	79.3	.0900098	.476981
51	-332.928	-29.1275	13.675	.408239	79.4	.0750258	.401285
52	-332.928	-29.1275	20.5125	.33766	79.6	.0608561	.33213
53	-332.928	-29.1275	27.35	.271038	80.	.0470406	.266924
54	-332.928	-29.1275	34.1875	.207636	80.7	.0334787	.20492
55	-332.928	-29.1275	41.025	.147476	82.1	.0202158	.146084
56	-332.928	-29.1275	47.8625	.0909743		7.36E-03	.0906759
57	-332.928	-29.1275	54.7	.039391	97.2	-4.94E-03	.03908
58	-332.928	-29.1275	61.5375	.0184832		0165309	
59	-332.928	-29.1275	68.375	.0577519		0272409	
60	-332.928	-29.1275	75.2125	.0958506		0369008	
61	-332.928	-29.1275	82.05	.128748	249.4	0453438	
62	-332.928	-29.1275	88.8875	.155775	250.3	0524101	
63	-332.928	-29.1275	95.725	.176551	250.8	0579493	
64	-332.928	-29.1275	102.563 109.4	.190806	251.1	0618232	
65	-332.928	-29.1275		.198353	251.2	0639069	
66	-332.928	-29.1275	116.238	.199075	251.2	0640895	
67	-332.928	-29.1275	123.075	.192923	251.2	0622728	
68 69	-332.928 -332.928	-29.1275 -29.1275	129.913 136.75	.179894 .160012	251.1 250.9	0583682 0522884	
70	-332.928	-29.1275 -29.1275	143.588	.133263	250.9	0522884	
70	-332.928	-29.1275	150.425		250.6	0439269	
72	-332.928	-29.1275	150.425	.0578387	250.8	0194819	
END	-332.928	-29.1275	164.1	0	0	0	0
GND	-332.926 -499.392	-43.6912	0	.579505	317.7	.428749	389873
74	-499.392	-43.6912	6.8375	.470942	317.7	.348584	316664
7 4 75	-499.392	-43.6912	13.675	.396004	317.7	.2936	265741
76	-499.392	-43.6912	20.5125	.327404	318.1	.243596	218756
77	-499.392	-43.6912	27.35	.262601	318.5	.196664	174018
78	-499.392	-43.6912	34.1875	.202001	319.3	.152237	131068
79	-499.392	-43.6912	41.025	.142292	320.8	.110267	0899342
80	-499.392	-43.6912	47.8625	.0872538		.0709092	0508439
81	-499.392	-43.6912	54.7	.0371972		.0344129	0141202
82	-499.392	-43.6912	61.5375	.0199016		1.06E-03	.0198735
83	-499.392	-43.6912	68.375	.0583982		0288718	
84	-499.392	-43.6912	75.2125	.0956495		0551094	
85	-499.392	-43.6912	82.05	.127871	127.3	0774156	.101773
86	-499.392	-43.6912	88.8875	.154386	128.3	09559	.121233
87	-499.392	-43.6912	95.725	.174802	128.8	109473	.136277
88	-499.392	-43.6912	102.563	.188841	129.	118952	.146668
89	-499.392	-43.6912	109.4	.196305	129.2	123964	.152212
90	-499.392	-43.6912	116.238	.197063	129.2	12449	.152761
91	-499.392	-43.6912	123.075	.191049	129.1	120557	.148208
92	-499.392	-43.6912	129.913	.178243	129.	112226	.138478
93	-499.392	-43.6912	136.75	.158647	128.9	0995757	
94	-499.392	-43.6912	143.588	.132228	128.7	0826712	
95	-499.392	-43.6912	150.425	.0987699	128.5	0614695	.077311
96	-499.392	-43.6912	157.263	.0574938		0355905	.0451537
END	-499.392	-43.6912	164.1	0	0	0	0
GND	229.244	-229.244	0	.456207	43.6	.330099	.314896

0.0	222 244	000 044	6 0275	270740	42 7	060104	055000
98	229.244	-229.244	6.8375	.370748	43.7	.268184	.255992
99	229.244	-229.244	13.675	.311772	43.7	.225275	.215528
100	229.244	-229.244	20.5125	.257797	43.9	.185838	.178671
101	229.244	-229.244	27.35	.206821	44.1	.148435	.144021
102	229.244	-229.244	34.1875	.15828	44.6	.112672	.111165
103	229.244	-229.244	41.025	.112176	45.5	.0785646	.0800692
104	229.244	-229.244	47.8625	.0687723		.0462952	.0508564
105	229.244	-229.244	54.7	.0286753	55.8	.0161218	.0237141
