Akin Gump

STRAUSS HAUER & FELD LLP

STEVEN A. ROWINGS +1 202.887.4412/fax: +1 202.887.4288 srowings@akingump.com

November 30, 2022

VIA E-MAIL (audiofilings@fcc.gov)

Marlene H. Dortch Secretary Federal Communications Commission 45 L Street NE Washington, DC 20554

Re: ABC Radio Los Angeles Assets, LLC AM Station KRDC, Facility ID No. 25076, Pasadena, CA Application for Direct Measurement (Form 302-AM)

Dear Ms. Dortch:

ABC Radio Los Angeles Assets, LLC, licensee of AM Station KRDC, Facility ID No. 25076, Pasadena, CA, by its attorneys, hereby submits the enclosed FCC Form 302-AM application for authority to return to direct measurement of power.

This application is fee-exempt.

Should you have any questions or require additional information, please contact the undersigned.

Respectfully submitted,

Steven A. Rowings Counsel to ABC Radio Los Angeles Assets, LLC

Enclosure

Approved by OMB 3060-0627 Expires 01/31/98

FOR
FCC
USE
ONLY

FCC 302-AM APPLICATION FOR AM

BROADCAST STATION LICENSE

(Please read instructions before filling out form.

FOR COMMISSION USE ONLY

FILE NO.

SECTION I - APPLICANT FEE INFORMATION			
1. PAYOR NAME (Last, First, Middle Initial)			
ABC Radio Los Angeles Assets, LLC			
MAILING ADDRESS (Line 1) (Maximum 35 characters) 77 W 66th St, 16th Floor			
MAILING ADDRESS (Line 2) (Maximum 35 characters)			
CITY New York	STATE OR COUNTRY (if fo	reign address)	ZIP CODE 10023
TELEPHONE NUMBER (include area code) 212-456-7387	CALL LETTERS KRDC	OTHER FCC IDE 25076	NTIFIER (If applicable)
2. A. Is a fee submitted with this application?			Yes 🖌 No
B. If No, indicate reason for fee exemption (see 47 C.F.R. Section			
Governmental Entity Noncommercial educ	cational licensee	ther (Please explair	ו):
C. If Yes, provide the following information:			
Enter in Column (A) the correct Fee Type Code for the service you	are applying for. Fee Type Co	odes may be found	in the "Mass Media Services
Fee Filing Guide." Column (B) lists the Fee Multiple applicable for th	is application. Enter fee amou	nt due in Column (C	C).
(A) (B)			
FEE TYPE FEE MULTIPLE	FEE DUE FOR FE TYPE CODE IN	E	FOR FCC USE ONLY
	\$		
To be used only when you are requesting concurrent actions which re	sult in a requirement to list mo	re than one Fee Ty	pe Code.
(A) (B)	(C)		
0 0 1	\$		
ADD ALL AMOUNTS SHOWN IN COLUMN C,	TOTAL AMOUNT REMITTED WITH TH	lis	FOR FCC USE ONLY
AND ENTER THE TOTAL HERE. THIS AMOUNT SHOULD EQUAL YOUR ENCLOSED	\$		
REMITTANCE.	Ţ		

1. NAME OF APPLICAN						
ABC Radio Los Angeles	Assets, LLC					
MAILING ADDRESS 77 W 66th St, 16th Floor	r					
CITY New York	STATE NY ZIP CODE 10023					
O This englished in fam.					•	
2. This application is for:	Commercial		Noncomn	nercial		
	AM Direc	ctional	I I AM N	Ion-Directional		
Call letters	Community of License	Construc	tion Permit File No.	Modification of Construction	Expiration Date of La	ast
KRDC	Pasadena, CA	N/A		N/A	N/A	
3. Is the station n	ow operating pursuant	to auto	matic program	test authority in	Yes 🖌	No
accordance with 47 C.F	R. Section 73.1620?			, , , , , , , , , , , , , , , , , , ,	Ends in the local	
lf No, explain in an Exhi	ibit				Exhibit No.	
4. Have all the term	s, conditions, and oblig	jations s	et forth in the	above described	Yes 🖌	No
construction permit bee	en fully met?				Exhibit No	
If No, state exceptions i	in an Exhibit.				1	
5. Apart from the chan	nges already reported, ha	as any ca	ause or circumst	ance arisen since	Yes 🖌	No
the grant of the under	lying construction permi	t which mit appli	would result in cation to be now	any statement or incorrect?		
					Exhibit No.	
If Yes, explain in an Ex	khibit.					
6. Has the permittee fi	led its Ownership Report	(FCC Fo	orm 323) or own	ership	✓ Yes	No
certification in accordan	nce with 47 C.F.R. Sectio	n 73.361	5(b)?			.1
					Does not ap	ріу
If No, explain in an Exh	If No, explain in an Exhibit. Exhibit No.					
7. Has an adverse find	ling been made or an ad	verse fin	al action been ta	aken by any court	Yes 🖌	No
or administrative body v	with respect to the applic ought under the provisior	ant or pa	rties to the application to the second	ication in a civil or the following: any		
felony; mass media r another governmental u	elated antitrust or unfa unit; or discrimination?	ir comp	etition; fraudule	nt statements to		
	·				Exhibit No	
It the answer is Yes, a involved including an id	attach as an Exhibit a fu	ull disclo or admin	sure of the pers	sons and matters	EXHIBIT NO.	
(by dates and file num	bers), and the disposition	on of the	e litigation. Wi	here the requisite		
information has been	earlier disclosed in co	nnection	with another a	application or as		
16401160 Dy 47 U.S.C. 3	becault 1.00(0), the applic	Jani nee	a only provide. (i) an iuchuncation		

of that previous submission by reference to the file number in the case of an application, the call letters of the station regarding which the application or Section 1.65 information was filed, and the date of filing; and (ii) the disposition of the previously reported matter.

8. Does the applicant, or any party to the application, have a petition on file to migrate to the expanded band (1605-1705 kHz) or a permit or license either in the existing band or expanded band that is held in combination (pursuant to the 5 year holding period allowed) with the AM facility proposed to be modified herein?

If Yes, provide particulars as an Exhibit.

The APPLICANT hereby waives any claim to the use of any particular frequency or of the electromagnetic spectrum as against the regulatory power of the United States because use of the same, whether by license or otherwise, and requests and authorization in accordance with this application. (See Section 304 of the Communications Act of 1934, as amended).

The APPLICANT acknowledges that all the statements made in this application and attached exhibits are considered material representations and that all the exhibits are a material part hereof and are incorporated herein as set out in full in

CERTIFICATION

1. By checking Yes, the applicant certifies, that, in the case of an individual applicant, he or she is not subject to a denial of federal benefits that includes FCC benefits pursuant to Section 5301 of the Anti-Drug Abuse Act of 1988, 21 U.S.C. Section 862, or, in the case of a non-individual applicant (e.g., corporation, partnership or other unincorporated association), no party to the application is subject to a denial of federal benefits that includes FCC benefits pursuant to that section. For the definition of a "party" for these purposes, see 47 C.F.R. Section 1.2002(b).

2. I certify that the statements in this application are true, complete, and correct to the best of my knowledge and belief, and are made in good faith.

Name John W. Zucker	John W. Zucl	Digitally signed by: John W. Zucker DV: CN = John W. Zucker email = John.W.Zucker@abc. com C = US O = ABC Radio Los Angeles Assets, LLC Date: 2022.11.30 16:37:14 - 05'00'
Title Assistant Secretary	Date 11/30/2022	Telephone Number 212-456-7387

WILLFUL FALSE STATEMENTS ON THIS FORM ARE PUNISHABLE BY FINE AND/OR IMPRISONMENT (U.S. CODE, TITLE 18, SECTION 1001), AND/OR REVOCATION OF ANY STATION LICENSE OR CONSTRUCTION

FCC NOTICE TO INDIVIDUALS REQUIRED BY THE PRIVACY ACT AND THE PAPERWORK REDUCTION ACT

The solicitation of personal information requested in this application is authorized by the Communications Act of 1934, as amended. The Commission will use the information provided in this form to determine whether grant of the application is in the public interest. In reaching that determination, or for law enforcement purposes, it may become necessary to refer personal information contained in this form to another government agency. In addition, all information provided in this form will be available for public inspection. If information requested on the form is not provided, the application may be returned without action having been taken upon it or its processing may be delayed while a request is made to provide the missing information. Your response is required to obtain the requested authorization.

Public reporting burden for this collection of information is estimated to average 639 hours and 53 minutes per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the burden, can be sent to the Federal Communications Commission, Records Management Branch, Paperwork Reduction Project (3060-0627), Washington, D. C. 20554. Do NOT send completed forms to this address.

THE FOREGOING NOTICE IS REQUIRED BY THE PRIVACY ACT OF 1974, P.L. 93-579, DECEMBER 31, 1974, 5 U.S.C. 552a(e)(3), AND THE PAPERWORK REDUCTION ACT OF 1980, P.L. 96-511, DECEMBER 11, 1980, 44 U.S.C. 3507.

Exhibit	No.

1	Yes	No
~	Yes	NO

EXHIBIT 1

Responses to FCC Form 302-AM, Section II, Items 3 and 4

The station is not operating pursuant to program test authority, but instead is operating pursuant to the terms of its license. The purpose of this application is to enable the station to return to direct measurement of power following the collocation of AM Station KSPN (Facility ID No. 33255) transmission facilities and diplexing onto the KRDC towers (*see* File No. BP-20200914AAV).

ENGINEERING EXHIBIT IN SUPPORT OF AN APPLICATION TO RETURN TO DIRECT MEASUREMENT OF POWER KRDC(AM) – PASADENA, CALIFORNIA 1110 kHz – 50.0 kW DAY, 20.0 kW NIGHT, DA-2, U FACILITY ID: 25076

Licensee: ABC Radio Los Angeles Assets, LLC

TABLE OF CONTENTS

FCC Form 302-AM, Section III

ENGINEERING STATEMENT OF CARL T. JONES, JR., P.E.

FIGURE NUMBER

Tower Model Height and Radius	1
Measured and Modeled Impedances	2
Antenna Monitor Parameters and Common Point Data	3
Measured Sample Line Impendences with Loops Connected	4

APPENDICES

Appendix A Individual Tower Models

Appendix B Daytime Directional Model

Appendix C Nighttime Directional Model

Appendix D Detuned Tower Models

Name of Applica	nt	LICATION ENGI	NEERING DATA				
ABC Radio	b Los Ange	eles Assets, I	_LC				
PURPOSE OF A	UTHORIZATIO	ON APPLIED FOR	: (check one)				
	Station License	9	✓ Direct Mea	asurement of Pov	ver		
1. Facilities auth	orized in const	ruction permit					
Call Sign	File No. of Co	onstruction Permit	Frequency	Hours of Oper	ation	Power i	n kilowatts
KRDC	(if applicable)	ΝΙ/Δ	(kHz) 1110	Linlin	nited	Night 20.0	Day 50.0
2 Station location	n		1110	Onin	inco	20.0	00.0
State				City or Town			
California				Pasaden	а		
				1 doudon	4		
3. Transmitter IO				City or Town		Street address	
						(or other identified	cation)
CA	LOS ANG	eles		Irwindale		277 Long	den Avenue
4. Main studio lo	cation					Ctreat address	
State	County			City or Town		(or other identified	cation)
CA	Los Ange	eles		Burbank		800 W Olym	pic Blvd., Ste A
5. Remote contro	ol point location	n (specify only if a	uthorized directior	nal antenna)			
State	County			City or Town		Street address	notion)
CA	Los Ang	eles		Burbank		800 W Olym	pic Blvd., Ste. A
 6. Has type-appr 7. Does the sam Attach as an Ex 	roved stereo ge pling system m khibit a detailed	enerating equipme neet the requireme d description of the	ent been installed? ents of 47 C.F.R. S e sampling system	Section 73.68? n as installed.		✓ ✓ Eng	Yes Vo Yes No Not Applicable
8. Operating con	stants:		<u> </u>		·		
RF common poin modulation for ni	it or antenna ci aht svstem	urrent (in amperes) without	RF common p modulation for	oint or antenna	current (in amper	es) without
	5	20.52			, .,	32.45	
Measured antenna or common point resistance (in ohms) at operating frequency			n ohms) at	Measured antenna or common point reactance (in ohms) at operating frequency			(in ohms) at
50.0 50.0				i14 0			
Antenna indicatio	ons for direction			J			J · · · · ·
		Antenna	monitor	Antenna mo	nitor sample	Antonia	
Towe	ers	Phase reading	(s) in degrees	current	ratio(s)	Antenna	base currents
4 /NL0	+)	Night	Day	Night	Day	Night	Day
1 (North)	east) Contor)	0.375		<u>-14/.1</u>			
3 (West	Center)	1,000		0.0			
4 (South	west)	<u>0</u> .344	-50.3	-107.2	0.685		
5 (North))		0.0		1.000		

Manufacturer and type of antenna monitor:

Potomac Instruments Model 1901-5, Serial No. 772

SECTION III - Page 2

9. Description of antenna system ((f directional antenna is used, the information requested below should be given for each element of the array. Use separate sheets if necessary.)