106	229.244	-229.244	61.5375	.0117223	185.6	0116664	-1.14E-03
107	229.244	-229.244	68.375	.0436428	212.6	0367752	0235006
108	229.244	-229.244	75.2125	.0730315	216.2	0589216	0431492
109	229.244	-229.244	82.05	.0982257	217.6	0778455	0599029
110	229.244	-229.244	88.8875	.118849	218.3	0933168	0736003
111	229.244	-229.244	95.725	.134647	218.7	105144	0841101
112	229.244	-229.244	102.563	.145431	218.9	113174	0913335
113	229.244	-229.244	109.4	.151073	219.1	117298	0952061
114	229.244	-229.244	116.238	.151498	219.2	117449	0956946
115	229.244	-229.244	123.075	.146683	219.2	113597	0927985
116	229.244	-229.244	129.913	.136642	219.3	105746	0865382
117	229.244	-229.244	136.75	.121412	219.3	093915	0769469
118	229.244	-229.244	143.588	.101003	219.3	0781043	
119	229.244	-229.244	150.425	.0752915		0582123	
120	229.244	-229.244	157.263	.043729	219.4	0338073	
END	229.244	-229.244	164.1	0	0	0	0
GND	62.5952	-243.792	0	.940451	148.9	805402	.485568
122	62.5952	-243.792	7.39667	.391914	82.5	.0514589	.388521
123	62.5952	-243.792	14.7933	.705171	27.1	.627837	.321072
124	62.5952	-243.792	22.19	1.16256	12.9	1.13317	.259741
125	62.5952	-243.792	29.5867	1.6002	7.3	1.58736	.202316
126	62.5952	-243.792	36.9833	2.00142	4.2	1.99593	.148206
127	62.5952	-243.792	44.38	2.36117	2.4	2.35916	.0974206
128	62.5952	-243.792	51.7767	2.67586	1.1	2.67539	.0501973
129	62.5952	-243.792	59.1733	2.94233	.1	2.94232	6.86E-03
130	62.5952	-243.792	66.57	3.15773	359.4	3.15757	0322431
131	62.5952	-243.792	73.9667	3.31967	358.8	3.319	0667816
132	62.5952	-243.792	81.3633	3.42633	358.4	3.42497	096459
133	62.5952	-243.792	88.76	3.47652	358.	3.47442	121029
134	62.5952	-243.792	96.1567	3.46976	357.7	3.46692	140304
135	62.5952	-243.792	103.553	3.40625	357.4	3.40276	154157
136	62.5952	-243.792	110.95	3.28695	357.2	3.28293	16253
137	62.5952	-243.792	118.347	3.1135	357.	3.1091	165429
138	62.5952	-243.792	125.743	2.88815	356.8	2.88355	162924
139	62.5952	-243.792	133.14	2.61374	356.6	2.60913	155142
	62.5952					2.28905	
141	62.5952	-243.792	147.933	1.93063	356.3	1.92661	124471
142	62.5952	-243.792	155.33	1.52807	356.2	1.52466	101966
143	62.5952	-243.792	162.727	1.08683	356.1	1.08425	0748122
144	62.5952	-243.792	170.123	.60246	355.9	.600946	0426789
END	62.5952	-243.792	177.52	0	0	0	0
GND	-103.84	-258.31	0	2.35494	42.8	1.7273	1.60068
146	-103.84	-258.31	7.49667	1.75751	19.6	1.65603	.588544
147	-103.84	-258.31	14.9933	1.59729	356.4	1.5942	0992328
148	-103.84	-258.31	22.49	1.6823	335.1	1.52623	707636
149	-103.84	-258.31	29.9867	1.92158	319.	1.45105	-1.25973
150	-103.84	-258.31	37.4833	2.23092	307.8	1.36885	-1.7616
151	-103.84	-258.31	44.98	2.55682	300.1	1.2804	-2.21312
152	-103.84	-258.31	52.4767	2.86886	294.4	1.18671	-2.61191
153	-103.84	-258.31	59.9733	3.14908	290.2	1.08898	-2.9548
154	-103.84	-258.31	67.47	3.38604	287.	.988538	-3.23853
155	-103.84	-258.31	74.9667	3.57201	284.4	.886742	-3.4602

156 157 158 159 160 161 162 163 164	-103.84 -103.84 -103.84 -103.84 -103.84 -103.84 -103.84 -103.84	-258.31 -258.31 -258.31 -258.31 -258.31 -258.31 -258.31 -258.31 -258.31	82.4633 89.96 97.4567 104.953 112.45 119.947 127.443 134.94 142.437	3.70167 3.77142 3.77908 3.72373 3.60559 3.42585 3.18665 2.89087 2.54196	282.2 280.5 278.9 277.6 276.5 275.4 274.5 273.7 272.9	.784996 .684685 .587176 .493771 .405697 .32408 .249931 .184136	-3.61748 -3.70874 -3.73318 -3.69085 -3.5827 -3.41049 -3.17684 -2.885 -2.53876