Type Radiator steel, uniform cross-section,	Overall height in meters of radiator above base insulator, or above base, if grounded.	Overall height in meters above ground (without obstruction lighting)	Overall height in meters above ground (include obstruction lighting)	If antenna is either top loaded or sectionalized, describe fully in an Exhibit.
guyed	99.0 (All)	99.6 (All)	100.5 (All)	N/A
Excitation	Series	Shunt		

Geographic coordinates to nearest second. For directional antenna give coordinates of center of array. For single vertical radiator give tower location.

North Latitude 34 ° 06 ' 50 " West Lor	yitude 117 ^o 59 ' 51 "
--	-----------------------------------

Exhibit No.

Eng. Sttmt

Exhibit No.

N/A

If not fully described above, attach as an Exhibit further details and dimensions including any other antenna mounted on tower and associated isolation circuits.

Also, if necessary for a complete description, attach as an Exhibit a sketch of the details and dimensions of ground system.

10. In what respect, if any, does the apparatus constructed differ from that described in the application for construction permit or in the permit?

N/A			

11. Give reasons for the change in antenna or common point resistance.

I certify that I represent the applicant in the capacity indicated below and that I have examined the foregoing statement of technical information and that it is true to the best of my knowledge and belief.

Name (Please Print or Type)	Signature below)
Carl T. Jones, Jr.	M. T. J.
Address (include ZIP Code)	Date
Carl T. Jones Corporation	July 28, 2022
7901 Yarnwood Court	Telephone No. (Include Area Code)
Springfield, VA 22153	(703) 569-7704

Technical Director	Registered Professional Engineer
Chief Operator	Technical Consultant

FCC 302-AM (Page 5)

August 1995

ENGINEERING STATEMENT OF CARL T. JONES, JR., P.E. IN SUPPORT OF AN APPLICATION TO RETURN TO DIRECT MEASUREMENT OF POWER KRDC(AM) – PASADENA, CALIFORNIA 1110 kHz – 50.0 kW DAY, 20.0 kW NIGHT, DA-2, U FACILITY ID: 25076

Licensee: ABC Radio Los Angeles Assets, LLC

I am a Consulting Engineer and president of Carl T. Jones Corporation, with offices located in Springfield, Virginia. My education and experience are a matter of record with the Federal Communications Commission. I am a Registered Professional Engineer in the Commonwealth of Virginia, Registration No. 013391.

1.0 GENERAL

This office has been authorized by ABC Radio Los Angeles Assets, LLC ("ABC Radio LA"), licensee of AM Station KRDC, to prepare this engineering statement, FCC Form 302-AM and the associated figures and appendices in support of an Application to Return to Direct Measurement of Power. Station KRDC operates on 1110 kilohertz with a power of 50 kilowatts during daytime hours and 20 kilowatts during nighttime hours. The station is licensed pursuant to a proof of performance using moment method modeling and internal array parameters (Section 47 CFR 73.151(c)).

AM Station KSPN (Facility ID: 33255) was granted a construction permit (FCC File No. BP-20200914AAV) which authorizes collocation of its transmission facilities at the KRDC transmitter site and diplexing onto the KRDC towers. The KSPN construction

7901 Yarnwood Court	1
Springfield, VA 22153-2899	

tel: (703) 569-7704 fax: (703) 569-6417

-

ENGINEERING STATEMENT OF CARL T. JONES, JR., P.E. STATION KRDC(AM), PASADENA, CALIFORNIA PAGE 2 OF 8

permit specifies operation on 710 kHz with a daytime power of 34 kW and a nighttime power of 2.5 kW using different directional patterns for day and night operation. The KSPN construction permit specifies use of KRDC towers #1, #3 and #5 for the KSPN daytime directional operation and KRDC towers #2, #3 and #5 for the KSPN nighttime directional operation. KSPN will use KRDC tower #4 for emergency non-directional operation.

Following the installation of the new diplexing filters and the KSPN phasing and coupling systems, impedance measurements were performed at the output of each of the five KRDC ATU networks with the other towers open circuited at the corresponding ATU output locations. Based on these measurements, it was determined that it would be necessary to modify the previous moment method model and file FCC Form 302-AM.

The specific measurement and modeling techniques used in performing the KRDC pattern verifications are described in detail in this engineering statement. Impedance measurement data and model derived operating parameters are tabulated in the figures attached to this engineering statement. In accordance with the Rules, sampling system measurements, and reference field strength measurements have not been repeated. Although, out of an abundance of caution, the sample line impedances with the tower mounted loops attached were repeated and compared to the impedance measurements performed in the previous application for license. This comparison demonstrated that there has been no material change in the impedances of each

tel: (703) 569-7704 fax: (703) 569-6417

-

sample line since the last measurement in 2018. All pertinent modified computer model input and output files are contained in the attached Appendices A, B, C and D

2.0 IMPEDANCE MEASUREMENTS, COMPUTER MODELING AND SAMPLE SYSTEM VERIFICATION

The pattern verification proof of performance contained herein is based on the computer modeling and sample system verification procedures described in Section 47 CFR 73.151(c) of the FCC's Rules and Regulations. The KRDC antenna array consists of five, triangular, uniform cross-section, guyed towers. All five towers have an electrical height of 132 degrees and a face width of approximately 31 inches.

The tower number at the KRDC site is different than that in the FCC's data base. The tower numbering scheme at the site is described in detail in the KRDC 2018 License Application (FCC File Number BMML-20170711ACG). The tower numbering in this application and on FCC Form 302-AM correspond to the numbering scheme at the site and not that in the FCC's data base. The ASR numbers for the site tower numbering are as follows: Tower #1 – 1012884; Tower #2 – 1012885; Tower #3 – 1012886; Tower #4 – 1012887; and Tower #5 – 1012888.

The sampling system employs identical, single turn, loops mounted in an identical manner on each tower. Sample isolation inductors are used at the base of each tower to allow the coaxial cable from the sample loop to cross the base insulator. A variable vacuum capacitor is installed in parallel with the sample isolation inductor and, prior to

-

ENGINEERING STATEMENT OF CARL T. JONES, JR., P.E. STATION KRDC(AM), PASADENA, CALIFORNIA PAGE 4 OF 8

performing the impedance measurements, this capacitor was adjusted to achieve parallel resonance at the KRDC frequency of 1110 kHz. A detailed description of the tower base impedance measurements and the computer models employed is contained below.

2.1 BASE IMPEDANCE MEASUREMENTS

An impedance measurement was performed, by the undersigned, at the output J-Plug of each of the five KRDC antenna matching networks with the other towers open circuited at the corresponding J-Plug location, as was done in the original moment method proof of performance. This measurement location corresponds to the input to the diplex filter network for each tower. The impedance measurement was performed using a Hewlett-Packard Model 4396A network analyzer; an Amplifier Research Model 5W1000 power amplifier; and a Tunwall Radio directional coupler. The new measured impedances are contained in Figure 2.

2.2 INDIVIDUAL TOWER COMPUTER MODELS

The original moment method computer model and the separate circuit model were modified for each tower in order to replicate the new measured base impedances. The modified individual tower models were developed using Expert MiniNEC Broadcast Professional (Version 23.0). To replicate the individual measured base impedances to within the tolerance specified in the FCC's Rules, each tower's physical height and radius was adjusted in the MiniNEC model and series inductance and shunt

tel: (703) 569-7704 fax: (703) 569-6417

ENGINEERING STATEMENT OF CARL T. JONES, JR., P.E. STATION KRDC(AM), PASADENA, CALIFORNIA PAGE 5 OF 8

capacitances were employed in a separate circuit model. Details of the modeled individual tower adjusted heights and radii are contained in Figure 1.

The values of the lumped series inductances and shunt capacitances used in the circuit models for each tower are contained in Figure 2. The measured individual tower impedances, the modeled individual tower impedances, and the adjusted modeled (circuit model) individual tower impedances are also contained in Figure 2. The percentage difference between the adjusted modeled tower heights and radii and the physical tower heights and radii are within the tolerances set forth in the FCC's Rules. The magnitude of the lumped series inductances and shunt capacitances that were used in the circuit models are also within the tolerances set forth in the FCC's Rules.

As demonstrated by the data contained in Figure 2, the adjusted modeled individual tower resistance and reactance for each tower is well within ± 2 ohms and ± 4 percent tolerance of the corresponding measured individual tower resistance and reactance. The text files containing all pertinent input and output data associated with the individual tower models are contained in Appendix A.

2.3 DIRECTIONAL ANTENNA COMPUTER MODELS AND ANTENNA MONITOR PARAMETERS

The theoretical directional field parameters and the licensed tower spacings and orientations were used in combination with the adjusted individual tower models to produce the daytime and nighttime directional antenna computer models. From the

1

.....

ENGINEERING STATEMENT OF CARL T. JONES, JR., P.E. STATION KRDC(AM), PASADENA, CALIFORNIA PAGE 6 OF 8

directional computer models, tower currents were derived for each wire segment of each antenna. Each segment current was multiplied by the segment length and numerically integrated and normalized to the appropriate reference tower to verify that the modeled current moments are essentially identical to the authorized relative directional field parameters.

The new daytime and nighttime directional array operating parameters were determined from the modeled currents at the sample loop height and are tabulated in Figure 3. Also included in Figure 3 is the adjusted common point impedance and common point current for the licensed daytime 50 kW operation and the licensed nighttime 20 kW operation.

The text files containing all pertinent input and output data associated with the daytime and nighttime directional antenna computer models are contained in Appendix B and Appendix C, respectively. Text files containing all pertinent input and output data associated with detune models for those towers that are not used in either the daytime operating mode or the nighttime operating mode are contained in Appendix D.

2.4 SAMPLE SYSTEM INFORMATION

-

The KRDC antenna monitor was replaced as part of the KSPN collocation and diplexing project. The new antenna monitor contains filters, installed by the manufacturer, to attenuate the KSPN signal picked up by the KRDC sample loops to a level that allows accurate monitoring of the KRDC relative loop current magnitude and

tel: (703) 569-7704 fax: (703) 569-6417 -----

ENGINEERING STATEMENT OF CARL T. JONES, JR., P.E. STATION KRDC(AM), PASADENA, CALIFORNIA PAGE 7 OF 8

phase. The new antenna monitor is a Potomac Instruments Model 1901-5, serial number 772, which was calibrated on June 11, 2022 just prior to the adjustment of the KRDC directional antenna systems for the new moment method model derived operating parameters.

Although not required, a measurement of the sample line impedance with the sample loop attached was performed for each tower to ensure that there had been no material deterioration of the sample loops, connectors or coaxial cables since the last moment method proof was performed in 2018. Figure 4 contains a comparison of the 2022 measured impedances and those contained in the 2018 license application. The measured resistance and reactance for each tower are within the ± 2 Ohms and ± 4 percent tolerance of the corresponding 2018 values.

3.0 OTHER ANTENNAS MOUNTED ON THE TOWERS

-

There is an FM translator antenna for station K256CX mounted on KRDC tower #2. A Kintronic Laboratories isocoupler is used to allow the coaxial cable from the FM translator antenna to cross the base insulator of the tower.

4.0 SUMMARY

It is submitted that the KRDC daytime and nighttime directional antenna patterns fully comply with the terms of the station's FCC Authorization and all applicable FCC Rules and Regulations. It is requested that a superseding license be issued to ABC

ENGINEERING STATEMENT OF CARL T. JONES, JR., P.E. STATION KRDC(AM), PASADENA, CALIFORNIA PAGE 8 OF 8

Radio LA reflecting the new Moment Method model derived operating parameters as contained herein and on FCC Form 302-AM.

This engineering statement and the attached figures and appendices were prepared by the undersigned or under the direct supervision of the undersigned and are believed to be true and correct.

Dated: July 28, 2022

-

Figure 1

TOWER MODEL HEIGHT AND RADIUS

STATION KRDC - PASADENA, CALIFORNIA 1110 kHz - 50 kW DAY, 20 kW NIGHT, DA-2, U JULY, 2022

Tower	Physical Height (meters)	Modeled Height (meters)	Percent of Physical Height	Modeled Radius (meters)	Percent of Equivalent Radius
1 (NE)	99.0	104.0	105.0	0.2911	100.0
2 (EC)	99.0	104.0	105.0	0.2620	90.0
3 (WC)	99.0	103.0	104.0	0.2474	85.0
4 (SW)	99.0	99.0	100.0	0.2911	100.0
5 (N)	99.0	104.0	105.0	0.2911	100.0

MEASURED AND MODELED IMPEDANCES

STATION KRDC - PASADENA, CALIFORNIA 1110 kHz - 50 kW Day, 20 kW NIGHT, DA-2, U JULY, 2022

Tower	Measured Tower Base Impedance¹	Modeled Tower Base Impedance	Shunt Capacitance (pF)	Modeled plus Shunt Reactance	Lumped Series Inductance (uH)	Total Adjusted Tower Base Impedance
1 (NE)	577.5 +j 472.0	369.5 +j 458.1	69.0	577.9 +j 455.8	2.3	577.9 +j 471.8
2 (EC)	769.2 +j 459.0	352.0 +j 488.8	112.0	769.0 +j 448.8	1.5	769.0 +j 459.3
3 (WC)	340.8 +j 539.7	258.3 +j 456.6	42.0	341.7 +j 497.3	6.1	341.7 +j 539.8
4 (SW)	417.3 +j 307.8	289.7 +j 292.8	92.0	417.4 +j 265.0	6.2	417.4 +j 308.2
5 (N)	678.7 +j 215.6	490.5 +j 333.7	89.0	680.0 +j 159.7	8.0	680.0 +j 215.5

¹ Measured at output of matching network with other towers open-circuited

Figure 2

ANTENNA MONITOR PARAMETERS AND COMMON POINT DATA

STATION KRDC - PASADENA, CALIFORNIA 1110 kHz - 50 kW DAY, 20 kW NIGHT, U, DA-2 JUNE, 2022

	DAYTIME				
Tower	Ratio	Phase (deg)			
4	0.685	-50.3			
5	1.000	0.0			
	Common Point Impedance =	= 50 -j14 Ohms			
	Common Point Current = 32	2.45 Amperes			
	Antenna Input Power = 52	2,650 Watts			

NIGHTTIME					
Tower	Ratio	Phase (deg)			
1	0.375	-147.1			
2	1.036	107.0			
3	1.000	0.0			
4	0.344	-107.2			
	Common Point Impedance =	= 50 -j14 Ohms			
	Common Point Current = 20	0.52 Amperes			
	Antenna Input Power = 2	1,060 Watts			

SAMPLE LINE IMPEDANCE WITH LOOPS

STATION KRDC - PASADENA, CALIFORNIA 1110 kHz - 50 kW DAY, 20 kW NIGHT, DA-2, U JULY, 2022

Tower	Measured Impedance 2018 MoM Proof	Measured Impedance June, 2022	Delta Impedance June, 2022
1	5.04 +j 29.30	4.57 +j 27.51	-0.47 +j -1.79
2	4.50 +j 29.90	4.56 +j 27.57	0.06 +j -2.33
3	5.35 +j 29.90	4.57 +j 27.56	-0.78 +j -2.34
4	5.00 +j 30.00	4.65 +j 27.51	-0.35 +j -2.49
5	4.77 +j 29.90	4.59 +j 28.32	-0.18 +j -1.58

Figure 4

APPENDIX A

INDIVIDUAL TOWER MODELS

IMPED	ANCE -	· TOWER #1	(North	east)					
freq (MHz)	re (c	esist real phms) (of	act ms)	imped (ohms)	phase (deg)	VSWR	S11 dB	S12 dB	
sourc	e = 1 36	9.46 458	3.06 sect	or 1 588.49	51.1	18.83	92344	-7.17	73
GEOME Wire Envir	TRY - coordi conment	TOWER #1 nates in c : perfect	Northe legrees ground	ast) ; other	dimensior	ns in met	ers		
wire	caps	Distance	Ang	le	Z	ra	dius	seas	
1	none	0	0		0	.2	911	33	
		0	0		132.				
2	none	90.	60.		0	.2	474	33	
		90.	60.		137.28				
3	none	180.	60.		0	.2	62	33	
		180.	60.		138.6		0.1.1		
4	none	270.	60.		0	.2	911	33	
F	nono	270.	6U. 14		138.6	2	011	22	
5	none	165	14. 14		138 6	. 2	911	33	
Indiv segme radiu	ridual ent len us	wires Igth	min wire 1 2	imum value 4. .2474	2 L	ma wire 3 1	ximum value 4.2 .2911		
ELECI Frequ no.	RICAL encies freque lowest	DESCRIPTIC (MHz) ency ste	ОМ – ТО ер	WER #1 (no. step	Northeast of segme os minim	:) ent lengt num	h (wavele maximum	ngths)	
1	1.11	0		1	.0111	1111	.011666	7	
Sourc	es								
sourc	e node	e sector	r magn	itude	phase		type		
1	100	1	1.		0		voltage		
Lumpe	d load	ls							
1		resistar	ice	reactanc	e inc	luctance	capacita	nce pa	ssive
1020	100e	(OIIIIIS) 01		(0111115)	(1)		C1.	reuit
⊥ 2	1 24	.01		0	0		9.28-03 4 28-05	0	
3	67	01		0	0		1 12E = 03	0	
4	100	.01		0	0		0	0	
5	133	.01		0	0		8.9E-05	0	
2	200			-	5			0	

IMPED	ANCE -	- TOWER ‡ zation =	‡2 (East 50.	Center)					
freq	re	esist i	react	imped	phase	VSWR	S11 dB	S12 dB	
(MIZ)	ω – 1	: node f	57 sect	or 1	(ucg)		uв	uв	
1.11	35	51.96 4	188.84	602.36	54.2	20.712	83937	-7.5512	
GEOME	TRY -	TOWER #2	2 (East	Center)					
Wire	coordi	nates in	ı degree	s; other	dimension	ıs in met	ers		
Envir	onment	: peried	ct groun	a					
wire	caps	Distance	e An	gle	Z	ra	dius	segs	
1	none	0	0		0	.2	911	33	
		0	0		132.				
2	none	90.	60		0	.2	474	33	
		90.	60		137.28				
3	none	180.	60		0	.2	62	33	
		180.	60		138.6				
4	none	270.	60		0	.2	911	33	
		270.	60		138.6				
5	none	165.	14		0	.2	911	33	
		165.	14	•	138.6				
Indiv	d idual	wires	nodes = mi wire	165 nimum value	2	ma wire	ximum value		
radiu	nt ler	igtn	⊥ 2	4. 2474	1	3	4.2 2011		
Iauiu			2	.24/-	I	T	.2911		
ELECT Frequ no.	RICAL encies freque lowest	DESCRIPT (MHz) ency	FION - T step	OWER #2 (no. ster	(East Cent of segme os minim	er) ent lengt uum	h (wavele maximum	engths)	
1	1.11	()	1	.0111	.111	.011666	57	
Sourc	AC								
gouro	e node	a sact	or mag	nitude	nhage		type		
1	67	1	1 1	III cuuc	0		voltage		
-	07	-	±•		0		VOICAGE		
Lumpe	d load	ls .							
		resist	ance	reactand	ce ind	luctance	capacita	nce pass	ive
load	node	(ohms))	(ohms)	(mH	[)	(uF)	circ	uit
1	1	.01		U	0		9.2E-05	0	
2	34	.01		0	0		4.2E-05	0	
3	67	.01		0	0		0	0	
4	100	.01		0	0		6.9E-05	0	
5	133	.01		0	0		8.9E-05	0	

<pre>S12 dB -7.6907 segs 33 33</pre>
-7.6907 segs 33 33
segs 33 33
segs 33 33
segs 33 33
33
33
33
33
33
33
engths)
engths) m
engths) m 67
engths) m 67 ance passive
engths) m 67 ance passive circuit
engths) m 67 ance passive circuit 0
engths) m 67 ance passive circuit 0 0
engths) m 67 ance passive circuit 0 0 4 0
engths) m 67 ance passive circuit 0 4 0

IMPED	ANCE -	TOWER	#4 (Sout	hwest)					
no	rmallz	ation =	50.			TAND	011	01.0	
freq	re	sist :	react	imped	phase	VSWR	SII	SI2	
(MHZ)	(0	nms)	(ONMS)	(onms)	(deg)		aв	aв	
sourc 1.11	e = 1 28	9.71	1, secto 292.8	411.9	45.3	11.801	-1.4756	-5.405	
GEOME	TRY -	TOWER #	4 (South	west)					
Wire	coordi	nates i	n degree	s; other	dimension	s in met	ers		
Envir	onment	: perfe	ct groun	ld					
wire	caps	Distanc	e An	gle	Z	ra	dius	segs	
1	none	0	0		0	.2	911	33	
		0	0		132.				
2	none	90.	60		0	.2	474	33	
		90.	60		137.28				
3	none	180.	60		0	.2	62	33	
		180.	60		138.6				
4	none	270.	60		0	.2	911	33	
		270.	60		138.6				
5	none	165.	14	•	0	.2	911	33	
		165.	14	•	138.6				
Numbe	r of w	vires	=	5					
	C	urrent	nodes =	165					
				nımum		. mai	ximum		
Indiv	idual	wires	wire	value	2	wire	value		
segme	nt len	lgth	1	4.	4	3	4.2		
radiu	S		2	.24/4	±	T	.2911		
ELECT	RTCAL	DESCRIP	TTON – T	OWER #4	Southwest)			
Frequ	encies	(MHz)			(00000000000000	/			
1	freque	ncv		no.	of segme	nt lengt	h (wavele	ngths)	
no.	lowest	- 1	step	ster	os minim	um	maximum		
1	1.11		0	1	.0111	111	.011666	7	
Sourc	es								
sourc	e node	sec	tor mag	nitude	phase		type		
1	1	1	1.		0		voltage		
Lumpe	d load	s .							
_		resis	tance	reactand	ce ind	uctance	capacita	nce passive	2
⊥oad	node	(ohms)	(ohms)	(mH)	(uF)	circuit	2
1	1	.01		0	0		0	0	
2	34	.01		U	Ű		4.2E-05	U	
3	67	.01		U	0		1.12E-04	0	
4	100	.01		U	U		6.9E-05	U	
5	133	.01		0	0		8.9E-05	0	