165	-103.84	-258.31	149.933	2.1436	272.2	.0804793	-2.14209
166	-103.84	-258.31	157.43	1.69909	271.5	.0437246	-1.69853
167	-103.84	-258.31	164.927	1.20979	270.8	.0175854	-1.20966
168	-103.84	-258.31	172.423	.670999	270.2	2.48E-03	670995
END	-103.84	-258.31	179.92	0	0	0	0
GND	-270.104	-272.947	0	1.44267	224.9	-1.02105	-1.01919
170	-270.104	-272.947	7.265	.9707	207.8	858276	453455
171	-270.104	-272.947	14.53	.745804	185.5	742324	0719557
172	-270.104	-272.947	21.795	.686901	157.3	633868	.264658
173	-270.104	-272.947	29.06	.777627	132.9	52935	.569642
174	-270.104	-272.947	36.325	.948766	116.8	42797	.846758
175	-270.104	-272.947	43.59	1.14485	106.8	329986	1.09626
176	-270.104	-272.947	50.855	1.3381	100.2	236095	1.3171
177	-270.104	-272.947	58.12	1.51493	95.6	147183	1.50776
178	-270.104	-272.947	65.385	1.66786	92.2	0642126	
179	-270.104	-272.947	72.65	1.79224	89.6	.0118488	1.7922
180	-270.104	-272.947	79.915	1.88501	87.6	.0800749	1.88331
181	-270.104	-272.947	87.18 94.445	1.94411	85.9	.13961	1.93909
182 183	-270.104 -270.104	-272.947 -272.947	101.71	1.96825 1.95681	84.5 83.3	.189697 .229692	1.95909 1.94329
184	-270.104	-272.947	101.71	1.90975	82.2	.259072	1.89209
185	-270.104	-272.947	116.24	1.82755	81.3	.277452	1.80636
186	-270.104	-272.947	123.505	1.71117	80.4	.28458	1.68734
187	-270.104	-272.947	130.77	1.56199	79.7	.280326	1.53663
188	-270.104	-272.947	138.035	1.38164	79.	.264674	1.35605
189	-270.104	-272.947	145.3	1.17188	78.3	.237674	1.14753
190	-270.101	-272.947	152.565	.934259	77.7	.199361	.912741
191	-270.101	-272.947	159.83	.669177	77.1	.149535	.652255
192	_ , 0 • _ 0 1	_,_,,					
	-270.104	-272.947	167.095	.373641	76.5	.0871618	.363332

APPENDIX D

DETUNE MODEL

APPENDIX D - DETUNE MODEL STATION KXYZ - HOUSTON, TEXAS

```
ELECTRICAL DESCRIPTION - UNUSED TOWER DETUNE
Frequencies (MHz)
          frequency
                                                             no. of segment length (wavelengths)

        steps
        minimum
        maximum

        1
        .0189931
        .0189931

 no. lowest
                                 step
                                 0
 1 1.32
Plane wave source
            zenith angle (deg) = 90
increment (deg) = 0
number of angles = 1
azimuth angle (deg) = 0
increment (deg) = 0
number of angles = 1
                  number of angles
            polarization angle (deg) = 0
            magnitude (v/m) = 1
Lumped loads
                          resistance reactance inductance capacitance passive (ohms) (mH) (uF) circuit
load node
                          1.E-03
                                                                                    .0275
                                                                                                             0
 1 1
GEOMETRY - UNUSED TOWER DETUNE
Wire coordinates in degrees; other dimensions in meters
Environment: perfect ground
                                                                                                    radius segs