IMPED	ANCE -	- TOWER	#5 (Nor	th)					
no	rmaliz	ation =	= 50.	4		MOUD	G11	G1 0	
ireq	re	esist	react	1mpea	phase	VSWR	SII	SIZ	
(MHZ)	(C) . nodo	(OIIIIS)	(Onnis)	(deg)		aв	aв	
1.11	49	90.54	333.7	593.28	34.2	14.383	-1.2097	-6.1418	
GEOME	TRY -	TOWER #	5 (Nort	h)					
wire	coorai	inates i	ln degre	es; otner	almension	s in met	ers		
FUATE	onment	. perie	ect grou	na					
wire	caps	Distan	ne A	nale	7.	ra	dius	seas	
1	none	0	0	ngre	0	2	911	33	
-	none	0	0		132.		/	55	
2	none	90.	6	0.	0	. 2	474	33	
_		90.	6	0.	137.28	. –			
3	none	180.	6	0.	0	.2	62	33	
		180.	6	0.	138.6				
4	none	270.	б	0.	0	.2	911	33	
		270.	6	0.	138.6				
5	none	165.	1	4.	0	.2	911	33	
		165.	1	4.	138.6				
Numbe	r of w	vires current	nodes	= 5 = 165					
			m	inimum		ma	ximum		
Indiv	idual	wires	wir	e valu	e	wire	value		
segme	nt ler	igth	Ţ	4.	4	3	4.2		
radiu	.S		2	.24/	4	T	.2911		
ELECT	RICAL	DESCRIE	PTTON -	TOWER #5	(North)				
Frequ	encies	G (MHZ)			(1101 011)				
1.1	freque	ency		no.	of segme	nt lengti	h (wavele	ngths)	
no.	lowest		step	ste	os minim	um	maximum		
1	1.11		0	1	.0111	111	.011666	7	
Sourc	es								
sourc	e node	e sec	ctor ma	gnitude	phase		type		
1	133	3 1	1.		0		voltage		
T	م امم	- -							
Lumpe	d load	15							
1004	node	resis	scance	reactand	ue ind	uctance	capacita	nce passive	
1040	1000	(OTIMS	5)	(0111115)	(inH)		o	
1 2	3 \ ⊤	.01		0	0		シ・2日-US 4 2〒-05	0	
∠ 3	5 4 67	01		0	0		1 12E-04	0	
4	100	.01		0	0		6.9E-05	0	
5	133	.01		0	0 0		0	0	
-				-	-			-	

APPENDIX B

DAYTIME DIRECTIONAL MODEL

noi	rmaliza	tion =	= 50 .		,		C11	C10	
(MUR)	res	lst mal	react	1mped	phase	VSWR	SII	SI2 dD	
(MHZ)		.ms)	(OIIIIS)		(deg)		ав	aв	
SOULCE 1 11	= I, 250	node	1, Secto	202 36	21 2	6 8020	-2 5381	-3 5/01	
1.11	200	•	101.07	292.30	51.2	0.0929	-2.5501	-3.3401	
source	e = 2;	node	133, sec	ctor 1					
1.11	290	.32	387.71	484.36	53.2	16.272	-1.0689	-6.6119	
GEOME	rry – d	AYTIME	OPERATI	ION					
Wire d	coordin	ates i	n degree	es; other	dimension	s in met	ers		
Enviro	onment:	perfe	ect grour	nd					
				1 -	7				
wire 1	caps D	istand	e Ar	igie	2	ra	alus	segs	
T	none u		0		U 122	. 2	911	33	
2	none 9	0	6	h	132.	2	474	33	
2	g g	0.	60)	137 28	• 4		55	
3	none 1	80.	6().	0	. 2	62	33	
5	1	80.	6().	138.6	• -	02	55	
4	none 2	70.	6().	0	.2	911	33	
	2	70.	60).	138.6				
5	none 1	65.	14	ł.	0	.2	911	33	
	1	65.	14	1.	138.6				
Number	r of wi	res	=	= 5					
	Cu	rrent	nodes =	= 165					
			m	Inimum		ma	ximum		
Indiv	idual w	ires	wire	e value	5	wire	value		
segmei	nt leng -	th	1	4.	4	3	4.2		
radius	3		Z	.24/4	±	T	.2911		
ELECTI	RICAL D	ESCRIE	PTION - I	DAYTIME O	PERATION				
Freque	encies	(MHz)							
t	Erequen	су		no	of seamer	at langt	h (naths)	
no. 1	lowest			110.	or begine	ni iengi	n (waveie	iig ciib /	
1 1			step	ster	os minim	um	maximum		
	1.11		step 0	ster 1	ps minim .0111	um 111	maximum .011666	7	
	1.11		step 0	ster 1	ps minim .0111	um 111	maximum .011666	7	
Source	1.11 es		step 0	ster 1	ps minim .0111	um 111	maximum .011666	7	
Source	1.11 es e node	sec	step 0 tor mag	gnitude	ps minim .0111	um 111	n (wavele maximum .011666	7	
Source source 1	l.11 es e node 1	sec 1	step 0 tor mag 3,9	gnitude	phase	um 111	n (wavere maximum .011666 type voltage	7	
Source source 1 2	1.11 es e node 1 133	sec 1 1	step 0 tor mag 3,9 6,9	no. step 1 979.22 586.66	phase 56.1 123.6	um 111	n (wavele maximum .011666 type voltage voltage	7	
Source source 1 2	1.11 es e node 1 133	sec 1 1	step 0 etor mag 3,9 6,9	no. step 1 979.22 586.66	ps minim .0111: phase 56.1 123.6	it fengt um 111	n (wavere maximum .011666 type voltage voltage	7	
Source source 1 2 Lumpeo	1.11 es e node 1 133 d loads	sec 1 1	step 0 etor mag 3,9 6,9	gnitude 79.22 586.66	phase 56.1 123.6	uctance	n (wavere maximum .011666 type voltage voltage	7 nce passive	
Source source 1 2 Lumpeo	1.11 es e node 1 133 d loads node	sec 1 1 resis (ohms	step 0 etor mag 3,9 6,9 stance	gnitude 79.22 586.66 reactand (obms)	ps minimu .0111: phase 56.1 123.6 ce indu	uctance	n (wavere maximum .011666 type voltage voltage capacita (uF)	7 nce passive	
Source source 1 2 Lumpeo load 1	1.11 es e node 1 133 d loads node 1	sec 1 1 resis (ohms .01	step 0 ctor mag 3,5 6,5 stance	gnitude 79.22 586.66 reactand (ohms) 0	phase 56.1 123.6 ce indu 0	uctance	n (wavele maximum .011666 voltage voltage capacita (uF) 0	nce passive circuit	
Source source 2 Lumpeo load 1 2	1.11 es e node 1 133 d loads node 1 34	sec 1 1 resis (ohms .01 .01	step 0 etor mag 3,9 6,9 stance	gnitude 979.22 586.66 reactand (ohms) 0	phase 56.1 123.6 ce indr (mH 0 .04	uctance	n (wavele maximum .011666 voltage voltage capacita (uF) 0 0	7 7 nce passive circuit 0 0	
Source source 2 Lumped load 1 2 3	1.11 es e node 1 133 d loads node 1 34 67	sec 1 1 (ohms .01 .01	step 0 ctor mag 3,5 6,5 stance	no. step 1 979.22 586.66 reactand (ohms) 0 0	ce indu .041 .0111 phase 56.1 123.6 ce indu .04 .04	uctance	n (wavele maximum .011666 voltage voltage capacita (uF) 0 0 0	7 7 nce passive circuit 0 0 0	
Source source 1 2 Lumped 1 2 3 4	1.11 es e node 1 133 d loads node 1 34 67 100	sec 1 1 (ohms .01 .01 .01	step 0 ctor mag 3,5 6,5 stance	no. step 1 979.22 586.66 reactand (ohms) 0 0 0	ce indu .04 .04 .04 .04 .04 .04 .04	uctance) 6 4 3	n (wavele maximum .011666 voltage voltage capacita (uF) 0 0 0 0	7 7 nce passive circuit 0 0 0	
Source source 1 2 Lumped 1 2 3 4 5	1.11 es node 1 133 d loads node 1 34 67 100 133	sec 1 1 resis (ohms .01 .01 .01 .01	step 0 ctor mag 3,5 6,5 stance	no. step 1 979.22 586.66 reactand (ohms) 0 0 0 0	ce indu .041 .041 .041 .041 .041 .041 .041 .041	uctance) 6 4 3	n (wavele maximum .011666 type voltage voltage capacita (uF) 0 0 0 0 0	7 7 nce passive circuit 0 0 0 0 0	
Source source 1 2 Lumped 1 2 3 4 5	1.11 es node 1 133 d loads node 1 34 67 100 133	sec 1 1 resis (ohms .01 .01 .01 .01	step 0 ctor mag 3,9 6,9 stance	no. step 1 979.22 586.66 reactand (ohms) 0 0 0 0 0	ce indu .0111: phase 56.1 123.6 ce indu .04: .0	uctance) 6 4 3	n (wavele maximum .011666 type voltage voltage capacita (uF) 0 0 0 0 0 0	7 7 nce passive circuit 0 0 0 0 0	
Source source 1 2 Lumped 1 2 3 4 5 RMS CU	1.11 es e node 1 133 d loads node 1 34 67 100 133 JURRENT	sec 1 1 resis (ohms .01 .01 .01 .01 .01 - DAYT	step 0 tor mag 3,9 6,9 stance 3)	no. step 1 979.22 586.66 reactand (ohms) 0 0 0 0 0 0 8ATION	ce indu .0111: phase 56.1 123.6 ce indu (mH 0 .04: .04: 0	uctance) 6 4 3	n (wavele maximum .011666 type voltage voltage capacita (uF) 0 0 0 0 0	7 7 nce passive circuit 0 0 0 0 0	
Source source 1 2 Lumped 1 2 3 4 5 RMS CU Freque	1.11 es node 1 34 67 100 133 URRENT ency	sec 1 1 resis (ohms .01 .01 .01 .01 - DAYT = 1.11	step 0 ctor mag 3,9 6,9 stance cime open	no. step 1 979.22 586.66 reactand (ohms) 0 0 0 0 0 8 ATION	ce indu .041 .0111 phase 56.1 123.6 ce indu .04 .04 .04 .04 .04	uctance) 6 4 3	n (wavele maximum .011666 type voltage voltage capacita (uF) 0 0 0 0 0	7 7 nce passive circuit 0 0 0 0 0	
Source source 1 2 Lumped 1 2 3 4 5 RMS CU Freque Input	1.11 es node 1 34 67 100 133 JRRENT ency power	sec 1 1 resis (ohms .01 .01 .01 .01 - DAYT = 1.11 = 50,0	step 0 etor mag 3,9 6,9 stance 3) TIME OPEH . MHz 000. wat	no. step 1 979.22 586.66 reactand (ohms) 0 0 0 0 0 0 8 ATION	ce indu .041 .0111 phase 56.1 123.6 ce indu .04 .04 .04 .04 .04	uctance) 6 4 3	n (wavele maximum .011666 type voltage voltage capacita (uF) 0 0 0 0 0	7 nce passive circuit 0 0 0 0	
Source source 1 2 Lumped 1 2 3 4 5 RMS CU Freque Input Effic:	1.11 es node 1 34 67 100 133 URRENT ency power iency	sec 1 1 resis (ohms .01 .01 .01 .01 .01 = 1.11 = 50,0 = 100.	step 0 ctor mag 3,9 6,9 stance s) CIME OPEH MHz 000. watt %	no. step 1 979.22 586.66 reactand (ohms) 0 0 0 0 0 0 8 ATION	ce indu .041 .041 .041 .041 .041 .041 .041 .041	uctance) 6 4 3	n (wavele maximum .011666 type voltage voltage capacita (uF) 0 0 0 0 0	7 nce passive circuit 0 0 0 0	
Source source 1 2 Lumped 1 2 3 4 5 RMS CU Freque Input Effic: coord:	1.11 es e node 1 133 d loads node 1 34 67 100 133 JRRENT ency power iency inates	sec 1 1 (ohms .01 .01 .01 .01 .01 = 1.11 = 50,0 = 100. in deg	step 0 ctor mag 3,9 6,9 stance s) CIME OPEH . MHz 000. watt % grees	no. step 1 gnitude 079.22 586.66 reactand (ohms) 0 0 0 0 0 0 8 ATION	ce indu .041 .0111 phase 56.1 123.6 ce indu .04 .04 .04 .04 0	uctance) 6 4 3	n (wavele maximum .011666 type voltage voltage capacita (uF) 0 0 0 0 0	7 nce passive circuit 0 0 0 0	
Source source 1 2 Lumped 1 2 3 4 5 RMS CI Freque Input Effic: coord: curren	1.11 es e node 1 133 d loads node 1 34 67 100 133 JRRENT ency power iency inates	sec 1 1 (ohms .01 .01 .01 .01 .01 = 1.11 = 50,0 = 100. in deg	step 0 ctor mag 3,9 6,5 stance s) CIME OPEH . MHz 000. watt % grees	no. step 1 gnitude 079.22 586.66 reactand (ohms) 0 0 0 0 0 0 2 8 ATION	mag	phase	n (wavele maximum .011666 type voltage voltage capacita (uF) 0 0 0 0 0 0	7 7 nce passive circuit 0 0 0 0 0	
Source source 1 2 Lumped 1 2 3 4 5 RMS CU Freque Input Effic: coord: curren no.	1.11 es e node 1 133 d loads node 1 34 67 100 133 JRRENT ency power iency inates nt	sec 1 1 resis (ohms .01 .01 .01 .01 .01 = 1.11 = 50,0 = 100. in deg	step 0 ctor mag 3,9 6,9 stance s) CIME OPEH . MHz 000. watt % grees	reactand (ohms) 0 0 0 0 0 0 0 0 0 0 0 2 8 ATION	mag (amps)	phase (deg)	<pre>n (wavele maximum .011666 type voltage voltage capacita (uF) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</pre>	<pre>imaginary (amps) </pre>	

2	0	0	4.	10.505	17.6	10.0132	3.17675
3	0	0	8.	11.0752	13.8	10.7557	2.64099
4	0	0	12.	11.5661	10.8	11.36	2.1735
5	0	0	16.	11.991	8.4	11.8626	1.74995
6	0	0	20.	12.3557	6.3	12.2807	1.35902
7	0	0	24.	12.6618	4.5	12.6226	.995585
8	0	0	28.	12.9096	2.9	12.8929	.65706
9	0	0	32.	13.0988	1.5	13.0943	.342126
10	0	0	36.	13.2289	.2	13.2288	.0501556
11	0	0	40.	13.2996	359.1	13.2978	219085
12	0	0	44.	13.3106	358.	13.3024	46561
13	0	0	48.	13.2618	357.	13.2439	689314
14	0	0	52.	13.1536	356.1	13.1235	890028
15	0	0	56.	12.9862	355.3	12.9422	-1.06758
16	0	0	60.	12.7602	354.5	12.7016	-1.22181
17	0	0	64.	12.4766	353.8	12.4031	-1.35258
18	0	0	68.	12.1364	353.1	12.0483	-1.45979
19	0	0	72.	11.741	352.4	11.6391	-1.54344
20	0	0	76.	11.2918	351.8	11.1773	-1.60355
21	0	0	80.	10.7905	351.3	10.6651	-1.64021
22	0	0	84.	10.2389	350.7	10.1045	-1.6536
23	0	0	88.	9.63914	350.2	9.49793	-1.64392
24	0	0	92.	8.99323	349.7	8.84767	-1.61148
25	0	0	96.	8.30325	349.2	8.15605	-1.55655
26	0	0	100.	7.57129	348.7	7.42533	-1.47952
27	0	0	104.	6.79943	348.3	6.65776	-1.38072
28	0	0	108.	5.98922	347.9	5.85509	-1.26044
29	0	0	112.	5.14177	347.4	5.01856	-1.11887
30	0	0	116.	4.25701	347.	4.1483	955909
31	0	0	120.	3.33256	346.6	3.24218	770895
32	0	0	124.	2.36066	346.2	2.29285	561758
33	0	0	128.	1.32192	345.8	1.28176	32338
END	0	0	132.	0	0	0	0
GND	45.	-77.9423	0	4.62164	68.3	1.7121	4.29282
35	45.	-77.9423	4.16	3.83797	68.3	1.42128	3.5651
36	45.	-77.9423	8.32	3.33304	68.3	1.23277	3.09668
37	45.	-77.9423	12.48	2.88737	68.3	1.06529	2.68367
38	45.	-//.9423	16.64	2.4/83/	68.4	.91052	2.30505
39	45.	-//.9423	20.8	2.09637	68.6	. 764948	1.95183
40	45.	-//.9423	24.96	1.73706	68.8	.62/046	1.61993
41 40	45.	-//.9423	29.12	1.39844	69.2	.4961/5	1.30745
42	45.	-77.9423	33.28	1.0/966	69.8 70 0	.3/211	1.0135
43	45.	-//.9423	37.44	./80549 E01E40	70.9	144505	./3//0/
44	45.	-77.9423	41.0	.501542	/3.4	.144595	.400247
45	45.	-77.9423	45.70	.244005	00.2 150 1	.0415213	02065
40	45.	-77 0/22	49.92 5/ 08	229901	221 0	- 1/1057	- 180838
	45.	-77.9423	59.00	.229901	231.9	201000	262021
40	45.	-77 0/22	50.24 62 /	601955	230.0	- 203362	- 525632
50	45	-77 9423	66 56	757464	240.0	- 356392	- 668383
51	45	-77 9423	00.50	./5/101	241.7		.000505
52	чJ.		/11 /2	201712	242 6	- 410681	- /9/068
52	45	-77 9423	74 88	.891318	242.6 243	410681 - 456048	/91068 - 893549
55	45. 45	-77.9423	70.72 74.88 79.04	.891318 1.0032 1.0929	242.6 243. 243.2	410681 456048 - 492348	791068 893549 975722
54	45. 45. 45.	-77.9423 -77.9423 -77.9423	70.72 74.88 79.04 83.2	.891318 1.0032 1.0929 1.16036	242.6 243. 243.2 243.4	410681 456048 492348	791068 893549 975722 -1.03758
54 55	45. 45. 45.	-77.9423 -77.9423 -77.9423 -77.9423	70.72 74.88 79.04 83.2 87.36	.891318 1.0032 1.0929 1.16036 1.20554	242.6 243. 243.2 243.4 243.5	410681 456048 492348 519474 537359	791068 893549 975722 -1.03758 -1.07915
54 55 56	45. 45. 45. 45.	-77.9423 -77.9423 -77.9423 -77.9423 -77.9423 -77.9423	70.72 74.88 79.04 83.2 87.36 91.52	.891318 1.0032 1.0929 1.16036 1.20554 1.22854	242.6 243. 243.2 243.4 243.5 243.6	410681 456048 492348 519474 537359 545966	791068 893549 975722 -1.03758 -1.07915 -1.10056
54 55 56 57	45. 45. 45. 45. 45.	-77.9423 -77.9423 -77.9423 -77.9423 -77.9423 -77.9423 -77.9423	70.72 74.88 79.04 83.2 87.36 91.52 95.68	.891318 1.0032 1.0929 1.16036 1.20554 1.22854 1.22949	242.6 243. 243.2 243.4 243.5 243.6 243.7	410681 456048 492348 519474 537359 545966 545294	791068 893549 975722 -1.03758 -1.07915 -1.10056 -1.10196
54 55 56 57 58	45. 45. 45. 45. 45. 45. 45.	-77.9423 -77.9423 -77.9423 -77.9423 -77.9423 -77.9423 -77.9423 -77.9423	70.72 74.88 79.04 83.2 87.36 91.52 95.68 99.84	.891318 1.0032 1.0929 1.16036 1.20554 1.22854 1.22949 1.20862	242.6 243. 243.2 243.4 243.5 243.6 243.7 243.7	410681 456048 492348 519474 537359 545966 545294 535369	791068 893549 975722 -1.03758 -1.07915 -1.10056 -1.10196 -1.08358
54 55 56 57 58 59	45. 45. 45. 45. 45. 45. 45. 45.	-77.9423 -77.9423 -77.9423 -77.9423 -77.9423 -77.9423 -77.9423 -77.9423 -77.9423	70.72 74.88 79.04 83.2 87.36 91.52 95.68 99.84 104.	.891318 1.0032 1.0929 1.16036 1.20554 1.22854 1.22949 1.20862 1.16617	242.6 243.2 243.2 243.4 243.5 243.6 243.7 243.7 243.7	410681 456048 492348 519474 537359 545966 545294 535369 516237	791068 893549 975722 -1.03758 -1.07915 -1.10056 -1.10196 -1.08358 -1.04568
54 55 56 57 58 59 60	45. 45. 45. 45. 45. 45. 45. 45. 45.	-77.9423 -77.9423 -77.9423 -77.9423 -77.9423 -77.9423 -77.9423 -77.9423 -77.9423 -77.9423 -77.9423	70.72 74.88 79.04 83.2 87.36 91.52 95.68 99.84 104. 108.16	.891318 1.0032 1.0929 1.16036 1.20554 1.22854 1.22949 1.20862 1.16617 1.10242	242.6 243. 243.2 243.4 243.5 243.6 243.7 243.7 243.7 243.7	410681 456048 492348 519474 537359 545966 545294 535369 516237 48795	791068 893549 975722 -1.03758 -1.07915 -1.10056 -1.10196 -1.08358 -1.04568 988556
54 55 56 57 58 59 60 61	45. 45. 45. 45. 45. 45. 45. 45. 45.	-77.9423 -77.9423 -77.9423 -77.9423 -77.9423 -77.9423 -77.9423 -77.9423 -77.9423 -77.9423 -77.9423 -77.9423	70.72 74.88 79.04 83.2 87.36 91.52 95.68 99.84 104. 108.16 112.32	.891318 1.0032 1.0929 1.16036 1.20554 1.22854 1.22949 1.20862 1.16617 1.10242 1.01763	242.6 243. 243.2 243.4 243.5 243.6 243.7 243.7 243.7 243.7 243.7 243.7	410681 456048 492348 519474 537359 545966 545294 535369 516237 48795 450551	791068 893549 975722 -1.03758 -1.07915 -1.10056 -1.10196 -1.08358 -1.04568 988556 91245
54 55 56 57 58 59 60 61 62	45. 45. 45. 45. 45. 45. 45. 45. 45. 45.	-77.9423 -77.9423 -77.9423 -77.9423 -77.9423 -77.9423 -77.9423 -77.9423 -77.9423 -77.9423 -77.9423 -77.9423 -77.9423 -77.9423	70.72 74.88 79.04 83.2 87.36 91.52 95.68 99.84 104. 108.16 112.32 116.48	.891318 1.0032 1.0929 1.16036 1.20554 1.22854 1.22949 1.20862 1.16617 1.10242 1.01763 .911961	242.6 243. 243.2 243.4 243.5 243.6 243.7 243.7 243.7 243.7 243.7 243.7	410681 456048 492348 519474 537359 545966 545294 535369 516237 48795 450551 404044	791068 893549 975722 -1.03758 -1.07915 -1.10056 -1.10196 -1.08358 -1.04568 988556 91245 817571