wire caps Distance Angle Z
           none 0
                                                                           0
                                                                                                     .2911
                                                                                                                              24
 1
                                                                      164.1
                       0
                                                0
Number of wires = 1
                    current nodes = 24
                                              minimum
                                                                                                    maximum
                                                                                            wire value
Individual wires
                                          wire value
                                                                                             1 6.8375
1 .2911
segment length
                                           1 6.8375
                                                           .2911
radius
                                              1
RMS CURRENTS - UNUSED TOWER DETUNE
Frequency = 1.32 \text{ MHz}
Plane wave zenith (deg) = 90
Plane wave azimuth (deg) = 0
Polarization angle (deg) = 0
coordinates in degrees

        current
        mag
        phase
        real
        imaginary

        no.
        X
        Y
        Z
        (amps)
        (deg)
        (amps)
        (amps)

        GND
        0
        0
        0
        .346528
        271.3
        8.16E-03
        -.346432

        2
        0
        0
        6.8375
        .281539
        271.4
        6.65E-03
        -.28146

        3
        0
        0
        13.675
        .236512
        271.4
        5.65E-03
        -.236445

        4
        0
        0
        20.5125
        .195136
        271.4
        4.77E-03
        -.195078

        5
        0
        0
        27.35
        .155894
        271.5
        3.98E-03
        -.155844

        6
        0
        0
        34.1875
        .118363
        271.6
        3.26E-03
        -.118318

        7
        0
        0
        47.8625
        .0825469
        271.8
        2.6E-03
        -.0825059

        8
        0
        0
        47.8625
        .0486273
        272.4
        2.01E-03
        -.0485857

        9
        0
        0
        54.7
        .0168836
                                                                         mag phase real imaginary (amps) (deg) (amps) (amps)
current
no.
GND
```

15	0	0	95.725	.112322	90.2	-3.28E-04	.112322
16	0	0	102.563	.121217	90.2	-4.28E-04	.121216
17	0	0	109.4	.126002	90.2	-4.82E-04	.126002
18	0	0	116.238	.126574	90.2	-4.95E-04	.126573
19	0	0	123.075	.122858	90.2	-4.72E-04	.122857
20	0	0	129.913	.114809	90.2	-4.22E-04	.114808
21	0	0	136.75	.10239	90.2	-3.51E-04	.102389
22	0	0	143.588	.0855363	90.2	-2.67E-04	.0855359
23	0	0	150.425	.0640614	90.2	-1.77E-04	.0640611
24	0	0	157.263	.037402	90.1	-8.76E-05	.0374019
END	0	0	164.1	0	0	0	0