64	45.	-77.9423	124.8	.637437	243.6	283097	571124
65	45.	-77.9423	128.96	.466464	243.6	20752	417761
66	45.	-77.9423	133.12	.2681	243.5	119522	239984
END	45.	-77.9423	137.28	0	0	0	0
GND	90.	-155.885	0	2.90094	36.1	2.34517	1.70752
68	90.	-155.885	4.2	2.41548	36.1	1.95246	1.42213
69	90.	-155.885	8.4	2.10531	36.1	1.70096	1.24059
70	90.	-155.885	12.6	1.83153	36.2	1.4784	1.08112
71	90.	-155.885	16.8	1.58027	36.3	1.27357	.935552
72	90.	-155.885	21.	1.34553	36.5	1.08165	.800296
73	90.	-155.885	25.2	1.12465	36.8	.900507	.673742
74	90.	-155.885	29.4	.916385	37.3	.72914	.555083
75	90.	-155.885	33.6	.720237	38.1	.567157	.44393
76	90.	-155.885	37.8	.536129	39.4	.414444	.340103
77	90.	-155.885	42.	.364418	41.9	.271084	.243545
78	90.	-155.885	46.2	.206479	48.3	.137254	.154257
79	90.	-155.885	50.4	.0734714	79.7	.0131868	.0722783
80	90.	-155.885	54.6	.100884	181.3	100857	-2.34E-03
81	90.	-155.885	58.8	.216115	198.8	204613	0695649
82	90.	-155.885	63.	.3247	203.5	297824	129348
83	90.	-155.885	67.2	.421426	205.5	380254	181678
84	90.	-155.885	71.4	.505323	206.6	451691	226556
85	90.	-155.885	75.6	.576018	207.3	511952	264012
86	90.	-155.885	79.8	.633318	207.7	56089	294098
87	90.	-155.885	84.	.677126	207.9	598396	316893
88	90.	-155.885	88.2	.70741	208.	624394	332506
89	90.	-155.885	92.4	.72419	208.1	638847	341065
90	90.	-155.885	96.6	.727533	208.1	64175	342726
91	90.	-155.885	100.8	.717542	208.1	633128	337663
92	90.	-155.885	105.	.694349	208.	613027	326066
93	90.	-155.885	109.2	.658099	207.9	581503	308136
94	90.	-155.885	113.4	.608924	207.8	538602	28407
95	90.	-155.885	117.6	.546909	207.7	484324	254047
96	90.	-155.885	121.8	.472014	207.5	418555	218194
97	90.	-155.885	126.	.383916	207.4	340931	176515
98	90.	-155.885	130.2	.281602	207.2	250467	128708
99	90.	-155.885	134.4	.162406	207.	144699	073742
END	90.	-155.885	138.6	0	0	0	0
GND	135.	-233.827	0	1.78084	338.2	1.65383	660469
101	135.	-233.827	4.2	1.47487	338.2	1.36986	546557
102	135.	-233.827	8.4	1.28333	338.3	1.19249	474246
103	135.	-233.827	12.6	1.11428	338.4	1.03633	409455
104	135.	-233.827	16.8	.959228	338.7	.893465	349056
105	135.	-233.827	21.	.814331	339.	.760302	291677
106	135.	-233.827	25.2	.677944	339.6	.635262	236747
107	135.	-233.827	29.4	.549314	340.4	.517566	184042
108	135.	-233.827	33.6	.428202	341.8	.406855	133512
109	135.	-233.827	37.8	.314744	344.3	.302991	0852056
110	135.	-233.827	42.	.209661	349.2	.205958	039231
111	135.	-233.827	46.2	.115892	2.1	.115813	4.27E-03
112	135.	-233.827	50.4	.055697	54.1	.0326478	.0451252
113	135.	-233.827	54.6	.0938208	117.6	04343	.0831635
114	135.	-233.827	58.8	.163048	133.5	112309	.118201
115	135.	-233.827	63.	.229678	139.2	173885	.150054
116	135.	-233.827	67.2	.289643	141.9	228067	.178546
117	135.	-233.827	71.4	.341935	143.5	274784	.203503
118	135.	-233.827	75.6	.386141	144.4	313984	.224764
119	135.	-233.827	79.8	.422037	145.	345639	.242176
120	135.	-233.827	84.	.449491	145.3	369745	.255599
121	135.	-233.827	88.2	.468424	145.6	386323	.264906
122	135.	-233.827	92.4	.478796	145.7	395418	.269983
123	135.	-233.827	96.6	.480602	145.7	397096	.270726
124	135.	-233.827	100.8	.473858	145.7	391446	.267043

125	135.	-233.827	105.	.458601	145.6	378566	.25885
126	135.	-233.827	109.2	.434875	145.5	358565	.246064
127	135.	-233.827	113.4	.402715	145.4	331546	.228598
128	135.	-233.827	117.6	.362123	145.3	297584	.206341
129	135.	-233.827	121.8	.313014	145.1	256689	.179133
130	135.	-233.827	126.	.255112	144.9	208715	.146698
131	135.	-233.827	130.2	.187668	144.7	153137	.108481
132	135.	-233.827	134.4	.108859	144.5	0885715	.0632877
END	135.	-233.827	138.6	0	0	0	0
GND	160.099	-39.9171	0	9.61573	70.5	3.21359	9.06284
134	160.099	-39.9171	4.2	11.83	62.8	5.4138	10.5185
135	160.099	-39.9171	8.4	13.2231	59.3	6.7415	11.3756
136	160.099	-39.9171	12.6	14.4132	56.9	7.86437	12.0786
137	160.099	-39.9171	16.8	15.451	55.1	8.84463	12.6691
138	160.099	-39.9171	21.	16.36	53.6	9.71069	13.1663
139	160.099	-39.9171	25.2	17.1503	52.4	10.4756	13.5792
140	160.099	-39.9171	29.4	17.8267	51.3	11.1459	13.9125
141	160.099	-39.9171	33.6	18.3916	50.4	11.7253	14.1692
142	160.099	-39.9171	37.8	18.8461	49.6	12.2157	14.351
143	160.099	-39.9171	42.	19.1909	48.9	12.6183	14.4593
144	160.099	-39.9171	46.2	19.4266	48.3	12.9338	14.4951
145	160.099	-39.9171	50.4	19.5535	47.7	13.1628	14.4596
146	160.099	-39.9171	54.6	19.5723	47.2	13.3058	14.3538
147	160.099	-39.9171	58.8	19.4839	46.7	13.3633	14.179
148	160.099	-39.9171	63.	19.2894	46.3	13.3362	13.9365
149	160.099	-39.9171	67.2	18.9904	45.9	13.2257	13.6278
150	160.099	-39.9171	71.4	18.5886	45.5	13.0327	13.2546
151	160.099	-39.9171	75.6	18.0864	45.1	12.7589	12.8191
152	160.099	-39.9171	79.8	17.4862	44.8	12.406	12.323
153	160.099	-39.9171	84.	16.7909	44.5	11.9761	11.7689
154	160.099	-39.9171	88.2	16.0036	44.2	11.4712	11.1592
155	160.099	-39.9171	92.4	15.1278	43.9	10.8938	10.4964
156	160.099	-39.9171	96.6	14.1671	43.7	10.2466	9.78339
157	160.099	-39.9171	100.8	13.1252	43.4	9.53222	9.02268
158	160.099	-39.9171	105.	12.0059	43.2	8.75341	8.21707
159	160.099	-39.9171	109.2	10.8128	43.	7.91274	7.36918
160	160.099	-39.9171	113.4	9.54895	42.7	7.0126	6.4812
161	160.099	-39.9171	117.6	8.21661	42.5	6.05456	5.55473
162	160.099	-39.9171	121.8	6.81624	42.3	5.03897	4.5902
163	160.099	-39.9171	126.	5.34466	42.1	3.96345	3.5856
164	160.099	-39.9171	130.2	3.79007	41.9	2.81913	2.5332
165	160.099	-39.9171	134.4	2.12154	41.8	1.58278	1.4127
END	160.099	-39.9171	138.6	0	0	0	0

APPENDIX C

NIGHTTIME DIRECTIONAL MODEL

IMPED	ANCE - 1	NIGHTI	TIME OPERA	ATION				
no	rmalizat	tion =	= 50.					
freq	res	ist	react	imped	phase	VSWR	S11	S12
(MHz)	(ohr	ns)	(ohms)	(ohms)	(deg)		dB	dB
sourc	e = 1;	node	1, sector	r 1				
1.11	692	.43	-1,064.7	1,270.1	303.	46.643	3725	-10.851
gourc	e = 2;	node	34 secto	or 1				
1 11	C - 27	04	170 27	025 20	25	20 424	05105	7 4050
±•±±	004	.04	4/9.3/	033.20	55.	20.424	05125	-7.4959
	2	-		-				
sourc	e = 3;	node	67, secto	or 1				
1.11	292	.6	413.9	506.88	54.7	17.676	98384	-6.9313
sourc	e = 4;	node	100, sect	tor 1				
1.11	99.9	916	307.68	323.49	72.	21.401	81233	-7.6804
GEOME	TRY - N	ГСНТТІ	ME OPERA	TTON				
Wire	acordin:	ated i	n degree	: other	dimension	a in met	arc	
				J OCHEL	urmension.		CIP	
Envir	onment:	perie	ect ground	a				
wire	caps D:	istanc	ce Ang	gle	Z	ra	dius	segs
1	none O		0		0	.2	911	33
	0		0		132.			
2	none 90	0.	60		0	. 2	474	33
2	90	5. 1	60	•	127 28	. 2	1,1	55
2			00	•	137.20	0	C D	22
3	none 18	80.	60	•	0	. 2	62	33
	18	80.	60	•	138.6			
4	none 2'	70.	60	•	0	.2	911	33
	2'	70.	60	•	138.6			
5	none 16	65.	14	•	0	.2	911	33
	10	65.	14		138.6			
Numba	r of wir	rad	-	5				
Numbe	L OL WI	rront	nodog -	165				
	Cu	rent	nodes =	102				
			mi	- i mum				
- 1'						, ilia	XIIIUIII	
Indiv	idual w	ires	wire	value		wire	value	
segme	nt lengt	th	1	4.		3	4.2	
radiu	S		2	.2474	:	1	.2911	
ELECT	RICAL DI	ESCRIE	PTION - N	IGHTTIME	OPERATION	J		
Frequ	encies	(MHZ)	-	-				
rregu	frequend	(11112) 737		no	of seame	nt lengt	h (wavele	natha)
200	leweat	~Y	aton	no.	or segue	iiit ieiigt	II (WAVEIE	iigciis/
110.	IOWESL		step	ster		10111		
T	1.11		0	T	.0111		.011666	/
Sourc	es							
sourc	e node	sec	ctor magi	nitude	phase		type	
1	1	1	2,53	13.92	80.7		voltage	
2	34	1	4.5	53.68	182.7		voltage	
2	67	1	2 7	26 81	200 8		voltage	
1	100	1	3,7.	10 0	41 A		vortage	
4	TOO	Ţ	1,04	±0.8	4⊥.4		voitage	
Lumpe	d loads							
		resis	stance	reactanc	e ind	luctance	capacita	nce passive
load	node	(ohms	3)	(ohms)	(mF	I)	(uF)	circuit
1	1	.01		0	0		0	0
2	34	.01		0	n		0	0
2	67	01		0	0 0		0	0
1	100	01		0	0		0	0
4 F	100	.01		0	U	10	0	0
-								

RMS (CURRENT	- NIGHTTIME OP	ERATION				
Frequ	lency	= 1.11 MHz					
Input	c power	= 20,000. watt	S				
Effic	ciency	= 100. %					
coord	linates	in degrees					
curre	ent			mag	phase	real	imaginary
no.	Х	Y	Z	(amps)	(deg)	(amps)	(amps)
GND	0	0	0	1.39962	137.7	-1.03514	.94203
2	0	0	4.	.784158	94.5	0617612	.781722
3	0	0	8.	.860448	52.4	.525363	.681443
4	0	0	12.	1.18634	29.9	1.02808	.591994
5	0	0	16.	1.55908	19.1	1.47366	.508999
6	0	0	20.	1.92358	12.9	1.87479	.430483
7	0	0	24.	2.26543	9.	2.23735	.355618
8	0	0	28.	2.57999	6.3	2.56431	.284059
9	0	0	32.	2.86542	4.3	2.85729	.215713
10	0	0	36.	3.12079	2.8	3.11715	.150623
11	0	0	40	3 34551	1 5	3 34433	088916
12	0	0	44	3 53919	5	3 53905	0307669
13	0	0	48	3 70149	359 6	3 70141	- 0236231
14	0	0	52	3 83219	358 9	3 83148	- 0740399
15	0	0	56	3 03116	358 2	3 03033	- 120268
16	0	0	50.	2 00022	257 7	2 00505	162000
17	0	0	60.	1 02274	257.7	1 02001	102090
10	0	0	69	4.03374	257.2	4.02001	19933
10	0	0	00.	4.03/51	350.7	4.03065	23170
19	0	0	12.	4.0098/	350.3	4.0014/	259284
20	0	0	/6.	3.95114	355.9	3.94109	281699
21	0	0	80.	3.861/5	355.6	3.8501/	298903
22	0	0	84.	3.74219	355.2	3.72927	310798
23	0	0	88.	3.59306	354.9	3.57902	317307
24	0	0	92.	3.41499	354.7	3.40012	318375
25	0	0	96.	3.20868	354.4	3.19329	313964
26	0	0	100.	2.97483	354.1	2.95925	30405
27	0	0	104.	2.71411	353.9	2.69872	288616
28	0	0	108.	2.42707	353.7	2.41227	267638
29	0	0	112.	2.11404	353.5	2.10025	241071
30	0	0	116.	1.77484	353.2	1.76252	208806
31	0	0	120.	1.40829	353.	1.39792	170602
32	0	0	124.	1.01078	352.8	1.00291	125889
33	0	0	128.	.573473	352.6	.56876	0733738
END	0	0	132.	0	0	0	0
GND	45.	-77.9423	0	3.86338	147.7	-3.26514	2.06508
35	45.	-77.9423	4.16	5.02484	131.7	-3.34076	3.75345
36	45.	-77.9423	8.32	5.87353	125.1	-3.37759	4.80522
37	45.	-77.9423	12.48	6.63423	120.8	-3.3983	5.69777
38	45.	-77.9423	16.64	7.32069	117.7	-3.40533	6.48045
39	45.	-77.9423	20.8	7.93951	115.4	-3.39984	7.17474
40	45.	-77.9423	24.96	8.49311	113.5	-3.38247	7.79049
41	45.	-77.9423	29.12	8.9822	111.9	-3.35369	8.33263
42	45.	-77.9423	33.28	9.40702	110.6	-3.31387	8.80399
43	45.	-77.9423	37.44	9.76727	109.5	-3.26337	9.20598
44	45.	-77.9423	41.6	10.0625	108.6	-3.20255	9.53931
45	45.	-77.9423	45.76	10.2925	107.7	-3.13178	9.80448
46	45.	-77.9423	49.92	10.457	107.	-3.05147	10.0019
47	45.	-77.9423	54.08	10.556	106.3	-2.96203	10.1319
48	45.	-77.9423	58.24	10.5895	105.7	-2.8639	10.1949
49	45.	-77.9423	62.4	10.5578	105.1	-2.75757	10.1913
50	45.	-77.9423	66.56	10,4616	104.6	-2.64352	10.1221
51	45	-77 9423	70.72	10 3017	104 2	-2.5223	9.98811
52	45	-77 9423	74.88	10 0789	103 7	-2.39443	9.79033
52	45	-77 9423	79 04	9 7946	103 3	-2.26048	9.53019
54	45	-77 9423	83.2	9,45019	103	-2.12103	9,20909
55	45	-77 9423	87.36	9,04745	102 6	-1.97667	8.82888

56	45.	-77.9423	91.52	8.58805	102.3	-1.82797	8.39125
57	45.	-77.9423	95.68	8.07409	102.	-1.67555	7.89832
58	45.	-77.9423	99.84	7.50763	101.7	-1.51996	7.35215
59	45.	-77.9423	104.	6.89076	101.4	-1.36178	6.75486
60	45.	-77.9423	108.16	6.2255	101.1	-1.20153	6.10845
61	45.	-77.9423	112.32	5.51366	100.9	-1.03967	5.41475
62	45.	-77.9423	116.48	4.75654	100.6	876552	4.67508
63	45.	-77.9423	120.64	3.95446	100.4	712376	3.88977
64	45.	-77.9423	124.8	3.10562	100.1	546976	3.05708
65	45.	-77.9423	128.96	2.20337	99.9	3794	2.17046
66	45.	-77.9423	133.12	1.22928	99.7	206847	1.21176
END	45.	-77.9423	137.28	0	0	0	0
GND	90.	-155.885	0	5.19894	236.	-2.90496	-4.31163
68	90.	-155.885	4.2	6.41016	228.7	-4.23488	-4.81207
69	90.	-155.885	8.4	7.1859	225.3	-5.05221	-5.11003
70	90.	-155.885	12.6	7.84878	223.	-5.74157	-5.35143
71	90.	-155.885	16.8	8.42784	221.2	-6.34155	-5.55097
72	90.	-155.885	21.	8.93579	219.8	-6.86914	-5.71517
73	90.	-155.885	25.2	9.37811	218.6	-7.33214	-5.84711
74	90.	-155.885	29.4	9.75749	217.6	-7.73463	-5.94845
75	90.	-155.885	33.6	10.0752	216.7	-8.07878	-6.02017
76	90.	-155.885	37.8	10.3317	215.9	-8.36572	-6.06291
77	90.	-155.885	42.	10.5275	215.3	-8.59624	-6.07718
78	90.	-155.885	46.2	10.6626	214.7	-8.77083	-6.06337
79	90.	-155.885	50.4	10.7375	214.1	-8.88983	-6.02195
80	90.	-155.885	54.6	10.7522	213.6	-8.95368	-5.95335
81	90.	-155.885	58.8	10.7075	213.2	-8.96288	-5.85809
82	90.	-155.885	63.	10.6038	212.8	-8.91797	-5.73676
83	90.	-155.885	67.2	10.4419	212.4	-8.81962	-5.59003
84	90.	-155.885	71.4	10.223	212.	-8.66879	-5.41866
85	90.	-155.885	75.6	9.94823	211.7	-8.46656	-5.22348
86	90.	-155.885	79.8	9.61898	211.4	-8.21405	-5.00542
87	90.	-155.885	84.	9.23684	211.1	-7.91261	-4.76548
88	90.	-155.885	88.2	8.80367	210.8	-7.56386	-4.50474
89	90.	-155.885	92.4	8.32134	210.5	-7.16937	-4.22432
90	90.	-155.885	96.6	7.79193	210.3	-6.73093	-3.9254
91	90.	-155.885	100.8	7.21753	210.	-6.25032	-3.60919
92	90.	-155.885	105.	6.60029	209.8	-5.7294	-3.27685
93	90.	-155.885	109.2	5.94225	209.5	-5.16993	-2.92954
94	90.	-155.885	113.4	5.24525	209.3	-4.57348	-2.56826
95	90.	-155.885	117.6	4.5106	209.1	-3.94118	-2.19377
96	90.	-155.885	121.8	3.73871	208.9	-3.27337	-1.80639
97	90.	-155.885	126.	2.92799	208.7	-2.56861	-1.40549
98	90.	-155.885	130.2	2.07229	208.5	-1.82143	988325
99	90.	-155.885	134.4	1.15462	208.3	-1.01679	547068
END	90.	-155.885	138.6	0	0	0	0
GND	135.	-233.827	0	2.29252	329.4	1.97311	-1.16725
101	135.	-233.827	4.2	2.69386	326.6	2.24959	-1.48196
102	135.	-233.827	8.4	2.93345	325.3	2.41199	-1.66956
103	135.	-233.827	12.6	3.13201	324.3	2.54475	-1.82585
104	135.	-233.827	16.8	3.30061	323.6	2.65578	-1.95981
105	135.	-233.827	21.	3.44429	322.9	2.74869	-2.07552
106	135.	-233.827	25.2	3.56535	322.4	2.82514	-2.17493
107	135.	-233.827	29.4	3.665	321.9	2.886	-2.25904
108	135.	-233.827	33.6	3.74391	321.5	2.93177	-2.32844
109	135.	-233.827	37.8	3.80249	321.2	2.96276	-2.38348
110	135.	-233.827	42.	3.84099	320.9	2.97918	-2.4244
111	135.	-233.827	46.2	3.85966	320.6	2.9812	-2.4514
112	135.	-233.827	50.4	3.85869	320.3	2.969	-2.46465
113	135.	-233.827	54.6	3.83831	320.1	2.94275	-2.46431
114	135.	-233.827	58.8	3.79881	319.8	2.90269	-2.45058
115	135.	-233.827	63.	3.74049	319.6	2.84905	-2.42366
116	135.	-233.827	67.2	3.66371	319.4	2.78214	-2.38379

117	135.	-233.827	71.4	3.56893	319.2	2.70233	-2.33124
118	135.	-233.827	75.6	3.45663	319.	2.60999	-2.26633
119	135.	-233.827	79.8	3.32736	318.9	2.50557	-2.18939
120	135.	-233.827	84.	3.18172	318.7	2.38957	-2.1008
121	135.	-233.827	88.2	3.0204	318.5	2.26252	-2.00096
122	135.	-233.827	92.4	2.8441	318.3	2.12499	-1.89031
123	135.	-233.827	96.6	2.65354	318.2	1.97759	-1.76929
124	135.	-233.827	100.8	2.44949	318.	1.82092	-1.63837
125	135.	-233.827	105.	2.2327	317.9	1.65558	-1.49799
126	135.	-233.827	109.2	2.00389	317.7	1.48218	-1.3486
127	135.	-233.827	113.4	1.76369	317.5	1.30122	-1.19057
128	135.	-233.827	117.6	1.51259	317.4	1.11312	-1.02415
129	135.	-233.827	121.8	1.25071	317.2	.918045	849385
130	135.	-233.827	126.	.977526	317.1	.715671	665862
131	135.	-233.827	130.2	.69097	316.9	.504546	472094
132	135.	-233.827	134.4	.38552	316.7	.280741	264216
END	135.	-233.827	138.6	0	0	0	0
GND	160.099	-39.9171	0	1.63172	201.7	-1.51612	603239
134	160.099	-39.9171	4.2	1.35133	201.7	-1.25551	499793
135	160.099	-39.9171	8.4	1.17572	201.7	-1.0921	43548
136	160.099	-39.9171	12.6	1.02066	201.8	947624	37915
137	160.099	-39.9171	16.8	.878336	201.9	814836	327899
138	160.099	-39.9171	21.	.745256	202.1	690492	280407
139	160.099	-39.9171	25.2	.619884	202.4	573172	236072
140	160.099	-39.9171	29.4	.50151	202.8	46222	19459
141	160.099	-39.9171	33.6	.389851	203.6	357365	155802
142	160.099	-39.9171	37.8	.284876	204.8	258541	119629
143	160.099	-39.9171	42.	.186794	207.4	165803	086031
144	160.099	-39.9171	46.2	.0964814	214.8	0792718	0549967
145	160.099	-39.9171	50.4	.0265385	271.9	8.94E-04	0265234
146	160.099	-39.9171	54.6	.0745239	359.5	.0745214	-6.15E-04
147	160.099	-39.9171	58.8	.143247	9.1	.141433	.0227244
148	160.099	-39.9171	63.	.206101	12.2	.20146	.0434924
149	160.099	-39.9171	67.2	.261818	13.6	.254446	.0616913
150	160.099	-39.9171	71.4	.310053	14.4	.300255	.0773286
151	160.099	-39.9171	75.6	.35063	14.9	.338772	.0904172
152	160.099	-39.9171	79.8	.383441	15.3	.369906	.100979
153	160.099	-39.9171	84.	.408419	15.5	.393594	.10904
154	160.099	-39.9171	88.2	.425528	15.6	.409796	.114635
155	160.099	-39.9171	92.4	.434766	15.7	.418501	.117804
156	160.099	-39.9171	96.6	.436152	15.8	.419719	.118596
157	160.099	-39.9171	100.8	.429732	15.8	.413481	.117062
158	160.099	-39.9171	105.	.415566	15.8	.399834	.11326
159	160.099	-39.9171	109.2	.393723	15.8	.378835	.107247
160	160.099	-39.9171	113.4	.364263	15.8	.350528	.0990814
161	160.099	-39.91/1	11/.6	.32/218	15./	.314935	.0888121
162	160.099	-39.9171	121.8	.282543	15.7	.2/1998	.0/64695
163	160.099	-39.9171	120.	.230022	15.6	.221497	.062041
165	160.099	-39.91/L	130.2	.109014	15.0 15.5	.102802	.0454021
105	160.099	-39.91/1	134.4	.09/91/4	15.5	.0943529	.0261/9
ыND	TPD.022	-39.91/l	138.6	U	U	U	U

APPENDIX D

DETUNED TOWER MODELS

ELECI	RICAL	DESCRIPTION	- TOWERS #1 (Northeast) and #!	5 (North) I	DETUNE
Frequ	encies	s (MHz)			_	_	-
	freque	ency	no. c	f segment	t lengtl	n (waveleng	gths)
no.	lowest	step	steps	minimur	n	maximum	
1	1.11	0	1	.01166	67	.0116667	
Plane	wave	Source					
r ranc	zenit	h angle (dec	r) = 90	1			
	ir	arement (dec	(1) = 0				
	 ni	mber of angl	eg = 1				
	azimi	th angle (de	(n = 0)				
	ir	crement (dec	(1) = 0				
	 ni	mber of angl	es = 1				
	polar	ization angl	e(deg) = 0				
	magni	tude (v/m)	= 1				
		(,,,					
Lumpe	d load	ls					
_		resistance	e reactance	e induc	ctance	capacitan	ce passive
load	node	(ohms)	(ohms)	(mH)		(uF)	circuit
1	1	1.E-03	0	.043		0	0
GEOME	TRY -	TOWERS #1 (N	Iortheast) and	#5 (Nor+)	h) איזידיים	J.F.	
Wire	coordi	nates in dec	rees; other d	imensions	in mete	erg	
Envir	onment	; perfect gr	round		111 11000	210	
	011110110	. For Toolo 21	ound				
wire	caps	Distance	Angle	Z	rad	dius s	seqs
1	none	0	0	0	. 29	911	33
		0	0	138.6			
Numbe	er of v	vires	= 1				
	c	urrent nodes	s = 33				
			minimum		maz	kimum	
Indiv	ridual	wires w	vire value		wire	value	
segme	ent ler	ıgth	1 4.2		1	4.2	
radiu	IS		1 .2911		1	.2911	
			1 (Noutheast)		NTerreta \ T		
RMS C	URRENI	S = 10WERS =	(Northeast)	and #5 (1	NOTUI) I	JEIONE	
Prequ	lency	= 1.11 MHz	- 00				
Plane	wave	zeniruth (deg)	= 90				
Plane	e wave	azımutn (deg	(j) = 0				
Polar	izatio	n angle (deg	g) = 0				
aurre	nt	s III degrees		mag	nhace	real	imaginary
CULLE no	v	v	7	(ampg)	(dea)	(ampg)	(ampg)
CND	 ∩	1	0	(allips)	(ueg) 270 7	(amps) 2 72v_02	(amps) _ 200277
2	0	0	1 2	240246	270.7	3.72E-03	240277
2	0	0	9.4	208802	270.7	2.60E-03	- 208875
 ∧	0	0	12 6	1200092	270.7	2.09E-03	- 1809/1
т Б	0	0	16.8	155152	270.7	2.345-03	- 155139
5	0	0	21	130863	270.7	2.03 ± -03 1 74 \ \ - 03	130852
7	0	0	21.	107825	270.0	1 478-03	- 107815
0	0	0	20.4	.107825	270.0	1 225 02	107813
9	0	0	22.4 22.6	0650074	270.0 270 Q	1.225-03 9.82F-01	- 065092
10	0	0	33.0	0452612	270.9 271	7.64 F = 04	- 0453540
11	0	0	42	0267305	271 0	5 63F-04	- 0267249
12	0	0	 46 2	9 24 - 02	272 2	3 798-04	-0 232-740
1 २	0	0	50 4	7 088-03	88 3	2.11E - 04	7 07E = 03
14	0	0	54 6	.0221503	89 R	5.898-05	.0221503
15	0	0 0	58 8	.0359476	90.1	-7.64 ± 0.05	.0359475
16	Ő	õ	63.	.0484167	90.2	-1.96E-04	.0484163
	0	õ	67 0	05051107	00.2	2.0000 04	05051200
17	0	0	0/.2	.05951	20.5	-2.320-04	.0393093

18	0	0	71.4	.0691829	90.3	-3.86E-04	.0691818
19	0	0	75.6	.0773935	90.3	-4.58E-04	.0773921
20	0	0	79.8	.0841056	90.4	-5.14E-04	.084104
21	0	0	84.	.0892839	90.4	-5.56E-04	.0892821
22	0	0	88.2	.0929008	90.4	-5.83E-04	.092899
23	0	0	92.4	.0949303	90.4	-5.96E-04	.0949284
24	0	0	96.6	.0953517	90.4	-5.97E-04	.0953498
25	0	0	100.8	.0941474	90.4	-5.84E-04	.0941456
26	0	0	105.	.0913005	90.4	-5.6E-04	.0912988
27	0	0	109.2	.0867968	90.3	-5.25E-04	.0867952
28	0	0	113.4	.0806166	90.3	-4.79E-04	.0806151
29	0	0	117.6	.0727342	90.3	-4.24E-04	.072733
30	0	0	121.8	.0631038	90.3	-3.6E-04	.0631028
31	0	0	126.	.0516386	90.3	-2.88E-04	.0516378
32	0	0	130.2	.0381531	90.3	-2.07E-04	.0381525
33	0	0	134.4	.0222374	90.3	-1.17E-04	.0222371
END	0	0	138.6	0	0	0	0

ELECTRICAL DESCRIPTION - TOWER #2 (East Center) DETUNE Frequencies (MHz) frequency no. of segment length (wavelengths) no. lowest steps minimum maximum step 0 .0116667 1 1.11 1 .0116667 Plane wave source zenith angle (deg) = 90 increment (deg) 0 = number of angles = 1 = 0 azimuth angle (deg) increment (deg) = 0 number of angles = 1 polarization angle (deg) = 0 magnitude (v/m) = 1 Lumped loads resistance reactance inductance capacitance passive load node (ohms) (ohms) (mH) (uF) circuit .044 1 1 1.E-03 0 0 0 GEOMETRY - TOWER #2 (East Center) DETUNE Wire coordinates in degrees; other dimensions in meters Environment: perfect ground Z wire caps Distance Angle -0 radius seqs none O 1 0 .262 33 0 0 138.6 Number of wires = 1 current nodes = 33 minimum maximum Individual wires wire value wire value 4.2 segment length 1 4.2 1 radius 1 .262 1 .262 RMS CURRENTS - TOWER #2 (East Center) DETUNE Frequency = 1.11 MHz Plane wave zenith (deg) = 90 Plane wave azimuth (deg) = 0Polarization angle (deg) = 0coordinates in degrees mag imaginary current phase real Z 0 (amps) (deq) (amps) (amps) Х Y no. Y 0 0 GND 0 .282658 270.8 3.83E-03 -.282632 .235265 270.8 3.19E-03 -.235244 4.2 2 0

18	0	0	71.4	.0665632	90.4	-4.1E-04	.0665619
19	0	0	75.6	.0746141	90.4	-4.86E-04	.0746125
20	0	0	79.8	.0812017	90.4	-5.47E-04	.0811999
21	0	0	84.	.0862924	90.4	-5.91E-04	.0862904
22	0	0	88.2	.0898592	90.4	-6.21E-04	.089857
23	0	0	92.4	.0918759	90.4	-6.36E-04	.0918737
24	0	0	96.6	.0923221	90.4	-6.37E-04	.0923199
25	0	0	100.8	.0911814	90.4	-6.25E-04	.0911793
26	0	0	105.	.0884385	90.4	-6.E-04	.0884364
27	0	0	109.2	.0840776	90.4	-5.63E-04	.0840757
28	0	0	113.4	.0780826	90.4	-5.15E-04	.0780809
29	0	0	117.6	.0704271	90.4	-4.57E-04	.0704256
30	0	0	121.8	.0610693	90.4	-3.89E-04	.0610681
31	0	0	126.	.0499277	90.4	-3.11E-04	.0499268
32	0	0	130.2	.036827	90.3	-2.24E-04	.0368263
33	0	0	134.4	.0213693	90.3	-1.27E-04	.0213689
END	0	0	138.6	0	0	0	0

ELECTRICAL DESCRIPTION - TOWERS #3 (West Center) DETUNE Frequencies (MHz) frequency no. of segment length (wavelengths) no. lowest steps minimum maximum step .0115556 0 1 1.11 1 .0115556 Plane wave source zenith angle (deg) = 90 increment (deg) 0 = number of angles = 1 = 0 azimuth angle (deg) increment (deg) = 0 number of angles = 1 polarization angle (deg) = 0 magnitude (v/m) = 1 Lumped loads resistance reactance inductance capacitance passive load node (ohms) (ohms) (mH) (uF) circuit .046 1 1 1.E-03 0 0 0 GEOMETRY - TOWERS #3 (West Center) DETUNE Wire coordinates in degrees; other dimensions in meters Environment: perfect ground Z wire caps Distance Angle radius seqs 2 0 1 none O 0 .2474 33 137.28 0 0 Number of wires = 1 current nodes = 33 minimum maximum Individual wires wire value wire value 1 segment length 4.16 4.16 1 radius 1 .2474 1 .2474 RMS CURRENTS - TOWERS #3 (West Center) DETUNE Frequency = 1.11 MHz Plane wave zenith (deg) = 90 Plane wave azimuth (deg) = 0Polarization angle (deg) = 0coordinates in degrees imaginary current maq phase real Z 0 Х Y (amps) (deq) (amps) (amps) no. Y 0 0 GND 0 .271837 270.5 2.56E-03 -.271825 .225663 270.5 2.13E-03 -.225653 2 0 4.16

18	0	0	70.72	.0681804	90.2	-2.47E-04	.0681799
19	0	0	74.88	.0758349	90.2	-2.93E-04	.0758344
20	0	0	79.04	.082054	90.2	-3.28E-04	.0820534
21	0	0	83.2	.0868087	90.2	-3.54E-04	.086808
22	0	0	87.36	.0900713	90.2	-3.69E-04	.0900706
23	0	0	91.52	.0918207	90.2	-3.76E-04	.0918199
24	0	0	95.68	.0920378	90.2	-3.74E-04	.092037
25	0	0	99.84	.0907063	90.2	-3.64E-04	.0907055
26	0	0	104.	.0878127	90.2	-3.47E-04	.0878121
27	0	0	108.16	.0833445	90.2	-3.23E-04	.0833439
28	0	0	112.32	.0772845	90.2	-2.92E-04	.0772839
29	0	0	116.48	.0696091	90.2	-2.56E-04	.0696086
30	0	0	120.64	.0602779	90.2	-2.16E-04	.0602775
31	0	0	124.8	.0492115	90.2	-1.7E-04	.0492112
32	0	0	128.96	.0362399	90.2	-1.21E-04	.0362397
33	0	0	133.12	.0209716	90.2	-6.73E-05	.0209715
END	0	0	137.28	0	0	0	0